Deep Residual Learning for Accelerated MRI Using Magnitude and Phase Networks

Objective: Accelerated magnetic resonance (MR) image acquisition with compressed sensing (CS) and parallel imaging is a powerful method to reduce MR imaging scan time. However, many reconstruction algorithms have high computational costs. To address this, we investigate deep residual learning networ...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 65; no. 9; pp. 1985 - 1995
Main Authors Lee, Dongwook, Yoo, Jaejun, Tak, Sungho, Ye, Jong Chul
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective: Accelerated magnetic resonance (MR) image acquisition with compressed sensing (CS) and parallel imaging is a powerful method to reduce MR imaging scan time. However, many reconstruction algorithms have high computational costs. To address this, we investigate deep residual learning networks to remove aliasing artifacts from artifact corrupted images. Methods: The deep residual learning networks are composed of magnitude and phase networks that are separately trained. If both phase and magnitude information are available, the proposed algorithm can work as an iterative k-space interpolation algorithm using framelet representation. When only magnitude data are available, the proposed approach works as an image domain postprocessing algorithm. Results: Even with strong coherent aliasing artifacts, the proposed network successfully learned and removed the aliasing artifacts, whereas current parallel and CS reconstruction methods were unable to remove these artifacts. Conclusion: Comparisons using single and multiple coil acquisition show that the proposed residual network provides good reconstruction results with orders of magnitude faster computational time than existing CS methods. Significance: The proposed deep learning framework may have a great potential for accelerated MR reconstruction by generating accurate results immediately.
AbstractList Objective: Accelerated magnetic resonance (MR) image acquisition with compressed sensing (CS) and parallel imaging is a powerful method to reduce MR imaging scan time. However, many reconstruction algorithms have high computational costs. To address this, we investigate deep residual learning networks to remove aliasing artifacts from artifact corrupted images. Methods: The deep residual learning networks are composed of magnitude and phase networks that are separately trained. If both phase and magnitude information are available, the proposed algorithm can work as an iterative k-space interpolation algorithm using framelet representation. When only magnitude data are available, the proposed approach works as an image domain postprocessing algorithm. Results: Even with strong coherent aliasing artifacts, the proposed network successfully learned and removed the aliasing artifacts, whereas current parallel and CS reconstruction methods were unable to remove these artifacts. Conclusion: Comparisons using single and multiple coil acquisition show that the proposed residual network provides good reconstruction results with orders of magnitude faster computational time than existing CS methods. Significance: The proposed deep learning framework may have a great potential for accelerated MR reconstruction by generating accurate results immediately.
Accelerated magnetic resonance (MR) image acquisition with compressed sensing (CS) and parallel imaging is a powerful method to reduce MR imaging scan time. However, many reconstruction algorithms have high computational costs. To address this, we investigate deep residual learning networks to remove aliasing artifacts from artifact corrupted images. The deep residual learning networks are composed of magnitude and phase networks that are separately trained. If both phase and magnitude information are available, the proposed algorithm can work as an iterative k-space interpolation algorithm using framelet representation. When only magnitude data are available, the proposed approach works as an image domain postprocessing algorithm. Even with strong coherent aliasing artifacts, the proposed network successfully learned and removed the aliasing artifacts, whereas current parallel and CS reconstruction methods were unable to remove these artifacts. Comparisons using single and multiple coil acquisition show that the proposed residual network provides good reconstruction results with orders of magnitude faster computational time than existing CS methods. The proposed deep learning framework may have a great potential for accelerated MR reconstruction by generating accurate results immediately.
Accelerated magnetic resonance (MR) image acquisition with compressed sensing (CS) and parallel imaging is a powerful method to reduce MR imaging scan time. However, many reconstruction algorithms have high computational costs. To address this, we investigate deep residual learning networks to remove aliasing artifacts from artifact corrupted images.OBJECTIVEAccelerated magnetic resonance (MR) image acquisition with compressed sensing (CS) and parallel imaging is a powerful method to reduce MR imaging scan time. However, many reconstruction algorithms have high computational costs. To address this, we investigate deep residual learning networks to remove aliasing artifacts from artifact corrupted images.The deep residual learning networks are composed of magnitude and phase networks that are separately trained. If both phase and magnitude information are available, the proposed algorithm can work as an iterative k-space interpolation algorithm using framelet representation. When only magnitude data are available, the proposed approach works as an image domain postprocessing algorithm.METHODSThe deep residual learning networks are composed of magnitude and phase networks that are separately trained. If both phase and magnitude information are available, the proposed algorithm can work as an iterative k-space interpolation algorithm using framelet representation. When only magnitude data are available, the proposed approach works as an image domain postprocessing algorithm.Even with strong coherent aliasing artifacts, the proposed network successfully learned and removed the aliasing artifacts, whereas current parallel and CS reconstruction methods were unable to remove these artifacts.RESULTSEven with strong coherent aliasing artifacts, the proposed network successfully learned and removed the aliasing artifacts, whereas current parallel and CS reconstruction methods were unable to remove these artifacts.Comparisons using single and multiple coil acquisition show that the proposed residual network provides good reconstruction results with orders of magnitude faster computational time than existing CS methods.CONCLUSIONComparisons using single and multiple coil acquisition show that the proposed residual network provides good reconstruction results with orders of magnitude faster computational time than existing CS methods.The proposed deep learning framework may have a great potential for accelerated MR reconstruction by generating accurate results immediately.SIGNIFICANCEThe proposed deep learning framework may have a great potential for accelerated MR reconstruction by generating accurate results immediately.
Author Ye, Jong Chul
Yoo, Jaejun
Tak, Sungho
Lee, Dongwook
Author_xml – sequence: 1
  givenname: Dongwook
  orcidid: 0000-0001-8657-5785
  surname: Lee
  fullname: Lee, Dongwook
  organization: Department of Bio and Brain Engineering, KAIST, (KAIST), Daejeon, South Korea
– sequence: 2
  givenname: Jaejun
  surname: Yoo
  fullname: Yoo, Jaejun
  organization: Department of Bio and Brain Engineering, KAIST, (KAIST), Daejeon, South Korea
– sequence: 3
  givenname: Sungho
  orcidid: 0000-0002-3836-0082
  surname: Tak
  fullname: Tak, Sungho
  organization: Bioimaging Research Team, Korea Basic Science Institute, Ochang, South Korea
– sequence: 4
  givenname: Jong Chul
  orcidid: 0000-0001-9763-9609
  surname: Ye
  fullname: Ye, Jong Chul
  email: jong.ye@kaist.ac.kr
  organization: Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29993390$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhi1URNPCD0BIyBIXLhs8_lr7WEqBSgmgqj1b7nq2uGy8qb0rxL_HUUIPPXCyRvM849G8J-QojQkJeQ1sCcDsh-uP64slZ2CW3HDQ1j4jC1DKNFwJOCILVluN5VYek5NS7mspjdQvyDG31gph2YKsPyFu6RWWGGY_0BX6nGK6o_2Y6VnX4YDZTxjo-uqS3pRdZ-3vUpzmgNSnQH_89AXpN5x-j_lXeUme934o-OrwnpKbzxfX51-b1fcvl-dnq6aToKam914AmlZpKe2t8qELALoXJmgJXKDpWhk69IxJJYxmslreqoDBM22DFqfk_X7uNo8PM5bJbWKpyw4-4TgXx5k2QnKlbUXfPUHvxzmnup3jAC0IMKyt1NsDNd9uMLhtjhuf_7h_h6oA7IEuj6Vk7B8RYG4XhtuF4XZhuEMY1WmfOF2c_BTHNGUfh_-ab_ZmRMTHn4yoUXIj_gJHGZPr
CODEN IEBEAX
CitedBy_id crossref_primary_10_3390_bioengineering10070864
crossref_primary_10_1007_s10334_023_01127_6
crossref_primary_10_1016_j_media_2021_102017
crossref_primary_10_1109_TMI_2022_3180228
crossref_primary_10_1002_mrm_30021
crossref_primary_10_1016_j_compmedimag_2024_102475
crossref_primary_10_3348_jksr_2022_0156
crossref_primary_10_1007_s10334_022_01041_3
crossref_primary_10_1016_j_media_2020_101689
crossref_primary_10_1016_j_neuroimage_2022_119248
crossref_primary_10_1109_JSTSP_2020_3001737
crossref_primary_10_1002_mrm_27772
crossref_primary_10_1002_mrm_28344
crossref_primary_10_1016_j_jacr_2023_06_034
crossref_primary_10_1109_TCI_2023_3258839
crossref_primary_10_1016_j_mri_2024_110218
crossref_primary_10_3390_electronics11040586
crossref_primary_10_1002_mrm_30307
crossref_primary_10_1002_nbm_4572
crossref_primary_10_2463_mrms_mp_2019_0139
crossref_primary_10_35711_aimi_v1_i1_1
crossref_primary_10_1002_mrm_27656
crossref_primary_10_1002_mrm_29317
crossref_primary_10_1364_OE_424165
crossref_primary_10_1109_TCI_2024_3422840
crossref_primary_10_3390_diagnostics11081484
crossref_primary_10_1002_mrm_29556
crossref_primary_10_1016_j_compmedimag_2020_101784
crossref_primary_10_1016_j_media_2024_103349
crossref_primary_10_1109_JBHI_2024_3432139
crossref_primary_10_1016_j_media_2021_102098
crossref_primary_10_1049_ipr2_12687
crossref_primary_10_1109_ACCESS_2023_3294345
crossref_primary_10_1109_TIM_2022_3165786
crossref_primary_10_1088_1361_6420_ab80d7
crossref_primary_10_1109_ACCESS_2020_3034287
crossref_primary_10_1016_j_media_2020_101717
crossref_primary_10_1002_mrm_29785
crossref_primary_10_1093_bib_bbaa310
crossref_primary_10_1109_TMI_2019_2927101
crossref_primary_10_1088_2632_2153_aba8e7
crossref_primary_10_1016_j_compbiomed_2023_107619
crossref_primary_10_1002_mp_14006
crossref_primary_10_1016_j_nic_2020_04_004
crossref_primary_10_1016_j_pacs_2024_100597
crossref_primary_10_3389_fneur_2019_00869
crossref_primary_10_1109_TUFFC_2020_2977202
crossref_primary_10_1007_s10334_024_01187_2
crossref_primary_10_1109_TMI_2020_3014581
crossref_primary_10_1007_s00330_020_07451_y
crossref_primary_10_1016_j_compbiomed_2023_107610
crossref_primary_10_13104_imri_2021_25_4_300
crossref_primary_10_1002_mrm_28733
crossref_primary_10_1088_1361_6420_ad3b34
crossref_primary_10_1109_JSTSP_2022_3171082
crossref_primary_10_1109_MSP_2019_2951469
crossref_primary_10_1016_j_bspc_2025_107564
crossref_primary_10_1016_j_knosys_2024_112938
crossref_primary_10_1109_TMI_2022_3216527
crossref_primary_10_1109_TCI_2021_3062986
crossref_primary_10_1186_s40658_021_00426_y
crossref_primary_10_1002_mrm_30045
crossref_primary_10_1109_TNNLS_2022_3222394
crossref_primary_10_1109_ACCESS_2019_2948220
crossref_primary_10_1109_TMI_2022_3207774
crossref_primary_10_3390_bioengineering10010022
crossref_primary_10_1109_ACCESS_2023_3313977
crossref_primary_10_1002_nbm_4312
crossref_primary_10_1109_JBHI_2023_3311189
crossref_primary_10_1109_JSTARS_2020_2975000
crossref_primary_10_1109_TMI_2024_3432388
crossref_primary_10_1016_j_compbiomed_2024_108603
crossref_primary_10_1109_JBHI_2021_3064696
crossref_primary_10_1109_TMI_2024_3351211
crossref_primary_10_1109_TCI_2020_3018562
crossref_primary_10_1109_TIP_2024_3388970
crossref_primary_10_3390_app10228089
crossref_primary_10_1109_JBHI_2024_3516758
crossref_primary_10_1093_gji_ggz363
crossref_primary_10_1016_j_compmedimag_2021_101968
crossref_primary_10_1109_MSP_2019_2950557
crossref_primary_10_13104_imri_2020_24_4_241
crossref_primary_10_1016_j_dsp_2023_104277
crossref_primary_10_1002_mrm_30030
crossref_primary_10_1016_j_mri_2024_04_023
crossref_primary_10_1049_iet_ipr_2019_0834
crossref_primary_10_3389_fnins_2023_1202143
crossref_primary_10_1002_nbm_4540
crossref_primary_10_1109_JSTSP_2020_2998402
crossref_primary_10_1109_TRPMS_2022_3205283
crossref_primary_10_1002_mrm_28912
crossref_primary_10_1016_j_neucom_2023_127067
crossref_primary_10_1109_TMI_2022_3147426
crossref_primary_10_1016_j_media_2025_103459
crossref_primary_10_1148_radiol_220448
crossref_primary_10_1109_TMI_2020_3023620
crossref_primary_10_3389_fradi_2021_781868
crossref_primary_10_1016_j_mri_2020_12_019
crossref_primary_10_1038_s41598_020_70551_8
crossref_primary_10_1111_1754_9485_13276
crossref_primary_10_1002_mrm_29073
crossref_primary_10_1109_ACCESS_2023_3270900
crossref_primary_10_1109_TNNLS_2021_3090303
crossref_primary_10_1109_JPROC_2022_3141367
crossref_primary_10_3389_fonc_2022_1013783
crossref_primary_10_1002_mrm_30105
crossref_primary_10_1109_TMI_2022_3153849
crossref_primary_10_3389_fnins_2022_919186
crossref_primary_10_3390_app13042281
crossref_primary_10_1016_j_compbiomed_2024_108905
crossref_primary_10_1109_TCBB_2022_3213669
crossref_primary_10_1109_ACCESS_2018_2874382
crossref_primary_10_1016_j_mri_2020_09_018
crossref_primary_10_1109_JBHI_2022_3193299
crossref_primary_10_1007_s11831_022_09785_w
crossref_primary_10_1016_j_neuroimage_2021_118632
crossref_primary_10_1371_journal_pone_0229418
crossref_primary_10_1038_s42256_020_00273_z
crossref_primary_10_1002_mrm_28827
crossref_primary_10_3390_diagnostics11101935
crossref_primary_10_1371_journal_pone_0223315
crossref_primary_10_3390_bioengineering10091012
crossref_primary_10_1109_JSTSP_2020_3003170
crossref_primary_10_3390_s22103943
crossref_primary_10_1002_ima_23131
crossref_primary_10_1109_TCI_2024_3410521
crossref_primary_10_1109_TMI_2024_3443292
crossref_primary_10_1007_s11548_019_02040_x
crossref_primary_10_1038_s41598_021_94692_6
crossref_primary_10_3390_bioengineering11030227
crossref_primary_10_1016_j_neuroimage_2021_118404
crossref_primary_10_1109_TNNLS_2022_3226040
crossref_primary_10_1002_nbm_4405
crossref_primary_10_1016_j_mri_2024_110244
crossref_primary_10_1002_mrm_28378
crossref_primary_10_1016_j_imavis_2024_105228
crossref_primary_10_1016_j_mri_2020_04_016
crossref_primary_10_1109_JSTSP_2020_2982777
crossref_primary_10_1109_JPROC_2019_2936204
crossref_primary_10_3390_fi14120351
crossref_primary_10_1080_00207454_2019_1698568
crossref_primary_10_1038_s41598_020_69932_w
crossref_primary_10_1109_JBHI_2019_2939810
crossref_primary_10_1016_j_mri_2024_02_004
crossref_primary_10_1002_mp_17066
crossref_primary_10_1016_j_cag_2023_06_003
crossref_primary_10_1016_j_mri_2020_02_002
crossref_primary_10_1049_ipr2_13089
crossref_primary_10_1109_TMI_2018_2864821
crossref_primary_10_13104_imri_2019_23_2_81
crossref_primary_10_1016_j_neuroimage_2025_121060
crossref_primary_10_3389_frai_2023_1289669
crossref_primary_10_1016_j_ejmp_2021_02_020
crossref_primary_10_3390_bioengineering10091107
crossref_primary_10_3390_s24030753
crossref_primary_10_1038_s41598_024_55880_2
crossref_primary_10_1109_TCI_2019_2956877
crossref_primary_10_1109_TBME_2023_3243491
crossref_primary_10_1002_jmri_28024
crossref_primary_10_1016_j_rcl_2021_07_009
crossref_primary_10_1109_TBME_2023_3321431
crossref_primary_10_1016_j_media_2023_102872
crossref_primary_10_1016_j_mri_2022_12_008
crossref_primary_10_1016_j_neucom_2019_11_107
crossref_primary_10_1097_RLI_0000000000000792
crossref_primary_10_1109_TMI_2021_3096232
crossref_primary_10_1109_TUFFC_2020_2986166
crossref_primary_10_1007_s12204_024_2778_0
crossref_primary_10_1038_s41598_022_14039_7
crossref_primary_10_1016_j_jmr_2019_07_020
crossref_primary_10_1007_s00330_024_10771_y
crossref_primary_10_3390_appliedmath4030059
crossref_primary_10_1016_j_bspc_2023_105810
crossref_primary_10_1002_mrm_28393
crossref_primary_10_1002_mrm_29085
crossref_primary_10_1016_j_bspc_2020_102399
crossref_primary_10_1109_TMTT_2024_3439551
crossref_primary_10_1002_mrm_29128
crossref_primary_10_1016_j_bspc_2021_102579
crossref_primary_10_1016_j_mri_2023_03_011
crossref_primary_10_1002_mrm_29525
crossref_primary_10_1038_s42256_020_00289_5
crossref_primary_10_1016_j_media_2021_102047
crossref_primary_10_1021_acs_est_1c00832
crossref_primary_10_1109_TRPMS_2020_2991877
Cites_doi 10.1109/TIP.2017.2713099
10.1002/mrm.27106
10.1002/mp.12600
10.1002/mrm.10171
10.1109/TIP.2003.819861
10.1002/mrm.26977
10.1002/mrm.26081
10.1007/s10444-008-9084-5
10.1109/TMI.2018.2823768
10.1109/CVPR.2016.90
10.1145/2733373.2807412
10.1088/0031-9155/52/11/018
10.1002/mrm.22428
10.1109/ISBI.2016.7493320
10.1007/978-1-4419-9467-7
10.1109/5.58337
10.1002/mrm.24997
10.1109/TMI.2018.2827462
10.1109/TCI.2016.2644865
10.1002/mrm.21757
10.1002/mp.12344
10.1109/CVPR.2016.182
10.1137/17M1141771
10.1109/MSP.2007.914728
10.1145/3065386
10.1109/CVPR.2016.278
10.1109/TIT.2006.871582
10.1109/TCI.2016.2601296
10.1109/TIP.2017.2662206
10.1016/j.acha.2007.10.002
10.1109/CVPR.2017.19
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1002/mrm.26077
10.1109/TIT.2016.2629078
10.1137/18M1174027
10.1109/TMI.2017.2708987
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2018.2821699
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1995
ExternalDocumentID 29993390
10_1109_TBME_2018_2821699
8329428
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Human Connectome Project, MGH-USC Consortium
– fundername: Korea Science and Engineering Foundation
  grantid: NRF-2016R1A2B3008104; NRF-2013M3A9B2076548
  funderid: 10.13039/501100004084
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c415t-faa31e8756449b5adcd116f38d64123e8c74dcea004538604415a95deda069d63
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Jul 10 19:00:04 EDT 2025
Mon Jun 30 08:40:31 EDT 2025
Wed Feb 19 02:34:07 EST 2025
Tue Jul 01 03:28:30 EDT 2025
Thu Apr 24 23:12:39 EDT 2025
Wed Aug 27 02:52:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-faa31e8756449b5adcd116f38d64123e8c74dcea004538604415a95deda069d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3836-0082
0000-0001-9763-9609
0000-0001-8657-5785
PMID 29993390
PQID 2117131807
PQPubID 85474
PageCount 11
ParticipantIDs proquest_journals_2117131807
crossref_primary_10_1109_TBME_2018_2821699
pubmed_primary_29993390
proquest_miscellaneous_2068342569
crossref_citationtrail_10_1109_TBME_2018_2821699
ieee_primary_8329428
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref15
han (ref23) 2016
ref36
ref30
ref11
ref32
ref10
goodfellow (ref42) 0
ref2
ref1
ref39
ref17
ref38
ronneberger (ref13) 0
ref19
ref18
ioffe (ref34) 0
mardani (ref43) 2017
ref24
ref45
ref26
ref25
bauschke (ref31) 2011
ref20
ref22
ref44
ref21
yoo (ref33) 2018
ref28
dong (ref16) 0
ref27
glorot (ref37) 0; 9
ref29
mao (ref14) 0
ref8
ref7
ref9
ref4
ref3
ref6
ref5
zhang (ref41) 0
ref40
References_xml – ident: ref24
  doi: 10.1109/TIP.2017.2713099
– ident: ref25
  doi: 10.1002/mrm.27106
– ident: ref20
  doi: 10.1002/mp.12600
– ident: ref2
  doi: 10.1002/mrm.10171
– ident: ref38
  doi: 10.1109/TIP.2003.819861
– ident: ref21
  doi: 10.1002/mrm.26977
– ident: ref9
  doi: 10.1002/mrm.26081
– ident: ref28
  doi: 10.1007/s10444-008-9084-5
– start-page: 234
  year: 0
  ident: ref13
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assisted Int
– ident: ref29
  doi: 10.1109/TMI.2018.2823768
– year: 2017
  ident: ref43
  article-title: Deep generative adversarial networks for compressed sensing automates MRI
– ident: ref26
  doi: 10.1109/CVPR.2016.90
– ident: ref36
  doi: 10.1145/2733373.2807412
– ident: ref5
  doi: 10.1088/0031-9155/52/11/018
– ident: ref30
  doi: 10.1002/mrm.22428
– ident: ref19
  doi: 10.1109/ISBI.2016.7493320
– start-page: 2802
  year: 0
  ident: ref14
  article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2011
  ident: ref31
  publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  doi: 10.1007/978-1-4419-9467-7
– ident: ref35
  doi: 10.1109/5.58337
– ident: ref7
  doi: 10.1002/mrm.24997
– ident: ref44
  doi: 10.1109/TMI.2018.2827462
– ident: ref39
  doi: 10.1109/TCI.2016.2644865
– ident: ref6
  doi: 10.1002/mrm.21757
– ident: ref22
  doi: 10.1002/mp.12344
– year: 2016
  ident: ref23
  article-title: Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis
– volume: 9
  start-page: 249
  year: 0
  ident: ref37
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proc 13th Int Conf Artif Intell Statist
– start-page: 184
  year: 0
  ident: ref16
  article-title: Learning a deep convolutional network for image super-resolution
  publication-title: Proc Eur Conf Comput Vision
– ident: ref17
  doi: 10.1109/CVPR.2016.182
– ident: ref32
  doi: 10.1137/17M1141771
– ident: ref4
  doi: 10.1109/MSP.2007.914728
– ident: ref12
  doi: 10.1145/3065386
– start-page: 649
  year: 0
  ident: ref41
  article-title: Colorful image colorization
  publication-title: Proc Eur Conf Comput Vision
– ident: ref40
  doi: 10.1109/CVPR.2016.278
– ident: ref3
  doi: 10.1109/TIT.2006.871582
– ident: ref8
  doi: 10.1109/TCI.2016.2601296
– ident: ref15
  doi: 10.1109/TIP.2017.2662206
– ident: ref27
  doi: 10.1016/j.acha.2007.10.002
– ident: ref18
  doi: 10.1109/CVPR.2017.19
– ident: ref1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: ref10
  doi: 10.1002/mrm.26077
– ident: ref11
  doi: 10.1109/TIT.2016.2629078
– start-page: 448
  year: 0
  ident: ref34
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Machine Learning
– year: 2018
  ident: ref33
  article-title: A mathematical framework for deep learning in elastic source imaging
  doi: 10.1137/18M1174027
– ident: ref45
  doi: 10.1109/TMI.2017.2708987
– start-page: 2672
  year: 0
  ident: ref42
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
SSID ssj0014846
Score 2.658506
Snippet Objective: Accelerated magnetic resonance (MR) image acquisition with compressed sensing (CS) and parallel imaging is a powerful method to reduce MR imaging...
Accelerated magnetic resonance (MR) image acquisition with compressed sensing (CS) and parallel imaging is a powerful method to reduce MR imaging scan time....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1985
SubjectTerms Acceleration
Algorithms
Aliasing
Brain - diagnostic imaging
Compressed sensing MRI
Computer applications
Computing time
Data processing
deep convolutional framelets
Deep Learning
Humans
Image acquisition
Image Processing, Computer-Assisted - methods
Image reconstruction
Interpolation
Iterative algorithms
Iterative methods
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Networks
parallel imaging
Title Deep Residual Learning for Accelerated MRI Using Magnitude and Phase Networks
URI https://ieeexplore.ieee.org/document/8329428
https://www.ncbi.nlm.nih.gov/pubmed/29993390
https://www.proquest.com/docview/2117131807
https://www.proquest.com/docview/2068342569
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bh6ocaAulbAuVK3FCzWJvvI59hAKilYIQAolb5NgTKrXKou7m0l_fseONEKKIW6RMHMcz9syXeQHsT7xBIQqXKTtRmWwKk2klm0xKFK6WTV3EXoflhTq_kT9up7cr8HXIhUHEGHyG43AZffl-5rrwq-yQpM-QubwKqwTc-lytwWMgdZ-UwwVtYCJLHkzBzeH1cXkagrj0mPCFUCZUCqVTmKB8OIkfqKPYX-X_pmZUOWdvoFxOto80-TXuFvXY_X1Ux_GlX_MWNpLtyY56YXkHK9huwvqDioSb8KpMvvYtKE8Q79kVzmO6FkuFWO8YWbnsyDlSV6HKhGfl1XcWAw9YaUMoUueR2dazy5-kINlFH2Y-fw83Z6fX386z1Hwhc6TTF1ljbS6Q0AwZTKaeWu-8EKrJtVeStB1qV0jv0AabMNeKB1xmzdSjt1wZr_JtWGtnLe4Ao1OhEN4a7bCRjXe1M8blimMxnaAyagR8yYPKpcrkoUHG7yoiFG6qwMEqcLBKHBzBwfDIfV-W4znirbD6A2Fa-BHsLhldpY07rwgPE2wXmhcj-DLcpi0X_Ci2xVlHNFzpnM46RSN_6AVkGHspVx-ffucneB1m1gep7cLa4k-He2TVLOrPUZz_AUkT7jk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB2VIgE98NHysVDASHBByjZOHCc-cCi01S5tVqjaSr2ljj2hUlG2Yjeq2t_CX-G_MU68UYWAWyVukeI4jj1-8yZ-HgO8jaxCzlMTSB3JQFSpCjIpqkAI5KYUVZm2Zx3mEzk6Ep-Pk-MV-NHvhUHEVnyGQ3fZruXbmWncr7Itsj5FdNlLKPfx8oICtPmH8Q6N5rso2tudfhoF_gyBwJBrWgSV1jFHIuXk91WZaGss57KKMysFgTZmJhXWoHbUJs5k6MILrRKLVodSWRlTvbfgNvGMJOp2h_VrFCLrtgGFnCCDGubXTHmotqYf810nG8uGFNFwqVxuUsJ9FccO-685wPZEl7-T29bJ7T2An8vu6bQtZ8NmUQ7N1W-ZI__X_nsI9z27ZtvddHgEK1ivw9q1nIvrcCf3aoINyHcQz9khztsNacynmv3KiMezbWPIIbs8Gpblh2PWSitYrp3YqrHIdG3Zl1OiAGzSCennj-HoRj7tCazWsxqfASPcS7nVKjNYicqa0ihlYhlimkQolRxAuBzzwvjc6-4IkG9FG4OFqnAWUziLKbzFDOB9_8h5l3jkX4U33Gj3Bf1AD2BzaViFh6Z5QRF_ygnJw3QAb_rbBCpupUjXOGuoTCizmNBcUs1PO4Ps617a8fM_v_M13B1N84PiYDzZfwH3XCs7Sd4mrC6-N_iSONyifNVOJQYnN217vwB-CUrU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Residual+Learning+for+Accelerated+MRI+Using+Magnitude+and+Phase+Networks&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Lee%2C+Dongwook&rft.au=Yoo%2C+Jaejun&rft.au=Tak%2C+Sungho&rft.au=Ye%2C+Jong+Chul&rft.date=2018-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=65&rft.issue=9&rft.spage=1985&rft_id=info:doi/10.1109%2FTBME.2018.2821699&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon