Deep Residual Learning for Accelerated MRI Using Magnitude and Phase Networks
Objective: Accelerated magnetic resonance (MR) image acquisition with compressed sensing (CS) and parallel imaging is a powerful method to reduce MR imaging scan time. However, many reconstruction algorithms have high computational costs. To address this, we investigate deep residual learning networ...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 65; no. 9; pp. 1985 - 1995 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective: Accelerated magnetic resonance (MR) image acquisition with compressed sensing (CS) and parallel imaging is a powerful method to reduce MR imaging scan time. However, many reconstruction algorithms have high computational costs. To address this, we investigate deep residual learning networks to remove aliasing artifacts from artifact corrupted images. Methods: The deep residual learning networks are composed of magnitude and phase networks that are separately trained. If both phase and magnitude information are available, the proposed algorithm can work as an iterative k-space interpolation algorithm using framelet representation. When only magnitude data are available, the proposed approach works as an image domain postprocessing algorithm. Results: Even with strong coherent aliasing artifacts, the proposed network successfully learned and removed the aliasing artifacts, whereas current parallel and CS reconstruction methods were unable to remove these artifacts. Conclusion: Comparisons using single and multiple coil acquisition show that the proposed residual network provides good reconstruction results with orders of magnitude faster computational time than existing CS methods. Significance: The proposed deep learning framework may have a great potential for accelerated MR reconstruction by generating accurate results immediately. |
---|---|
AbstractList | Objective: Accelerated magnetic resonance (MR) image acquisition with compressed sensing (CS) and parallel imaging is a powerful method to reduce MR imaging scan time. However, many reconstruction algorithms have high computational costs. To address this, we investigate deep residual learning networks to remove aliasing artifacts from artifact corrupted images. Methods: The deep residual learning networks are composed of magnitude and phase networks that are separately trained. If both phase and magnitude information are available, the proposed algorithm can work as an iterative k-space interpolation algorithm using framelet representation. When only magnitude data are available, the proposed approach works as an image domain postprocessing algorithm. Results: Even with strong coherent aliasing artifacts, the proposed network successfully learned and removed the aliasing artifacts, whereas current parallel and CS reconstruction methods were unable to remove these artifacts. Conclusion: Comparisons using single and multiple coil acquisition show that the proposed residual network provides good reconstruction results with orders of magnitude faster computational time than existing CS methods. Significance: The proposed deep learning framework may have a great potential for accelerated MR reconstruction by generating accurate results immediately. Accelerated magnetic resonance (MR) image acquisition with compressed sensing (CS) and parallel imaging is a powerful method to reduce MR imaging scan time. However, many reconstruction algorithms have high computational costs. To address this, we investigate deep residual learning networks to remove aliasing artifacts from artifact corrupted images. The deep residual learning networks are composed of magnitude and phase networks that are separately trained. If both phase and magnitude information are available, the proposed algorithm can work as an iterative k-space interpolation algorithm using framelet representation. When only magnitude data are available, the proposed approach works as an image domain postprocessing algorithm. Even with strong coherent aliasing artifacts, the proposed network successfully learned and removed the aliasing artifacts, whereas current parallel and CS reconstruction methods were unable to remove these artifacts. Comparisons using single and multiple coil acquisition show that the proposed residual network provides good reconstruction results with orders of magnitude faster computational time than existing CS methods. The proposed deep learning framework may have a great potential for accelerated MR reconstruction by generating accurate results immediately. Accelerated magnetic resonance (MR) image acquisition with compressed sensing (CS) and parallel imaging is a powerful method to reduce MR imaging scan time. However, many reconstruction algorithms have high computational costs. To address this, we investigate deep residual learning networks to remove aliasing artifacts from artifact corrupted images.OBJECTIVEAccelerated magnetic resonance (MR) image acquisition with compressed sensing (CS) and parallel imaging is a powerful method to reduce MR imaging scan time. However, many reconstruction algorithms have high computational costs. To address this, we investigate deep residual learning networks to remove aliasing artifacts from artifact corrupted images.The deep residual learning networks are composed of magnitude and phase networks that are separately trained. If both phase and magnitude information are available, the proposed algorithm can work as an iterative k-space interpolation algorithm using framelet representation. When only magnitude data are available, the proposed approach works as an image domain postprocessing algorithm.METHODSThe deep residual learning networks are composed of magnitude and phase networks that are separately trained. If both phase and magnitude information are available, the proposed algorithm can work as an iterative k-space interpolation algorithm using framelet representation. When only magnitude data are available, the proposed approach works as an image domain postprocessing algorithm.Even with strong coherent aliasing artifacts, the proposed network successfully learned and removed the aliasing artifacts, whereas current parallel and CS reconstruction methods were unable to remove these artifacts.RESULTSEven with strong coherent aliasing artifacts, the proposed network successfully learned and removed the aliasing artifacts, whereas current parallel and CS reconstruction methods were unable to remove these artifacts.Comparisons using single and multiple coil acquisition show that the proposed residual network provides good reconstruction results with orders of magnitude faster computational time than existing CS methods.CONCLUSIONComparisons using single and multiple coil acquisition show that the proposed residual network provides good reconstruction results with orders of magnitude faster computational time than existing CS methods.The proposed deep learning framework may have a great potential for accelerated MR reconstruction by generating accurate results immediately.SIGNIFICANCEThe proposed deep learning framework may have a great potential for accelerated MR reconstruction by generating accurate results immediately. |
Author | Ye, Jong Chul Yoo, Jaejun Tak, Sungho Lee, Dongwook |
Author_xml | – sequence: 1 givenname: Dongwook orcidid: 0000-0001-8657-5785 surname: Lee fullname: Lee, Dongwook organization: Department of Bio and Brain Engineering, KAIST, (KAIST), Daejeon, South Korea – sequence: 2 givenname: Jaejun surname: Yoo fullname: Yoo, Jaejun organization: Department of Bio and Brain Engineering, KAIST, (KAIST), Daejeon, South Korea – sequence: 3 givenname: Sungho orcidid: 0000-0002-3836-0082 surname: Tak fullname: Tak, Sungho organization: Bioimaging Research Team, Korea Basic Science Institute, Ochang, South Korea – sequence: 4 givenname: Jong Chul orcidid: 0000-0001-9763-9609 surname: Ye fullname: Ye, Jong Chul email: jong.ye@kaist.ac.kr organization: Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29993390$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1vEzEQhi1URNPCD0BIyBIXLhs8_lr7WEqBSgmgqj1b7nq2uGy8qb0rxL_HUUIPPXCyRvM849G8J-QojQkJeQ1sCcDsh-uP64slZ2CW3HDQ1j4jC1DKNFwJOCILVluN5VYek5NS7mspjdQvyDG31gph2YKsPyFu6RWWGGY_0BX6nGK6o_2Y6VnX4YDZTxjo-uqS3pRdZ-3vUpzmgNSnQH_89AXpN5x-j_lXeUme934o-OrwnpKbzxfX51-b1fcvl-dnq6aToKam914AmlZpKe2t8qELALoXJmgJXKDpWhk69IxJJYxmslreqoDBM22DFqfk_X7uNo8PM5bJbWKpyw4-4TgXx5k2QnKlbUXfPUHvxzmnup3jAC0IMKyt1NsDNd9uMLhtjhuf_7h_h6oA7IEuj6Vk7B8RYG4XhtuF4XZhuEMY1WmfOF2c_BTHNGUfh_-ab_ZmRMTHn4yoUXIj_gJHGZPr |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_3390_bioengineering10070864 crossref_primary_10_1007_s10334_023_01127_6 crossref_primary_10_1016_j_media_2021_102017 crossref_primary_10_1109_TMI_2022_3180228 crossref_primary_10_1002_mrm_30021 crossref_primary_10_1016_j_compmedimag_2024_102475 crossref_primary_10_3348_jksr_2022_0156 crossref_primary_10_1007_s10334_022_01041_3 crossref_primary_10_1016_j_media_2020_101689 crossref_primary_10_1016_j_neuroimage_2022_119248 crossref_primary_10_1109_JSTSP_2020_3001737 crossref_primary_10_1002_mrm_27772 crossref_primary_10_1002_mrm_28344 crossref_primary_10_1016_j_jacr_2023_06_034 crossref_primary_10_1109_TCI_2023_3258839 crossref_primary_10_1016_j_mri_2024_110218 crossref_primary_10_3390_electronics11040586 crossref_primary_10_1002_mrm_30307 crossref_primary_10_1002_nbm_4572 crossref_primary_10_2463_mrms_mp_2019_0139 crossref_primary_10_35711_aimi_v1_i1_1 crossref_primary_10_1002_mrm_27656 crossref_primary_10_1002_mrm_29317 crossref_primary_10_1364_OE_424165 crossref_primary_10_1109_TCI_2024_3422840 crossref_primary_10_3390_diagnostics11081484 crossref_primary_10_1002_mrm_29556 crossref_primary_10_1016_j_compmedimag_2020_101784 crossref_primary_10_1016_j_media_2024_103349 crossref_primary_10_1109_JBHI_2024_3432139 crossref_primary_10_1016_j_media_2021_102098 crossref_primary_10_1049_ipr2_12687 crossref_primary_10_1109_ACCESS_2023_3294345 crossref_primary_10_1109_TIM_2022_3165786 crossref_primary_10_1088_1361_6420_ab80d7 crossref_primary_10_1109_ACCESS_2020_3034287 crossref_primary_10_1016_j_media_2020_101717 crossref_primary_10_1002_mrm_29785 crossref_primary_10_1093_bib_bbaa310 crossref_primary_10_1109_TMI_2019_2927101 crossref_primary_10_1088_2632_2153_aba8e7 crossref_primary_10_1016_j_compbiomed_2023_107619 crossref_primary_10_1002_mp_14006 crossref_primary_10_1016_j_nic_2020_04_004 crossref_primary_10_1016_j_pacs_2024_100597 crossref_primary_10_3389_fneur_2019_00869 crossref_primary_10_1109_TUFFC_2020_2977202 crossref_primary_10_1007_s10334_024_01187_2 crossref_primary_10_1109_TMI_2020_3014581 crossref_primary_10_1007_s00330_020_07451_y crossref_primary_10_1016_j_compbiomed_2023_107610 crossref_primary_10_13104_imri_2021_25_4_300 crossref_primary_10_1002_mrm_28733 crossref_primary_10_1088_1361_6420_ad3b34 crossref_primary_10_1109_JSTSP_2022_3171082 crossref_primary_10_1109_MSP_2019_2951469 crossref_primary_10_1016_j_bspc_2025_107564 crossref_primary_10_1016_j_knosys_2024_112938 crossref_primary_10_1109_TMI_2022_3216527 crossref_primary_10_1109_TCI_2021_3062986 crossref_primary_10_1186_s40658_021_00426_y crossref_primary_10_1002_mrm_30045 crossref_primary_10_1109_TNNLS_2022_3222394 crossref_primary_10_1109_ACCESS_2019_2948220 crossref_primary_10_1109_TMI_2022_3207774 crossref_primary_10_3390_bioengineering10010022 crossref_primary_10_1109_ACCESS_2023_3313977 crossref_primary_10_1002_nbm_4312 crossref_primary_10_1109_JBHI_2023_3311189 crossref_primary_10_1109_JSTARS_2020_2975000 crossref_primary_10_1109_TMI_2024_3432388 crossref_primary_10_1016_j_compbiomed_2024_108603 crossref_primary_10_1109_JBHI_2021_3064696 crossref_primary_10_1109_TMI_2024_3351211 crossref_primary_10_1109_TCI_2020_3018562 crossref_primary_10_1109_TIP_2024_3388970 crossref_primary_10_3390_app10228089 crossref_primary_10_1109_JBHI_2024_3516758 crossref_primary_10_1093_gji_ggz363 crossref_primary_10_1016_j_compmedimag_2021_101968 crossref_primary_10_1109_MSP_2019_2950557 crossref_primary_10_13104_imri_2020_24_4_241 crossref_primary_10_1016_j_dsp_2023_104277 crossref_primary_10_1002_mrm_30030 crossref_primary_10_1016_j_mri_2024_04_023 crossref_primary_10_1049_iet_ipr_2019_0834 crossref_primary_10_3389_fnins_2023_1202143 crossref_primary_10_1002_nbm_4540 crossref_primary_10_1109_JSTSP_2020_2998402 crossref_primary_10_1109_TRPMS_2022_3205283 crossref_primary_10_1002_mrm_28912 crossref_primary_10_1016_j_neucom_2023_127067 crossref_primary_10_1109_TMI_2022_3147426 crossref_primary_10_1016_j_media_2025_103459 crossref_primary_10_1148_radiol_220448 crossref_primary_10_1109_TMI_2020_3023620 crossref_primary_10_3389_fradi_2021_781868 crossref_primary_10_1016_j_mri_2020_12_019 crossref_primary_10_1038_s41598_020_70551_8 crossref_primary_10_1111_1754_9485_13276 crossref_primary_10_1002_mrm_29073 crossref_primary_10_1109_ACCESS_2023_3270900 crossref_primary_10_1109_TNNLS_2021_3090303 crossref_primary_10_1109_JPROC_2022_3141367 crossref_primary_10_3389_fonc_2022_1013783 crossref_primary_10_1002_mrm_30105 crossref_primary_10_1109_TMI_2022_3153849 crossref_primary_10_3389_fnins_2022_919186 crossref_primary_10_3390_app13042281 crossref_primary_10_1016_j_compbiomed_2024_108905 crossref_primary_10_1109_TCBB_2022_3213669 crossref_primary_10_1109_ACCESS_2018_2874382 crossref_primary_10_1016_j_mri_2020_09_018 crossref_primary_10_1109_JBHI_2022_3193299 crossref_primary_10_1007_s11831_022_09785_w crossref_primary_10_1016_j_neuroimage_2021_118632 crossref_primary_10_1371_journal_pone_0229418 crossref_primary_10_1038_s42256_020_00273_z crossref_primary_10_1002_mrm_28827 crossref_primary_10_3390_diagnostics11101935 crossref_primary_10_1371_journal_pone_0223315 crossref_primary_10_3390_bioengineering10091012 crossref_primary_10_1109_JSTSP_2020_3003170 crossref_primary_10_3390_s22103943 crossref_primary_10_1002_ima_23131 crossref_primary_10_1109_TCI_2024_3410521 crossref_primary_10_1109_TMI_2024_3443292 crossref_primary_10_1007_s11548_019_02040_x crossref_primary_10_1038_s41598_021_94692_6 crossref_primary_10_3390_bioengineering11030227 crossref_primary_10_1016_j_neuroimage_2021_118404 crossref_primary_10_1109_TNNLS_2022_3226040 crossref_primary_10_1002_nbm_4405 crossref_primary_10_1016_j_mri_2024_110244 crossref_primary_10_1002_mrm_28378 crossref_primary_10_1016_j_imavis_2024_105228 crossref_primary_10_1016_j_mri_2020_04_016 crossref_primary_10_1109_JSTSP_2020_2982777 crossref_primary_10_1109_JPROC_2019_2936204 crossref_primary_10_3390_fi14120351 crossref_primary_10_1080_00207454_2019_1698568 crossref_primary_10_1038_s41598_020_69932_w crossref_primary_10_1109_JBHI_2019_2939810 crossref_primary_10_1016_j_mri_2024_02_004 crossref_primary_10_1002_mp_17066 crossref_primary_10_1016_j_cag_2023_06_003 crossref_primary_10_1016_j_mri_2020_02_002 crossref_primary_10_1049_ipr2_13089 crossref_primary_10_1109_TMI_2018_2864821 crossref_primary_10_13104_imri_2019_23_2_81 crossref_primary_10_1016_j_neuroimage_2025_121060 crossref_primary_10_3389_frai_2023_1289669 crossref_primary_10_1016_j_ejmp_2021_02_020 crossref_primary_10_3390_bioengineering10091107 crossref_primary_10_3390_s24030753 crossref_primary_10_1038_s41598_024_55880_2 crossref_primary_10_1109_TCI_2019_2956877 crossref_primary_10_1109_TBME_2023_3243491 crossref_primary_10_1002_jmri_28024 crossref_primary_10_1016_j_rcl_2021_07_009 crossref_primary_10_1109_TBME_2023_3321431 crossref_primary_10_1016_j_media_2023_102872 crossref_primary_10_1016_j_mri_2022_12_008 crossref_primary_10_1016_j_neucom_2019_11_107 crossref_primary_10_1097_RLI_0000000000000792 crossref_primary_10_1109_TMI_2021_3096232 crossref_primary_10_1109_TUFFC_2020_2986166 crossref_primary_10_1007_s12204_024_2778_0 crossref_primary_10_1038_s41598_022_14039_7 crossref_primary_10_1016_j_jmr_2019_07_020 crossref_primary_10_1007_s00330_024_10771_y crossref_primary_10_3390_appliedmath4030059 crossref_primary_10_1016_j_bspc_2023_105810 crossref_primary_10_1002_mrm_28393 crossref_primary_10_1002_mrm_29085 crossref_primary_10_1016_j_bspc_2020_102399 crossref_primary_10_1109_TMTT_2024_3439551 crossref_primary_10_1002_mrm_29128 crossref_primary_10_1016_j_bspc_2021_102579 crossref_primary_10_1016_j_mri_2023_03_011 crossref_primary_10_1002_mrm_29525 crossref_primary_10_1038_s42256_020_00289_5 crossref_primary_10_1016_j_media_2021_102047 crossref_primary_10_1021_acs_est_1c00832 crossref_primary_10_1109_TRPMS_2020_2991877 |
Cites_doi | 10.1109/TIP.2017.2713099 10.1002/mrm.27106 10.1002/mp.12600 10.1002/mrm.10171 10.1109/TIP.2003.819861 10.1002/mrm.26977 10.1002/mrm.26081 10.1007/s10444-008-9084-5 10.1109/TMI.2018.2823768 10.1109/CVPR.2016.90 10.1145/2733373.2807412 10.1088/0031-9155/52/11/018 10.1002/mrm.22428 10.1109/ISBI.2016.7493320 10.1007/978-1-4419-9467-7 10.1109/5.58337 10.1002/mrm.24997 10.1109/TMI.2018.2827462 10.1109/TCI.2016.2644865 10.1002/mrm.21757 10.1002/mp.12344 10.1109/CVPR.2016.182 10.1137/17M1141771 10.1109/MSP.2007.914728 10.1145/3065386 10.1109/CVPR.2016.278 10.1109/TIT.2006.871582 10.1109/TCI.2016.2601296 10.1109/TIP.2017.2662206 10.1016/j.acha.2007.10.002 10.1109/CVPR.2017.19 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1002/mrm.26077 10.1109/TIT.2016.2629078 10.1137/18M1174027 10.1109/TMI.2017.2708987 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2018.2821699 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 1995 |
ExternalDocumentID | 29993390 10_1109_TBME_2018_2821699 8329428 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Human Connectome Project, MGH-USC Consortium – fundername: Korea Science and Engineering Foundation grantid: NRF-2016R1A2B3008104; NRF-2013M3A9B2076548 funderid: 10.13039/501100004084 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c415t-faa31e8756449b5adcd116f38d64123e8c74dcea004538604415a95deda069d63 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Thu Jul 10 19:00:04 EDT 2025 Mon Jun 30 08:40:31 EDT 2025 Wed Feb 19 02:34:07 EST 2025 Tue Jul 01 03:28:30 EDT 2025 Thu Apr 24 23:12:39 EDT 2025 Wed Aug 27 02:52:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-faa31e8756449b5adcd116f38d64123e8c74dcea004538604415a95deda069d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3836-0082 0000-0001-9763-9609 0000-0001-8657-5785 |
PMID | 29993390 |
PQID | 2117131807 |
PQPubID | 85474 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2117131807 crossref_primary_10_1109_TBME_2018_2821699 pubmed_primary_29993390 proquest_miscellaneous_2068342569 crossref_citationtrail_10_1109_TBME_2018_2821699 ieee_primary_8329428 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref12 ref15 han (ref23) 2016 ref36 ref30 ref11 ref32 ref10 goodfellow (ref42) 0 ref2 ref1 ref39 ref17 ref38 ronneberger (ref13) 0 ref19 ref18 ioffe (ref34) 0 mardani (ref43) 2017 ref24 ref45 ref26 ref25 bauschke (ref31) 2011 ref20 ref22 ref44 ref21 yoo (ref33) 2018 ref28 dong (ref16) 0 ref27 glorot (ref37) 0; 9 ref29 mao (ref14) 0 ref8 ref7 ref9 ref4 ref3 ref6 ref5 zhang (ref41) 0 ref40 |
References_xml | – ident: ref24 doi: 10.1109/TIP.2017.2713099 – ident: ref25 doi: 10.1002/mrm.27106 – ident: ref20 doi: 10.1002/mp.12600 – ident: ref2 doi: 10.1002/mrm.10171 – ident: ref38 doi: 10.1109/TIP.2003.819861 – ident: ref21 doi: 10.1002/mrm.26977 – ident: ref9 doi: 10.1002/mrm.26081 – ident: ref28 doi: 10.1007/s10444-008-9084-5 – start-page: 234 year: 0 ident: ref13 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Proc Int Conf Med Image Comput Comput -Assisted Int – ident: ref29 doi: 10.1109/TMI.2018.2823768 – year: 2017 ident: ref43 article-title: Deep generative adversarial networks for compressed sensing automates MRI – ident: ref26 doi: 10.1109/CVPR.2016.90 – ident: ref36 doi: 10.1145/2733373.2807412 – ident: ref5 doi: 10.1088/0031-9155/52/11/018 – ident: ref30 doi: 10.1002/mrm.22428 – ident: ref19 doi: 10.1109/ISBI.2016.7493320 – start-page: 2802 year: 0 ident: ref14 article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections publication-title: Proc Adv Neural Inf Process Syst – year: 2011 ident: ref31 publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces doi: 10.1007/978-1-4419-9467-7 – ident: ref35 doi: 10.1109/5.58337 – ident: ref7 doi: 10.1002/mrm.24997 – ident: ref44 doi: 10.1109/TMI.2018.2827462 – ident: ref39 doi: 10.1109/TCI.2016.2644865 – ident: ref6 doi: 10.1002/mrm.21757 – ident: ref22 doi: 10.1002/mp.12344 – year: 2016 ident: ref23 article-title: Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis – volume: 9 start-page: 249 year: 0 ident: ref37 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proc 13th Int Conf Artif Intell Statist – start-page: 184 year: 0 ident: ref16 article-title: Learning a deep convolutional network for image super-resolution publication-title: Proc Eur Conf Comput Vision – ident: ref17 doi: 10.1109/CVPR.2016.182 – ident: ref32 doi: 10.1137/17M1141771 – ident: ref4 doi: 10.1109/MSP.2007.914728 – ident: ref12 doi: 10.1145/3065386 – start-page: 649 year: 0 ident: ref41 article-title: Colorful image colorization publication-title: Proc Eur Conf Comput Vision – ident: ref40 doi: 10.1109/CVPR.2016.278 – ident: ref3 doi: 10.1109/TIT.2006.871582 – ident: ref8 doi: 10.1109/TCI.2016.2601296 – ident: ref15 doi: 10.1109/TIP.2017.2662206 – ident: ref27 doi: 10.1016/j.acha.2007.10.002 – ident: ref18 doi: 10.1109/CVPR.2017.19 – ident: ref1 doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – ident: ref10 doi: 10.1002/mrm.26077 – ident: ref11 doi: 10.1109/TIT.2016.2629078 – start-page: 448 year: 0 ident: ref34 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc Int Conf Machine Learning – year: 2018 ident: ref33 article-title: A mathematical framework for deep learning in elastic source imaging doi: 10.1137/18M1174027 – ident: ref45 doi: 10.1109/TMI.2017.2708987 – start-page: 2672 year: 0 ident: ref42 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst |
SSID | ssj0014846 |
Score | 2.658506 |
Snippet | Objective: Accelerated magnetic resonance (MR) image acquisition with compressed sensing (CS) and parallel imaging is a powerful method to reduce MR imaging... Accelerated magnetic resonance (MR) image acquisition with compressed sensing (CS) and parallel imaging is a powerful method to reduce MR imaging scan time.... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1985 |
SubjectTerms | Acceleration Algorithms Aliasing Brain - diagnostic imaging Compressed sensing MRI Computer applications Computing time Data processing deep convolutional framelets Deep Learning Humans Image acquisition Image Processing, Computer-Assisted - methods Image reconstruction Interpolation Iterative algorithms Iterative methods Machine learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Networks parallel imaging |
Title | Deep Residual Learning for Accelerated MRI Using Magnitude and Phase Networks |
URI | https://ieeexplore.ieee.org/document/8329428 https://www.ncbi.nlm.nih.gov/pubmed/29993390 https://www.proquest.com/docview/2117131807 https://www.proquest.com/docview/2068342569 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bh6ocaAulbAuVK3FCzWJvvI59hAKilYIQAolb5NgTKrXKou7m0l_fseONEKKIW6RMHMcz9syXeQHsT7xBIQqXKTtRmWwKk2klm0xKFK6WTV3EXoflhTq_kT9up7cr8HXIhUHEGHyG43AZffl-5rrwq-yQpM-QubwKqwTc-lytwWMgdZ-UwwVtYCJLHkzBzeH1cXkagrj0mPCFUCZUCqVTmKB8OIkfqKPYX-X_pmZUOWdvoFxOto80-TXuFvXY_X1Ux_GlX_MWNpLtyY56YXkHK9huwvqDioSb8KpMvvYtKE8Q79kVzmO6FkuFWO8YWbnsyDlSV6HKhGfl1XcWAw9YaUMoUueR2dazy5-kINlFH2Y-fw83Z6fX386z1Hwhc6TTF1ljbS6Q0AwZTKaeWu-8EKrJtVeStB1qV0jv0AabMNeKB1xmzdSjt1wZr_JtWGtnLe4Ao1OhEN4a7bCRjXe1M8blimMxnaAyagR8yYPKpcrkoUHG7yoiFG6qwMEqcLBKHBzBwfDIfV-W4znirbD6A2Fa-BHsLhldpY07rwgPE2wXmhcj-DLcpi0X_Ci2xVlHNFzpnM46RSN_6AVkGHspVx-ffucneB1m1gep7cLa4k-He2TVLOrPUZz_AUkT7jk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB2VIgE98NHysVDASHBByjZOHCc-cCi01S5tVqjaSr2ljj2hUlG2Yjeq2t_CX-G_MU68UYWAWyVukeI4jj1-8yZ-HgO8jaxCzlMTSB3JQFSpCjIpqkAI5KYUVZm2Zx3mEzk6Ep-Pk-MV-NHvhUHEVnyGQ3fZruXbmWncr7Itsj5FdNlLKPfx8oICtPmH8Q6N5rso2tudfhoF_gyBwJBrWgSV1jFHIuXk91WZaGss57KKMysFgTZmJhXWoHbUJs5k6MILrRKLVodSWRlTvbfgNvGMJOp2h_VrFCLrtgGFnCCDGubXTHmotqYf810nG8uGFNFwqVxuUsJ9FccO-685wPZEl7-T29bJ7T2An8vu6bQtZ8NmUQ7N1W-ZI__X_nsI9z27ZtvddHgEK1ivw9q1nIvrcCf3aoINyHcQz9khztsNacynmv3KiMezbWPIIbs8Gpblh2PWSitYrp3YqrHIdG3Zl1OiAGzSCennj-HoRj7tCazWsxqfASPcS7nVKjNYicqa0ihlYhlimkQolRxAuBzzwvjc6-4IkG9FG4OFqnAWUziLKbzFDOB9_8h5l3jkX4U33Gj3Bf1AD2BzaViFh6Z5QRF_ygnJw3QAb_rbBCpupUjXOGuoTCizmNBcUs1PO4Ps617a8fM_v_M13B1N84PiYDzZfwH3XCs7Sd4mrC6-N_iSONyifNVOJQYnN217vwB-CUrU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Residual+Learning+for+Accelerated+MRI+Using+Magnitude+and+Phase+Networks&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Lee%2C+Dongwook&rft.au=Yoo%2C+Jaejun&rft.au=Tak%2C+Sungho&rft.au=Ye%2C+Jong+Chul&rft.date=2018-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=65&rft.issue=9&rft.spage=1985&rft_id=info:doi/10.1109%2FTBME.2018.2821699&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |