A Wearable System for Recognizing American Sign Language in Real-Time Using IMU and Surface EMG Sensors

A sign language recognition system translates signs performed by deaf individuals into text/speech in real time. Inertial measurement unit and surface electromyography (sEMG) are both useful modalities to detect hand/arm gestures. They are able to capture signs and the fusion of these two complement...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 20; no. 5; pp. 1281 - 1290
Main Authors Jian Wu, Lu Sun, Jafari, Roozbeh
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A sign language recognition system translates signs performed by deaf individuals into text/speech in real time. Inertial measurement unit and surface electromyography (sEMG) are both useful modalities to detect hand/arm gestures. They are able to capture signs and the fusion of these two complementary sensor modalities will enhance system performance. In this paper, a wearable system for recognizing American Sign Language (ASL) in real time is proposed, fusing information from an inertial sensor and sEMG sensors. An information gain-based feature selection scheme is used to select the best subset of features from a broad range of well-established features. Four popular classification algorithms are evaluated for 80 commonly used ASL signs on four subjects. The experimental results show 96.16% and 85.24% average accuracies for intra-subject and intra-subject cross session evaluation, respectively, with the selected feature subset and a support vector machine classifier. The significance of adding sEMG for ASL recognition is explored and the best channel of sEMG is highlighted.
AbstractList A sign language recognition system translates signs performed by deaf individuals into text/speech in real time. Inertial measurement unit and surface electromyography (sEMG) are both useful modalities to detect hand/arm gestures. They are able to capture signs and the fusion of these two complementary sensor modalities will enhance system performance. In this paper, a wearable system for recognizing American Sign Language (ASL) in real time is proposed, fusing information from an inertial sensor and sEMG sensors. An information gain-based feature selection scheme is used to select the best subset of features from a broad range of well-established features. Four popular classification algorithms are evaluated for 80 commonly used ASL signs on four subjects. The experimental results show 96.16% and 85.24% average accuracies for intra-subject and intra-subject cross session evaluation, respectively, with the selected feature subset and a support vector machine classifier. The significance of adding sEMG for ASL recognition is explored and the best channel of sEMG is highlighted.
A sign language recognition system translates signs performed by deaf individuals into text/speech in real time. Inertial measurement unit and surface electromyography (sEMG) are both useful modalities to detect hand/arm gestures. They are able to capture signs and the fusion of these two complementary sensor modalities will enhance system performance. In this paper, a wearable system for recognizing American Sign Language (ASL) in real time is proposed, fusing information from an inertial sensor and sEMG sensors. An information gain-based feature selection scheme is used to select the best subset of features from a broad range of well-established features. Four popular classification algorithms are evaluated for 80 commonly used ASL signs on four subjects. The experimental results show 96.16% and 85.24% average accuracies for intra-subject and intra-subject cross session evaluation, respectively, with the selected feature subset and a support vector machine classifier. The significance of adding sEMG for ASL recognition is explored and the best channel of sEMG is highlighted.A sign language recognition system translates signs performed by deaf individuals into text/speech in real time. Inertial measurement unit and surface electromyography (sEMG) are both useful modalities to detect hand/arm gestures. They are able to capture signs and the fusion of these two complementary sensor modalities will enhance system performance. In this paper, a wearable system for recognizing American Sign Language (ASL) in real time is proposed, fusing information from an inertial sensor and sEMG sensors. An information gain-based feature selection scheme is used to select the best subset of features from a broad range of well-established features. Four popular classification algorithms are evaluated for 80 commonly used ASL signs on four subjects. The experimental results show 96.16% and 85.24% average accuracies for intra-subject and intra-subject cross session evaluation, respectively, with the selected feature subset and a support vector machine classifier. The significance of adding sEMG for ASL recognition is explored and the best channel of sEMG is highlighted.
Author Jafari, Roozbeh
Jian Wu
Lu Sun
Author_xml – sequence: 1
  surname: Jian Wu
  fullname: Jian Wu
  email: jian.wu@tamu.edu
  organization: Dept. of Comput. Sci. & Eng., Texas A&M Univ., College Station, TX, USA
– sequence: 2
  surname: Lu Sun
  fullname: Lu Sun
  email: lsun@traxid.com
  organization: Univ. of Texas at Dallas, Richardson, TX, USA
– sequence: 3
  givenname: Roozbeh
  surname: Jafari
  fullname: Jafari, Roozbeh
  email: rjafari@tamu.edu
  organization: Depts. of Biomed. Eng., Texas A&M Univ., College Station, TX, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27576269$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFr3DAQhUVJadI0P6AUiqCXXryVZEuyjtuQJls2FLpZehSyPDYKtpRK9iH99ZXZ3R5y6MxhxPC9x6D3Fp354AGh95SsKCXqy_evd5sVI1SsGFd1SdgrdMGoqAvGSH12elNVnaOrlB5JrjqvlHiDzpnkUjChLlC_xr_ARNMMgHfPaYIRdyHin2BD790f53u8HiE6azzeud7jrfH9bHrAzmfKDMWDGwHv00Ju7vfY-Bbv5tgZC_jm_hbvwKcQ0zv0ujNDgqvjvET7bzcP13fF9sft5nq9LWxF-VR0UgCwxihZdXXDjWrBQqMaQmlZsRYkN0Al7SpBK2s7q2jLVVNbQstGiFaVl-jzwfcpht8zpEmPLlkYBuMhzEnTmivJRF3yjH56gT6GOfp8XaZKokrB5WL48UjNzQitfopuNPFZn74wA_IA2BhSitBp6yYzueCnaNygKdFLXnrJSy956WNeWUlfKE_m_9N8OGgcAPzjJecsd_kXhLCd4Q
CODEN IJBHA9
CitedBy_id crossref_primary_10_3390_s20154063
crossref_primary_10_1109_JSEN_2023_3247695
crossref_primary_10_1109_ACCESS_2017_2647851
crossref_primary_10_3390_s22176319
crossref_primary_10_1109_JSEN_2023_3282171
crossref_primary_10_1109_JSEN_2022_3219645
crossref_primary_10_3390_designs6010017
crossref_primary_10_1002_aisy_202300266
crossref_primary_10_3390_app9183790
crossref_primary_10_1016_j_sna_2020_112046
crossref_primary_10_4018_IJSSCI_311448
crossref_primary_10_3390_electronics9091400
crossref_primary_10_1109_JSEN_2020_2965580
crossref_primary_10_1016_j_measurement_2020_108471
crossref_primary_10_1109_TMC_2021_3120475
crossref_primary_10_3390_s24186157
crossref_primary_10_1145_3414117
crossref_primary_10_3390_app13179546
crossref_primary_10_1109_THMS_2022_3170829
crossref_primary_10_1088_1742_6596_1362_1_012034
crossref_primary_10_1038_s41928_020_0428_6
crossref_primary_10_1109_JSEN_2020_3023109
crossref_primary_10_1109_THMS_2021_3131675
crossref_primary_10_1109_JSEN_2021_3059681
crossref_primary_10_1109_JBHI_2019_2941535
crossref_primary_10_1093_ptj_pzz024
crossref_primary_10_3390_s24237439
crossref_primary_10_1109_MDAT_2024_3466828
crossref_primary_10_1080_17483107_2021_2022787
crossref_primary_10_1109_MMM_2024_3494717
crossref_primary_10_1088_1757_899X_563_4_042040
crossref_primary_10_1016_j_bspc_2020_102074
crossref_primary_10_1109_JSEN_2019_2897083
crossref_primary_10_1109_JSEN_2022_3165988
crossref_primary_10_1109_TIM_2021_3109732
crossref_primary_10_1088_1741_2552_ad4915
crossref_primary_10_1016_j_mattod_2024_12_002
crossref_primary_10_1145_3610881
crossref_primary_10_1016_j_eswa_2020_114403
crossref_primary_10_3390_s21030885
crossref_primary_10_3390_s18030869
crossref_primary_10_32604_csse_2023_029336
crossref_primary_10_3390_app132111625
crossref_primary_10_3390_s19143204
crossref_primary_10_1109_ACCESS_2023_3333036
crossref_primary_10_1109_JIOT_2024_3454215
crossref_primary_10_1007_s11042_024_18583_4
crossref_primary_10_3233_THC_192000
crossref_primary_10_1016_j_autcon_2017_12_014
crossref_primary_10_1088_1741_2552_ab9b6c
crossref_primary_10_1109_JSEN_2021_3136790
crossref_primary_10_1177_0954411920953031
crossref_primary_10_1145_3517257
crossref_primary_10_1016_j_dib_2020_106455
crossref_primary_10_1145_3428664
crossref_primary_10_1016_j_inffus_2024_102789
crossref_primary_10_34133_cbsystems_0016
crossref_primary_10_3390_s19122811
crossref_primary_10_3390_inventions7040112
crossref_primary_10_1109_JSEN_2024_3413787
crossref_primary_10_1021_acssensors_1c01698
crossref_primary_10_3390_pr11041065
crossref_primary_10_1109_ACCESS_2018_2890004
crossref_primary_10_1038_s41597_022_01836_y
crossref_primary_10_3390_s20164359
crossref_primary_10_1109_LAWP_2017_2681099
crossref_primary_10_1016_j_measurement_2020_108274
crossref_primary_10_1109_TBCAS_2019_2953998
crossref_primary_10_3390_s23198343
crossref_primary_10_1109_JSEN_2017_2779466
crossref_primary_10_32604_cmes_2024_047649
crossref_primary_10_1007_s12652_020_01979_z
crossref_primary_10_1016_j_nanoen_2023_108767
crossref_primary_10_1109_TCYB_2020_3007173
crossref_primary_10_3389_fnins_2022_962141
crossref_primary_10_1109_RBME_2020_3019769
crossref_primary_10_1145_3596261
crossref_primary_10_1016_j_eswa_2021_115448
crossref_primary_10_1109_TCDS_2018_2884942
crossref_primary_10_1145_3463498
crossref_primary_10_1049_iet_ipr_2019_1458
crossref_primary_10_1109_ACCESS_2022_3212064
crossref_primary_10_1038_s41598_022_25108_2
crossref_primary_10_1088_2058_8585_acd2e8
crossref_primary_10_1016_j_bspc_2021_103201
crossref_primary_10_1016_j_ifacol_2023_01_114
crossref_primary_10_1155_2021_9304925
crossref_primary_10_1007_s11042_023_16332_7
crossref_primary_10_1088_2058_8585_ac6a96
crossref_primary_10_1109_ACCESS_2020_3021072
crossref_primary_10_25046_aj050657
crossref_primary_10_1109_JSEN_2020_3012887
crossref_primary_10_1016_j_knosys_2025_113232
crossref_primary_10_1016_j_compeleceng_2020_106898
crossref_primary_10_1109_RBME_2021_3078190
crossref_primary_10_1007_s11042_022_14117_y
crossref_primary_10_1109_JIOT_2020_3038899
crossref_primary_10_1088_1741_2552_ad331f
crossref_primary_10_1109_THMS_2018_2878824
crossref_primary_10_1145_3596255
crossref_primary_10_3390_s22176327
crossref_primary_10_3390_s24144613
crossref_primary_10_1016_j_cmpb_2019_105003
crossref_primary_10_21015_vtcs_v11i1_1491
crossref_primary_10_3390_s18103554
crossref_primary_10_1109_JSEN_2023_3324369
crossref_primary_10_3390_s19112495
crossref_primary_10_1007_s13369_021_06456_z
crossref_primary_10_1080_00140139_2020_1759700
crossref_primary_10_1016_j_engappai_2023_106160
Cites_doi 10.1109/TNSRE.2005.847357
10.1093/deafed/eni001
10.1109/TIE.2011.2167895
10.3115/1626481.1626494
10.1145/1656274.1656278
10.1016/j.jbiomech.2010.01.027
10.1145/1961189.1961199
10.1109/TBME.1987.325918
10.1109/TBME.2009.2013200
10.1109/TBME.2012.2190734
10.1109/BSN.2015.7299393
10.1016/j.eswa.2014.03.014
10.1109/IEMBS.2002.1134383
10.1109/JBHI.2013.2253613
10.1006/cviu.2000.0895
10.1109/ISWC.2007.4373769
10.1145/2534088.2534098
10.1145/1027933.1027967
10.1007/3-540-47873-6_14
10.1016/j.engappai.2011.06.015
10.1109/ICOSST.2013.6720607
10.1016/j.patrec.2010.11.013
10.1109/ISWC.2005.17
10.1109/34.735811
10.1109/TITB.2010.2051955
10.1007/3-540-47873-6_2
10.1109/AFGR.2008.4813341
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2016.2598302
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Nursing and Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL) - NZ
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 1290
ExternalDocumentID 4223583461
27576269
10_1109_JBHI_2016_2598302
7552525
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: CNS-1150079; ECCS-1509063
  funderid: 10.13039/100000001
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
6IL
ADZIZ
CGR
CHZPO
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c415t-f76ee2ba974f8b5a9deceb9b011342de75ae171f4614ccfc91d59b8c013b66d93
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Thu Jul 10 20:00:53 EDT 2025
Mon Jun 30 06:46:48 EDT 2025
Wed Feb 19 02:42:49 EST 2025
Tue Jul 01 02:59:54 EDT 2025
Thu Apr 24 23:09:40 EDT 2025
Tue Aug 26 16:43:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-f76ee2ba974f8b5a9deceb9b011342de75ae171f4614ccfc91d59b8c013b66d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27576269
PQID 1830936579
PQPubID 85417
PageCount 10
ParticipantIDs pubmed_primary_27576269
ieee_primary_7552525
crossref_primary_10_1109_JBHI_2016_2598302
crossref_citationtrail_10_1109_JBHI_2016_2598302
proquest_miscellaneous_1859726835
proquest_journals_1830936579
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Sept.
2016-9-00
2016-09-00
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-Sept.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref37
ref36
vicars (ref4) 0
ref31
ref30
ref33
ref11
ref32
ref10
guyon (ref34) 2003; 3
merletti (ref28) 1999; 9
chu (ref14) 0
ref1
ref39
ref17
ref16
ref18
starner (ref8) 1995
jamal (ref38) 2012
costello (ref5) 2008
barberis (ref2) 0
quinlan (ref35) 2014
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
phinyomark (ref29) 2009
ref7
ref9
li (ref15) 0
kadous (ref19) 0
ref3
ref6
References_xml – ident: ref13
  doi: 10.1109/TNSRE.2005.847357
– ident: ref1
  doi: 10.1093/deafed/eni001
– ident: ref24
  doi: 10.1109/TIE.2011.2167895
– ident: ref10
  doi: 10.3115/1626481.1626494
– year: 0
  ident: ref2
  article-title: Language resources for computer assisted translation from italian to italian sign language of deaf people
– ident: ref37
  doi: 10.1145/1656274.1656278
– ident: ref26
  doi: 10.1016/j.jbiomech.2010.01.027
– start-page: 295
  year: 0
  ident: ref14
  article-title: A real-time EMG pattern recognition based on linear-nonlinear feature projection for multifunction myoelectric hand
  publication-title: Proc 9th Int Conf Rehabil Robot
– ident: ref36
  doi: 10.1145/1961189.1961199
– year: 1995
  ident: ref8
  article-title: Visual recognition of American sign language using hidden Markov models
– ident: ref32
  doi: 10.1109/TBME.1987.325918
– ident: ref22
  doi: 10.1109/TBME.2009.2013200
– ident: ref16
  doi: 10.1109/TBME.2012.2190734
– ident: ref39
  doi: 10.1109/BSN.2015.7299393
– ident: ref27
  doi: 10.1016/j.eswa.2014.03.014
– ident: ref20
  doi: 10.1109/IEMBS.2002.1134383
– year: 2012
  ident: ref38
  article-title: Signal acquisition using surface emg and circuit design considerations for robotic prosthesis
  publication-title: Computational Intelligence in Electromyography Analysis - A Perspective on Current Applications and Future Challenges
– year: 2008
  ident: ref5
  publication-title: American Sign Language Dictionary Unabridged
– ident: ref30
  doi: 10.1109/JBHI.2013.2253613
– ident: ref7
  doi: 10.1006/cviu.2000.0895
– year: 2014
  ident: ref35
  publication-title: C4 5 Programs for Machine Learning
– ident: ref21
  doi: 10.1109/ISWC.2007.4373769
– ident: ref25
  doi: 10.1145/2534088.2534098
– volume: 9
  start-page: 3
  year: 1999
  ident: ref28
  article-title: Standards for reporting emg data
  publication-title: J Electromyogr Kinesiol
– year: 0
  ident: ref4
  article-title: Basic asl: First 100 signs
– start-page: 165
  year: 0
  ident: ref19
  article-title: Machine recognition of auslan signs using powergloves: Towards large-lexicon recognition of sign language
  publication-title: Proc Workshop Integration Gesture Language Speech
– year: 2009
  ident: ref29
  article-title: A novel feature extraction for robust emg pattern recognition
  publication-title: Arxiv preprint arXiv 0912 3973
– ident: ref17
  doi: 10.1145/1027933.1027967
– start-page: 3358
  year: 0
  ident: ref15
  article-title: Interpreting sign components from accelerometer and semg data for automatic sign language recognition
  publication-title: Proc Annu Int Conf IEEE Eng Med Biol Soc
– ident: ref3
  doi: 10.1007/3-540-47873-6_14
– ident: ref9
  doi: 10.1016/j.engappai.2011.06.015
– ident: ref31
  doi: 10.1109/ICOSST.2013.6720607
– ident: ref18
  doi: 10.1016/j.patrec.2010.11.013
– ident: ref12
  doi: 10.1109/ISWC.2005.17
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref34
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– ident: ref6
  doi: 10.1109/34.735811
– ident: ref33
  doi: 10.1109/TITB.2010.2051955
– ident: ref11
  doi: 10.1007/3-540-47873-6_2
– ident: ref23
  doi: 10.1109/AFGR.2008.4813341
SSID ssj0000816896
Score 2.576521
Snippet A sign language recognition system translates signs performed by deaf individuals into text/speech in real time. Inertial measurement unit and surface...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1281
SubjectTerms Accelerometers
American Sign Language (ASL) recognition
Arm - physiology
Assistive technology
Communication Aids for Disabled
Electromyography - methods
Electronics
Equipment Design
Feature extraction
feature selection
Female
Gesture recognition
Humans
inertial measurement unit (IMU) sensor
Male
Muscle, Skeletal - physiology
Pattern Recognition, Automated - methods
Real-time systems
sensor fusion
Sensor systems
Sign Language
Signal Processing, Computer-Assisted - instrumentation
Speech Recognition Software
surface EMG (sEMG)
Title A Wearable System for Recognizing American Sign Language in Real-Time Using IMU and Surface EMG Sensors
URI https://ieeexplore.ieee.org/document/7552525
https://www.ncbi.nlm.nih.gov/pubmed/27576269
https://www.proquest.com/docview/1830936579
https://www.proquest.com/docview/1859726835
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSAu5VEoKQUZiRMi22wSJ-tjQS3binBgWdFbZDvjVUWVRdvNpb--M44TIQQI5WIpTuJoxp5v3gBvm9SR3CxcLLUzcY6ZiZXJNWkpssyd5WxNNuhXX4r5Mr-8klc78H7MhUFEH3yGEx56X36zth2byk5KKVO6dmGXFLc-V2u0p_gGEr4dV0qDmDZiHpyY00SdXH6YX3AcVzEhuM8lr7gIcElYO-VI518kkm-x8ne06aXO-SOohvX2wSY_Jt3WTOzdb6Uc__eHHsN-gJ_itOeXJ7CD7VN4UAUH-wGsTsV34n3OpxJ9MXNBqFZ87cOM7kjOicHHIxbXq1Z8DvZOcd3SLH0Tc06J8IEI4qJaCt02YtFtnLYozqpPYkFq83pz-wyW52ffPs7j0IshtiTit7ErC8TUaFI_3MxIrRq0aJSh4yHL0wZLqXFaTl1O4t5aZ9W0kcrMLCFMUxSNyp7DXrtu8QUIi7q0pU4w0aTNKWMStBnmM8c5s9pgBMlAj9qGQuXcL-Om9gpLomqmZs3UrAM1I3g3PvKzr9Lxr8kHTIlxYiBCBMcD0euwj29rOvASlRWyVBG8GW_TDmS3im5x3fEcUsrSgqBsBIc9s4zvHnjs6M_ffAkPeWV9zNox7G03Hb4ikLM1rz133wN44PQj
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgEXXuURKGAkTohs83K8PhbUsls2PbBd0VtkO-Oqosqi7ebSX8_YcSKEAKFcLMVJHM3Y880b4F2TWZKbpY25sjouMNex1IUiLYWLwhqXrekM-tVpOVsVJ-f8fAc-jLkwiOiDz3Diht6X36xN50xlB4LzjK5bcJvkPk_7bK3RouJbSPiGXBkNYtqKRXBjpok8OPk4m7tIrnJCgN8VvXJlgAWh7czFOv8ik3yTlb_jTS93jh9ANay4Dzf5Pum2emJufivm-L-_9BDuBwDKDnuOeQQ72D6GO1Vwse_BxSH7RtzvMqpYX86cEa5lX_tAoxuSdGzw8rDl5UXLFsHiyS5bmqWuYpdVwnwoAptXK6bahi27jVUG2VH1mS1JcV5vrp_A6vjo7NMsDt0YYkNCfhtbUSJmWpECYqeaK9mgQS01HRB5kTUouMJUpLYggW-MNTJtuNRTQxhTl2Uj86ew265bfA7MoBJGqAQTRfqc1DpBk2MxtS5rVmmMIBnoUZtQqtx1zLiqvcqSyNpRs3bUrAM1I3g_PvKjr9Pxr8l7jhLjxECECPYHotdhJ1_XdOQlMi-5kBG8HW_THnSOFdXiunNzSC3LSgKzETzrmWV898BjL_78zTdwd3ZWLerF_PTLS7jnVtlHsO3D7nbT4SuCPFv92nP6T1y592w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Wearable+System+for+Recognizing+American+Sign+Language+in+Real-Time+Using+IMU+and+Surface+EMG+Sensors&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Wu%2C+Jian&rft.au=Sun%2C+Lu&rft.au=Jafari%2C+Roozbeh&rft.date=2016-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=20&rft.issue=5&rft.spage=1281&rft_id=info:doi/10.1109%2FJBHI.2016.2598302&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4223583461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon