A Wearable System for Recognizing American Sign Language in Real-Time Using IMU and Surface EMG Sensors
A sign language recognition system translates signs performed by deaf individuals into text/speech in real time. Inertial measurement unit and surface electromyography (sEMG) are both useful modalities to detect hand/arm gestures. They are able to capture signs and the fusion of these two complement...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 20; no. 5; pp. 1281 - 1290 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A sign language recognition system translates signs performed by deaf individuals into text/speech in real time. Inertial measurement unit and surface electromyography (sEMG) are both useful modalities to detect hand/arm gestures. They are able to capture signs and the fusion of these two complementary sensor modalities will enhance system performance. In this paper, a wearable system for recognizing American Sign Language (ASL) in real time is proposed, fusing information from an inertial sensor and sEMG sensors. An information gain-based feature selection scheme is used to select the best subset of features from a broad range of well-established features. Four popular classification algorithms are evaluated for 80 commonly used ASL signs on four subjects. The experimental results show 96.16% and 85.24% average accuracies for intra-subject and intra-subject cross session evaluation, respectively, with the selected feature subset and a support vector machine classifier. The significance of adding sEMG for ASL recognition is explored and the best channel of sEMG is highlighted. |
---|---|
AbstractList | A sign language recognition system translates signs performed by deaf individuals into text/speech in real time. Inertial measurement unit and surface electromyography (sEMG) are both useful modalities to detect hand/arm gestures. They are able to capture signs and the fusion of these two complementary sensor modalities will enhance system performance. In this paper, a wearable system for recognizing American Sign Language (ASL) in real time is proposed, fusing information from an inertial sensor and sEMG sensors. An information gain-based feature selection scheme is used to select the best subset of features from a broad range of well-established features. Four popular classification algorithms are evaluated for 80 commonly used ASL signs on four subjects. The experimental results show 96.16% and 85.24% average accuracies for intra-subject and intra-subject cross session evaluation, respectively, with the selected feature subset and a support vector machine classifier. The significance of adding sEMG for ASL recognition is explored and the best channel of sEMG is highlighted. A sign language recognition system translates signs performed by deaf individuals into text/speech in real time. Inertial measurement unit and surface electromyography (sEMG) are both useful modalities to detect hand/arm gestures. They are able to capture signs and the fusion of these two complementary sensor modalities will enhance system performance. In this paper, a wearable system for recognizing American Sign Language (ASL) in real time is proposed, fusing information from an inertial sensor and sEMG sensors. An information gain-based feature selection scheme is used to select the best subset of features from a broad range of well-established features. Four popular classification algorithms are evaluated for 80 commonly used ASL signs on four subjects. The experimental results show 96.16% and 85.24% average accuracies for intra-subject and intra-subject cross session evaluation, respectively, with the selected feature subset and a support vector machine classifier. The significance of adding sEMG for ASL recognition is explored and the best channel of sEMG is highlighted.A sign language recognition system translates signs performed by deaf individuals into text/speech in real time. Inertial measurement unit and surface electromyography (sEMG) are both useful modalities to detect hand/arm gestures. They are able to capture signs and the fusion of these two complementary sensor modalities will enhance system performance. In this paper, a wearable system for recognizing American Sign Language (ASL) in real time is proposed, fusing information from an inertial sensor and sEMG sensors. An information gain-based feature selection scheme is used to select the best subset of features from a broad range of well-established features. Four popular classification algorithms are evaluated for 80 commonly used ASL signs on four subjects. The experimental results show 96.16% and 85.24% average accuracies for intra-subject and intra-subject cross session evaluation, respectively, with the selected feature subset and a support vector machine classifier. The significance of adding sEMG for ASL recognition is explored and the best channel of sEMG is highlighted. |
Author | Jafari, Roozbeh Jian Wu Lu Sun |
Author_xml | – sequence: 1 surname: Jian Wu fullname: Jian Wu email: jian.wu@tamu.edu organization: Dept. of Comput. Sci. & Eng., Texas A&M Univ., College Station, TX, USA – sequence: 2 surname: Lu Sun fullname: Lu Sun email: lsun@traxid.com organization: Univ. of Texas at Dallas, Richardson, TX, USA – sequence: 3 givenname: Roozbeh surname: Jafari fullname: Jafari, Roozbeh email: rjafari@tamu.edu organization: Depts. of Biomed. Eng., Texas A&M Univ., College Station, TX, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27576269$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFr3DAQhUVJadI0P6AUiqCXXryVZEuyjtuQJls2FLpZehSyPDYKtpRK9iH99ZXZ3R5y6MxhxPC9x6D3Fp354AGh95SsKCXqy_evd5sVI1SsGFd1SdgrdMGoqAvGSH12elNVnaOrlB5JrjqvlHiDzpnkUjChLlC_xr_ARNMMgHfPaYIRdyHin2BD790f53u8HiE6azzeud7jrfH9bHrAzmfKDMWDGwHv00Ju7vfY-Bbv5tgZC_jm_hbvwKcQ0zv0ujNDgqvjvET7bzcP13fF9sft5nq9LWxF-VR0UgCwxihZdXXDjWrBQqMaQmlZsRYkN0Al7SpBK2s7q2jLVVNbQstGiFaVl-jzwfcpht8zpEmPLlkYBuMhzEnTmivJRF3yjH56gT6GOfp8XaZKokrB5WL48UjNzQitfopuNPFZn74wA_IA2BhSitBp6yYzueCnaNygKdFLXnrJSy956WNeWUlfKE_m_9N8OGgcAPzjJecsd_kXhLCd4Q |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_3390_s20154063 crossref_primary_10_1109_JSEN_2023_3247695 crossref_primary_10_1109_ACCESS_2017_2647851 crossref_primary_10_3390_s22176319 crossref_primary_10_1109_JSEN_2023_3282171 crossref_primary_10_1109_JSEN_2022_3219645 crossref_primary_10_3390_designs6010017 crossref_primary_10_1002_aisy_202300266 crossref_primary_10_3390_app9183790 crossref_primary_10_1016_j_sna_2020_112046 crossref_primary_10_4018_IJSSCI_311448 crossref_primary_10_3390_electronics9091400 crossref_primary_10_1109_JSEN_2020_2965580 crossref_primary_10_1016_j_measurement_2020_108471 crossref_primary_10_1109_TMC_2021_3120475 crossref_primary_10_3390_s24186157 crossref_primary_10_1145_3414117 crossref_primary_10_3390_app13179546 crossref_primary_10_1109_THMS_2022_3170829 crossref_primary_10_1088_1742_6596_1362_1_012034 crossref_primary_10_1038_s41928_020_0428_6 crossref_primary_10_1109_JSEN_2020_3023109 crossref_primary_10_1109_THMS_2021_3131675 crossref_primary_10_1109_JSEN_2021_3059681 crossref_primary_10_1109_JBHI_2019_2941535 crossref_primary_10_1093_ptj_pzz024 crossref_primary_10_3390_s24237439 crossref_primary_10_1109_MDAT_2024_3466828 crossref_primary_10_1080_17483107_2021_2022787 crossref_primary_10_1109_MMM_2024_3494717 crossref_primary_10_1088_1757_899X_563_4_042040 crossref_primary_10_1016_j_bspc_2020_102074 crossref_primary_10_1109_JSEN_2019_2897083 crossref_primary_10_1109_JSEN_2022_3165988 crossref_primary_10_1109_TIM_2021_3109732 crossref_primary_10_1088_1741_2552_ad4915 crossref_primary_10_1016_j_mattod_2024_12_002 crossref_primary_10_1145_3610881 crossref_primary_10_1016_j_eswa_2020_114403 crossref_primary_10_3390_s21030885 crossref_primary_10_3390_s18030869 crossref_primary_10_32604_csse_2023_029336 crossref_primary_10_3390_app132111625 crossref_primary_10_3390_s19143204 crossref_primary_10_1109_ACCESS_2023_3333036 crossref_primary_10_1109_JIOT_2024_3454215 crossref_primary_10_1007_s11042_024_18583_4 crossref_primary_10_3233_THC_192000 crossref_primary_10_1016_j_autcon_2017_12_014 crossref_primary_10_1088_1741_2552_ab9b6c crossref_primary_10_1109_JSEN_2021_3136790 crossref_primary_10_1177_0954411920953031 crossref_primary_10_1145_3517257 crossref_primary_10_1016_j_dib_2020_106455 crossref_primary_10_1145_3428664 crossref_primary_10_1016_j_inffus_2024_102789 crossref_primary_10_34133_cbsystems_0016 crossref_primary_10_3390_s19122811 crossref_primary_10_3390_inventions7040112 crossref_primary_10_1109_JSEN_2024_3413787 crossref_primary_10_1021_acssensors_1c01698 crossref_primary_10_3390_pr11041065 crossref_primary_10_1109_ACCESS_2018_2890004 crossref_primary_10_1038_s41597_022_01836_y crossref_primary_10_3390_s20164359 crossref_primary_10_1109_LAWP_2017_2681099 crossref_primary_10_1016_j_measurement_2020_108274 crossref_primary_10_1109_TBCAS_2019_2953998 crossref_primary_10_3390_s23198343 crossref_primary_10_1109_JSEN_2017_2779466 crossref_primary_10_32604_cmes_2024_047649 crossref_primary_10_1007_s12652_020_01979_z crossref_primary_10_1016_j_nanoen_2023_108767 crossref_primary_10_1109_TCYB_2020_3007173 crossref_primary_10_3389_fnins_2022_962141 crossref_primary_10_1109_RBME_2020_3019769 crossref_primary_10_1145_3596261 crossref_primary_10_1016_j_eswa_2021_115448 crossref_primary_10_1109_TCDS_2018_2884942 crossref_primary_10_1145_3463498 crossref_primary_10_1049_iet_ipr_2019_1458 crossref_primary_10_1109_ACCESS_2022_3212064 crossref_primary_10_1038_s41598_022_25108_2 crossref_primary_10_1088_2058_8585_acd2e8 crossref_primary_10_1016_j_bspc_2021_103201 crossref_primary_10_1016_j_ifacol_2023_01_114 crossref_primary_10_1155_2021_9304925 crossref_primary_10_1007_s11042_023_16332_7 crossref_primary_10_1088_2058_8585_ac6a96 crossref_primary_10_1109_ACCESS_2020_3021072 crossref_primary_10_25046_aj050657 crossref_primary_10_1109_JSEN_2020_3012887 crossref_primary_10_1016_j_knosys_2025_113232 crossref_primary_10_1016_j_compeleceng_2020_106898 crossref_primary_10_1109_RBME_2021_3078190 crossref_primary_10_1007_s11042_022_14117_y crossref_primary_10_1109_JIOT_2020_3038899 crossref_primary_10_1088_1741_2552_ad331f crossref_primary_10_1109_THMS_2018_2878824 crossref_primary_10_1145_3596255 crossref_primary_10_3390_s22176327 crossref_primary_10_3390_s24144613 crossref_primary_10_1016_j_cmpb_2019_105003 crossref_primary_10_21015_vtcs_v11i1_1491 crossref_primary_10_3390_s18103554 crossref_primary_10_1109_JSEN_2023_3324369 crossref_primary_10_3390_s19112495 crossref_primary_10_1007_s13369_021_06456_z crossref_primary_10_1080_00140139_2020_1759700 crossref_primary_10_1016_j_engappai_2023_106160 |
Cites_doi | 10.1109/TNSRE.2005.847357 10.1093/deafed/eni001 10.1109/TIE.2011.2167895 10.3115/1626481.1626494 10.1145/1656274.1656278 10.1016/j.jbiomech.2010.01.027 10.1145/1961189.1961199 10.1109/TBME.1987.325918 10.1109/TBME.2009.2013200 10.1109/TBME.2012.2190734 10.1109/BSN.2015.7299393 10.1016/j.eswa.2014.03.014 10.1109/IEMBS.2002.1134383 10.1109/JBHI.2013.2253613 10.1006/cviu.2000.0895 10.1109/ISWC.2007.4373769 10.1145/2534088.2534098 10.1145/1027933.1027967 10.1007/3-540-47873-6_14 10.1016/j.engappai.2011.06.015 10.1109/ICOSST.2013.6720607 10.1016/j.patrec.2010.11.013 10.1109/ISWC.2005.17 10.1109/34.735811 10.1109/TITB.2010.2051955 10.1007/3-540-47873-6_2 10.1109/AFGR.2008.4813341 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/JBHI.2016.2598302 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Nursing and Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) - NZ url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 1290 |
ExternalDocumentID | 4223583461 27576269 10_1109_JBHI_2016_2598302 7552525 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: National Science Foundation grantid: CNS-1150079; ECCS-1509063 funderid: 10.13039/100000001 |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 6IL ADZIZ CGR CHZPO CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c415t-f76ee2ba974f8b5a9deceb9b011342de75ae171f4614ccfc91d59b8c013b66d93 |
IEDL.DBID | RIE |
ISSN | 2168-2194 2168-2208 |
IngestDate | Thu Jul 10 20:00:53 EDT 2025 Mon Jun 30 06:46:48 EDT 2025 Wed Feb 19 02:42:49 EST 2025 Tue Jul 01 02:59:54 EDT 2025 Thu Apr 24 23:09:40 EDT 2025 Tue Aug 26 16:43:01 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-f76ee2ba974f8b5a9deceb9b011342de75ae171f4614ccfc91d59b8c013b66d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 27576269 |
PQID | 1830936579 |
PQPubID | 85417 |
PageCount | 10 |
ParticipantIDs | pubmed_primary_27576269 ieee_primary_7552525 crossref_primary_10_1109_JBHI_2016_2598302 crossref_citationtrail_10_1109_JBHI_2016_2598302 proquest_miscellaneous_1859726835 proquest_journals_1830936579 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-Sept. 2016-9-00 2016-09-00 20160901 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-Sept. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref37 ref36 vicars (ref4) 0 ref31 ref30 ref33 ref11 ref32 ref10 guyon (ref34) 2003; 3 merletti (ref28) 1999; 9 chu (ref14) 0 ref1 ref39 ref17 ref16 ref18 starner (ref8) 1995 jamal (ref38) 2012 costello (ref5) 2008 barberis (ref2) 0 quinlan (ref35) 2014 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 phinyomark (ref29) 2009 ref7 ref9 li (ref15) 0 kadous (ref19) 0 ref3 ref6 |
References_xml | – ident: ref13 doi: 10.1109/TNSRE.2005.847357 – ident: ref1 doi: 10.1093/deafed/eni001 – ident: ref24 doi: 10.1109/TIE.2011.2167895 – ident: ref10 doi: 10.3115/1626481.1626494 – year: 0 ident: ref2 article-title: Language resources for computer assisted translation from italian to italian sign language of deaf people – ident: ref37 doi: 10.1145/1656274.1656278 – ident: ref26 doi: 10.1016/j.jbiomech.2010.01.027 – start-page: 295 year: 0 ident: ref14 article-title: A real-time EMG pattern recognition based on linear-nonlinear feature projection for multifunction myoelectric hand publication-title: Proc 9th Int Conf Rehabil Robot – ident: ref36 doi: 10.1145/1961189.1961199 – year: 1995 ident: ref8 article-title: Visual recognition of American sign language using hidden Markov models – ident: ref32 doi: 10.1109/TBME.1987.325918 – ident: ref22 doi: 10.1109/TBME.2009.2013200 – ident: ref16 doi: 10.1109/TBME.2012.2190734 – ident: ref39 doi: 10.1109/BSN.2015.7299393 – ident: ref27 doi: 10.1016/j.eswa.2014.03.014 – ident: ref20 doi: 10.1109/IEMBS.2002.1134383 – year: 2012 ident: ref38 article-title: Signal acquisition using surface emg and circuit design considerations for robotic prosthesis publication-title: Computational Intelligence in Electromyography Analysis - A Perspective on Current Applications and Future Challenges – year: 2008 ident: ref5 publication-title: American Sign Language Dictionary Unabridged – ident: ref30 doi: 10.1109/JBHI.2013.2253613 – ident: ref7 doi: 10.1006/cviu.2000.0895 – year: 2014 ident: ref35 publication-title: C4 5 Programs for Machine Learning – ident: ref21 doi: 10.1109/ISWC.2007.4373769 – ident: ref25 doi: 10.1145/2534088.2534098 – volume: 9 start-page: 3 year: 1999 ident: ref28 article-title: Standards for reporting emg data publication-title: J Electromyogr Kinesiol – year: 0 ident: ref4 article-title: Basic asl: First 100 signs – start-page: 165 year: 0 ident: ref19 article-title: Machine recognition of auslan signs using powergloves: Towards large-lexicon recognition of sign language publication-title: Proc Workshop Integration Gesture Language Speech – year: 2009 ident: ref29 article-title: A novel feature extraction for robust emg pattern recognition publication-title: Arxiv preprint arXiv 0912 3973 – ident: ref17 doi: 10.1145/1027933.1027967 – start-page: 3358 year: 0 ident: ref15 article-title: Interpreting sign components from accelerometer and semg data for automatic sign language recognition publication-title: Proc Annu Int Conf IEEE Eng Med Biol Soc – ident: ref3 doi: 10.1007/3-540-47873-6_14 – ident: ref9 doi: 10.1016/j.engappai.2011.06.015 – ident: ref31 doi: 10.1109/ICOSST.2013.6720607 – ident: ref18 doi: 10.1016/j.patrec.2010.11.013 – ident: ref12 doi: 10.1109/ISWC.2005.17 – volume: 3 start-page: 1157 year: 2003 ident: ref34 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – ident: ref6 doi: 10.1109/34.735811 – ident: ref33 doi: 10.1109/TITB.2010.2051955 – ident: ref11 doi: 10.1007/3-540-47873-6_2 – ident: ref23 doi: 10.1109/AFGR.2008.4813341 |
SSID | ssj0000816896 |
Score | 2.576521 |
Snippet | A sign language recognition system translates signs performed by deaf individuals into text/speech in real time. Inertial measurement unit and surface... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1281 |
SubjectTerms | Accelerometers American Sign Language (ASL) recognition Arm - physiology Assistive technology Communication Aids for Disabled Electromyography - methods Electronics Equipment Design Feature extraction feature selection Female Gesture recognition Humans inertial measurement unit (IMU) sensor Male Muscle, Skeletal - physiology Pattern Recognition, Automated - methods Real-time systems sensor fusion Sensor systems Sign Language Signal Processing, Computer-Assisted - instrumentation Speech Recognition Software surface EMG (sEMG) |
Title | A Wearable System for Recognizing American Sign Language in Real-Time Using IMU and Surface EMG Sensors |
URI | https://ieeexplore.ieee.org/document/7552525 https://www.ncbi.nlm.nih.gov/pubmed/27576269 https://www.proquest.com/docview/1830936579 https://www.proquest.com/docview/1859726835 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSAu5VEoKQUZiRMi22wSJ-tjQS3binBgWdFbZDvjVUWVRdvNpb--M44TIQQI5WIpTuJoxp5v3gBvm9SR3CxcLLUzcY6ZiZXJNWkpssyd5WxNNuhXX4r5Mr-8klc78H7MhUFEH3yGEx56X36zth2byk5KKVO6dmGXFLc-V2u0p_gGEr4dV0qDmDZiHpyY00SdXH6YX3AcVzEhuM8lr7gIcElYO-VI518kkm-x8ne06aXO-SOohvX2wSY_Jt3WTOzdb6Uc__eHHsN-gJ_itOeXJ7CD7VN4UAUH-wGsTsV34n3OpxJ9MXNBqFZ87cOM7kjOicHHIxbXq1Z8DvZOcd3SLH0Tc06J8IEI4qJaCt02YtFtnLYozqpPYkFq83pz-wyW52ffPs7j0IshtiTit7ErC8TUaFI_3MxIrRq0aJSh4yHL0wZLqXFaTl1O4t5aZ9W0kcrMLCFMUxSNyp7DXrtu8QUIi7q0pU4w0aTNKWMStBnmM8c5s9pgBMlAj9qGQuXcL-Om9gpLomqmZs3UrAM1I3g3PvKzr9Lxr8kHTIlxYiBCBMcD0euwj29rOvASlRWyVBG8GW_TDmS3im5x3fEcUsrSgqBsBIc9s4zvHnjs6M_ffAkPeWV9zNox7G03Hb4ikLM1rz133wN44PQj |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgEXXuURKGAkTohs83K8PhbUsls2PbBd0VtkO-Oqosqi7ebSX8_YcSKEAKFcLMVJHM3Y880b4F2TWZKbpY25sjouMNex1IUiLYWLwhqXrekM-tVpOVsVJ-f8fAc-jLkwiOiDz3Diht6X36xN50xlB4LzjK5bcJvkPk_7bK3RouJbSPiGXBkNYtqKRXBjpok8OPk4m7tIrnJCgN8VvXJlgAWh7czFOv8ik3yTlb_jTS93jh9ANay4Dzf5Pum2emJufivm-L-_9BDuBwDKDnuOeQQ72D6GO1Vwse_BxSH7RtzvMqpYX86cEa5lX_tAoxuSdGzw8rDl5UXLFsHiyS5bmqWuYpdVwnwoAptXK6bahi27jVUG2VH1mS1JcV5vrp_A6vjo7NMsDt0YYkNCfhtbUSJmWpECYqeaK9mgQS01HRB5kTUouMJUpLYggW-MNTJtuNRTQxhTl2Uj86ew265bfA7MoBJGqAQTRfqc1DpBk2MxtS5rVmmMIBnoUZtQqtx1zLiqvcqSyNpRs3bUrAM1I3g_PvKjr9Pxr8l7jhLjxECECPYHotdhJ1_XdOQlMi-5kBG8HW_THnSOFdXiunNzSC3LSgKzETzrmWV898BjL_78zTdwd3ZWLerF_PTLS7jnVtlHsO3D7nbT4SuCPFv92nP6T1y592w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Wearable+System+for+Recognizing+American+Sign+Language+in+Real-Time+Using+IMU+and+Surface+EMG+Sensors&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Wu%2C+Jian&rft.au=Sun%2C+Lu&rft.au=Jafari%2C+Roozbeh&rft.date=2016-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=20&rft.issue=5&rft.spage=1281&rft_id=info:doi/10.1109%2FJBHI.2016.2598302&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4223583461 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |