A Fast Hybrid Feature Selection Based on Correlation-Guided Clustering and Particle Swarm Optimization for High-Dimensional Data

The "curse of dimensionality" and the high computational cost have still limited the application of the evolutionary algorithm in high-dimensional feature selection (FS) problems. This article proposes a new three-phase hybrid FS algorithm based on correlation-guided clustering and particl...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 9; pp. 9573 - 9586
Main Authors Song, Xian-Fang, Zhang, Yong, Gong, Dun-Wei, Gao, Xiao-Zhi
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The "curse of dimensionality" and the high computational cost have still limited the application of the evolutionary algorithm in high-dimensional feature selection (FS) problems. This article proposes a new three-phase hybrid FS algorithm based on correlation-guided clustering and particle swarm optimization (PSO) (HFS-C-P) to tackle the above two problems at the same time. To this end, three kinds of FS methods are effectively integrated into the proposed algorithm based on their respective advantages. In the first and second phases, a filter FS method and a feature clustering-based method with low computational cost are designed to reduce the search space used by the third phase. After that, the third phase applies oneself to finding an optimal feature subset by using an evolutionary algorithm with the global searchability. Moreover, a symmetric uncertainty-based feature deletion method, a fast correlation-guided feature clustering strategy, and an improved integer PSO are developed to improve the performance of the three phases, respectively. Finally, the proposed algorithm is validated on 18 publicly available real-world datasets in comparison with nine FS algorithms. Experimental results show that the proposed algorithm can obtain a good feature subset with the lowest computational cost.
AbstractList The ``curse of dimensionality'' and the high computational cost have still limited the application of the evolutionary algorithm in high-dimensional feature selection (FS) problems. This article proposes a new three-phase hybrid FS algorithm based on correlation-guided clustering and particle swarm optimization (PSO) (HFS-C-P) to tackle the above two problems at the same time. To this end, three kinds of FS methods are effectively integrated into the proposed algorithm based on their respective advantages. In the first and second phases, a filter FS method and a feature clustering-based method with low computational cost are designed to reduce the search space used by the third phase. After that, the third phase applies oneself to finding an optimal feature subset by using an evolutionary algorithm with the global searchability. Moreover, a symmetric uncertainty-based feature deletion method, a fast correlation-guided feature clustering strategy, and an improved integer PSO are developed to improve the performance of the three phases, respectively. Finally, the proposed algorithm is validated on 18 publicly available real-world datasets in comparison with nine FS algorithms. Experimental results show that the proposed algorithm can obtain a good feature subset with the lowest computational cost.
The "curse of dimensionality" and the high computational cost have still limited the application of the evolutionary algorithm in high-dimensional feature selection (FS) problems. This article proposes a new three-phase hybrid FS algorithm based on correlation-guided clustering and particle swarm optimization (PSO) (HFS-C-P) to tackle the above two problems at the same time. To this end, three kinds of FS methods are effectively integrated into the proposed algorithm based on their respective advantages. In the first and second phases, a filter FS method and a feature clustering-based method with low computational cost are designed to reduce the search space used by the third phase. After that, the third phase applies oneself to finding an optimal feature subset by using an evolutionary algorithm with the global searchability. Moreover, a symmetric uncertainty-based feature deletion method, a fast correlation-guided feature clustering strategy, and an improved integer PSO are developed to improve the performance of the three phases, respectively. Finally, the proposed algorithm is validated on 18 publicly available real-world datasets in comparison with nine FS algorithms. Experimental results show that the proposed algorithm can obtain a good feature subset with the lowest computational cost.The "curse of dimensionality" and the high computational cost have still limited the application of the evolutionary algorithm in high-dimensional feature selection (FS) problems. This article proposes a new three-phase hybrid FS algorithm based on correlation-guided clustering and particle swarm optimization (PSO) (HFS-C-P) to tackle the above two problems at the same time. To this end, three kinds of FS methods are effectively integrated into the proposed algorithm based on their respective advantages. In the first and second phases, a filter FS method and a feature clustering-based method with low computational cost are designed to reduce the search space used by the third phase. After that, the third phase applies oneself to finding an optimal feature subset by using an evolutionary algorithm with the global searchability. Moreover, a symmetric uncertainty-based feature deletion method, a fast correlation-guided feature clustering strategy, and an improved integer PSO are developed to improve the performance of the three phases, respectively. Finally, the proposed algorithm is validated on 18 publicly available real-world datasets in comparison with nine FS algorithms. Experimental results show that the proposed algorithm can obtain a good feature subset with the lowest computational cost.
Author Gong, Dun-Wei
Song, Xian-Fang
Gao, Xiao-Zhi
Zhang, Yong
Author_xml – sequence: 1
  givenname: Xian-Fang
  surname: Song
  fullname: Song, Xian-Fang
  email: songxf0614@126.com
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Xuzhou, China
– sequence: 2
  givenname: Yong
  orcidid: 0000-0003-0026-8181
  surname: Zhang
  fullname: Zhang, Yong
  email: yongzh401@126.com
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Xuzhou, China
– sequence: 3
  givenname: Dun-Wei
  orcidid: 0000-0003-2838-4301
  surname: Gong
  fullname: Gong, Dun-Wei
  email: dwgong@vip.163.com
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Xuzhou, China
– sequence: 4
  givenname: Xiao-Zhi
  orcidid: 0000-0002-0078-5675
  surname: Gao
  fullname: Gao, Xiao-Zhi
  email: xiao.z.gao@gmail.com
  organization: School of Computing, University of Eastern Finland, Kuopio, Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33729976$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP3DAUha2KqlDKD6gqVZa6YZPBjyR2lhAYphISlUoXXVk3zg01ymNqO6pgxU-vhxlYsMAbXx1958o-5yPZG6cRCfnM2YJzVp3c1L_PFoIJvpCs5LwQ78iB4KXOhFDF3stcqn1yFMIdS0cnqdIfyL6USlSVKg_I4yldQoh0dd9419IlQpw90p_Yo41uGukZBGxpGurJe-xhI2aXs2uTWvdziOjdeEthbOkP8NHZPrn_gR_o9Tq6wT08OWg3ebpyt3-yczfgGJIEPT2HCJ_I-w76gEe7-5D8Wl7c1Kvs6vrye316ldmcFzHrFKtyaAosmlzyRrey0FoqlE1egbLWAlNNx3TXylKlUAqwneJSoGgbBqyVh-R4u3ftp78zhmgGFyz2PYw4zcGIggnNVAoood9eoXfT7NODE6VYziqdizJRX3fU3AzYmrV3A_h785xtAtQWsH4KwWNnrItPaUQPrjecmU2RZlOk2RRpdkUmJ3_lfF7-lufL1uMQ8YWvZPqT0vI_uAmoIA
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_JBHI_2024_3497325
crossref_primary_10_1007_s12293_024_00434_2
crossref_primary_10_1155_2021_7833641
crossref_primary_10_1016_j_eswa_2024_123977
crossref_primary_10_1109_ACCESS_2024_3402652
crossref_primary_10_1109_TBDATA_2022_3232761
crossref_primary_10_1007_s10732_025_09550_9
crossref_primary_10_1007_s00521_022_08015_5
crossref_primary_10_1109_ACCESS_2022_3207287
crossref_primary_10_1016_j_engappai_2024_109885
crossref_primary_10_1016_j_swevo_2025_101915
crossref_primary_10_1080_19392699_2024_2441840
crossref_primary_10_1016_j_eswa_2025_127012
crossref_primary_10_1139_cjfas_2023_0197
crossref_primary_10_1109_ACCESS_2024_3412851
crossref_primary_10_1109_TCBB_2022_3215129
crossref_primary_10_1007_s10586_024_04361_2
crossref_primary_10_3390_math11081911
crossref_primary_10_1089_cmb_2021_0256
crossref_primary_10_1002_cpe_7613
crossref_primary_10_32604_iasc_2024_047126
crossref_primary_10_1177_14727978251321688
crossref_primary_10_3390_electronics11193177
crossref_primary_10_1016_j_cels_2024_08_005
crossref_primary_10_1016_j_ins_2024_121185
crossref_primary_10_1093_comjnl_bxae088
crossref_primary_10_1007_s44196_025_00774_y
crossref_primary_10_1109_TCYB_2022_3213236
crossref_primary_10_1016_j_bspc_2023_105869
crossref_primary_10_1016_j_knosys_2023_111102
crossref_primary_10_1007_s13042_023_01897_4
crossref_primary_10_1109_TEVC_2022_3222297
crossref_primary_10_1155_2023_4448592
crossref_primary_10_1002_cpe_7766
crossref_primary_10_1155_2021_9991859
crossref_primary_10_1016_j_knosys_2023_110635
crossref_primary_10_1016_j_knosys_2024_112537
crossref_primary_10_1109_TEVC_2023_3334233
crossref_primary_10_1016_j_asoc_2024_112042
crossref_primary_10_1109_TEVC_2023_3254155
crossref_primary_10_1016_j_ins_2023_119627
crossref_primary_10_1016_j_swevo_2024_101618
crossref_primary_10_1016_j_cor_2025_107009
crossref_primary_10_1038_s41598_023_41682_5
crossref_primary_10_1007_s10489_023_04527_2
crossref_primary_10_32604_cmc_2023_044807
crossref_primary_10_1016_j_ins_2023_119062
crossref_primary_10_1109_TEVC_2022_3168052
crossref_primary_10_3233_IDT_240458
crossref_primary_10_1038_s41598_023_38252_0
crossref_primary_10_1109_TSUSC_2022_3216461
crossref_primary_10_1016_j_ins_2024_120229
crossref_primary_10_1016_j_ins_2024_120867
crossref_primary_10_1109_TAI_2024_3380590
crossref_primary_10_1155_2022_6585800
crossref_primary_10_1016_j_knosys_2024_111616
crossref_primary_10_1007_s10586_024_04408_4
crossref_primary_10_1093_jcde_qwad092
crossref_primary_10_1109_TCYB_2025_3535722
crossref_primary_10_1371_journal_pone_0290332
crossref_primary_10_1109_TNSE_2023_3321089
crossref_primary_10_1186_s13638_023_02292_x
crossref_primary_10_1007_s10489_023_04819_7
crossref_primary_10_1109_TEVC_2022_3160458
crossref_primary_10_1109_ACCESS_2021_3107901
crossref_primary_10_1007_s13042_022_01663_y
crossref_primary_10_1007_s13042_024_02143_1
crossref_primary_10_1049_cit2_12106
crossref_primary_10_3390_pr11061820
crossref_primary_10_1109_TCE_2023_3334373
crossref_primary_10_32604_cmes_2022_020088
crossref_primary_10_1109_MCI_2024_3364429
crossref_primary_10_1016_j_ssci_2024_106590
crossref_primary_10_1007_s13369_022_07408_x
crossref_primary_10_1109_TBDATA_2024_3378090
crossref_primary_10_1016_j_engappai_2024_108909
crossref_primary_10_1155_2022_3330196
crossref_primary_10_1109_ACCESS_2021_3138403
crossref_primary_10_1109_TETCI_2022_3225550
crossref_primary_10_1109_TSMC_2024_3450278
crossref_primary_10_1016_j_cmpb_2023_107987
crossref_primary_10_1109_ACCESS_2024_3510888
crossref_primary_10_1016_j_swevo_2024_101715
crossref_primary_10_1109_ACCESS_2021_3098024
crossref_primary_10_1109_TEVC_2023_3292527
crossref_primary_10_1109_TETCI_2024_3451709
crossref_primary_10_1155_2023_3160184
crossref_primary_10_1109_THMS_2023_3269047
crossref_primary_10_7717_peerj_15666
crossref_primary_10_1109_TAI_2023_3282564
crossref_primary_10_1007_s13042_024_02121_7
crossref_primary_10_1007_s13042_024_02292_3
crossref_primary_10_3390_sym15020316
crossref_primary_10_1007_s00521_024_10288_x
crossref_primary_10_1007_s10586_024_04501_8
crossref_primary_10_1016_j_ins_2023_119619
crossref_primary_10_1007_s11227_023_05758_3
crossref_primary_10_3390_technologies11020050
crossref_primary_10_1590_1678_4324_2024230508
crossref_primary_10_1016_j_engappai_2023_107310
crossref_primary_10_1016_j_knosys_2025_113327
crossref_primary_10_32604_cmc_2025_060765
crossref_primary_10_1007_s12065_023_00892_6
crossref_primary_10_1016_j_swevo_2024_101701
crossref_primary_10_1016_j_swevo_2024_101661
crossref_primary_10_1007_s10462_024_10932_x
crossref_primary_10_1016_j_eswa_2024_123362
crossref_primary_10_1142_S1469026823500281
crossref_primary_10_1016_j_knosys_2025_113286
crossref_primary_10_1007_s00521_024_10611_6
crossref_primary_10_1093_jcde_qwae030
crossref_primary_10_1002_cpe_7601
crossref_primary_10_1016_j_engappai_2024_108646
crossref_primary_10_1145_3653025
crossref_primary_10_1109_ACCESS_2021_3112396
crossref_primary_10_1109_TEVC_2022_3232466
crossref_primary_10_1002_qre_3515
crossref_primary_10_1155_2021_8673046
crossref_primary_10_3390_pr11010065
crossref_primary_10_3390_s24072148
crossref_primary_10_1007_s10462_023_10494_4
crossref_primary_10_1186_s40537_024_00944_3
crossref_primary_10_3390_en17215513
crossref_primary_10_1016_j_asoc_2024_111948
crossref_primary_10_1145_3604560
crossref_primary_10_1016_j_ins_2024_120269
crossref_primary_10_1007_s10489_021_03118_3
crossref_primary_10_1016_j_neucom_2024_128361
crossref_primary_10_1016_j_neucom_2025_129372
crossref_primary_10_1109_ACCESS_2022_3218691
crossref_primary_10_16984_saufenbilder_1206968
crossref_primary_10_1007_s10489_022_03554_9
crossref_primary_10_32604_cmc_2024_057874
crossref_primary_10_1111_exsy_13803
crossref_primary_10_1109_TCYB_2022_3218345
crossref_primary_10_1007_s13042_024_02187_3
crossref_primary_10_1016_j_compeleceng_2022_107942
crossref_primary_10_1111_exsy_13522
crossref_primary_10_1016_j_ijdrr_2022_103259
crossref_primary_10_1016_j_ins_2024_121084
crossref_primary_10_1007_s10489_022_04275_9
crossref_primary_10_1109_TEVC_2023_3238420
crossref_primary_10_1007_s10489_023_04696_0
crossref_primary_10_1016_j_knosys_2024_111380
crossref_primary_10_1109_TFUZZ_2024_3420963
crossref_primary_10_1016_j_smhl_2024_100536
crossref_primary_10_1109_TNNLS_2023_3263506
crossref_primary_10_1007_s12559_023_10149_0
crossref_primary_10_1109_ACCESS_2024_3482192
crossref_primary_10_3390_sym14061142
crossref_primary_10_1016_j_eswa_2023_121582
Cites_doi 10.1016/j.eswa.2019.06.044
10.1109/TCYB.2017.2714145
10.1016/j.knosys.2018.05.009
10.1016/j.artint.2004.05.009
10.1109/TCYB.2016.2609408
10.1109/ICNN.1995.488968
10.1109/TCYB.2018.2859342
10.1016/j.ins.2019.08.065
10.1016/j.neucom.2012.09.049
10.1109/ICTAI.2014.47
10.1007/s10462-015-9428-8
10.1109/T-C.1971.223410
10.1109/TIE.2016.2527623
10.1016/j.neucom.2016.07.080
10.1007/s13369-019-04064-6
10.1016/j.neucom.2014.06.067
10.1016/j.eswa.2011.04.165
10.1109/TNNLS.2016.2562670
10.1016/j.engappai.2019.06.008
10.1109/TCYB.2016.2549639
10.1145/1143844.1143951
10.1016/j.asoc.2015.10.037
10.1109/TEVC.2015.2504420
10.1023/A:1025667309714
10.1109/TCBB.2012.33
10.1016/j.eswa.2016.11.024
10.1111/exsy.12459
10.1109/TEVC.2020.2968743
10.1016/j.eswa.2015.12.004
10.1016/j.ins.2019.08.040
10.1109/TCBB.2016.2602263
10.1016/j.asoc.2017.11.006
10.1109/ICCKE48569.2019.8965106
10.1109/ACCESS.2019.2919956
10.1016/j.eswa.2018.07.013
10.1016/j.procs.2013.05.011
10.1109/SIS.2003.1202251
10.1016/j.ins.2017.08.047
10.1145/3340848
10.1016/j.eswa.2019.03.039
10.1109/CEC.2019.8790366
10.1016/j.patrec.2010.12.016
10.1109/JBHI.2018.2872811
10.1007/s10462-019-09800-w
10.1109/TCYB.2014.2338893
10.1109/TCBB.2015.2476796
10.1109/TIT.1963.1057810
10.1016/j.asoc.2019.105538
10.1109/ACCESS.2019.2922987
10.1109/TCYB.2019.2943928
10.1016/S0004-3702(97)00043-X
10.1109/TKDE.2011.181
10.1016/j.knosys.2017.02.013
10.1109/TSMCB.2012.2227469
10.1016/j.eswa.2017.07.037
10.1109/TPAMI.2004.105
10.1016/j.asoc.2019.106031
10.1016/j.patcog.2015.03.020
10.1016/j.patcog.2020.107804
10.1109/TEVC.2018.2869405
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2021.3061152
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 9586
ExternalDocumentID 33729976
10_1109_TCYB_2021_3061152
9380778
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Scientic Innovation 2030 Major Project for New Generation of AI
  grantid: 2020AAA0107300
– fundername: National Natural Science Foundation of China
  grantid: 61876185; 51875113
  funderid: 10.13039/501100001809
– fundername: Ministry of Science and Technology of the People’s Republic of China
  funderid: 10.13039/501100002855
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c415t-f7094ab5e5b431b8d358837e3b49a7ccca07bf08fd3670215acf7132e2db0a0d3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 06:07:08 EDT 2025
Sun Jun 29 12:32:29 EDT 2025
Mon Jul 21 06:03:28 EDT 2025
Tue Jul 01 00:53:59 EDT 2025
Thu Apr 24 22:59:21 EDT 2025
Wed Aug 27 02:22:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-f7094ab5e5b431b8d358837e3b49a7ccca07bf08fd3670215acf7132e2db0a0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0026-8181
0000-0002-0078-5675
0000-0003-2838-4301
PMID 33729976
PQID 2704098426
PQPubID 85422
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TCYB_2021_3061152
proquest_journals_2704098426
pubmed_primary_33729976
crossref_primary_10_1109_TCYB_2021_3061152
ieee_primary_9380778
proquest_miscellaneous_2502807689
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref15
ref59
ref14
ref58
ref53
Jie (ref48); 10362
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref47
ref42
Robnik-Šikonja (ref60) 2003; 53
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Stearns (ref12)
ref24
ref23
ref26
ref25
ref20
ref63
ref22
ref21
ref28
ref27
ref29
Yu (ref57) 2004; 5
ref62
ref61
References_xml – ident: ref39
  doi: 10.1016/j.eswa.2019.06.044
– ident: ref26
  doi: 10.1109/TCYB.2017.2714145
– ident: ref42
  doi: 10.1016/j.knosys.2018.05.009
– ident: ref6
  doi: 10.1016/j.artint.2004.05.009
– ident: ref7
  doi: 10.1109/TCYB.2016.2609408
– ident: ref20
  doi: 10.1109/ICNN.1995.488968
– ident: ref3
  doi: 10.1109/TCYB.2018.2859342
– ident: ref18
  doi: 10.1016/j.ins.2019.08.065
– ident: ref23
  doi: 10.1016/j.neucom.2012.09.049
– ident: ref47
  doi: 10.1109/ICTAI.2014.47
– ident: ref22
  doi: 10.1007/s10462-015-9428-8
– ident: ref10
  doi: 10.1109/T-C.1971.223410
– ident: ref30
  doi: 10.1109/TIE.2016.2527623
– ident: ref34
  doi: 10.1016/j.neucom.2016.07.080
– ident: ref53
  doi: 10.1007/s13369-019-04064-6
– ident: ref38
  doi: 10.1016/j.neucom.2014.06.067
– ident: ref4
  doi: 10.1016/j.eswa.2011.04.165
– ident: ref5
  doi: 10.1109/TNNLS.2016.2562670
– ident: ref28
  doi: 10.1016/j.engappai.2019.06.008
– ident: ref1
  doi: 10.1109/TCYB.2016.2549639
– ident: ref63
  doi: 10.1145/1143844.1143951
– volume: 5
  start-page: 1205
  year: 2004
  ident: ref57
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J. Mach. Learn. Res.
– ident: ref51
  doi: 10.1016/j.asoc.2015.10.037
– ident: ref13
  doi: 10.1109/TEVC.2015.2504420
– volume: 53
  start-page: 23
  issue: 1
  year: 2003
  ident: ref60
  article-title: Theoretical and empirical analysis of ReliefF and RReliefF
  publication-title: Mach. Learn.
  doi: 10.1023/A:1025667309714
– ident: ref9
  doi: 10.1109/TCBB.2012.33
– ident: ref58
  doi: 10.1016/j.eswa.2016.11.024
– ident: ref49
  doi: 10.1111/exsy.12459
– ident: ref55
  doi: 10.1109/TEVC.2020.2968743
– ident: ref31
  doi: 10.1016/j.eswa.2015.12.004
– ident: ref40
  doi: 10.1016/j.ins.2019.08.040
– ident: ref37
  doi: 10.1109/TCBB.2016.2602263
– ident: ref43
  doi: 10.1016/j.asoc.2017.11.006
– ident: ref33
  doi: 10.1109/ICCKE48569.2019.8965106
– ident: ref54
  doi: 10.1109/ACCESS.2019.2919956
– ident: ref25
  doi: 10.1016/j.eswa.2018.07.013
– ident: ref56
  doi: 10.1016/j.procs.2013.05.011
– ident: ref35
  doi: 10.1109/SIS.2003.1202251
– ident: ref41
  doi: 10.1016/j.ins.2017.08.047
– ident: ref59
  doi: 10.1145/3340848
– ident: ref46
  doi: 10.1016/j.eswa.2019.03.039
– ident: ref29
  doi: 10.1109/CEC.2019.8790366
– ident: ref32
  doi: 10.1016/j.patrec.2010.12.016
– ident: ref52
  doi: 10.1109/JBHI.2018.2872811
– ident: ref44
  doi: 10.1007/s10462-019-09800-w
– ident: ref2
  doi: 10.1109/TCYB.2014.2338893
– ident: ref24
  doi: 10.1109/TCBB.2015.2476796
– ident: ref11
  doi: 10.1109/TIT.1963.1057810
– ident: ref36
  doi: 10.1016/j.asoc.2019.105538
– ident: ref50
  doi: 10.1109/ACCESS.2019.2922987
– ident: ref17
  doi: 10.1109/TCYB.2019.2943928
– ident: ref62
  doi: 10.1016/S0004-3702(97)00043-X
– ident: ref8
  doi: 10.1109/TKDE.2011.181
– ident: ref16
  doi: 10.1016/j.knosys.2017.02.013
– ident: ref21
  doi: 10.1109/TSMCB.2012.2227469
– ident: ref15
  doi: 10.1016/j.eswa.2017.07.037
– ident: ref61
  doi: 10.1109/TPAMI.2004.105
– volume: 10362
  start-page: 125
  volume-title: Proc Int. Conf. Intell. Comput.,
  ident: ref48
  article-title: Feature selection based on density peak clustering using information distance measure
– start-page: 71
  volume-title: Proc. 3rd Int. Joint Conf. Pattern Recognit.
  ident: ref12
  article-title: On selecting features for pattern classifiers
– ident: ref27
  doi: 10.1016/j.asoc.2019.106031
– ident: ref14
  doi: 10.1016/j.patcog.2015.03.020
– ident: ref19
  doi: 10.1016/j.patcog.2020.107804
– ident: ref45
  doi: 10.1109/TEVC.2018.2869405
SSID ssj0000816898
Score 2.6636214
Snippet The "curse of dimensionality" and the high computational cost have still limited the application of the evolutionary algorithm in high-dimensional feature...
The ``curse of dimensionality'' and the high computational cost have still limited the application of the evolutionary algorithm in high-dimensional feature...
The “curse of dimensionality” and the high computational cost have still limited the application of the evolutionary algorithm in high-dimensional feature...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9573
SubjectTerms Clustering
Clustering algorithms
Computational efficiency
Computing costs
Convergence
Correlation
Evolutionary algorithms
Feature extraction
Feature selection
feature selection (FS)
Genetic algorithms
hybrid search
Mutual information
Particle swarm optimization
particle swarm optimization (PSO)
Search problems
Title A Fast Hybrid Feature Selection Based on Correlation-Guided Clustering and Particle Swarm Optimization for High-Dimensional Data
URI https://ieeexplore.ieee.org/document/9380778
https://www.ncbi.nlm.nih.gov/pubmed/33729976
https://www.proquest.com/docview/2704098426
https://www.proquest.com/docview/2502807689
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED4VnvYyYLBRYJMn8QDTXFI3aeJHKOsqpG5ItBJ7iuzYlqZBitpE0_a0n747x40Q2qa9Wa3TJrqz_V3u7vsAjlM3NEOtFXdaKh6bvuPaiZQLKy1eYRLpKKM7_TSczOOr2-S2A-_bXhhrrS8-sz0a-ly-WRQ1vSo7k8SOnmYbsIGBW9Or1b5P8QISXvpW4IAjqkhDErMfybPZ6MsFBoOi30OIjCCIRGwGlLGSRDby6ETyEit_R5v-1BlvwXR9v02xybdeXele8fMJleP_PtA2PA_wk503_rIDHVu-gJ2wwFfsJLBQn-7Cr3M2VquKTX5QTxcjqFgvLbvxujloTHaB559hOBiRwEdTUsc_1l8Nfjq6q4mAAY9FpkrDroN_spvvannPPuM2dR_6PxmCZkbFJvySdAYajhB2qSq1B_Pxh9lowoNcAy8QBVTcpRgqKp3YRCMq0ZkZJBmGv3agY6nSAl0lSrWLMmeINA6hhiochsjCCqMjFZnBS9gsF6XdB6aVySj5jPtDHCtS1BLSoq2MMYUqlOxCtDZZXgQuc5LUuMt9TBPJnAyek8HzYPAuvGsveWiIPP41eZeM1U4MdurC0dov8rDUV7lIcR-UGSKdLrxtv8ZFSpkXVdpFjXMSymBjZId3_qrxp_a312548Of_PIRngjoufFnbEWxWy9q-RhxU6Td-AfwGRCkCiQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N8QAvwBhshQGexAMg3KVu0sSPW7fSwTqQ1knbU2THtoS2pVObCG1P_OncOW6EJkC8WYnzpTv7fpf7-AG8Td3ADLRW3GmpeGx6jmsnUi6stHiFSaSjiO7keDA-jT-fJWcr8LGthbHW-uQz26Whj-WbWVHTr7IdSd3R0-we3Ee7n_Saaq32j4qnkPDktwIHHHFFGsKYvUjuTIfne-gOil4XQTLCIKKx6VPMSlK7kd9skidZ-Tve9HZn9Bgmyzdu0k0uunWlu8XtnWaO__tJT-BRAKBst9GYNVix5VNYC0t8wd6FPtTv1-HnLhupRcXGN1TVxQgs1nPLTjxzDoqT7aEFNAwHQ6L4aJLq-Kf6u8Gjw8uaWjCgYWSqNOxb0FB28kPNr9hX3KiuQgUoQ9jMKN2E7xPTQNMlhO2rSj2D09HBdDjmgbCBF4gDKu5SdBaVTmyiEZfozPSTDB1g29exVGmByhKl2kWZM9Q2DsGGKhw6ycIKoyMVmf5zWC1npd0EppXJKPyMO0QcK-LUEtKirIwxhSqU7EC0FFlehG7mRKpxmXuvJpI5CTwngedB4B340F5y3bTy-NfkdRJWOzHIqQNbS73Iw2Jf5CLFnVBmiHU6sN2exmVKsRdV2lmNcxKKYaNvh2--0ehTe--lGr748zPfwIPxdHKUHx0ef3kJDwXVX_gkty1Yrea1fYWoqNKv_WL4BeQfBdI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fast+Hybrid+Feature+Selection+Based+on+Correlation-Guided+Clustering+and+Particle+Swarm+Optimization+for+High-Dimensional+Data&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Song%2C+Xian-Fang&rft.au=Zhang%2C+Yong&rft.au=Gong%2C+Dun-Wei&rft.au=Gao%2C+Xiao-Zhi&rft.date=2022-09-01&rft.eissn=2168-2275&rft.volume=PP&rft_id=info:doi/10.1109%2FTCYB.2021.3061152&rft_id=info%3Apmid%2F33729976&rft.externalDocID=33729976
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon