A Fast Hybrid Feature Selection Based on Correlation-Guided Clustering and Particle Swarm Optimization for High-Dimensional Data
The "curse of dimensionality" and the high computational cost have still limited the application of the evolutionary algorithm in high-dimensional feature selection (FS) problems. This article proposes a new three-phase hybrid FS algorithm based on correlation-guided clustering and particl...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 52; no. 9; pp. 9573 - 9586 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The "curse of dimensionality" and the high computational cost have still limited the application of the evolutionary algorithm in high-dimensional feature selection (FS) problems. This article proposes a new three-phase hybrid FS algorithm based on correlation-guided clustering and particle swarm optimization (PSO) (HFS-C-P) to tackle the above two problems at the same time. To this end, three kinds of FS methods are effectively integrated into the proposed algorithm based on their respective advantages. In the first and second phases, a filter FS method and a feature clustering-based method with low computational cost are designed to reduce the search space used by the third phase. After that, the third phase applies oneself to finding an optimal feature subset by using an evolutionary algorithm with the global searchability. Moreover, a symmetric uncertainty-based feature deletion method, a fast correlation-guided feature clustering strategy, and an improved integer PSO are developed to improve the performance of the three phases, respectively. Finally, the proposed algorithm is validated on 18 publicly available real-world datasets in comparison with nine FS algorithms. Experimental results show that the proposed algorithm can obtain a good feature subset with the lowest computational cost. |
---|---|
AbstractList | The ``curse of dimensionality'' and the high computational cost have still limited the application of the evolutionary algorithm in high-dimensional feature selection (FS) problems. This article proposes a new three-phase hybrid FS algorithm based on correlation-guided clustering and particle swarm optimization (PSO) (HFS-C-P) to tackle the above two problems at the same time. To this end, three kinds of FS methods are effectively integrated into the proposed algorithm based on their respective advantages. In the first and second phases, a filter FS method and a feature clustering-based method with low computational cost are designed to reduce the search space used by the third phase. After that, the third phase applies oneself to finding an optimal feature subset by using an evolutionary algorithm with the global searchability. Moreover, a symmetric uncertainty-based feature deletion method, a fast correlation-guided feature clustering strategy, and an improved integer PSO are developed to improve the performance of the three phases, respectively. Finally, the proposed algorithm is validated on 18 publicly available real-world datasets in comparison with nine FS algorithms. Experimental results show that the proposed algorithm can obtain a good feature subset with the lowest computational cost. The "curse of dimensionality" and the high computational cost have still limited the application of the evolutionary algorithm in high-dimensional feature selection (FS) problems. This article proposes a new three-phase hybrid FS algorithm based on correlation-guided clustering and particle swarm optimization (PSO) (HFS-C-P) to tackle the above two problems at the same time. To this end, three kinds of FS methods are effectively integrated into the proposed algorithm based on their respective advantages. In the first and second phases, a filter FS method and a feature clustering-based method with low computational cost are designed to reduce the search space used by the third phase. After that, the third phase applies oneself to finding an optimal feature subset by using an evolutionary algorithm with the global searchability. Moreover, a symmetric uncertainty-based feature deletion method, a fast correlation-guided feature clustering strategy, and an improved integer PSO are developed to improve the performance of the three phases, respectively. Finally, the proposed algorithm is validated on 18 publicly available real-world datasets in comparison with nine FS algorithms. Experimental results show that the proposed algorithm can obtain a good feature subset with the lowest computational cost.The "curse of dimensionality" and the high computational cost have still limited the application of the evolutionary algorithm in high-dimensional feature selection (FS) problems. This article proposes a new three-phase hybrid FS algorithm based on correlation-guided clustering and particle swarm optimization (PSO) (HFS-C-P) to tackle the above two problems at the same time. To this end, three kinds of FS methods are effectively integrated into the proposed algorithm based on their respective advantages. In the first and second phases, a filter FS method and a feature clustering-based method with low computational cost are designed to reduce the search space used by the third phase. After that, the third phase applies oneself to finding an optimal feature subset by using an evolutionary algorithm with the global searchability. Moreover, a symmetric uncertainty-based feature deletion method, a fast correlation-guided feature clustering strategy, and an improved integer PSO are developed to improve the performance of the three phases, respectively. Finally, the proposed algorithm is validated on 18 publicly available real-world datasets in comparison with nine FS algorithms. Experimental results show that the proposed algorithm can obtain a good feature subset with the lowest computational cost. |
Author | Gong, Dun-Wei Song, Xian-Fang Gao, Xiao-Zhi Zhang, Yong |
Author_xml | – sequence: 1 givenname: Xian-Fang surname: Song fullname: Song, Xian-Fang email: songxf0614@126.com organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Xuzhou, China – sequence: 2 givenname: Yong orcidid: 0000-0003-0026-8181 surname: Zhang fullname: Zhang, Yong email: yongzh401@126.com organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Xuzhou, China – sequence: 3 givenname: Dun-Wei orcidid: 0000-0003-2838-4301 surname: Gong fullname: Gong, Dun-Wei email: dwgong@vip.163.com organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Xuzhou, China – sequence: 4 givenname: Xiao-Zhi orcidid: 0000-0002-0078-5675 surname: Gao fullname: Gao, Xiao-Zhi email: xiao.z.gao@gmail.com organization: School of Computing, University of Eastern Finland, Kuopio, Finland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33729976$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtP3DAUha2KqlDKD6gqVZa6YZPBjyR2lhAYphISlUoXXVk3zg01ymNqO6pgxU-vhxlYsMAbXx1958o-5yPZG6cRCfnM2YJzVp3c1L_PFoIJvpCs5LwQ78iB4KXOhFDF3stcqn1yFMIdS0cnqdIfyL6USlSVKg_I4yldQoh0dd9419IlQpw90p_Yo41uGukZBGxpGurJe-xhI2aXs2uTWvdziOjdeEthbOkP8NHZPrn_gR_o9Tq6wT08OWg3ebpyt3-yczfgGJIEPT2HCJ_I-w76gEe7-5D8Wl7c1Kvs6vrye316ldmcFzHrFKtyaAosmlzyRrey0FoqlE1egbLWAlNNx3TXylKlUAqwneJSoGgbBqyVh-R4u3ftp78zhmgGFyz2PYw4zcGIggnNVAoood9eoXfT7NODE6VYziqdizJRX3fU3AzYmrV3A_h785xtAtQWsH4KwWNnrItPaUQPrjecmU2RZlOk2RRpdkUmJ3_lfF7-lufL1uMQ8YWvZPqT0vI_uAmoIA |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1109_JBHI_2024_3497325 crossref_primary_10_1007_s12293_024_00434_2 crossref_primary_10_1155_2021_7833641 crossref_primary_10_1016_j_eswa_2024_123977 crossref_primary_10_1109_ACCESS_2024_3402652 crossref_primary_10_1109_TBDATA_2022_3232761 crossref_primary_10_1007_s10732_025_09550_9 crossref_primary_10_1007_s00521_022_08015_5 crossref_primary_10_1109_ACCESS_2022_3207287 crossref_primary_10_1016_j_engappai_2024_109885 crossref_primary_10_1016_j_swevo_2025_101915 crossref_primary_10_1080_19392699_2024_2441840 crossref_primary_10_1016_j_eswa_2025_127012 crossref_primary_10_1139_cjfas_2023_0197 crossref_primary_10_1109_ACCESS_2024_3412851 crossref_primary_10_1109_TCBB_2022_3215129 crossref_primary_10_1007_s10586_024_04361_2 crossref_primary_10_3390_math11081911 crossref_primary_10_1089_cmb_2021_0256 crossref_primary_10_1002_cpe_7613 crossref_primary_10_32604_iasc_2024_047126 crossref_primary_10_1177_14727978251321688 crossref_primary_10_3390_electronics11193177 crossref_primary_10_1016_j_cels_2024_08_005 crossref_primary_10_1016_j_ins_2024_121185 crossref_primary_10_1093_comjnl_bxae088 crossref_primary_10_1007_s44196_025_00774_y crossref_primary_10_1109_TCYB_2022_3213236 crossref_primary_10_1016_j_bspc_2023_105869 crossref_primary_10_1016_j_knosys_2023_111102 crossref_primary_10_1007_s13042_023_01897_4 crossref_primary_10_1109_TEVC_2022_3222297 crossref_primary_10_1155_2023_4448592 crossref_primary_10_1002_cpe_7766 crossref_primary_10_1155_2021_9991859 crossref_primary_10_1016_j_knosys_2023_110635 crossref_primary_10_1016_j_knosys_2024_112537 crossref_primary_10_1109_TEVC_2023_3334233 crossref_primary_10_1016_j_asoc_2024_112042 crossref_primary_10_1109_TEVC_2023_3254155 crossref_primary_10_1016_j_ins_2023_119627 crossref_primary_10_1016_j_swevo_2024_101618 crossref_primary_10_1016_j_cor_2025_107009 crossref_primary_10_1038_s41598_023_41682_5 crossref_primary_10_1007_s10489_023_04527_2 crossref_primary_10_32604_cmc_2023_044807 crossref_primary_10_1016_j_ins_2023_119062 crossref_primary_10_1109_TEVC_2022_3168052 crossref_primary_10_3233_IDT_240458 crossref_primary_10_1038_s41598_023_38252_0 crossref_primary_10_1109_TSUSC_2022_3216461 crossref_primary_10_1016_j_ins_2024_120229 crossref_primary_10_1016_j_ins_2024_120867 crossref_primary_10_1109_TAI_2024_3380590 crossref_primary_10_1155_2022_6585800 crossref_primary_10_1016_j_knosys_2024_111616 crossref_primary_10_1007_s10586_024_04408_4 crossref_primary_10_1093_jcde_qwad092 crossref_primary_10_1109_TCYB_2025_3535722 crossref_primary_10_1371_journal_pone_0290332 crossref_primary_10_1109_TNSE_2023_3321089 crossref_primary_10_1186_s13638_023_02292_x crossref_primary_10_1007_s10489_023_04819_7 crossref_primary_10_1109_TEVC_2022_3160458 crossref_primary_10_1109_ACCESS_2021_3107901 crossref_primary_10_1007_s13042_022_01663_y crossref_primary_10_1007_s13042_024_02143_1 crossref_primary_10_1049_cit2_12106 crossref_primary_10_3390_pr11061820 crossref_primary_10_1109_TCE_2023_3334373 crossref_primary_10_32604_cmes_2022_020088 crossref_primary_10_1109_MCI_2024_3364429 crossref_primary_10_1016_j_ssci_2024_106590 crossref_primary_10_1007_s13369_022_07408_x crossref_primary_10_1109_TBDATA_2024_3378090 crossref_primary_10_1016_j_engappai_2024_108909 crossref_primary_10_1155_2022_3330196 crossref_primary_10_1109_ACCESS_2021_3138403 crossref_primary_10_1109_TETCI_2022_3225550 crossref_primary_10_1109_TSMC_2024_3450278 crossref_primary_10_1016_j_cmpb_2023_107987 crossref_primary_10_1109_ACCESS_2024_3510888 crossref_primary_10_1016_j_swevo_2024_101715 crossref_primary_10_1109_ACCESS_2021_3098024 crossref_primary_10_1109_TEVC_2023_3292527 crossref_primary_10_1109_TETCI_2024_3451709 crossref_primary_10_1155_2023_3160184 crossref_primary_10_1109_THMS_2023_3269047 crossref_primary_10_7717_peerj_15666 crossref_primary_10_1109_TAI_2023_3282564 crossref_primary_10_1007_s13042_024_02121_7 crossref_primary_10_1007_s13042_024_02292_3 crossref_primary_10_3390_sym15020316 crossref_primary_10_1007_s00521_024_10288_x crossref_primary_10_1007_s10586_024_04501_8 crossref_primary_10_1016_j_ins_2023_119619 crossref_primary_10_1007_s11227_023_05758_3 crossref_primary_10_3390_technologies11020050 crossref_primary_10_1590_1678_4324_2024230508 crossref_primary_10_1016_j_engappai_2023_107310 crossref_primary_10_1016_j_knosys_2025_113327 crossref_primary_10_32604_cmc_2025_060765 crossref_primary_10_1007_s12065_023_00892_6 crossref_primary_10_1016_j_swevo_2024_101701 crossref_primary_10_1016_j_swevo_2024_101661 crossref_primary_10_1007_s10462_024_10932_x crossref_primary_10_1016_j_eswa_2024_123362 crossref_primary_10_1142_S1469026823500281 crossref_primary_10_1016_j_knosys_2025_113286 crossref_primary_10_1007_s00521_024_10611_6 crossref_primary_10_1093_jcde_qwae030 crossref_primary_10_1002_cpe_7601 crossref_primary_10_1016_j_engappai_2024_108646 crossref_primary_10_1145_3653025 crossref_primary_10_1109_ACCESS_2021_3112396 crossref_primary_10_1109_TEVC_2022_3232466 crossref_primary_10_1002_qre_3515 crossref_primary_10_1155_2021_8673046 crossref_primary_10_3390_pr11010065 crossref_primary_10_3390_s24072148 crossref_primary_10_1007_s10462_023_10494_4 crossref_primary_10_1186_s40537_024_00944_3 crossref_primary_10_3390_en17215513 crossref_primary_10_1016_j_asoc_2024_111948 crossref_primary_10_1145_3604560 crossref_primary_10_1016_j_ins_2024_120269 crossref_primary_10_1007_s10489_021_03118_3 crossref_primary_10_1016_j_neucom_2024_128361 crossref_primary_10_1016_j_neucom_2025_129372 crossref_primary_10_1109_ACCESS_2022_3218691 crossref_primary_10_16984_saufenbilder_1206968 crossref_primary_10_1007_s10489_022_03554_9 crossref_primary_10_32604_cmc_2024_057874 crossref_primary_10_1111_exsy_13803 crossref_primary_10_1109_TCYB_2022_3218345 crossref_primary_10_1007_s13042_024_02187_3 crossref_primary_10_1016_j_compeleceng_2022_107942 crossref_primary_10_1111_exsy_13522 crossref_primary_10_1016_j_ijdrr_2022_103259 crossref_primary_10_1016_j_ins_2024_121084 crossref_primary_10_1007_s10489_022_04275_9 crossref_primary_10_1109_TEVC_2023_3238420 crossref_primary_10_1007_s10489_023_04696_0 crossref_primary_10_1016_j_knosys_2024_111380 crossref_primary_10_1109_TFUZZ_2024_3420963 crossref_primary_10_1016_j_smhl_2024_100536 crossref_primary_10_1109_TNNLS_2023_3263506 crossref_primary_10_1007_s12559_023_10149_0 crossref_primary_10_1109_ACCESS_2024_3482192 crossref_primary_10_3390_sym14061142 crossref_primary_10_1016_j_eswa_2023_121582 |
Cites_doi | 10.1016/j.eswa.2019.06.044 10.1109/TCYB.2017.2714145 10.1016/j.knosys.2018.05.009 10.1016/j.artint.2004.05.009 10.1109/TCYB.2016.2609408 10.1109/ICNN.1995.488968 10.1109/TCYB.2018.2859342 10.1016/j.ins.2019.08.065 10.1016/j.neucom.2012.09.049 10.1109/ICTAI.2014.47 10.1007/s10462-015-9428-8 10.1109/T-C.1971.223410 10.1109/TIE.2016.2527623 10.1016/j.neucom.2016.07.080 10.1007/s13369-019-04064-6 10.1016/j.neucom.2014.06.067 10.1016/j.eswa.2011.04.165 10.1109/TNNLS.2016.2562670 10.1016/j.engappai.2019.06.008 10.1109/TCYB.2016.2549639 10.1145/1143844.1143951 10.1016/j.asoc.2015.10.037 10.1109/TEVC.2015.2504420 10.1023/A:1025667309714 10.1109/TCBB.2012.33 10.1016/j.eswa.2016.11.024 10.1111/exsy.12459 10.1109/TEVC.2020.2968743 10.1016/j.eswa.2015.12.004 10.1016/j.ins.2019.08.040 10.1109/TCBB.2016.2602263 10.1016/j.asoc.2017.11.006 10.1109/ICCKE48569.2019.8965106 10.1109/ACCESS.2019.2919956 10.1016/j.eswa.2018.07.013 10.1016/j.procs.2013.05.011 10.1109/SIS.2003.1202251 10.1016/j.ins.2017.08.047 10.1145/3340848 10.1016/j.eswa.2019.03.039 10.1109/CEC.2019.8790366 10.1016/j.patrec.2010.12.016 10.1109/JBHI.2018.2872811 10.1007/s10462-019-09800-w 10.1109/TCYB.2014.2338893 10.1109/TCBB.2015.2476796 10.1109/TIT.1963.1057810 10.1016/j.asoc.2019.105538 10.1109/ACCESS.2019.2922987 10.1109/TCYB.2019.2943928 10.1016/S0004-3702(97)00043-X 10.1109/TKDE.2011.181 10.1016/j.knosys.2017.02.013 10.1109/TSMCB.2012.2227469 10.1016/j.eswa.2017.07.037 10.1109/TPAMI.2004.105 10.1016/j.asoc.2019.106031 10.1016/j.patcog.2015.03.020 10.1016/j.patcog.2020.107804 10.1109/TEVC.2018.2869405 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2021.3061152 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Aerospace Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 9586 |
ExternalDocumentID | 33729976 10_1109_TCYB_2021_3061152 9380778 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Scientic Innovation 2030 Major Project for New Generation of AI grantid: 2020AAA0107300 – fundername: National Natural Science Foundation of China grantid: 61876185; 51875113 funderid: 10.13039/501100001809 – fundername: Ministry of Science and Technology of the People’s Republic of China funderid: 10.13039/501100002855 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c415t-f7094ab5e5b431b8d358837e3b49a7ccca07bf08fd3670215acf7132e2db0a0d3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 06:07:08 EDT 2025 Sun Jun 29 12:32:29 EDT 2025 Mon Jul 21 06:03:28 EDT 2025 Tue Jul 01 00:53:59 EDT 2025 Thu Apr 24 22:59:21 EDT 2025 Wed Aug 27 02:22:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-f7094ab5e5b431b8d358837e3b49a7ccca07bf08fd3670215acf7132e2db0a0d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0026-8181 0000-0002-0078-5675 0000-0003-2838-4301 |
PMID | 33729976 |
PQID | 2704098426 |
PQPubID | 85422 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_TCYB_2021_3061152 proquest_journals_2704098426 pubmed_primary_33729976 crossref_primary_10_1109_TCYB_2021_3061152 ieee_primary_9380778 proquest_miscellaneous_2502807689 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref56 ref15 ref59 ref14 ref58 ref53 Jie (ref48); 10362 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref47 ref42 Robnik-Šikonja (ref60) 2003; 53 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Stearns (ref12) ref24 ref23 ref26 ref25 ref20 ref63 ref22 ref21 ref28 ref27 ref29 Yu (ref57) 2004; 5 ref62 ref61 |
References_xml | – ident: ref39 doi: 10.1016/j.eswa.2019.06.044 – ident: ref26 doi: 10.1109/TCYB.2017.2714145 – ident: ref42 doi: 10.1016/j.knosys.2018.05.009 – ident: ref6 doi: 10.1016/j.artint.2004.05.009 – ident: ref7 doi: 10.1109/TCYB.2016.2609408 – ident: ref20 doi: 10.1109/ICNN.1995.488968 – ident: ref3 doi: 10.1109/TCYB.2018.2859342 – ident: ref18 doi: 10.1016/j.ins.2019.08.065 – ident: ref23 doi: 10.1016/j.neucom.2012.09.049 – ident: ref47 doi: 10.1109/ICTAI.2014.47 – ident: ref22 doi: 10.1007/s10462-015-9428-8 – ident: ref10 doi: 10.1109/T-C.1971.223410 – ident: ref30 doi: 10.1109/TIE.2016.2527623 – ident: ref34 doi: 10.1016/j.neucom.2016.07.080 – ident: ref53 doi: 10.1007/s13369-019-04064-6 – ident: ref38 doi: 10.1016/j.neucom.2014.06.067 – ident: ref4 doi: 10.1016/j.eswa.2011.04.165 – ident: ref5 doi: 10.1109/TNNLS.2016.2562670 – ident: ref28 doi: 10.1016/j.engappai.2019.06.008 – ident: ref1 doi: 10.1109/TCYB.2016.2549639 – ident: ref63 doi: 10.1145/1143844.1143951 – volume: 5 start-page: 1205 year: 2004 ident: ref57 article-title: Efficient feature selection via analysis of relevance and redundancy publication-title: J. Mach. Learn. Res. – ident: ref51 doi: 10.1016/j.asoc.2015.10.037 – ident: ref13 doi: 10.1109/TEVC.2015.2504420 – volume: 53 start-page: 23 issue: 1 year: 2003 ident: ref60 article-title: Theoretical and empirical analysis of ReliefF and RReliefF publication-title: Mach. Learn. doi: 10.1023/A:1025667309714 – ident: ref9 doi: 10.1109/TCBB.2012.33 – ident: ref58 doi: 10.1016/j.eswa.2016.11.024 – ident: ref49 doi: 10.1111/exsy.12459 – ident: ref55 doi: 10.1109/TEVC.2020.2968743 – ident: ref31 doi: 10.1016/j.eswa.2015.12.004 – ident: ref40 doi: 10.1016/j.ins.2019.08.040 – ident: ref37 doi: 10.1109/TCBB.2016.2602263 – ident: ref43 doi: 10.1016/j.asoc.2017.11.006 – ident: ref33 doi: 10.1109/ICCKE48569.2019.8965106 – ident: ref54 doi: 10.1109/ACCESS.2019.2919956 – ident: ref25 doi: 10.1016/j.eswa.2018.07.013 – ident: ref56 doi: 10.1016/j.procs.2013.05.011 – ident: ref35 doi: 10.1109/SIS.2003.1202251 – ident: ref41 doi: 10.1016/j.ins.2017.08.047 – ident: ref59 doi: 10.1145/3340848 – ident: ref46 doi: 10.1016/j.eswa.2019.03.039 – ident: ref29 doi: 10.1109/CEC.2019.8790366 – ident: ref32 doi: 10.1016/j.patrec.2010.12.016 – ident: ref52 doi: 10.1109/JBHI.2018.2872811 – ident: ref44 doi: 10.1007/s10462-019-09800-w – ident: ref2 doi: 10.1109/TCYB.2014.2338893 – ident: ref24 doi: 10.1109/TCBB.2015.2476796 – ident: ref11 doi: 10.1109/TIT.1963.1057810 – ident: ref36 doi: 10.1016/j.asoc.2019.105538 – ident: ref50 doi: 10.1109/ACCESS.2019.2922987 – ident: ref17 doi: 10.1109/TCYB.2019.2943928 – ident: ref62 doi: 10.1016/S0004-3702(97)00043-X – ident: ref8 doi: 10.1109/TKDE.2011.181 – ident: ref16 doi: 10.1016/j.knosys.2017.02.013 – ident: ref21 doi: 10.1109/TSMCB.2012.2227469 – ident: ref15 doi: 10.1016/j.eswa.2017.07.037 – ident: ref61 doi: 10.1109/TPAMI.2004.105 – volume: 10362 start-page: 125 volume-title: Proc Int. Conf. Intell. Comput., ident: ref48 article-title: Feature selection based on density peak clustering using information distance measure – start-page: 71 volume-title: Proc. 3rd Int. Joint Conf. Pattern Recognit. ident: ref12 article-title: On selecting features for pattern classifiers – ident: ref27 doi: 10.1016/j.asoc.2019.106031 – ident: ref14 doi: 10.1016/j.patcog.2015.03.020 – ident: ref19 doi: 10.1016/j.patcog.2020.107804 – ident: ref45 doi: 10.1109/TEVC.2018.2869405 |
SSID | ssj0000816898 |
Score | 2.6636214 |
Snippet | The "curse of dimensionality" and the high computational cost have still limited the application of the evolutionary algorithm in high-dimensional feature... The ``curse of dimensionality'' and the high computational cost have still limited the application of the evolutionary algorithm in high-dimensional feature... The “curse of dimensionality” and the high computational cost have still limited the application of the evolutionary algorithm in high-dimensional feature... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9573 |
SubjectTerms | Clustering Clustering algorithms Computational efficiency Computing costs Convergence Correlation Evolutionary algorithms Feature extraction Feature selection feature selection (FS) Genetic algorithms hybrid search Mutual information Particle swarm optimization particle swarm optimization (PSO) Search problems |
Title | A Fast Hybrid Feature Selection Based on Correlation-Guided Clustering and Particle Swarm Optimization for High-Dimensional Data |
URI | https://ieeexplore.ieee.org/document/9380778 https://www.ncbi.nlm.nih.gov/pubmed/33729976 https://www.proquest.com/docview/2704098426 https://www.proquest.com/docview/2502807689 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED4VnvYyYLBRYJMn8QDTXFI3aeJHKOsqpG5ItBJ7iuzYlqZBitpE0_a0n747x40Q2qa9Wa3TJrqz_V3u7vsAjlM3NEOtFXdaKh6bvuPaiZQLKy1eYRLpKKM7_TSczOOr2-S2A-_bXhhrrS8-sz0a-ly-WRQ1vSo7k8SOnmYbsIGBW9Or1b5P8QISXvpW4IAjqkhDErMfybPZ6MsFBoOi30OIjCCIRGwGlLGSRDby6ETyEit_R5v-1BlvwXR9v02xybdeXele8fMJleP_PtA2PA_wk503_rIDHVu-gJ2wwFfsJLBQn-7Cr3M2VquKTX5QTxcjqFgvLbvxujloTHaB559hOBiRwEdTUsc_1l8Nfjq6q4mAAY9FpkrDroN_spvvannPPuM2dR_6PxmCZkbFJvySdAYajhB2qSq1B_Pxh9lowoNcAy8QBVTcpRgqKp3YRCMq0ZkZJBmGv3agY6nSAl0lSrWLMmeINA6hhiochsjCCqMjFZnBS9gsF6XdB6aVySj5jPtDHCtS1BLSoq2MMYUqlOxCtDZZXgQuc5LUuMt9TBPJnAyek8HzYPAuvGsveWiIPP41eZeM1U4MdurC0dov8rDUV7lIcR-UGSKdLrxtv8ZFSpkXVdpFjXMSymBjZId3_qrxp_a312548Of_PIRngjoufFnbEWxWy9q-RhxU6Td-AfwGRCkCiQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N8QAvwBhshQGexAMg3KVu0sSPW7fSwTqQ1knbU2THtoS2pVObCG1P_OncOW6EJkC8WYnzpTv7fpf7-AG8Td3ADLRW3GmpeGx6jmsnUi6stHiFSaSjiO7keDA-jT-fJWcr8LGthbHW-uQz26Whj-WbWVHTr7IdSd3R0-we3Ee7n_Saaq32j4qnkPDktwIHHHFFGsKYvUjuTIfne-gOil4XQTLCIKKx6VPMSlK7kd9skidZ-Tve9HZn9Bgmyzdu0k0uunWlu8XtnWaO__tJT-BRAKBst9GYNVix5VNYC0t8wd6FPtTv1-HnLhupRcXGN1TVxQgs1nPLTjxzDoqT7aEFNAwHQ6L4aJLq-Kf6u8Gjw8uaWjCgYWSqNOxb0FB28kPNr9hX3KiuQgUoQ9jMKN2E7xPTQNMlhO2rSj2D09HBdDjmgbCBF4gDKu5SdBaVTmyiEZfozPSTDB1g29exVGmByhKl2kWZM9Q2DsGGKhw6ycIKoyMVmf5zWC1npd0EppXJKPyMO0QcK-LUEtKirIwxhSqU7EC0FFlehG7mRKpxmXuvJpI5CTwngedB4B340F5y3bTy-NfkdRJWOzHIqQNbS73Iw2Jf5CLFnVBmiHU6sN2exmVKsRdV2lmNcxKKYaNvh2--0ehTe--lGr748zPfwIPxdHKUHx0ef3kJDwXVX_gkty1Yrea1fYWoqNKv_WL4BeQfBdI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fast+Hybrid+Feature+Selection+Based+on+Correlation-Guided+Clustering+and+Particle+Swarm+Optimization+for+High-Dimensional+Data&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Song%2C+Xian-Fang&rft.au=Zhang%2C+Yong&rft.au=Gong%2C+Dun-Wei&rft.au=Gao%2C+Xiao-Zhi&rft.date=2022-09-01&rft.eissn=2168-2275&rft.volume=PP&rft_id=info:doi/10.1109%2FTCYB.2021.3061152&rft_id=info%3Apmid%2F33729976&rft.externalDocID=33729976 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |