Biome evolution in subfamily Cercidoideae (Leguminosae): a tropical arborescent clade with a relictual depauperate temperate lineage

Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions...

Full description

Saved in:
Bibliographic Details
Published inRevista brasileira de botânica Vol. 48; no. 1; p. 11
Main Authors Hagelstam-Renshaw, Charlotte, Ringelberg, Jens J., Sinou, Carole, Cardinal-McTeague, Warren, Bruneau, Anne
Format Journal Article
LanguageEnglish
Published Brazil Springer Nature B.V 01.12.2025
Springer International Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions of South America, Asia and Africa, and display a variety of growth forms (small trees, shrubs, lianas and herbaceous perennials). Species distribution maps derived from cleaned occurrence records were compiled and compared with existing biome maps and with the literature to assign species to biomes. Rainforest (144 species), succulent (44 species), savanna (36 species), and temperate (10 species) biomes were found to be important in describing the global distribution of Cercidoideae, with many species occurring in more than one biome. Two phylogenetically isolated species-poor temperate ( Cercis ) and succulent ( Adenolobus ) biome lineages are sister to two broadly distributed species-rich tropical clades. Ancestral state reconstructions on a time-calibrated phylogeny suggest biome shifts occurred throughout the evolutionary history of the subfamily, with shifts between the succulent and rainforest biomes, from the rainforest to savanna, from the succulent to savanna biome, and one early occurring shift into (or from) the temperate biome. Of the 26 inferred shifts in biome, three are closely associated with a shift from the ancestral tree/shrub growth form to a liana or herbaceous perennial habit. Only three of the 13 inferred transcontinental dispersal events are associated with biome shifts. Overall, we find that biome shifts tend to occur within the same continent and that dispersals to new continents tend to occur within the same biome, but that nonetheless the biome-conserved and biogeographically structured Cercidoideae have been able to adapt to different environments through time.
AbstractList Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions of South America, Asia and Africa, and display a variety of growth forms (small trees, shrubs, lianas and herbaceous perennials). Species distribution maps derived from cleaned occurrence records were compiled and compared with existing biome maps and with the literature to assign species to biomes. Rainforest (144 species), succulent (44 species), savanna (36 species), and temperate (10 species) biomes were found to be important in describing the global distribution of Cercidoideae, with many species occurring in more than one biome. Two phylogenetically isolated species-poor temperate (Cercis) and succulent (Adenolobus) biome lineages are sister to two broadly distributed species-rich tropical clades. Ancestral state reconstructions on a time-calibrated phylogeny suggest biome shifts occurred throughout the evolutionary history of the subfamily, with shifts between the succulent and rainforest biomes, from the rainforest to savanna, from the succulent to savanna biome, and one early occurring shift into (or from) the temperate biome. Of the 26 inferred shifts in biome, three are closely associated with a shift from the ancestral tree/shrub growth form to a liana or herbaceous perennial habit. Only three of the 13 inferred transcontinental dispersal events are associated with biome shifts. Overall, we find that biome shifts tend to occur within the same continent and that dispersals to new continents tend to occur within the same biome, but that nonetheless the biome-conserved and biogeographically structured Cercidoideae have been able to adapt to different environments through time.
Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions of South America, Asia and Africa, and display a variety of growth forms (small trees, shrubs, lianas and herbaceous perennials). Species distribution maps derived from cleaned occurrence records were compiled and compared with existing biome maps and with the literature to assign species to biomes. Rainforest (144 species), succulent (44 species), savanna (36 species), and temperate (10 species) biomes were found to be important in describing the global distribution of Cercidoideae, with many species occurring in more than one biome. Two phylogenetically isolated species-poor temperate (Cercis) and succulent (Adenolobus) biome lineages are sister to two broadly distributed species-rich tropical clades. Ancestral state reconstructions on a time-calibrated phylogeny suggest biome shifts occurred throughout the evolutionary history of the subfamily, with shifts between the succulent and rainforest biomes, from the rainforest to savanna, from the succulent to savanna biome, and one early occurring shift into (or from) the temperate biome. Of the 26 inferred shifts in biome, three are closely associated with a shift from the ancestral tree/shrub growth form to a liana or herbaceous perennial habit. Only three of the 13 inferred transcontinental dispersal events are associated with biome shifts. Overall, we find that biome shifts tend to occur within the same continent and that dispersals to new continents tend to occur within the same biome, but that nonetheless the biome-conserved and biogeographically structured Cercidoideae have been able to adapt to different environments through time.Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions of South America, Asia and Africa, and display a variety of growth forms (small trees, shrubs, lianas and herbaceous perennials). Species distribution maps derived from cleaned occurrence records were compiled and compared with existing biome maps and with the literature to assign species to biomes. Rainforest (144 species), succulent (44 species), savanna (36 species), and temperate (10 species) biomes were found to be important in describing the global distribution of Cercidoideae, with many species occurring in more than one biome. Two phylogenetically isolated species-poor temperate (Cercis) and succulent (Adenolobus) biome lineages are sister to two broadly distributed species-rich tropical clades. Ancestral state reconstructions on a time-calibrated phylogeny suggest biome shifts occurred throughout the evolutionary history of the subfamily, with shifts between the succulent and rainforest biomes, from the rainforest to savanna, from the succulent to savanna biome, and one early occurring shift into (or from) the temperate biome. Of the 26 inferred shifts in biome, three are closely associated with a shift from the ancestral tree/shrub growth form to a liana or herbaceous perennial habit. Only three of the 13 inferred transcontinental dispersal events are associated with biome shifts. Overall, we find that biome shifts tend to occur within the same continent and that dispersals to new continents tend to occur within the same biome, but that nonetheless the biome-conserved and biogeographically structured Cercidoideae have been able to adapt to different environments through time.The online version contains supplementary material available at 10.1007/s40415-024-01058-z.Supplementary InformationThe online version contains supplementary material available at 10.1007/s40415-024-01058-z.
Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions of South America, Asia and Africa, and display a variety of growth forms (small trees, shrubs, lianas and herbaceous perennials). Species distribution maps derived from cleaned occurrence records were compiled and compared with existing biome maps and with the literature to assign species to biomes. Rainforest (144 species), succulent (44 species), savanna (36 species), and temperate (10 species) biomes were found to be important in describing the global distribution of Cercidoideae, with many species occurring in more than one biome. Two phylogenetically isolated species-poor temperate ( ) and succulent ( ) biome lineages are sister to two broadly distributed species-rich tropical clades. Ancestral state reconstructions on a time-calibrated phylogeny suggest biome shifts occurred throughout the evolutionary history of the subfamily, with shifts between the succulent and rainforest biomes, from the rainforest to savanna, from the succulent to savanna biome, and one early occurring shift into (or from) the temperate biome. Of the 26 inferred shifts in biome, three are closely associated with a shift from the ancestral tree/shrub growth form to a liana or herbaceous perennial habit. Only three of the 13 inferred transcontinental dispersal events are associated with biome shifts. Overall, we find that biome shifts tend to occur within the same continent and that dispersals to new continents tend to occur within the same biome, but that nonetheless the biome-conserved and biogeographically structured Cercidoideae have been able to adapt to different environments through time. The online version contains supplementary material available at 10.1007/s40415-024-01058-z.
Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions of South America, Asia and Africa, and display a variety of growth forms (small trees, shrubs, lianas and herbaceous perennials). Species distribution maps derived from cleaned occurrence records were compiled and compared with existing biome maps and with the literature to assign species to biomes. Rainforest (144 species), succulent (44 species), savanna (36 species), and temperate (10 species) biomes were found to be important in describing the global distribution of Cercidoideae, with many species occurring in more than one biome. Two phylogenetically isolated species-poor temperate ( Cercis ) and succulent ( Adenolobus ) biome lineages are sister to two broadly distributed species-rich tropical clades. Ancestral state reconstructions on a time-calibrated phylogeny suggest biome shifts occurred throughout the evolutionary history of the subfamily, with shifts between the succulent and rainforest biomes, from the rainforest to savanna, from the succulent to savanna biome, and one early occurring shift into (or from) the temperate biome. Of the 26 inferred shifts in biome, three are closely associated with a shift from the ancestral tree/shrub growth form to a liana or herbaceous perennial habit. Only three of the 13 inferred transcontinental dispersal events are associated with biome shifts. Overall, we find that biome shifts tend to occur within the same continent and that dispersals to new continents tend to occur within the same biome, but that nonetheless the biome-conserved and biogeographically structured Cercidoideae have been able to adapt to different environments through time.
ArticleNumber 11
Author Sinou, Carole
Bruneau, Anne
Hagelstam-Renshaw, Charlotte
Ringelberg, Jens J.
Cardinal-McTeague, Warren
Author_xml – sequence: 1
  givenname: Charlotte
  orcidid: 0000-0001-5602-0084
  surname: Hagelstam-Renshaw
  fullname: Hagelstam-Renshaw, Charlotte
– sequence: 2
  givenname: Jens J.
  orcidid: 0000-0003-0567-5210
  surname: Ringelberg
  fullname: Ringelberg, Jens J.
– sequence: 3
  givenname: Carole
  orcidid: 0000-0002-6718-6669
  surname: Sinou
  fullname: Sinou, Carole
– sequence: 4
  givenname: Warren
  orcidid: 0000-0003-3558-9794
  surname: Cardinal-McTeague
  fullname: Cardinal-McTeague, Warren
– sequence: 5
  givenname: Anne
  orcidid: 0000-0001-5547-0796
  surname: Bruneau
  fullname: Bruneau, Anne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39703368$$D View this record in MEDLINE/PubMed
BookMark eNqNkk-PFCEQxYlZ4_7RL-DBkHhZD63QQANejE5cNZnEi54JTVfPsqFhhO41u2c_uMzOuFk9eapK6pdXr-CdoqOYIiD0nJLXlBD5pnDCqWhIyxtCiVDN7SN0QhXpGq2FPnrQH6PTUq4IaSWT-gk6ZloSxjp1gn598GkCDNcpLLNPEfuIy9KPdvLhBq8gOz8kP4AFfL6GzTL5mIqFV2-xxXNOW-9swDb3KUNxEGfsgh0A__TzZSUyBO_mpSIDbO2yhWxnwDNMhy74CHYDT9Hj0YYCzw71DH2_-Pht9blZf_30ZfV-3bh659yMnbIKNAxaAJChmmRcawuEiFYwNmjlbDs63ksqZCccgUFKVec9a3k79uwMvdvrbpd-gmHnN9tgttlPNt-YZL35exL9pdmka0NpV1coXRXODwo5_VigzGby9e4QbIS0FMOo4C3TivP_QLnkSlC5Q1_-g16lJcf6FDuq47qTLanUi4fu723_-cwKtHvA5VRKhvEeocTsEmP2iTE1MeYuMeaW_QZNurY1
Cites_doi 10.1038/nature07764
10.1093/sysbio/syy032
10.3390/d1020182
10.1146/annurev.ecolsys.36.102803.095431
10.1073/pnas.1013003108
10.1016/j.sajb.2013.05.001
10.1111/j.1095-8339.2012.01276.x
10.1111/j.1461-0248.2008.01229.x
10.1111/j.2041-210X.2011.00169.x
10.1038/s41597-022-01812-6
10.1186/1472-6785-11-27
10.1093/sysbio/syaa027
10.1111/j.1755-6724.1933.mp12001024.x
10.1017/CBO9780511897658.003
10.3389/fgene.2014.00409
10.1111/geb.13089
10.3389/fevo.2022.723286
10.1186/s12862-015-0540-9
10.1038/nmeth.4285
10.1073/pnas.0903410106
10.1002/9781444392296
10.1146/annurev-ecolsys-120213-091905
10.12705/661.3
10.21425/F5FBG19694
10.1002/tax.12676
10.1186/s12862-014-0181-4
10.1371/journal.pcbi.1006650
10.3389/fevo.2021.723558
10.1080/08912963.2021.1900170
10.1093/bioinformatics/btu181
10.1186/s13021-018-0093-5
10.1016/j.ympev.2012.05.035
10.1086/665973
10.1186/1471-2148-14-88
10.1111/nph.14523
10.1111/brv.12154
10.1098/rstb.2004.1536
10.1016/j.palaeo.2004.07.007
10.3390/d14030173
10.1111/nph.12996
10.1093/bioinformatics/bty800
10.1126/science.1061421
10.1002/tax.12207
10.1111/nph.15633
10.15468/mvhaj3
10.1016/j.ympev.2011.11.016
10.1371/journal.pone.0248839
10.3732/ajb.90.2.310
10.1111/jbi.12701
10.3389/fevo.2023.1231553
10.1111/evo.13276
10.5479/si.00963801.54-2229.103
10.1016/j.ympev.2016.10.019
10.1016/j.revpalbo.2015.02.001
10.21425/F5FBG38649
10.1111/nph.13523
10.3732/ajb.91.11.1846
10.1093/aob/mcm179
10.1038/s41559-017-0165
10.1111/nph.15609
10.1002/ajb2.1155
10.1139/B08-058
10.1007/s11284-016-1343-1
10.1126/science.aaf5080
10.1093/sysbio/syaa045
10.1111/j.1558-5646.1991.tb04375.x
10.3389/fevo.2018.00219
10.1093/molbev/msu300
10.1016/j.tree.2004.09.011
10.3897/phytokeys.205.85866
10.1146/annurev.ecolsys.110308.120327
10.1126/science.1193833
10.1093/sysbio/syu056
10.1126/sciadv.aaz5373
10.1126/science.1177216
10.1007/978-3-642-05383-2
10.1111/ecog.06085
10.1111/brv.12644
10.1111/jse.12640
10.1093/jxb/ert220
10.1038/44766
10.1073/pnas.2011515117
10.1111/jbi.14310
10.1111/nph.1330
10.1002/tax.13177
10.1101/583625
10.1126/sciadv.ade4954
10.1111/j.1095-8339.2012.01297.x
10.1111/nph.13367
10.1016/j.sajb.2013.06.010
10.1073/pnas.1713819115
10.1111/j.1469-8137.2004.01309.x
10.1086/675693
10.1073/pnas.1100628108
10.1111/boj.12006
10.3133/pp186J
10.1111/gcb.13367
10.1109/TAC.1974.1100705
10.1016/j.ympev.2015.06.006
10.3389/fgene.2014.00452
10.1111/j.1095-8339.2012.01311.x
10.1073/pnas.0801962105
10.1111/ele.13985
10.1016/S0034-6667(02)00135-5
10.1111/j.1095-8339.2005.00373.x
10.54991/jop.1988.1632
ContentType Journal Article
Copyright The Author(s) 2024.
Copyright Springer Nature B.V. 2024
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024.
– notice: Copyright Springer Nature B.V. 2024
– notice: The Author(s) 2024 2024
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOI 10.1007/s40415-024-01058-z
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1806-9959
EndPage 11
ExternalDocumentID PMC11652589
39703368
10_1007_s40415_024_01058_z
Genre Journal Article
GeographicLocations South America
Asia
Africa
GeographicLocations_xml – name: Africa
– name: Asia
– name: South America
GroupedDBID 06D
0R~
123
203
29P
29~
2LR
2WC
30V
4.4
406
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYXX
AAZMS
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABPLI
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACPIV
ACPRK
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKLTO
AKMHD
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
ATHPR
AUKKA
AVWKF
AXYYD
AYFIA
AZFZN
BGNMA
CITATION
CSCUP
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
ESBYG
FERAY
FIGPU
FNLPD
FRRFC
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
GX1
IAO
IKXTQ
IWAJR
IXD
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9G
O9J
OK1
OVT
PT4
RNS
ROL
RSC
RSV
SCD
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
TSG
U9L
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
XSB
ZMTXR
ZOVNA
2XV
AAAVM
AANXM
AARHV
AAYTO
ABXHO
ADBBV
AEBTG
AFLOW
AHSBF
AJBLW
APOWU
C1A
EJD
FINBP
FSGXE
HZ~
IGS
ISR
ITC
KQ8
NPM
O9-
ABRTQ
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c415t-f68a8e9ed95ee0dbfa3499ae0052533d98ca2fc4b715765c0ed778ae0b3242fb3
ISSN 1806-9959
0100-8404
IngestDate Thu Aug 21 18:30:26 EDT 2025
Fri Jul 11 06:26:28 EDT 2025
Thu Jul 10 18:37:35 EDT 2025
Fri Jul 25 11:15:48 EDT 2025
Sun Mar 30 02:12:58 EDT 2025
Tue Jul 01 03:56:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords BioGeoBEARS
Phylogenetic biome conservatism
Ancestral character reconstruction
Growth form evolution
Biogeography
BEAST
make.simmap
Fabaceae
Language English
License The Author(s) 2024.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c415t-f68a8e9ed95ee0dbfa3499ae0052533d98ca2fc4b715765c0ed778ae0b3242fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3558-9794
0000-0001-5602-0084
0000-0003-0567-5210
0000-0001-5547-0796
0000-0002-6718-6669
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11652589
PMID 39703368
PQID 3146496720
PQPubID 2043999
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11652589
proquest_miscellaneous_3154239844
proquest_miscellaneous_3147485174
proquest_journals_3146496720
pubmed_primary_39703368
crossref_primary_10_1007_s40415_024_01058_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Brazil
PublicationPlace_xml – name: Brazil
– name: Heidelberg
– name: Cham
PublicationTitle Revista brasileira de botânica
PublicationTitleAlternate Rev Bras Bot
PublicationYear 2025
Publisher Springer Nature B.V
Springer International Publishing
Publisher_xml – name: Springer Nature B.V
– name: Springer International Publishing
References V Manzanilla (1058_CR77) 2012; 65
I Calvillo-Canadell (1058_CR17) 2002; 122
SI Higgins (1058_CR51) 2016; 22
XC Li (1058_CR72) 2021; 59
1058_CR12
FMB Jacques (1058_CR57) 2015; 216
1058_CR13
1058_CR96
S Kalyaanamoorthy (1058_CR61) 2017; 14
JC Aleman (1058_CR2) 2020; 117
1058_CR111
H Akaike (1058_CR1) 1974; 19
WP Maddison (1058_CR76) 1991; 45
RW Chaney (1058_CR21) 1933; 12
M de la Estrella (1058_CR38) 2017; 214
1058_CR114
1058_CR117
EE Dale (1058_CR28) 2021; 16
1058_CR119
1058_CR7
1058_CR118
H Jia (1058_CR59) 2014; 175
1058_CR5
CR Marshall (1058_CR78) 2017; 1
1058_CR81
PW Fritsch (1058_CR41) 2012; 62
1058_CR89
MJ Landis (1058_CR64) 2020; 70
M Cardillo (1058_CR18) 2017; 71
M Pennell (1058_CR91) 2014; 30
1058_CR84
S Echeverría-Londoño (1058_CR34) 2018; 6
MM le Roux (1058_CR71) 2022; 9
MD Crisp (1058_CR26) 2009; 458
JH Burns (1058_CR15) 2011; 108
TLP Couvreur (1058_CR24) 2015; 5
1058_CR126
MJ Donoghue (1058_CR32) 2015; 207
HW Meyer (1058_CR82) 1997; 141
1058_CR125
GAS Cruz (1058_CR27) 2017; 107
HH Hu (1058_CR53) 1940; 507
1058_CR129
1058_CR70
L Revell (1058_CR98) 2012; 3
FH Knowlton (1058_CR62) 1926; 140A
RT Pennington (1058_CR93) 2009; 40
LFW Roesch (1058_CR102) 2009; 1
MJ Donoghue (1058_CR31) 2014; 45
CE Hughes (1058_CR55) 2015; 207
Y Lin (1058_CR73) 2015; 15
1058_CR79
JJ Wiens (1058_CR128) 2005; 36
N Rowe (1058_CR104) 2005; 166
S-R Gu (1058_CR46) 2024; 73
Q Wang (1058_CR122) 2014; 14
EJ Edwards (1058_CR35) 2013; 64
W Van Neer (1058_CR121) 1983; 16
EW Berry (1058_CR9) 1926; 140
RA Pyron (1058_CR95) 2015; 90
JJ Ringelberg (1058_CR99) 2020; 29
1058_CR67
C Yuan (1058_CR134) 2016; 3
1058_CR69
1058_CR68
R Wunderlin (1058_CR132) 1987; 28
1058_CR63
Z-Q Cai (1058_CR16) 2007; 100
1058_CR100
R Borges (1058_CR11) 2019; 35
M Lavin (1058_CR66) 2004; 359
1058_CR101
EL Spriggs (1058_CR115) 2015; 207
LB Jia (1058_CR60) 2022; 14
MJ Landis (1058_CR65) 2021; 70
M Arakaki (1058_CR4) 2011; 108
LG Lohmann (1058_CR74) 2013; 171
1058_CR106
MF Fernandes (1058_CR40) 2022; 10
1058_CR105
HF Becker (1058_CR6) 1972; 141
1058_CR107
MF Simon (1058_CR113) 2009; 106
A Bruneau (1058_CR14) 2008; 86
1058_CR50
RT Pennington (1058_CR92) 2014; 204
MJ Donoghue (1058_CR30) 2008; 105
M Pagel (1058_CR90) 1999; 401
1058_CR52
TLP Couvreur (1058_CR25) 2020; 96
A Schnabel (1058_CR109) 2003; 90
R Corlett (1058_CR23) 2011
PW Fritsch (1058_CR42) 2018; 105
AP Gorel (1058_CR45) 2022; 25
CG Boluda (1058_CR10) 2022; 71
Y-F Chen (1058_CR22) 2005; 174
NJ Matzke (1058_CR80) 2014; 63
J Roncal (1058_CR103) 2013; 171
1058_CR47
JB Losos (1058_CR75) 2008; 11
GR Moncrieff (1058_CR83) 2016; 43
MF Simon (1058_CR112) 2012; 173
AH Gentry (1058_CR44) 1992
L Mucina (1058_CR85) 2019; 222
1058_CR49
BD Schrire (1058_CR110) 2005; 55
1058_CR48
C Jaramillo (1058_CR58) 2010; 330
WL Eiserhardt (1058_CR37) 2013; 171
RP Wunderlin (1058_CR131) 2010; 2010–48
D Cardoso (1058_CR20) 2021; 9
A Rambaut (1058_CR97) 2018; 67
JJ Wiens (1058_CR127) 2004; 19
A Antonelli (1058_CR3) 2018; 115
CE Hughes (1058_CR54) 2013; 171
AT Oliveira-Filho (1058_CR88) 2013; 89
1058_CR33
1058_CR36
BF Jacobs (1058_CR56) 2004; 213
EW Berry (1058_CR8) 1917; 54
M Urbazaev (1058_CR120) 2018; 13
Z Wang (1058_CR124) 2022; 34
1058_CR135
1058_CR39
1058_CR136
D Cardoso (1058_CR19) 2013; 89
RM Ogburn (1058_CR87) 2015; 92
E Gagnon (1058_CR43) 2019; 222
Y Yang (1058_CR133) 2022; 2022
L-T Nguyen (1058_CR86) 2015; 32
P Principi (1058_CR94) 1916; 6
1058_CR29
1058_CR300
MF Wojciechowski (1058_CR130) 2004; 91
RJ Schley (1058_CR108) 2022; 49
K Suzuki (1058_CR116) 1958; 29
References_xml – volume: 458
  start-page: 754
  year: 2009
  ident: 1058_CR26
  publication-title: Nature
  doi: 10.1038/nature07764
– volume: 67
  start-page: 901
  year: 2018
  ident: 1058_CR97
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syy032
– volume: 1
  start-page: 182
  year: 2009
  ident: 1058_CR102
  publication-title: Diversity
  doi: 10.3390/d1020182
– volume: 36
  start-page: 519
  year: 2005
  ident: 1058_CR128
  publication-title: Ann Rev Ecol Evol Syst
  doi: 10.1146/annurev.ecolsys.36.102803.095431
– volume: 108
  start-page: 5302
  year: 2011
  ident: 1058_CR15
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1013003108
– volume: 89
  start-page: 58
  year: 2013
  ident: 1058_CR19
  publication-title: S Afr J Bot
  doi: 10.1016/j.sajb.2013.05.001
– volume: 171
  start-page: 244
  year: 2013
  ident: 1058_CR37
  publication-title: Bot J Linn Soc
  doi: 10.1111/j.1095-8339.2012.01276.x
– volume: 11
  start-page: 995
  year: 2008
  ident: 1058_CR75
  publication-title: Ecol Lett
  doi: 10.1111/j.1461-0248.2008.01229.x
– volume: 3
  start-page: 217
  year: 2012
  ident: 1058_CR98
  publication-title: Methods Ecol Evol
  doi: 10.1111/j.2041-210X.2011.00169.x
– ident: 1058_CR105
– volume: 9
  start-page: 708
  year: 2022
  ident: 1058_CR71
  publication-title: Sci Data
  doi: 10.1038/s41597-022-01812-6
– ident: 1058_CR107
  doi: 10.1186/1472-6785-11-27
– volume: 70
  start-page: 67
  year: 2021
  ident: 1058_CR65
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syaa027
– volume: 12
  start-page: 323
  year: 1933
  ident: 1058_CR21
  publication-title: Bull Geol Soc China
  doi: 10.1111/j.1755-6724.1933.mp12001024.x
– start-page: 3
  volume-title: The biology of vines
  year: 1992
  ident: 1058_CR44
  doi: 10.1017/CBO9780511897658.003
– ident: 1058_CR125
  doi: 10.3389/fgene.2014.00409
– volume: 29
  start-page: 1100
  year: 2020
  ident: 1058_CR99
  publication-title: Glob Ecol Biogeogr
  doi: 10.1111/geb.13089
– ident: 1058_CR119
– volume: 140A
  start-page: 17
  year: 1926
  ident: 1058_CR62
  publication-title: US Geol Surv Prof Pap
– volume: 10
  year: 2022
  ident: 1058_CR40
  publication-title: Front Ecol Evol
  doi: 10.3389/fevo.2022.723286
– volume: 15
  start-page: 252
  year: 2015
  ident: 1058_CR73
  publication-title: BMC Evol Biol
  doi: 10.1186/s12862-015-0540-9
– volume: 14
  start-page: 587
  year: 2017
  ident: 1058_CR61
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4285
– ident: 1058_CR63
– volume: 106
  start-page: 20359
  year: 2009
  ident: 1058_CR113
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0903410106
– year: 2011
  ident: 1058_CR23
  publication-title: Second Edition, Wiley Online
  doi: 10.1002/9781444392296
– volume: 6
  start-page: 9
  year: 1916
  ident: 1058_CR94
  publication-title: Memorie Descrittive della Carta Geologica D’italia
– ident: 1058_CR52
– volume: 45
  start-page: 547
  year: 2014
  ident: 1058_CR31
  publication-title: Ann Rev Ecol Evol Syst
  doi: 10.1146/annurev-ecolsys-120213-091905
– ident: 1058_CR67
  doi: 10.12705/661.3
– ident: 1058_CR79
  doi: 10.21425/F5FBG19694
– volume: 71
  start-page: 360
  year: 2022
  ident: 1058_CR10
  publication-title: Taxon
  doi: 10.1002/tax.12676
– ident: 1058_CR81
  doi: 10.1186/s12862-014-0181-4
– ident: 1058_CR12
  doi: 10.1371/journal.pcbi.1006650
– volume: 9
  year: 2021
  ident: 1058_CR20
  publication-title: Front Ecol Evol
  doi: 10.3389/fevo.2021.723558
– volume: 34
  start-page: 94
  year: 2022
  ident: 1058_CR124
  publication-title: Hist Biol
  doi: 10.1080/08912963.2021.1900170
– ident: 1058_CR135
– volume: 30
  start-page: 2216
  year: 2014
  ident: 1058_CR91
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu181
– volume: 13
  start-page: 5
  year: 2018
  ident: 1058_CR120
  publication-title: Carbon Bal Manage
  doi: 10.1186/s13021-018-0093-5
– ident: 1058_CR7
– volume: 65
  start-page: 149
  year: 2012
  ident: 1058_CR77
  publication-title: Molec Phylogenet Evol
  doi: 10.1016/j.ympev.2012.05.035
– volume: 173
  start-page: 711
  year: 2012
  ident: 1058_CR112
  publication-title: Int J Plant Sci
  doi: 10.1086/665973
– volume: 14
  start-page: 88
  year: 2014
  ident: 1058_CR122
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-14-88
– volume: 214
  start-page: 1722
  year: 2017
  ident: 1058_CR38
  publication-title: New Phytol
  doi: 10.1111/nph.14523
– volume: 90
  start-page: 1248
  year: 2015
  ident: 1058_CR95
  publication-title: Biol Rev
  doi: 10.1111/brv.12154
– volume: 359
  start-page: 1509
  year: 2004
  ident: 1058_CR66
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2004.1536
– volume: 213
  start-page: 115
  year: 2004
  ident: 1058_CR56
  publication-title: Palaeogeogr Palaeoclimatol Palaeoecol
  doi: 10.1016/j.palaeo.2004.07.007
– volume: 14
  start-page: 173
  year: 2022
  ident: 1058_CR60
  publication-title: Diversity
  doi: 10.3390/d14030173
– volume: 204
  start-page: 4
  year: 2014
  ident: 1058_CR92
  publication-title: New Phytol
  doi: 10.1111/nph.12996
– volume: 16
  start-page: 155
  year: 1983
  ident: 1058_CR121
  publication-title: Notes Monogr Tech CRA-CNRS
– volume: 35
  start-page: 1862
  year: 2019
  ident: 1058_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty800
– ident: 1058_CR300
  doi: 10.1126/science.1061421
– ident: 1058_CR114
  doi: 10.1002/tax.12207
– volume: 222
  start-page: 1994
  year: 2019
  ident: 1058_CR43
  publication-title: New Phytol
  doi: 10.1111/nph.15633
– ident: 1058_CR96
– ident: 1058_CR68
  doi: 10.15468/mvhaj3
– volume: 62
  start-page: 816
  year: 2012
  ident: 1058_CR41
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2011.11.016
– volume: 16
  year: 2021
  ident: 1058_CR28
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0248839
– ident: 1058_CR48
– volume: 90
  start-page: 310
  year: 2003
  ident: 1058_CR109
  publication-title: Am J Bot
  doi: 10.3732/ajb.90.2.310
– volume: 141
  start-page: 1
  year: 1997
  ident: 1058_CR82
  publication-title: Univ of Calif Pub Geol Sci
– volume: 43
  start-page: 863
  year: 2016
  ident: 1058_CR83
  publication-title: J Biogeogr
  doi: 10.1111/jbi.12701
– ident: 1058_CR89
  doi: 10.3389/fevo.2023.1231553
– volume: 71
  start-page: 1928
  year: 2017
  ident: 1058_CR18
  publication-title: Evolution
  doi: 10.1111/evo.13276
– volume: 54
  start-page: 103
  year: 1917
  ident: 1058_CR8
  publication-title: Proc US Natl Mus
  doi: 10.5479/si.00963801.54-2229.103
– volume: 107
  start-page: 152
  year: 2017
  ident: 1058_CR27
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2016.10.019
– volume: 216
  start-page: 76
  year: 2015
  ident: 1058_CR57
  publication-title: Rev Palaeobot Palynol
  doi: 10.1016/j.revpalbo.2015.02.001
– volume: 29
  start-page: 169
  year: 1958
  ident: 1058_CR116
  publication-title: Trans Proc Palaeontol Soc Japan
– ident: 1058_CR39
  doi: 10.21425/F5FBG38649
– volume: 207
  start-page: 249
  year: 2015
  ident: 1058_CR55
  publication-title: New Phytol
  doi: 10.1111/nph.13523
– volume: 91
  start-page: 1846
  year: 2004
  ident: 1058_CR130
  publication-title: Am J Bot
  doi: 10.3732/ajb.91.11.1846
– volume: 100
  start-page: 831
  year: 2007
  ident: 1058_CR16
  publication-title: Ann Bot
  doi: 10.1093/aob/mcm179
– volume: 1
  start-page: 0165
  year: 2017
  ident: 1058_CR78
  publication-title: Nature Ecol Evol
  doi: 10.1038/s41559-017-0165
– volume: 222
  start-page: 97
  year: 2019
  ident: 1058_CR85
  publication-title: New Phytol
  doi: 10.1111/nph.15609
– volume: 105
  start-page: 1577
  year: 2018
  ident: 1058_CR42
  publication-title: Am J Bot
  doi: 10.1002/ajb2.1155
– volume: 55
  start-page: 375
  year: 2005
  ident: 1058_CR110
  publication-title: Biol Skr
– ident: 1058_CR118
– volume: 140
  start-page: 97
  year: 1926
  ident: 1058_CR9
  publication-title: US Geol Surv Prof Pap
– volume: 86
  start-page: 697
  year: 2008
  ident: 1058_CR14
  publication-title: Botany
  doi: 10.1139/B08-058
– volume: 3
  start-page: 375
  year: 2016
  ident: 1058_CR134
  publication-title: Ecol Res
  doi: 10.1007/s11284-016-1343-1
– ident: 1058_CR33
  doi: 10.1126/science.aaf5080
– ident: 1058_CR47
– volume: 70
  start-page: 86
  year: 2020
  ident: 1058_CR64
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syaa045
– volume: 45
  start-page: 1184
  year: 1991
  ident: 1058_CR76
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1991.tb04375.x
– volume: 6
  start-page: 219
  year: 2018
  ident: 1058_CR34
  publication-title: Front Ecol Evol
  doi: 10.3389/fevo.2018.00219
– volume: 32
  start-page: 268
  year: 2015
  ident: 1058_CR86
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msu300
– ident: 1058_CR29
– volume: 19
  start-page: 639
  year: 2004
  ident: 1058_CR127
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2004.09.011
– ident: 1058_CR100
  doi: 10.3897/phytokeys.205.85866
– ident: 1058_CR129
– volume: 40
  start-page: 437
  year: 2009
  ident: 1058_CR93
  publication-title: Annu Rev Ecol Evol Syst
  doi: 10.1146/annurev.ecolsys.110308.120327
– volume: 330
  start-page: 957
  year: 2010
  ident: 1058_CR58
  publication-title: Science
  doi: 10.1126/science.1193833
– volume: 63
  start-page: 951
  year: 2014
  ident: 1058_CR80
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syu056
– ident: 1058_CR111
  doi: 10.1126/sciadv.aaz5373
– ident: 1058_CR136
  doi: 10.1126/science.1177216
– volume: 507
  start-page: 1
  year: 1940
  ident: 1058_CR53
  publication-title: Publ - Carnegie Instit Wash
– ident: 1058_CR84
  doi: 10.1007/978-3-642-05383-2
– volume: 2022
  year: 2022
  ident: 1058_CR133
  publication-title: Ecography
  doi: 10.1111/ecog.06085
– volume: 96
  start-page: 16
  year: 2020
  ident: 1058_CR25
  publication-title: Biol Rev
  doi: 10.1111/brv.12644
– volume: 59
  start-page: 1321
  year: 2021
  ident: 1058_CR72
  publication-title: J Syst Evol
  doi: 10.1111/jse.12640
– ident: 1058_CR49
– ident: 1058_CR126
– volume: 64
  start-page: 4047
  year: 2013
  ident: 1058_CR35
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ert220
– volume: 401
  start-page: 877
  year: 1999
  ident: 1058_CR90
  publication-title: Nature
  doi: 10.1038/44766
– volume: 117
  start-page: 28183
  year: 2020
  ident: 1058_CR2
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2011515117
– volume: 49
  start-page: 391
  year: 2022
  ident: 1058_CR108
  publication-title: J Biogeogr
  doi: 10.1111/jbi.14310
– volume: 207
  start-page: 340
  year: 2015
  ident: 1058_CR115
  publication-title: New Phytol
  doi: 10.1111/nph.1330
– volume: 73
  start-page: 475
  year: 2024
  ident: 1058_CR46
  publication-title: Taxon
  doi: 10.1002/tax.13177
– ident: 1058_CR69
  doi: 10.1101/583625
– ident: 1058_CR101
  doi: 10.1126/sciadv.ade4954
– volume: 171
  start-page: 120
  year: 2013
  ident: 1058_CR103
  publication-title: Bot J Linn Soc
  doi: 10.1111/j.1095-8339.2012.01297.x
– volume: 207
  start-page: 260
  year: 2015
  ident: 1058_CR32
  publication-title: New Phytol
  doi: 10.1111/nph.13367
– ident: 1058_CR36
– volume: 89
  start-page: 42
  year: 2013
  ident: 1058_CR88
  publication-title: S Afr J Bot
  doi: 10.1016/j.sajb.2013.06.010
– ident: 1058_CR70
– volume: 2010–48
  start-page: 1
  year: 2010
  ident: 1058_CR131
  publication-title: Phytoneuron
– volume: 115
  start-page: 6034
  year: 2018
  ident: 1058_CR3
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1713819115
– volume: 166
  start-page: 61
  year: 2005
  ident: 1058_CR104
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2004.01309.x
– ident: 1058_CR117
– volume: 175
  start-page: 601
  year: 2014
  ident: 1058_CR59
  publication-title: Int J Plant Sci
  doi: 10.1086/675693
– volume: 108
  start-page: 8379
  year: 2011
  ident: 1058_CR4
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1100628108
– volume: 171
  start-page: 1
  year: 2013
  ident: 1058_CR54
  publication-title: Bot J Linn Soc
  doi: 10.1111/boj.12006
– ident: 1058_CR13
  doi: 10.3133/pp186J
– volume: 22
  start-page: 3583
  year: 2016
  ident: 1058_CR51
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.13367
– volume: 19
  start-page: 716
  year: 1974
  ident: 1058_CR1
  publication-title: IEEE Trans Automat Contr
  doi: 10.1109/TAC.1974.1100705
– volume: 92
  start-page: 181
  year: 2015
  ident: 1058_CR87
  publication-title: Molec Phylogenet Evol
  doi: 10.1016/j.ympev.2015.06.006
– volume: 28
  start-page: 1
  year: 1987
  ident: 1058_CR132
  publication-title: Biol Skr
– volume: 5
  start-page: 1
  year: 2015
  ident: 1058_CR24
  publication-title: Front Genet
  doi: 10.3389/fgene.2014.00452
– volume: 171
  start-page: 154
  year: 2013
  ident: 1058_CR74
  publication-title: Bot J Linn Soc
  doi: 10.1111/j.1095-8339.2012.01311.x
– volume: 105
  start-page: 11549
  year: 2008
  ident: 1058_CR30
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0801962105
– volume: 25
  start-page: 1164
  year: 2022
  ident: 1058_CR45
  publication-title: Ecol Lett
  doi: 10.1111/ele.13985
– ident: 1058_CR106
– volume: 122
  start-page: 171
  year: 2002
  ident: 1058_CR17
  publication-title: Rev Palaeobot Palynol
  doi: 10.1016/S0034-6667(02)00135-5
– volume: 141
  start-page: 1
  year: 1972
  ident: 1058_CR6
  publication-title: Palaeontographica Abt B
– volume: 174
  start-page: 437
  year: 2005
  ident: 1058_CR22
  publication-title: Bot J Linn Soc
  doi: 10.1111/j.1095-8339.2005.00373.x
– ident: 1058_CR50
– ident: 1058_CR5
  doi: 10.54991/jop.1988.1632
SSID ssj0027379
Score 2.3643112
Snippet Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 11
SubjectTerms Adenolobus
Africa
ancestry
Asia
Cercidoideae
Cercis
Ecosystems
Geographical distribution
Leguminosae
Lianas
New records
perennials
Phylogeny
rain forests
Rainforests
Savannahs
savannas
shrubs
South America
Species
subfamily
Systematics & Phylogeny - Original
Tropical environment
Tropical environments
Title Biome evolution in subfamily Cercidoideae (Leguminosae): a tropical arborescent clade with a relictual depauperate temperate lineage
URI https://www.ncbi.nlm.nih.gov/pubmed/39703368
https://www.proquest.com/docview/3146496720
https://www.proquest.com/docview/3147485174
https://www.proquest.com/docview/3154239844
https://pubmed.ncbi.nlm.nih.gov/PMC11652589
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXKwoEL4pvCgozEARQZpanzxY2tdqlWZZFQK3qL7MTZrbSbVG0Comf-Bv-VGSdxXYrQwiWKkknjZl6cGfvNMyGvZK6Um8uM-QpyVZ7mPotFOGCZyrmKFYqkaYLsWTCe8dO5P-_1flqspbqSb9PNH-tK_sercAz8ilWy_-BZ86NwAPbBv7AFD8P2Wj4-wtp5R31tb4JjF-tatmMWI1xLCXqsTAkdR07UeX21KMq1QCGmpsi5WpXLRi5gBVholJ2c9FJkqi16w1qXRVNjksGHq16iBrNyUNCq2cMoVezyiXC6AWJOB_LwNfQ5i5WAax1ZVnpS3issdtAYLr0E2yv2GdLpC_HNMADKjoGkBbaRedsR0U7B0prMgn9UG-aKuWSEwIfnxz6mU2hfrYdtvyAtubDHOTzf4oy0Q5-uyyAd5XbfzaM9jDYdcdOD730fGkrImqMwAYPwhOECoRHbbL-GHQPg7FNyMptMkunxfHqD3PQgC8EFMj7MB9t8vpVy7BrW1mTpysy9O-zGPXvJzO-cXCvImd4ld9rshL5voHaP9FRxn9w6KiGD-P6A_NB4owZvdFFQgzdq442-ttD25h0VtEMatZBGNdIoIg0sDNKohTRqkEZbpD0ks5Pj6WjM2lU8WAqPoGJ5EIkIXvss9qFbyKBRQ8iyhcIJCcg1sjhKhZenXIYDyH391FVZGEZwXmKsn8vhI3JQlIV6Qqg7wB8TEZaT81DmUnky9nPpweE4SIM-cbpnnCwbsZbEyHJrjyTgkUR7JNn0yWHnhqR9qdfJECIHHgeh5_bJS3MaulycRxOFKmttE_IIJd7_ZuNraU0ONo8bz5omQQrgDodB1CfRjs-NAUq-754pFhda-h3Fsjw_ip9eo3HPyO3te3RIDqpVrZ5DBF3JFxrHvwD9Ec55
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biome+evolution+in+subfamily+Cercidoideae+%28Leguminosae%29%3A+a+tropical+arborescent+clade+with+a+relictual+depauperate+temperate+lineage&rft.jtitle=Revista+brasileira+de+bot%C3%A2nica&rft.au=Hagelstam-Renshaw%2C+Charlotte&rft.au=Ringelberg%2C+Jens+J&rft.au=Sinou%2C+Carole&rft.au=Cardinal-McTeague%2C+Warren&rft.date=2025-12-01&rft.issn=0100-8404&rft.volume=48&rft.issue=1&rft.spage=11&rft_id=info:doi/10.1007%2Fs40415-024-01058-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1806-9959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1806-9959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1806-9959&client=summon