Multisource Transfer Learning for Cross-Subject EEG Emotion Recognition

Electroencephalogram (EEG) has been widely used in emotion recognition due to its high temporal resolution and reliability. Since the individual differences of EEG are large, the emotion recognition models could not be shared across persons, and we need to collect new labeled data to train personal...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 50; no. 7; pp. 3281 - 3293
Main Authors Li, Jinpeng, Qiu, Shuang, Shen, Yuan-Yuan, Liu, Cheng-Lin, He, Huiguang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalogram (EEG) has been widely used in emotion recognition due to its high temporal resolution and reliability. Since the individual differences of EEG are large, the emotion recognition models could not be shared across persons, and we need to collect new labeled data to train personal models for new users. In some applications, we hope to acquire models for new persons as fast as possible, and reduce the demand for the labeled data amount. To achieve this goal, we propose a multisource transfer learning method, where existing persons are sources, and the new person is the target. The target data are divided into calibration sessions for training and subsequent sessions for test. The first stage of the method is source selection aimed at locating appropriate sources. The second is style transfer mapping, which reduces the EEG differences between the target and each source. We use few labeled data in the calibration sessions to conduct source selection and style transfer. Finally, we integrate the source models to recognize emotions in the subsequent sessions. The experimental results show that the three-category classification accuracy on benchmark SEED improves by 12.72% comparing with the nontransfer method. Our method facilitates the fast deployment of emotion recognition models by reducing the reliance on the labeled data amount, which has practical significance especially in fast-deployment scenarios.
AbstractList Electroencephalogram (EEG) has been widely used in emotion recognition due to its high temporal resolution and reliability. Since the individual differences of EEG are large, the emotion recognition models could not be shared across persons, and we need to collect new labeled data to train personal models for new users. In some applications, we hope to acquire models for new persons as fast as possible, and reduce the demand for the labeled data amount. To achieve this goal, we propose a multisource transfer learning method, where existing persons are sources, and the new person is the target. The target data are divided into calibration sessions for training and subsequent sessions for test. The first stage of the method is source selection aimed at locating appropriate sources. The second is style transfer mapping, which reduces the EEG differences between the target and each source. We use few labeled data in the calibration sessions to conduct source selection and style transfer. Finally, we integrate the source models to recognize emotions in the subsequent sessions. The experimental results show that the three-category classification accuracy on benchmark SEED improves by 12.72% comparing with the nontransfer method. Our method facilitates the fast deployment of emotion recognition models by reducing the reliance on the labeled data amount, which has practical significance especially in fast-deployment scenarios.
Electroencephalogram (EEG) has been widely used in emotion recognition due to its high temporal resolution and reliability. Since the individual differences of EEG are large, the emotion recognition models could not be shared across persons, and we need to collect new labeled data to train personal models for new users. In some applications, we hope to acquire models for new persons as fast as possible, and reduce the demand for the labeled data amount. To achieve this goal, we propose a multisource transfer learning method, where existing persons are sources, and the new person is the target. The target data are divided into calibration sessions for training and subsequent sessions for test. The first stage of the method is source selection aimed at locating appropriate sources. The second is style transfer mapping, which reduces the EEG differences between the target and each source. We use few labeled data in the calibration sessions to conduct source selection and style transfer. Finally, we integrate the source models to recognize emotions in the subsequent sessions. The experimental results show that the three-category classification accuracy on benchmark SEED improves by 12.72% comparing with the nontransfer method. Our method facilitates the fast deployment of emotion recognition models by reducing the reliance on the labeled data amount, which has practical significance especially in fast-deployment scenarios.Electroencephalogram (EEG) has been widely used in emotion recognition due to its high temporal resolution and reliability. Since the individual differences of EEG are large, the emotion recognition models could not be shared across persons, and we need to collect new labeled data to train personal models for new users. In some applications, we hope to acquire models for new persons as fast as possible, and reduce the demand for the labeled data amount. To achieve this goal, we propose a multisource transfer learning method, where existing persons are sources, and the new person is the target. The target data are divided into calibration sessions for training and subsequent sessions for test. The first stage of the method is source selection aimed at locating appropriate sources. The second is style transfer mapping, which reduces the EEG differences between the target and each source. We use few labeled data in the calibration sessions to conduct source selection and style transfer. Finally, we integrate the source models to recognize emotions in the subsequent sessions. The experimental results show that the three-category classification accuracy on benchmark SEED improves by 12.72% comparing with the nontransfer method. Our method facilitates the fast deployment of emotion recognition models by reducing the reliance on the labeled data amount, which has practical significance especially in fast-deployment scenarios.
Author Liu, Cheng-Lin
Shen, Yuan-Yuan
He, Huiguang
Qiu, Shuang
Li, Jinpeng
Author_xml – sequence: 1
  givenname: Jinpeng
  surname: Li
  fullname: Li, Jinpeng
  email: lijinpeng2015@ia.ac.cn
  organization: Research Center for Brain-Inspired Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Shuang
  surname: Qiu
  fullname: Qiu, Shuang
  email: shuang.qiu@ia.ac.cn
  organization: Research Center for Brain-Inspired Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Yuan-Yuan
  surname: Shen
  fullname: Shen, Yuan-Yuan
  email: shenyuanyuan2015@ia.ac.cn
  organization: School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Cheng-Lin
  orcidid: 0000-0002-6743-4175
  surname: Liu
  fullname: Liu, Cheng-Lin
  email: liucl@nlpr.ia.ac.cn
  organization: School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Huiguang
  orcidid: 0000-0002-0684-1711
  surname: He
  fullname: He, Huiguang
  email: huiguang.he@ia.ac.cn
  organization: Research Center for Brain-Inspired Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30932860$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1qGzEUhUVIadI0DxACYaCbbsbV_0jLxrhuwaWQuIuuhEZzJ8iMpVSaWfTtq8GuF15UG12k71xdnfMOXYYYAKE7gheEYP1pu_z1uKCY6AXVmGNBL9A1JVLVlDbi8lTL5grd5rzDZalypNVbdMWwZlRJfI3W36dh9DlOyUG1TTbkHlK1AZuCDy9VH1O1TDHn-nlqd-DGarVaV6t9HH0M1RO4-BL8XL9Hb3o7ZLg97jfo55fVdvm13vxYf1t-3tSOEzHWvdCsk2Uo2vFOEehJJ5RusQIhGqt7TV3XMtEyyUEQQRvOWgvlwjFsuXTsBn089H1N8fcEeTR7nx0Mgw0Qp2xocaQhUmJc0A9n6K58M5TpDOWEC8aF5IV6OFJTu4fOvCa_t-mP-WdRAcgBcLMPCfoTQrCZkzBzEmZOwhyTKJrmTOP8aGefxmT98F_l_UHpAeD0kpKN4I1ifwHczpNJ
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TNNLS_2022_3220551
crossref_primary_10_1109_TAFFC_2023_3261867
crossref_primary_10_1109_TCYB_2020_3015664
crossref_primary_10_1109_TNNLS_2023_3305621
crossref_primary_10_1109_TII_2022_3217120
crossref_primary_10_1007_s13534_024_00431_x
crossref_primary_10_1109_JBHI_2023_3335854
crossref_primary_10_1109_TNSRE_2022_3219418
crossref_primary_10_1109_ACCESS_2024_3355977
crossref_primary_10_7717_peerj_cs_2649
crossref_primary_10_1088_1741_2552_acae06
crossref_primary_10_11834_jig_230031
crossref_primary_10_1109_TETCI_2023_3306351
crossref_primary_10_1109_TAFFC_2024_3433470
crossref_primary_10_3389_fnhum_2022_921346
crossref_primary_10_1109_TNSRE_2024_3445115
crossref_primary_10_1109_TFUZZ_2023_3288479
crossref_primary_10_1109_TCYB_2020_3033005
crossref_primary_10_1109_TCDS_2020_3007453
crossref_primary_10_1109_ACCESS_2023_3275565
crossref_primary_10_1007_s11571_024_10196_9
crossref_primary_10_1109_JBHI_2023_3238421
crossref_primary_10_1109_ACCESS_2024_3454082
crossref_primary_10_3389_fnins_2022_850906
crossref_primary_10_1109_TCSS_2022_3153660
crossref_primary_10_1109_TNSRE_2023_3236687
crossref_primary_10_1109_TCSS_2024_3386621
crossref_primary_10_1109_TAFFC_2024_3409357
crossref_primary_10_1109_TCDS_2021_3098842
crossref_primary_10_1109_TBME_2024_3404131
crossref_primary_10_1109_TAFFC_2024_3392791
crossref_primary_10_1109_TIM_2023_3277985
crossref_primary_10_3389_fncom_2019_00053
crossref_primary_10_1109_TNSRE_2023_3243257
crossref_primary_10_1088_1361_6579_ad4e95
crossref_primary_10_1109_TNSRE_2020_3023761
crossref_primary_10_1007_s00371_023_02780_7
crossref_primary_10_1016_j_jneumeth_2020_108885
crossref_primary_10_1109_TAFFC_2023_3336531
crossref_primary_10_1016_j_bspc_2021_103361
crossref_primary_10_1109_TIM_2024_3451593
crossref_primary_10_1109_JBHI_2020_3025865
crossref_primary_10_1109_TAFFC_2024_3394436
crossref_primary_10_1016_j_bspc_2022_103485
crossref_primary_10_1515_jisys_2023_0290
crossref_primary_10_3389_fpsyg_2022_924793
crossref_primary_10_1049_cit2_12174
crossref_primary_10_1007_s00521_022_07726_z
crossref_primary_10_1109_TNSRE_2023_3309815
crossref_primary_10_1109_TCYB_2024_3390805
crossref_primary_10_1155_2021_9967592
crossref_primary_10_3389_fnins_2023_1288580
crossref_primary_10_3389_fpsyg_2022_899983
crossref_primary_10_1109_TASE_2023_3323773
crossref_primary_10_1109_TCDS_2021_3071170
crossref_primary_10_1016_j_physa_2019_122697
crossref_primary_10_1109_TETCI_2023_3301385
crossref_primary_10_3389_fnhum_2021_621493
crossref_primary_10_1109_TAFFC_2023_3288118
crossref_primary_10_1088_1741_2552_ac5eb7
crossref_primary_10_1007_s10462_022_10355_6
crossref_primary_10_1109_TBME_2024_3474049
crossref_primary_10_1109_TAFFC_2024_3433613
crossref_primary_10_1016_j_amc_2020_125065
crossref_primary_10_1109_ACCESS_2023_3297873
crossref_primary_10_1109_TCYB_2020_3022647
crossref_primary_10_1007_s10994_021_05961_4
crossref_primary_10_1109_TNNLS_2020_3026876
crossref_primary_10_1007_s10489_024_05662_0
crossref_primary_10_3389_fncom_2021_737324
crossref_primary_10_1016_j_cnsns_2019_105043
crossref_primary_10_1016_j_bspc_2021_102817
crossref_primary_10_1109_TAFFC_2023_3288885
crossref_primary_10_1109_TNNLS_2023_3287181
crossref_primary_10_3389_fpsyg_2021_809459
crossref_primary_10_1109_TCYB_2021_3052813
crossref_primary_10_1038_s41467_025_58265_9
crossref_primary_10_1111_coin_12659
crossref_primary_10_3233_MGS_220333
crossref_primary_10_1088_1741_2552_ad6598
crossref_primary_10_1088_1741_2552_ad184f
crossref_primary_10_1016_j_bspc_2021_103023
crossref_primary_10_1007_s41870_024_02001_x
crossref_primary_10_1109_JPROC_2023_3277471
crossref_primary_10_1109_JBHI_2022_3233717
crossref_primary_10_3389_fnins_2024_1355512
crossref_primary_10_1109_TCYB_2021_3071860
crossref_primary_10_1145_3712259
crossref_primary_10_1016_j_asoc_2020_106661
crossref_primary_10_1088_1741_2552_ac5c8d
crossref_primary_10_1016_j_asoc_2020_106884
crossref_primary_10_1016_j_chaos_2021_110671
crossref_primary_10_1109_JSEN_2022_3168572
crossref_primary_10_1109_ACCESS_2024_3452781
crossref_primary_10_3390_e22010096
crossref_primary_10_1007_s11042_023_16941_2
crossref_primary_10_1109_JBHI_2023_3311338
crossref_primary_10_1109_JSEN_2022_3172133
crossref_primary_10_1109_TAFFC_2022_3164516
crossref_primary_10_1080_27706710_2023_2222159
crossref_primary_10_3233_JIFS_179457
crossref_primary_10_1016_j_neunet_2020_07_034
crossref_primary_10_1109_TCYB_2020_2974688
crossref_primary_10_1016_j_knosys_2020_105527
crossref_primary_10_1109_TCSS_2023_3314508
crossref_primary_10_1109_JBHI_2024_3512584
crossref_primary_10_1109_TIM_2023_3302938
crossref_primary_10_3389_fnins_2023_1213099
crossref_primary_10_1016_j_jfranklin_2019_09_029
crossref_primary_10_1109_TCDS_2024_3357547
crossref_primary_10_3389_fnins_2021_611653
crossref_primary_10_1016_j_petrol_2021_109423
crossref_primary_10_1142_S0219519421400479
crossref_primary_10_1587_transinf_2021EDP7171
crossref_primary_10_1109_TNSRE_2022_3207494
crossref_primary_10_1109_ACCESS_2023_3322294
crossref_primary_10_1515_bmt_2019_0306
crossref_primary_10_1088_1741_2552_ad5fbd
crossref_primary_10_3389_fnhum_2021_685173
crossref_primary_10_3389_fnhum_2021_706270
crossref_primary_10_3389_fnins_2022_1000716
crossref_primary_10_1088_1741_2552_ad5761
crossref_primary_10_3389_fcomp_2020_00009
crossref_primary_10_1007_s41870_024_02400_0
crossref_primary_10_1109_ACCESS_2021_3134628
crossref_primary_10_1109_TCYB_2021_3071244
crossref_primary_10_3389_fnins_2021_778488
crossref_primary_10_3389_fpsyg_2021_721266
crossref_primary_10_3389_fnhum_2023_1132254
crossref_primary_10_1016_j_inffus_2023_102129
crossref_primary_10_1109_JBHI_2023_3307606
crossref_primary_10_1016_j_neunet_2021_01_011
crossref_primary_10_1016_j_neucom_2019_07_045
crossref_primary_10_1109_TAFFC_2021_3137857
crossref_primary_10_1016_j_nahs_2020_100970
crossref_primary_10_1109_TASE_2024_3409621
crossref_primary_10_1109_TCYB_2020_2987575
crossref_primary_10_1109_TNSRE_2022_3150007
crossref_primary_10_1109_TNNLS_2024_3350085
crossref_primary_10_1109_TBME_2023_3274231
crossref_primary_10_1109_TII_2022_3174063
crossref_primary_10_1109_ACCESS_2023_3344476
crossref_primary_10_1016_j_bspc_2021_102972
crossref_primary_10_1109_TIM_2024_3428607
crossref_primary_10_3233_ICA_200620
crossref_primary_10_1109_TAFFC_2022_3189222
crossref_primary_10_1109_TAFFC_2023_3305982
crossref_primary_10_1109_TCYB_2021_3090770
crossref_primary_10_1088_1741_2552_ad9956
crossref_primary_10_1080_00207721_2020_1797229
crossref_primary_10_1109_TNSRE_2023_3268751
crossref_primary_10_1016_j_neunet_2021_03_016
crossref_primary_10_3389_fnhum_2020_605246
crossref_primary_10_1016_j_neucom_2020_04_104
crossref_primary_10_1109_TCYB_2021_3051005
crossref_primary_10_1109_TITS_2021_3120435
Cites_doi 10.1371/journal.pone.0002967
10.1109/79.911197
10.1109/TNN.2010.2091281
10.1016/0028-3932(85)90081-8
10.1080/2326263X.2014.912881
10.1109/CVPR.2010.5539857
10.1109/TSMCB.2010.2042445
10.1109/IJCNN.2012.6252390
10.1109/TAMD.2015.2431497
10.1109/NER.2013.6695876
10.1103/PhysRevLett.103.214101
10.1109/CVPR.2013.451
10.1145/1401890.1401928
10.1109/MSP.2014.2347059
10.1109/86.895946
10.1109/TPAMI.1987.4767881
10.1109/TAFFC.2017.2714671
10.1093/scan/nss092
10.1002/int.1068
10.1109/MCI.2015.2501545
10.1109/TBME.2010.2048568
10.1080/19479832.2010.485935
10.1109/TAFFC.2017.2712143
10.1109/5326.661099
10.1109/TKDE.2009.191
10.1109/TPAMI.2012.239
10.1016/j.neunet.2009.06.003
10.1016/j.cviu.2015.09.015
10.1145/2647868.2654916
10.1109/CVPR.2011.5995661
10.1016/j.neuroimage.2015.02.015
10.1109/JCSSE.2013.6567313
10.1109/TNNLS.2011.2178556
10.4018/978-1-60566-766-9.ch011
10.1088/1741-2552/aab2f2
10.1088/1741-2560/9/2/026013
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2019.2904052
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE
Aerospace Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 3293
ExternalDocumentID 30932860
10_1109_TCYB_2019_2904052
8675478
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Beijing Municipal Science and Technology Commission
  grantid: Z181100008918010
  funderid: 10.13039/501100009592
– fundername: Strategic Priority Research Program of CAS
  funderid: 10.13039/501100002367
– fundername: National Natural Science Foundation of China
  grantid: 91520202; 81701785
  funderid: 10.13039/501100001809
– fundername: Youth Innovation Promotion Association CAS
  funderid: 10.13039/501100002367
– fundername: Chinese Academy of Sciences (CAS) Scientific Equipment Development Project
  grantid: YJKYYQ20170050
  funderid: 10.13039/501100002367
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c415t-f593d62672d4d81ef1d589b08e557a9f92cdb35b364e5152743baea9fc30a46c3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 14:06:57 EDT 2025
Mon Jun 30 03:53:52 EDT 2025
Thu Apr 03 06:56:33 EDT 2025
Tue Jul 01 00:53:53 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
Wed Aug 27 02:38:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-f593d62672d4d81ef1d589b08e557a9f92cdb35b364e5152743baea9fc30a46c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6743-4175
0000-0002-0684-1711
PMID 30932860
PQID 2414534564
PQPubID 85422
PageCount 13
ParticipantIDs crossref_primary_10_1109_TCYB_2019_2904052
proquest_journals_2414534564
pubmed_primary_30932860
proquest_miscellaneous_2201716600
crossref_citationtrail_10_1109_TCYB_2019_2904052
ieee_primary_8675478
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References (ref39) 2012
ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref31
zheng (ref9) 2016
ref30
ref33
huang (ref24) 2007; 19
rohrbach (ref37) 2013
ref2
ref17
ref38
ref16
ref19
argyriou (ref26) 2007; 19
weston (ref32) 1998
ref18
picard (ref1) 1995
ref46
ref45
ref23
ref48
ref47
ref25
ref20
ref42
ref22
schwaighofer (ref27) 2005
ref21
li (ref10) 2017; 10
ref28
collobert (ref29) 2006; 7
ref8
ref7
shi (ref41) 2013
arthur (ref44) 2007
ref4
ref3
lin (ref11) 2010; 57
ref6
zhu (ref43) 2010; 40
ref5
ref40
References_xml – ident: ref18
  doi: 10.1371/journal.pone.0002967
– volume: 7
  start-page: 1687
  year: 2006
  ident: ref29
  article-title: Large scale transductive SVMs
  publication-title: J Mach Learn Res
– ident: ref2
  doi: 10.1109/79.911197
– start-page: 6627
  year: 2013
  ident: ref41
  article-title: Differential entropy feature for EEG-based vigilance estimation
  publication-title: Proc IEEE Eng Med Biol Soc Annu Int Conf (EMBC)
– start-page: 1027
  year: 2007
  ident: ref44
  article-title: k-means++: The advantages of careful seeding
  publication-title: Proc 18th Annu ACM-SIAM Symp Discr Algorithms
– year: 1998
  ident: ref32
  article-title: Multiclass support vector machines
– ident: ref25
  doi: 10.1109/TNN.2010.2091281
– start-page: 46
  year: 2013
  ident: ref37
  article-title: Transfer learning in a transductive setting
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2012
  ident: ref39
  publication-title: TransCranialTechnologies 10/20 System Positioning-Manual
– ident: ref3
  doi: 10.1016/0028-3932(85)90081-8
– ident: ref5
  doi: 10.1080/2326263X.2014.912881
– ident: ref31
  doi: 10.1109/CVPR.2010.5539857
– volume: 10
  start-page: 1
  year: 2017
  ident: ref10
  article-title: Hierarchical convolutional neural networks for EEG-based emotion recognition
  publication-title: Cogn Comput
– volume: 19
  start-page: 41
  year: 2007
  ident: ref26
  article-title: Multitask feature learning
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 40
  start-page: 1607
  year: 2010
  ident: ref43
  article-title: Active learning from stream data using optimal weight classifier ensemble
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2010.2042445
– ident: ref46
  doi: 10.1109/IJCNN.2012.6252390
– ident: ref7
  doi: 10.1109/TAMD.2015.2431497
– ident: ref40
  doi: 10.1109/NER.2013.6695876
– ident: ref21
  doi: 10.1103/PhysRevLett.103.214101
– ident: ref23
  doi: 10.1109/CVPR.2013.451
– ident: ref28
  doi: 10.1145/1401890.1401928
– year: 1995
  ident: ref1
  publication-title: Affective Computing
– ident: ref14
  doi: 10.1109/MSP.2014.2347059
– ident: ref17
  doi: 10.1109/86.895946
– volume: 19
  start-page: 601
  year: 2007
  ident: ref24
  article-title: Correcting sample selection bias by unlabeled data
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref35
  doi: 10.1109/TPAMI.1987.4767881
– ident: ref6
  doi: 10.1109/TAFFC.2017.2714671
– ident: ref47
  doi: 10.1093/scan/nss092
– ident: ref33
  doi: 10.1002/int.1068
– ident: ref8
  doi: 10.1109/MCI.2015.2501545
– volume: 57
  start-page: 1798
  year: 2010
  ident: ref11
  article-title: EEG-based emotion recognition in music listening
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2010.2048568
– ident: ref42
  doi: 10.1080/19479832.2010.485935
– start-page: 1209
  year: 2005
  ident: ref27
  article-title: Learning Gaussian process kernels via hierarchical Bayes
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref38
  doi: 10.1109/TAFFC.2017.2712143
– ident: ref34
  doi: 10.1109/5326.661099
– ident: ref13
  doi: 10.1109/TKDE.2009.191
– ident: ref15
  doi: 10.1109/TPAMI.2012.239
– ident: ref19
  doi: 10.1016/j.neunet.2009.06.003
– ident: ref4
  doi: 10.1016/j.cviu.2015.09.015
– ident: ref30
  doi: 10.1145/2647868.2654916
– ident: ref16
  doi: 10.1109/CVPR.2011.5995661
– start-page: 2732
  year: 2016
  ident: ref9
  article-title: Personalizing EEG-based affective models with transfer learning
  publication-title: Proc Intern Joint Conf Artificial Intel (IJCAI)
– ident: ref20
  doi: 10.1016/j.neuroimage.2015.02.015
– ident: ref45
  doi: 10.1109/JCSSE.2013.6567313
– ident: ref48
  doi: 10.1109/TNNLS.2011.2178556
– ident: ref36
  doi: 10.4018/978-1-60566-766-9.ch011
– ident: ref12
  doi: 10.1088/1741-2552/aab2f2
– ident: ref22
  doi: 10.1088/1741-2560/9/2/026013
SSID ssj0000816898
Score 2.6264718
Snippet Electroencephalogram (EEG) has been widely used in emotion recognition due to its high temporal resolution and reliability. Since the individual differences of...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3281
SubjectTerms Adult
Brain - physiology
Brain modeling
Brain-Computer Interfaces
Brain–computer interface
Calibration
Data models
Electroencephalography
Electroencephalography - classification
Electroencephalography - methods
Emotion recognition
Emotions
Emotions - classification
Humans
Learning
Machine Learning
Mapping
Pattern Recognition, Automated - methods
Temporal resolution
Training
Training data
transfer learning (TL)
Young Adult
Title Multisource Transfer Learning for Cross-Subject EEG Emotion Recognition
URI https://ieeexplore.ieee.org/document/8675478
https://www.ncbi.nlm.nih.gov/pubmed/30932860
https://www.proquest.com/docview/2414534564
https://www.proquest.com/docview/2201716600
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXEB2vIItMhIHADhbdaPjX0sq20rJDigViqnyI8JB1AWtbsXfj1jxwkSAtSbJdtJ7Blnvnl4BuBVdL6JzgTuRBO5UlpxL4TlVnkdzdwRgs0Bsp8WF1fqw7W-3oF3010YRMzBZzhLzezLj-uwTaayE0PoVjVmF3ZJcRvuak32lFxAIpe-FdTghCqa4sSc1_bkcvnlfYrjsjNhiW11KmKTfIDC5NyUvyVSLrHyb7SZpc7ZA_g4fu8QbPJttt34Wfj5RyrHuy7oIdwv8JOdDvyyDzvYH8B-OeC37HXJQv3mEM7z1dzBts-yROvwhpV0rF8ZYV22TOvh9OtJthy2Wp2z1VAUiH0ew5LW_SO4OltdLi94qbrAAwnzDe-0lZHUnEZERdTCbh61sb42qHXjbGdFiF5qLxcKdSqKq6R3SB1B1k4tgnwMe_26x6fA0LhF5xsnMTqFUbiukyYZXWmi1wErqMedb0NJSZ4qY3xvs2pS2zbRrU10awvdKng7Tfkx5OP43-DDtOfTwLLdFRyN5G3Lib1tCckoLVNynQpeTt101pIDxfW43tIYkbMLEUas4MnAFtOzR2569vd3Pod7ImnqOdD3CPY2N1s8Jjiz8S8yH_8CkmftaQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9gAXoJRH2kKNxAEQ3mb92NhHutp2gbYHtJXKKfIrHEDZqt298Os7dpwgIai4WbKdxJ5x5vN4_A3AG29s5Y1y1LDKUyGkoJYxTbWw0quxQQSbAmTPJ_ML8flSXm7Ah-EuTAghBZ-FUSyms3y_dOvoKjtUiG5Fpe7BFtp9ybrbWoNHJaWQSMlvGRYo4ooqH2OOS324mH47ipFcesQ0Kq6MaWziKSBTiZ3yt01KSVb-jTeT3Tl-BGf9F3fhJj9G65UduV9_kDn-75Aew8MMQMnHTmO2YSO0T2A7L_Eb8jbzUL_bgZN0Obfz7pNk05pwTTIh63eCaJdM43go_nyiN4fMZidk1qUFIl_7wKRl-xQujmeL6ZzmvAvUoTlf0UZq7nGjUzEvUF6hGXuptC1VkLIyutHMecul5RMRZEyLK7g1ASscL42YOP4MNttlG14ACcpMGlsZHrwRwTPTNFxFtyt2tNKFAsp-5muXScljboyfddqclLqOcquj3OostwLeD12uOkaOuxrvxDkfGubpLmC_F2-d1-xNjVhGSB7pdQp4PVTjaotHKKYNyzW2YYlfCFFiAc87tRie3WvT7t_feQD354uz0_r00_mXPXjA4r49hf3uw-bqeh1eIrhZ2VdJp28BIMXwsw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multisource+Transfer+Learning+for+Cross-Subject+EEG+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Li%2C+Jinpeng&rft.au=Qiu%2C+Shuang&rft.au=Yuan-Yuan%2C+Shen&rft.au=Cheng-Lin%2C+Liu&rft.date=2020-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=50&rft.issue=7&rft.spage=3281&rft_id=info:doi/10.1109%2FTCYB.2019.2904052&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon