In-situ intercalation of NiFe LDH materials: An efficient approach to improve electrocatalytic activity and stability for water splitting

Intercalation and exfoliation are effective approaches for enlarging the interlayer distance and increasing ion exchange capacity of layered materials. Here, an in-situ intercalation method is demonstrated to expand the inter-layer spacing of electrodeposited NiFe Layered Double Hydroxides (LDH) ele...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 347; pp. 193 - 200
Main Authors Li, Xiumin, Hao, Xiaogang, Wang, Zhongde, Abudula, Abuliti, Guan, Guoqing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intercalation and exfoliation are effective approaches for enlarging the interlayer distance and increasing ion exchange capacity of layered materials. Here, an in-situ intercalation method is demonstrated to expand the inter-layer spacing of electrodeposited NiFe Layered Double Hydroxides (LDH) electrodes. Compared with traditional electrode fabrication method, in which intercalation/exfoliation of LDH powders is performed first followed by coating it on substrate, better interface connection and stability are maintained in the present method. It is found that the inter-layer distance of NiFe LDH material can be increased from 7.8 to 9.5 Å by immersing the electrode in formamide at 80 °C for 3 h, and the required overpotential of oxygen evolution reaction (OER) for sustaining 10 mA cm−2 current density is reduced from 256 to 210 mV. Moreover, with the assistance of ultrasound treatment, the required intercalation time is reduced drastically and the overpotential@10 mA cm−2 current density is further decreased to 203 mV. [Display omitted] •NiFe LDH electrodes are synthesized by unipolar pulse electro-deposition method.•An in-situ intercalation method is performed over electrodeposited NiFe LDH electrode.•Effect of ultrasound and temperature on the property of intercalated electrodes is studied.•The electrode shows an extremely low overpotential of 203 mV@10 mA cm−2.
AbstractList Intercalation and exfoliation are effective approaches for enlarging the interlayer distance and increasing ion exchange capacity of layered materials. Here, an in-situ intercalation method is demonstrated to expand the inter-layer spacing of electrodeposited NiFe Layered Double Hydroxides (LDH) electrodes. Compared with traditional electrode fabrication method, in which intercalation/exfoliation of LDH powders is performed first followed by coating it on substrate, better interface connection and stability are maintained in the present method. It is found that the inter-layer distance of NiFe LDH material can be increased from 7.8 to 9.5 Å by immersing the electrode in formamide at 80 °C for 3 h, and the required overpotential of oxygen evolution reaction (OER) for sustaining 10 mA cm−2 current density is reduced from 256 to 210 mV. Moreover, with the assistance of ultrasound treatment, the required intercalation time is reduced drastically and the overpotential@10 mA cm−2 current density is further decreased to 203 mV. [Display omitted] •NiFe LDH electrodes are synthesized by unipolar pulse electro-deposition method.•An in-situ intercalation method is performed over electrodeposited NiFe LDH electrode.•Effect of ultrasound and temperature on the property of intercalated electrodes is studied.•The electrode shows an extremely low overpotential of 203 mV@10 mA cm−2.
Author Guan, Guoqing
Hao, Xiaogang
Li, Xiumin
Wang, Zhongde
Abudula, Abuliti
Author_xml – sequence: 1
  givenname: Xiumin
  surname: Li
  fullname: Li, Xiumin
  organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan
– sequence: 2
  givenname: Xiaogang
  surname: Hao
  fullname: Hao, Xiaogang
  organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China
– sequence: 3
  givenname: Zhongde
  surname: Wang
  fullname: Wang, Zhongde
  organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China
– sequence: 4
  givenname: Abuliti
  surname: Abudula
  fullname: Abudula, Abuliti
  organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan
– sequence: 5
  givenname: Guoqing
  surname: Guan
  fullname: Guan, Guoqing
  email: guan@hirosaki-u.ac.jp
  organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan
BookMark eNqFkMtOxCAUhonRxPHyCoYXaAVqh9a40HhPJrrRNaH0oGfSgQZwzDyCby31snHjiuv3n_zfHtl23gEhR5yVnPH58bJcjv49-rdQCsZlyUTJ5mKLzHgjq0LIut4mM1bJppCyrnbJXoxLxhjnks3Ix70rIqY3ii5BMHrQCb2j3tIHvAG6uLqjK51fUA_xlF44CtaiQXCJ6nEMXptXmjzFVd6vgcIAJgVvdNLDJqGh2iRcY9pQ7Xoak-5wmE7WB_o-5dI45ouE7uWA7Ng8BA5_1n3yfHP9dHlXLB5v7y8vFoU54XUqoLG8rXJxbjsBtmtFK5ueGcNl38C8lx20QorOsFrqXouurW3-12ZCt62tq31y9p1rgo8xgFUG01frFDQOijM1aVVL9atVTVoVEyprzfj8Dz4GXOmw-R88_wYhl1sjBBUnjwZ6DFma6j3-F_EJgrWdgw
CitedBy_id crossref_primary_10_1039_D2MA01081J
crossref_primary_10_1016_j_electacta_2019_134595
crossref_primary_10_1016_j_cej_2023_142555
crossref_primary_10_1016_j_ijhydene_2019_04_214
crossref_primary_10_1016_j_ijhydene_2024_05_431
crossref_primary_10_1016_j_inoche_2023_110670
crossref_primary_10_1021_acssuschemeng_9b03563
crossref_primary_10_1016_j_ijhydene_2019_09_155
crossref_primary_10_1021_acssuschemeng_9b01263
crossref_primary_10_1016_j_colsurfa_2024_135793
crossref_primary_10_1021_acssuschemeng_8b05088
crossref_primary_10_1039_C8QI00314A
crossref_primary_10_1039_C8TA12043A
crossref_primary_10_1016_j_jallcom_2017_12_257
crossref_primary_10_1039_C8QI00867A
crossref_primary_10_3390_s24154824
crossref_primary_10_1016_j_mtener_2022_100975
crossref_primary_10_1039_D3TA07823J
crossref_primary_10_3390_catal10040431
crossref_primary_10_1016_j_apcatb_2021_120641
crossref_primary_10_1016_j_flatc_2024_100775
crossref_primary_10_1016_j_jallcom_2024_177244
crossref_primary_10_1039_D0DT04366D
crossref_primary_10_1016_j_triboint_2018_12_035
crossref_primary_10_1021_acssuschemeng_7b02557
crossref_primary_10_1039_D2TA07261K
crossref_primary_10_1002_advs_202304071
crossref_primary_10_1002_cssc_201700693
crossref_primary_10_1016_j_ijhydene_2023_09_040
crossref_primary_10_1002_celc_202400457
crossref_primary_10_1016_j_electacta_2017_08_063
crossref_primary_10_1021_acsami_4c12409
crossref_primary_10_1021_acs_jpcc_4c00247
crossref_primary_10_1016_j_jechem_2018_08_016
crossref_primary_10_1016_j_matlet_2020_128285
crossref_primary_10_1016_j_ultsonch_2023_106503
crossref_primary_10_1002_ppsc_201700189
crossref_primary_10_1016_j_crcon_2020_12_007
crossref_primary_10_1016_j_ijhydene_2020_02_212
crossref_primary_10_1039_C8DT01587B
crossref_primary_10_1016_j_electacta_2019_06_060
crossref_primary_10_1016_S1872_2067_19_63284_5
crossref_primary_10_1016_j_chemosphere_2023_140314
crossref_primary_10_1021_acsami_8b22260
crossref_primary_10_1002_cctc_202201670
crossref_primary_10_1021_acssuschemeng_0c06052
crossref_primary_10_1002_aenm_202002863
crossref_primary_10_1016_j_ceramint_2024_11_274
crossref_primary_10_1039_D1CS00186H
crossref_primary_10_1002_cssc_201701358
crossref_primary_10_1016_j_mtsust_2024_100782
crossref_primary_10_34133_2020_3976278
crossref_primary_10_1002_anie_202207279
crossref_primary_10_3390_ma15020668
crossref_primary_10_3390_catal8050214
crossref_primary_10_1016_j_ijhydene_2022_04_213
crossref_primary_10_1021_acsami_4c10721
crossref_primary_10_1016_j_ijhydene_2022_04_296
crossref_primary_10_1039_C9CC06065K
crossref_primary_10_1016_j_jpowsour_2018_04_027
crossref_primary_10_1007_s10562_021_03766_7
crossref_primary_10_1016_j_ijoes_2023_100425
crossref_primary_10_1039_C9DT01819K
crossref_primary_10_1021_acs_analchem_1c04663
crossref_primary_10_1039_C7QI00780A
crossref_primary_10_1002_smll_202311047
crossref_primary_10_1039_C9MH01494B
crossref_primary_10_1016_j_ijhydene_2019_07_018
crossref_primary_10_1039_D0MA00355G
crossref_primary_10_1016_j_jpowsour_2018_04_090
crossref_primary_10_1016_j_apcatb_2019_118532
crossref_primary_10_1016_j_ccr_2022_214666
crossref_primary_10_1021_acs_energyfuels_1c03475
crossref_primary_10_1016_j_apsusc_2021_150080
crossref_primary_10_1007_s11705_018_1719_6
crossref_primary_10_1016_j_jcis_2018_12_069
crossref_primary_10_1016_j_apsusc_2018_03_235
crossref_primary_10_1016_j_foodchem_2023_137295
crossref_primary_10_3390_catal11111394
crossref_primary_10_1021_acsaem_9b02130
crossref_primary_10_1002_aenm_201803358
crossref_primary_10_1007_s42114_022_00537_9
crossref_primary_10_1016_j_electacta_2020_136256
crossref_primary_10_1016_j_mtbio_2024_101047
crossref_primary_10_1016_j_jechem_2021_09_023
crossref_primary_10_1021_acsaem_8b00076
crossref_primary_10_1021_acsanm_2c04491
crossref_primary_10_1002_adfm_202104543
crossref_primary_10_1021_acsaem_0c01439
crossref_primary_10_1016_j_jallcom_2023_168848
crossref_primary_10_1021_acsami_1c14469
crossref_primary_10_1016_j_seppur_2021_119113
crossref_primary_10_1016_j_pmatsci_2019_100631
crossref_primary_10_1039_D0TA04172F
crossref_primary_10_1016_j_jallcom_2022_166665
crossref_primary_10_1039_D2EE00396A
crossref_primary_10_1002_asia_201800092
crossref_primary_10_1039_C8DT04610G
crossref_primary_10_1039_D0TA09788H
crossref_primary_10_1016_j_jcis_2022_02_037
crossref_primary_10_1016_j_susmat_2021_e00252
crossref_primary_10_1007_s10853_021_06451_7
crossref_primary_10_1016_j_electacta_2020_136228
crossref_primary_10_1002_advs_201800064
crossref_primary_10_1360_SSC_2022_0242
crossref_primary_10_1021_acsami_2c12542
crossref_primary_10_1016_j_jechem_2018_07_007
crossref_primary_10_1016_j_flatc_2022_100458
crossref_primary_10_1016_j_jechem_2021_09_012
crossref_primary_10_1016_j_apsusc_2022_154287
crossref_primary_10_1039_D0TA10712C
crossref_primary_10_1002_ange_202207279
crossref_primary_10_1088_1361_6528_aab6c1
crossref_primary_10_1039_C9QI01367A
crossref_primary_10_1039_C9SE00700H
crossref_primary_10_1016_j_jallcom_2018_07_168
crossref_primary_10_1016_j_apsusc_2019_05_301
crossref_primary_10_1039_D3NR06058F
crossref_primary_10_1016_j_jelechem_2023_117640
crossref_primary_10_1016_j_jallcom_2020_156514
crossref_primary_10_1039_D0TA11910E
crossref_primary_10_1007_s11237_024_09796_7
crossref_primary_10_1016_j_jes_2025_02_040
crossref_primary_10_1007_s10853_020_05182_5
crossref_primary_10_1002_celc_202001441
crossref_primary_10_1016_j_ijhydene_2024_12_388
crossref_primary_10_1016_j_nanoen_2017_04_011
crossref_primary_10_1021_acsaem_0c01538
crossref_primary_10_1016_j_ccr_2025_216613
crossref_primary_10_1039_C9SE00701F
crossref_primary_10_1038_s41699_021_00249_6
crossref_primary_10_1002_slct_202000151
crossref_primary_10_1149_1945_7111_abc7e7
crossref_primary_10_1016_j_electacta_2019_04_065
crossref_primary_10_1021_acsami_4c11055
crossref_primary_10_1016_j_jallcom_2021_159311
crossref_primary_10_1016_S1872_2067_20_63724_X
crossref_primary_10_1007_s11426_024_2215_y
crossref_primary_10_1016_j_jpowsour_2019_227375
crossref_primary_10_1016_j_ijhydene_2019_07_214
crossref_primary_10_3390_molecules28114464
crossref_primary_10_1016_j_ijhydene_2024_02_196
crossref_primary_10_1039_D0CC00814A
crossref_primary_10_1016_j_cej_2023_144348
crossref_primary_10_1016_j_mtphys_2020_100292
crossref_primary_10_31613_ceramist_2024_00164
crossref_primary_10_1016_j_jcis_2023_12_102
crossref_primary_10_1016_j_jpowsour_2019_05_037
crossref_primary_10_1016_j_colsurfa_2020_124507
crossref_primary_10_1021_acsami_9b18186
crossref_primary_10_3389_fchem_2022_951639
crossref_primary_10_1016_j_jpowsour_2018_07_125
crossref_primary_10_1016_j_jtice_2021_01_022
crossref_primary_10_1016_j_jpowsour_2017_08_099
crossref_primary_10_1007_s12598_024_02817_3
crossref_primary_10_1016_j_ultsonch_2023_106485
crossref_primary_10_1016_j_cej_2024_156219
crossref_primary_10_1016_j_electacta_2021_137726
crossref_primary_10_1016_j_jcis_2018_05_075
crossref_primary_10_3390_nano12152640
Cites_doi 10.1002/anie.201408998
10.1039/C6EE00377J
10.1039/C4CS00160E
10.1039/C6TA02334G
10.1039/C5CC02626A
10.1039/C5CC04936A
10.1021/am501256x
10.1021/acscatal.5b00349
10.1016/j.jpowsour.2015.06.098
10.1021/ja307507a
10.1039/c0jm03430d
10.1038/ncomms5477
10.1002/ange.201506480
10.1021/nl502775u
10.1021/cr1002326
10.1016/j.synthmet.2011.11.019
10.1016/j.ultsonch.2009.04.007
10.1021/nn5069836
10.1021/ja407115p
10.1002/smll.201302224
10.1039/C4CP02020K
10.1002/anie.201509758
10.1021/ja4027715
10.1039/C5SC02417J
10.1039/C4DT03803G
10.1016/j.mattod.2015.10.006
10.1016/j.elecom.2015.08.011
10.1016/j.jpowsour.2015.01.192
10.1016/j.jpowsour.2015.12.097
10.1016/j.elecom.2015.12.012
10.1016/j.jpowsour.2016.10.096
10.1039/C4CC08856E
10.1039/C3TC32578D
10.1002/ange.201301066
10.1039/C5CC05511C
10.1021/la801499y
10.1021/ja5096733
10.1016/j.ultsonch.2003.09.004
10.1038/srep13801
10.1002/pola.21646
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jpowsour.2017.02.062
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2755
EndPage 200
ExternalDocumentID 10_1016_j_jpowsour_2017_02_062
S0378775317302367
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SAC
SCB
SCE
SEW
SSH
T9H
VH1
VOH
WUQ
ID FETCH-LOGICAL-c415t-e8f1931011fb2efb92978d0cc17d8e6d7be9272bc057ada2b95f2ef9101a99f53
IEDL.DBID .~1
ISSN 0378-7753
IngestDate Thu Apr 24 23:12:32 EDT 2025
Tue Jul 01 01:39:59 EDT 2025
Fri Feb 23 02:31:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords In-situ intercalation
Oxygen evolution reaction
NiFe LDH
Layered compounds
Electrocatalysts
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-e8f1931011fb2efb92978d0cc17d8e6d7be9272bc057ada2b95f2ef9101a99f53
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_jpowsour_2017_02_062
crossref_primary_10_1016_j_jpowsour_2017_02_062
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2017_02_062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-15
PublicationDateYYYYMMDD 2017-04-15
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of power sources
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tang, Liu, Wu, Liu, Han, Han, Huang, Liu, Kang (bib29) 2014; 6
Ryu, Jung, Jang, Kim, Yoo (bib34) 2015; 5
Tian, Wan, Wang, Kang (bib19) 2004; 11
Wang, Zhong, Qin, Zhang (bib9) 2013; 125
Li, Zhao, Du, Wang, Hao, Liu, Guan (bib13) 2012; 162
Ma, Cao, Jaroniec, Qiao (bib25) 2016; 55
Long, Wang, Xiao, An, Yang (bib3) 2016; 19
Shinagawa, Garcia-Esparza, Takanabe (bib24) 2015; 5
Le Ngoc, Takaomi (bib16) 2010; 17
Viswanathan, Pickrahn, Luntz, Bent, Nørskov (bib8) 2014; 14
Bikkarolla, Papakonstantinou (bib39) 2015; 281
Trotochaud, Ranney, Williams, Boettcher (bib23) 2012; 134
Abellán, Carrasco, Coronado, Romero, Varela (bib7) 2014; 2
Xia, Zhu, Luo, Zeng, Guan, Ng, Zhang, Fan (bib10) 2014; 10
Hunter, Hieringer, Winkler, Graya, Müller (bib40) 2016; 9
Li, Hao, Abudula, Guan (bib1) 2016; 4
Jagadale, Guan, Li, Du, Ma, Hao, Abudula (bib11) 2016; 306
Han, Chen, Sun, Xua, Du (bib32) 2015; 51
Li, Guan, Du, Cao, Hao, Ma, Jagadale, Abudula (bib14) 2015; 51
Youn, Park, Kim, Magesh, Jang, Lee (bib15) 2015; 294
Wang, Zhan, Fu, Li, Sheng, Zhao, Xiao, Ma, Ma, Yao (bib18) 2008; 24
Yu, Shi, Liu, Wang, Yang, Wang, Yan, Sun, Jing (bib6) 2014; 16
Walter, Warren, McKone, Boettcher, Mi, Santori, Lewis (bib20) 2010; 110
McCrory, Jung, Peters, Jaramillo (bib21) 2013; 135
Gong, Li, Wang, Liang, Wu, Zhou, Wang, Regier, Wei, Dai (bib22) 2013; 135
Woo, Song, Kim, Kim, Ju, Lee, Kim, Choy, Hwang (bib5) 2011; 21
Liu, Liang, Liu, Sun, He, Asiri (bib35) 2015; 60
Fan, Li, Evans, Duan (bib2) 2014; 43
Song, Hu (bib4) 2014; 5
Long, Xiao, Wang, Zheng, Yang (bib30) 2015; 51
Li, Shao, An, Wang, Xu, Wei, Evansa, Duan (bib27) 2015; 6
Chen, Xu, Fang, Tong, Wu, Lu, Peng, Ding, Wu, Xie (bib12) 2015; 127
Song, Hu (bib31) 2014; 136
Paulusse, Sijbesma (bib17) 2006; 44
Li, Zhou, Luo, Xu, Li, Li, Cheng, Yuan (bib33) 2017; 341
Hyun, Ahilan, Kim, Shanmugam (bib37) 2016; 63
Zhu, Zhou, Chen, Chen, Su, Tadé, Shao (bib26) 2015; 54
Ma, Ma, Wang, Liang, Liu, Zhou, Sasak (bib28) 2015; 9
Yu, Jiang, Yang (bib38) 2015; 51
Lv, Zhu, Jiang, Yang, Liu, Su, Huang, Yao, Li (bib36) 2015; 44
Ryu (10.1016/j.jpowsour.2017.02.062_bib34) 2015; 5
Wang (10.1016/j.jpowsour.2017.02.062_bib18) 2008; 24
Tang (10.1016/j.jpowsour.2017.02.062_bib29) 2014; 6
Li (10.1016/j.jpowsour.2017.02.062_bib33) 2017; 341
Li (10.1016/j.jpowsour.2017.02.062_bib14) 2015; 51
Zhu (10.1016/j.jpowsour.2017.02.062_bib26) 2015; 54
Fan (10.1016/j.jpowsour.2017.02.062_bib2) 2014; 43
Hunter (10.1016/j.jpowsour.2017.02.062_bib40) 2016; 9
Long (10.1016/j.jpowsour.2017.02.062_bib3) 2016; 19
McCrory (10.1016/j.jpowsour.2017.02.062_bib21) 2013; 135
Ma (10.1016/j.jpowsour.2017.02.062_bib28) 2015; 9
Jagadale (10.1016/j.jpowsour.2017.02.062_bib11) 2016; 306
Han (10.1016/j.jpowsour.2017.02.062_bib32) 2015; 51
Le Ngoc (10.1016/j.jpowsour.2017.02.062_bib16) 2010; 17
Gong (10.1016/j.jpowsour.2017.02.062_bib22) 2013; 135
Li (10.1016/j.jpowsour.2017.02.062_bib1) 2016; 4
Long (10.1016/j.jpowsour.2017.02.062_bib30) 2015; 51
Song (10.1016/j.jpowsour.2017.02.062_bib4) 2014; 5
Youn (10.1016/j.jpowsour.2017.02.062_bib15) 2015; 294
Song (10.1016/j.jpowsour.2017.02.062_bib31) 2014; 136
Lv (10.1016/j.jpowsour.2017.02.062_bib36) 2015; 44
Viswanathan (10.1016/j.jpowsour.2017.02.062_bib8) 2014; 14
Bikkarolla (10.1016/j.jpowsour.2017.02.062_bib39) 2015; 281
Yu (10.1016/j.jpowsour.2017.02.062_bib38) 2015; 51
Yu (10.1016/j.jpowsour.2017.02.062_bib6) 2014; 16
Chen (10.1016/j.jpowsour.2017.02.062_bib12) 2015; 127
Li (10.1016/j.jpowsour.2017.02.062_bib13) 2012; 162
Abellán (10.1016/j.jpowsour.2017.02.062_bib7) 2014; 2
Trotochaud (10.1016/j.jpowsour.2017.02.062_bib23) 2012; 134
Xia (10.1016/j.jpowsour.2017.02.062_bib10) 2014; 10
Shinagawa (10.1016/j.jpowsour.2017.02.062_bib24) 2015; 5
Ma (10.1016/j.jpowsour.2017.02.062_bib25) 2016; 55
Paulusse (10.1016/j.jpowsour.2017.02.062_bib17) 2006; 44
Tian (10.1016/j.jpowsour.2017.02.062_bib19) 2004; 11
Woo (10.1016/j.jpowsour.2017.02.062_bib5) 2011; 21
Walter (10.1016/j.jpowsour.2017.02.062_bib20) 2010; 110
Li (10.1016/j.jpowsour.2017.02.062_bib27) 2015; 6
Liu (10.1016/j.jpowsour.2017.02.062_bib35) 2015; 60
Hyun (10.1016/j.jpowsour.2017.02.062_bib37) 2016; 63
Wang (10.1016/j.jpowsour.2017.02.062_bib9) 2013; 125
References_xml – volume: 51
  start-page: 1120
  year: 2015
  end-page: 1123
  ident: bib30
  article-title: Co intake mediated formation of ultrathin nanosheets of transition metal LDH—an advanced electrocatalyst for oxygen evolution reaction
  publication-title: Chem. Commun.
– volume: 281
  start-page: 243
  year: 2015
  end-page: 251
  ident: bib39
  article-title: CuCo
  publication-title: J. Power Sources
– volume: 9
  start-page: 1734
  year: 2016
  end-page: 1743
  ident: bib40
  article-title: Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 5853
  year: 2014
  end-page: 5857
  ident: bib8
  article-title: Nanoscale limitations in metal oxide electrocatalysts for oxygen evolution
  publication-title: Nano Lett.
– volume: 341
  start-page: 250
  year: 2017
  end-page: 256
  ident: bib33
  article-title: The urchin-like sphere arrays Co
  publication-title: J. Power Sources
– volume: 21
  start-page: 4286
  year: 2011
  end-page: 4292
  ident: bib5
  article-title: Mixed valence Zn–Co-layered double hydroxides and their exfoliated nanosheets with electrode functionality
  publication-title: J. Mater. Chem.
– volume: 135
  start-page: 16977
  year: 2013
  end-page: 16987
  ident: bib21
  article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 766
  year: 2014
  end-page: 773
  ident: bib10
  article-title: Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application
  publication-title: Small
– volume: 9
  start-page: 1977
  year: 2015
  end-page: 1984
  ident: bib28
  article-title: A superlattice of alternately stacked Ni–Fe hydroxide nanosheets and graphene for efficient splitting of water
  publication-title: ACS Nano
– volume: 63
  start-page: 44
  year: 2016
  end-page: 47
  ident: bib37
  article-title: The influence of Co
  publication-title: Electrochem. Commun.
– volume: 43
  start-page: 7040
  year: 2014
  end-page: 7066
  ident: bib2
  article-title: Catalytic applications of layered double hydroxides: recent advances and perspectives
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 6624
  year: 2015
  end-page: 6631
  ident: bib27
  article-title: Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions
  publication-title: Chem. Sci.
– volume: 16
  start-page: 17936
  year: 2014
  end-page: 17942
  ident: bib6
  article-title: Facile synthesis of exfoliated Co–Al LDH–carbon nanotube composites with high performance as supercapacitor electrodes
  publication-title: Phys. Chem. Chem. Phys.
– volume: 135
  start-page: 8452
  year: 2013
  end-page: 8455
  ident: bib22
  article-title: An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 7918
  year: 2014
  end-page: 7925
  ident: bib29
  article-title: Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 51
  start-page: 14361
  year: 2015
  end-page: 14364
  ident: bib38
  article-title: Ultrathin nanosheets constructed CoMoO
  publication-title: Chem. Commun.
– volume: 51
  start-page: 11626
  year: 2015
  end-page: 11629
  ident: bib32
  article-title: High catalytic activity for water oxidation based on nanostructured nickel phosphide precursors
  publication-title: Chem. Commun.
– volume: 24
  start-page: 7635
  year: 2008
  end-page: 7638
  ident: bib18
  article-title: Switch from intra- to intermolecular h-bonds by ultrasound: induced gelation and distinct nanoscale morphologies
  publication-title: Langmuir
– volume: 54
  start-page: 3897
  year: 2015
  end-page: 3901
  ident: bib26
  article-title: SrNb
  publication-title: Angew. Chem. Int. Ed.
– volume: 19
  start-page: 213
  year: 2016
  end-page: 226
  ident: bib3
  article-title: Transition metal based layered double hydroxides tailored for energy conversion and storage
  publication-title: Mater. Today
– volume: 51
  start-page: 15012
  year: 2015
  end-page: 15014
  ident: bib14
  article-title: A sea anemone-like CuO/Co
  publication-title: Chem. Commun.
– volume: 17
  start-page: 186
  year: 2010
  end-page: 192
  ident: bib16
  article-title: Ultrasound stimulus effect on hydrogen bonding in networked alumina and polyacrylic acid slurry
  publication-title: Ultrason. Sonochem.
– volume: 127
  start-page: 14923
  year: 2015
  end-page: 14927
  ident: bib12
  article-title: Metallic Co
  publication-title: Angew. Chem.
– volume: 44
  start-page: 5445
  year: 2006
  end-page: 5453
  ident: bib17
  article-title: Ultrasound in polymer chemistry: revival of an established technique
  publication-title: J. Polym. Sci. Part A Polym. Chem.
– volume: 136
  start-page: 16481
  year: 2014
  end-page: 16484
  ident: bib31
  article-title: Ultrathin cobalt–manganese layered double hydroxide is an efficient oxygen evolution catalyst
  publication-title: J. Am. Chem. Soc.
– volume: 162
  start-page: 107
  year: 2012
  end-page: 113
  ident: bib13
  article-title: Capacitance behaviors of nanorod polyaniline films controllably synthesized by using a novel unipolar pulse electro-polymerization method
  publication-title: Synth. Met.
– volume: 306
  start-page: 526
  year: 2016
  end-page: 534
  ident: bib11
  article-title: Ultrathin nanoflakes of cobalt–manganese layered double hydroxide with high reversibility for asymmetric supercapacitor
  publication-title: J. Power Sources
– volume: 5
  year: 2014
  ident: bib4
  article-title: Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis
  publication-title: Nat. Commun.
– volume: 55
  start-page: 1138
  year: 2016
  end-page: 1142
  ident: bib25
  article-title: Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 399
  year: 2004
  end-page: 404
  ident: bib19
  article-title: Effects of ultrasound and additives on the function and structure of trypsin
  publication-title: Ultrason. Sonochem.
– volume: 60
  start-page: 92
  year: 2015
  end-page: 96
  ident: bib35
  article-title: Electrodeposition of cobalt-sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction
  publication-title: Electrochem. Commun.
– volume: 5
  start-page: 13801
  year: 2015
  ident: bib24
  article-title: Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion
  publication-title: Sci. Rep.
– volume: 134
  start-page: 17253
  year: 2012
  end-page: 17261
  ident: bib23
  article-title: Solution-cast metal oxide thin film electrocatalysts for oxygen evolution
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 4148
  year: 2015
  end-page: 4154
  ident: bib36
  article-title: Hollow mesoporous NiCo
  publication-title: Dalton Trans.
– volume: 125
  start-page: 5356
  year: 2013
  end-page: 5361
  ident: bib9
  article-title: An efficient three-dimensional oxygen evolution electrode
  publication-title: Angew. Chem.
– volume: 110
  start-page: 6446
  year: 2010
  end-page: 6473
  ident: bib20
  article-title: Solar water splitting cells
  publication-title: Chem. Rev.
– volume: 5
  start-page: 4066
  year: 2015
  end-page: 4074
  ident: bib34
  article-title: In situ transformation of hydrogen-evolving CoP nanoparticles: toward efficient oxygen evolution catalysts bearing dispersed morphologies with Co-oxo/hydroxo molecular units
  publication-title: ACS Catal.
– volume: 4
  start-page: 11973
  year: 2016
  end-page: 12000
  ident: bib1
  article-title: Nanostructured catalysts for electrochemical water splitting: current state and prospects
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 3723
  year: 2014
  end-page: 3731
  ident: bib7
  article-title: Alkoxide-intercalated CoFe-layered double hydroxides as precursors of colloidal nanosheet suspensions: structural, magnetic and electrochemical properties
  publication-title: J. Mater. Chem. C
– volume: 294
  start-page: 437
  year: 2015
  end-page: 443
  ident: bib15
  article-title: One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation
  publication-title: J. Power Sources
– volume: 54
  start-page: 3897
  year: 2015
  ident: 10.1016/j.jpowsour.2017.02.062_bib26
  article-title: SrNb0.1Co0.7Fe0.2O3−δ Perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201408998
– volume: 9
  start-page: 1734
  year: 2016
  ident: 10.1016/j.jpowsour.2017.02.062_bib40
  article-title: Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00377J
– volume: 43
  start-page: 7040
  year: 2014
  ident: 10.1016/j.jpowsour.2017.02.062_bib2
  article-title: Catalytic applications of layered double hydroxides: recent advances and perspectives
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00160E
– volume: 4
  start-page: 11973
  year: 2016
  ident: 10.1016/j.jpowsour.2017.02.062_bib1
  article-title: Nanostructured catalysts for electrochemical water splitting: current state and prospects
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02334G
– volume: 51
  start-page: 11626
  year: 2015
  ident: 10.1016/j.jpowsour.2017.02.062_bib32
  article-title: High catalytic activity for water oxidation based on nanostructured nickel phosphide precursors
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC02626A
– volume: 51
  start-page: 15012
  year: 2015
  ident: 10.1016/j.jpowsour.2017.02.062_bib14
  article-title: A sea anemone-like CuO/Co3O4 composite: an effective catalyst for electrochemical water splitting
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC04936A
– volume: 6
  start-page: 7918
  year: 2014
  ident: 10.1016/j.jpowsour.2017.02.062_bib29
  article-title: Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am501256x
– volume: 5
  start-page: 4066
  year: 2015
  ident: 10.1016/j.jpowsour.2017.02.062_bib34
  article-title: In situ transformation of hydrogen-evolving CoP nanoparticles: toward efficient oxygen evolution catalysts bearing dispersed morphologies with Co-oxo/hydroxo molecular units
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00349
– volume: 294
  start-page: 437
  year: 2015
  ident: 10.1016/j.jpowsour.2017.02.062_bib15
  article-title: One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.06.098
– volume: 134
  start-page: 17253
  year: 2012
  ident: 10.1016/j.jpowsour.2017.02.062_bib23
  article-title: Solution-cast metal oxide thin film electrocatalysts for oxygen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja307507a
– volume: 21
  start-page: 4286
  year: 2011
  ident: 10.1016/j.jpowsour.2017.02.062_bib5
  article-title: Mixed valence Zn–Co-layered double hydroxides and their exfoliated nanosheets with electrode functionality
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm03430d
– volume: 5
  year: 2014
  ident: 10.1016/j.jpowsour.2017.02.062_bib4
  article-title: Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5477
– volume: 127
  start-page: 14923
  year: 2015
  ident: 10.1016/j.jpowsour.2017.02.062_bib12
  article-title: Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201506480
– volume: 14
  start-page: 5853
  year: 2014
  ident: 10.1016/j.jpowsour.2017.02.062_bib8
  article-title: Nanoscale limitations in metal oxide electrocatalysts for oxygen evolution
  publication-title: Nano Lett.
  doi: 10.1021/nl502775u
– volume: 110
  start-page: 6446
  year: 2010
  ident: 10.1016/j.jpowsour.2017.02.062_bib20
  article-title: Solar water splitting cells
  publication-title: Chem. Rev.
  doi: 10.1021/cr1002326
– volume: 162
  start-page: 107
  year: 2012
  ident: 10.1016/j.jpowsour.2017.02.062_bib13
  article-title: Capacitance behaviors of nanorod polyaniline films controllably synthesized by using a novel unipolar pulse electro-polymerization method
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2011.11.019
– volume: 17
  start-page: 186
  year: 2010
  ident: 10.1016/j.jpowsour.2017.02.062_bib16
  article-title: Ultrasound stimulus effect on hydrogen bonding in networked alumina and polyacrylic acid slurry
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2009.04.007
– volume: 9
  start-page: 1977
  year: 2015
  ident: 10.1016/j.jpowsour.2017.02.062_bib28
  article-title: A superlattice of alternately stacked Ni–Fe hydroxide nanosheets and graphene for efficient splitting of water
  publication-title: ACS Nano
  doi: 10.1021/nn5069836
– volume: 135
  start-page: 16977
  year: 2013
  ident: 10.1016/j.jpowsour.2017.02.062_bib21
  article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407115p
– volume: 10
  start-page: 766
  year: 2014
  ident: 10.1016/j.jpowsour.2017.02.062_bib10
  article-title: Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application
  publication-title: Small
  doi: 10.1002/smll.201302224
– volume: 16
  start-page: 17936
  year: 2014
  ident: 10.1016/j.jpowsour.2017.02.062_bib6
  article-title: Facile synthesis of exfoliated Co–Al LDH–carbon nanotube composites with high performance as supercapacitor electrodes
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP02020K
– volume: 55
  start-page: 1138
  year: 2016
  ident: 10.1016/j.jpowsour.2017.02.062_bib25
  article-title: Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201509758
– volume: 135
  start-page: 8452
  year: 2013
  ident: 10.1016/j.jpowsour.2017.02.062_bib22
  article-title: An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4027715
– volume: 6
  start-page: 6624
  year: 2015
  ident: 10.1016/j.jpowsour.2017.02.062_bib27
  article-title: Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC02417J
– volume: 44
  start-page: 4148
  year: 2015
  ident: 10.1016/j.jpowsour.2017.02.062_bib36
  article-title: Hollow mesoporous NiCo2O4 nanocages as efficient electrocatalysts for oxygen evolution reaction
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT03803G
– volume: 19
  start-page: 213
  year: 2016
  ident: 10.1016/j.jpowsour.2017.02.062_bib3
  article-title: Transition metal based layered double hydroxides tailored for energy conversion and storage
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.10.006
– volume: 60
  start-page: 92
  year: 2015
  ident: 10.1016/j.jpowsour.2017.02.062_bib35
  article-title: Electrodeposition of cobalt-sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2015.08.011
– volume: 281
  start-page: 243
  year: 2015
  ident: 10.1016/j.jpowsour.2017.02.062_bib39
  article-title: CuCo2O4 nanoparticles on nitrogenated graphene as highly efficient oxygen evolution catalyst
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.01.192
– volume: 306
  start-page: 526
  year: 2016
  ident: 10.1016/j.jpowsour.2017.02.062_bib11
  article-title: Ultrathin nanoflakes of cobalt–manganese layered double hydroxide with high reversibility for asymmetric supercapacitor
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.12.097
– volume: 63
  start-page: 44
  year: 2016
  ident: 10.1016/j.jpowsour.2017.02.062_bib37
  article-title: The influence of Co3V2O8 morphology on the oxygen evolution reaction activity and stability
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2015.12.012
– volume: 341
  start-page: 250
  year: 2017
  ident: 10.1016/j.jpowsour.2017.02.062_bib33
  article-title: The urchin-like sphere arrays Co3O4 as a bifunctional catalyst for hydrogen evolution reaction and oxygen evolution reaction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.10.096
– volume: 51
  start-page: 1120
  year: 2015
  ident: 10.1016/j.jpowsour.2017.02.062_bib30
  article-title: Co intake mediated formation of ultrathin nanosheets of transition metal LDH—an advanced electrocatalyst for oxygen evolution reaction
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC08856E
– volume: 2
  start-page: 3723
  year: 2014
  ident: 10.1016/j.jpowsour.2017.02.062_bib7
  article-title: Alkoxide-intercalated CoFe-layered double hydroxides as precursors of colloidal nanosheet suspensions: structural, magnetic and electrochemical properties
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C3TC32578D
– volume: 125
  start-page: 5356
  year: 2013
  ident: 10.1016/j.jpowsour.2017.02.062_bib9
  article-title: An efficient three-dimensional oxygen evolution electrode
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201301066
– volume: 51
  start-page: 14361
  year: 2015
  ident: 10.1016/j.jpowsour.2017.02.062_bib38
  article-title: Ultrathin nanosheets constructed CoMoO4 porous flowers with high activity for electrocatalytic oxygen evolution
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC05511C
– volume: 24
  start-page: 7635
  year: 2008
  ident: 10.1016/j.jpowsour.2017.02.062_bib18
  article-title: Switch from intra- to intermolecular h-bonds by ultrasound: induced gelation and distinct nanoscale morphologies
  publication-title: Langmuir
  doi: 10.1021/la801499y
– volume: 136
  start-page: 16481
  year: 2014
  ident: 10.1016/j.jpowsour.2017.02.062_bib31
  article-title: Ultrathin cobalt–manganese layered double hydroxide is an efficient oxygen evolution catalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5096733
– volume: 11
  start-page: 399
  year: 2004
  ident: 10.1016/j.jpowsour.2017.02.062_bib19
  article-title: Effects of ultrasound and additives on the function and structure of trypsin
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2003.09.004
– volume: 5
  start-page: 13801
  year: 2015
  ident: 10.1016/j.jpowsour.2017.02.062_bib24
  article-title: Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion
  publication-title: Sci. Rep.
  doi: 10.1038/srep13801
– volume: 44
  start-page: 5445
  year: 2006
  ident: 10.1016/j.jpowsour.2017.02.062_bib17
  article-title: Ultrasound in polymer chemistry: revival of an established technique
  publication-title: J. Polym. Sci. Part A Polym. Chem.
  doi: 10.1002/pola.21646
SSID ssj0001170
Score 2.5836656
Snippet Intercalation and exfoliation are effective approaches for enlarging the interlayer distance and increasing ion exchange capacity of layered materials. Here,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 193
SubjectTerms Electrocatalysts
In-situ intercalation
Layered compounds
NiFe LDH
Oxygen evolution reaction
Title In-situ intercalation of NiFe LDH materials: An efficient approach to improve electrocatalytic activity and stability for water splitting
URI https://dx.doi.org/10.1016/j.jpowsour.2017.02.062
Volume 347
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8NADD6hssCAeIrykgfW0FyayzVsFVCVVxdAYot6LykVSqs2FWJh519jXxMoEhIDY6I4iWzn_MVnf2bsVNpEYRTB71snOogVj4OUmDCFCrVMtRLG53TvB0n_Kb55Fs8r7KLuhaGyymrtX6zpfrWuzrQqbbYmed56CNvobIi2uaTBNwl1lMexJC8_e_8u86DJKn4nAf-W6OqlLuHR2WgyfqUkOZV4Sc_dmUS_B6iloNPbZBsVWoTu4oW22Iotttn6EofgDvu4LoJZXs6BiB-mqHGvahg7GOQ9C3eXfUBQuvCzc-gWYD1pBMYaqPnEoRxD7pMLFqqxOD6r84ZPBWp8oPkSMCwMIJT0xbRvgFgXXum-MEMY64und9lT7-rxoh9U8xUCjWG7DGzHIXxDVXCnIusUIiXZMaHWXJqOTYxUNo1kpDRiuqEZRioVDq9DgMGHaepEe481inFh9xnwRMXCtDlGRBe3aYA5d6E0Tmj0EG1sk4laqZmuyMdpBsZLVleZjbLaGBkZIwujDI3RZK0vucmCfuNPibS2WfbDkTKMEX_IHvxD9pCt0RFtNHFxxBrldG6PEa-U6sQ75Alb7V7f9gefZpLvcQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF4hOLQ9VDxalZbHHMrRxOvY3hiJAyJESQm5ABK3bfYlOUJORIyiXHrv7-kfZGZj0yAh5YC42h7b2pmd-XZ2dj7GfgqbKowiOL91qoNY8TjIqBNmokItMq0S43O6V4O0exv_ukvu1ti_-iwMlVVWvn_h0723rq40qtFsTPK8cR020dgQbXNBxDepqCorL-18huu26WmvjUo-iqLOxc15N6ioBQKNEasMbMshckFz5E5F1ikECaJlQq25MC2bGqFsFolIaYQzQzOMVJY4fA5jKx9mmSOqCPT7GzG6C6JNOP7zv66EqFz81gUuz-j3lo4lj45Hk_GMsvJUUyZ8s9A0ej0iLkW5zib7XMFTOFuMwBZbs8U2-7TUtHCH_e0VwTQvH4E6TTygir1uYexgkHcs9NtdQBS8MOwTOCvA-i4VGNygbmAO5Rhyn82wUPHw-DTSHL8KdNKCCC1gWBhA7Oqrd-eA4Bpm9F6YIm721dpf2O27jPpXtl6MC_uNAU9VnJgmxxDs4iYxpnMXCuMSjSapjd1lST2oUlfdzol0417WZW0jWStDkjJkGElUxi5rPMtNFv0-Vkpktc7kC8uVGJRWyH5_g-wh-9C9uerLfm9w-YN9pDu0y8WTPbZePjzafQRLpTrwxgns93vPhictTSu6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-situ+intercalation+of+NiFe+LDH+materials%3A+An+efficient+approach+to+improve+electrocatalytic+activity+and+stability+for+water+splitting&rft.jtitle=Journal+of+power+sources&rft.au=Li%2C+Xiumin&rft.au=Hao%2C+Xiaogang&rft.au=Wang%2C+Zhongde&rft.au=Abudula%2C+Abuliti&rft.date=2017-04-15&rft.issn=0378-7753&rft.volume=347&rft.spage=193&rft.epage=200&rft_id=info:doi/10.1016%2Fj.jpowsour.2017.02.062&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2017_02_062
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon