In-situ intercalation of NiFe LDH materials: An efficient approach to improve electrocatalytic activity and stability for water splitting
Intercalation and exfoliation are effective approaches for enlarging the interlayer distance and increasing ion exchange capacity of layered materials. Here, an in-situ intercalation method is demonstrated to expand the inter-layer spacing of electrodeposited NiFe Layered Double Hydroxides (LDH) ele...
Saved in:
Published in | Journal of power sources Vol. 347; pp. 193 - 200 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intercalation and exfoliation are effective approaches for enlarging the interlayer distance and increasing ion exchange capacity of layered materials. Here, an in-situ intercalation method is demonstrated to expand the inter-layer spacing of electrodeposited NiFe Layered Double Hydroxides (LDH) electrodes. Compared with traditional electrode fabrication method, in which intercalation/exfoliation of LDH powders is performed first followed by coating it on substrate, better interface connection and stability are maintained in the present method. It is found that the inter-layer distance of NiFe LDH material can be increased from 7.8 to 9.5 Å by immersing the electrode in formamide at 80 °C for 3 h, and the required overpotential of oxygen evolution reaction (OER) for sustaining 10 mA cm−2 current density is reduced from 256 to 210 mV. Moreover, with the assistance of ultrasound treatment, the required intercalation time is reduced drastically and the overpotential@10 mA cm−2 current density is further decreased to 203 mV.
[Display omitted]
•NiFe LDH electrodes are synthesized by unipolar pulse electro-deposition method.•An in-situ intercalation method is performed over electrodeposited NiFe LDH electrode.•Effect of ultrasound and temperature on the property of intercalated electrodes is studied.•The electrode shows an extremely low overpotential of 203 mV@10 mA cm−2. |
---|---|
AbstractList | Intercalation and exfoliation are effective approaches for enlarging the interlayer distance and increasing ion exchange capacity of layered materials. Here, an in-situ intercalation method is demonstrated to expand the inter-layer spacing of electrodeposited NiFe Layered Double Hydroxides (LDH) electrodes. Compared with traditional electrode fabrication method, in which intercalation/exfoliation of LDH powders is performed first followed by coating it on substrate, better interface connection and stability are maintained in the present method. It is found that the inter-layer distance of NiFe LDH material can be increased from 7.8 to 9.5 Å by immersing the electrode in formamide at 80 °C for 3 h, and the required overpotential of oxygen evolution reaction (OER) for sustaining 10 mA cm−2 current density is reduced from 256 to 210 mV. Moreover, with the assistance of ultrasound treatment, the required intercalation time is reduced drastically and the overpotential@10 mA cm−2 current density is further decreased to 203 mV.
[Display omitted]
•NiFe LDH electrodes are synthesized by unipolar pulse electro-deposition method.•An in-situ intercalation method is performed over electrodeposited NiFe LDH electrode.•Effect of ultrasound and temperature on the property of intercalated electrodes is studied.•The electrode shows an extremely low overpotential of 203 mV@10 mA cm−2. |
Author | Guan, Guoqing Hao, Xiaogang Li, Xiumin Wang, Zhongde Abudula, Abuliti |
Author_xml | – sequence: 1 givenname: Xiumin surname: Li fullname: Li, Xiumin organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan – sequence: 2 givenname: Xiaogang surname: Hao fullname: Hao, Xiaogang organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China – sequence: 3 givenname: Zhongde surname: Wang fullname: Wang, Zhongde organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China – sequence: 4 givenname: Abuliti surname: Abudula fullname: Abudula, Abuliti organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan – sequence: 5 givenname: Guoqing surname: Guan fullname: Guan, Guoqing email: guan@hirosaki-u.ac.jp organization: Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki, 036-8560, Japan |
BookMark | eNqFkMtOxCAUhonRxPHyCoYXaAVqh9a40HhPJrrRNaH0oGfSgQZwzDyCby31snHjiuv3n_zfHtl23gEhR5yVnPH58bJcjv49-rdQCsZlyUTJ5mKLzHgjq0LIut4mM1bJppCyrnbJXoxLxhjnks3Ix70rIqY3ii5BMHrQCb2j3tIHvAG6uLqjK51fUA_xlF44CtaiQXCJ6nEMXptXmjzFVd6vgcIAJgVvdNLDJqGh2iRcY9pQ7Xoak-5wmE7WB_o-5dI45ouE7uWA7Ng8BA5_1n3yfHP9dHlXLB5v7y8vFoU54XUqoLG8rXJxbjsBtmtFK5ueGcNl38C8lx20QorOsFrqXouurW3-12ZCt62tq31y9p1rgo8xgFUG01frFDQOijM1aVVL9atVTVoVEyprzfj8Dz4GXOmw-R88_wYhl1sjBBUnjwZ6DFma6j3-F_EJgrWdgw |
CitedBy_id | crossref_primary_10_1039_D2MA01081J crossref_primary_10_1016_j_electacta_2019_134595 crossref_primary_10_1016_j_cej_2023_142555 crossref_primary_10_1016_j_ijhydene_2019_04_214 crossref_primary_10_1016_j_ijhydene_2024_05_431 crossref_primary_10_1016_j_inoche_2023_110670 crossref_primary_10_1021_acssuschemeng_9b03563 crossref_primary_10_1016_j_ijhydene_2019_09_155 crossref_primary_10_1021_acssuschemeng_9b01263 crossref_primary_10_1016_j_colsurfa_2024_135793 crossref_primary_10_1021_acssuschemeng_8b05088 crossref_primary_10_1039_C8QI00314A crossref_primary_10_1039_C8TA12043A crossref_primary_10_1016_j_jallcom_2017_12_257 crossref_primary_10_1039_C8QI00867A crossref_primary_10_3390_s24154824 crossref_primary_10_1016_j_mtener_2022_100975 crossref_primary_10_1039_D3TA07823J crossref_primary_10_3390_catal10040431 crossref_primary_10_1016_j_apcatb_2021_120641 crossref_primary_10_1016_j_flatc_2024_100775 crossref_primary_10_1016_j_jallcom_2024_177244 crossref_primary_10_1039_D0DT04366D crossref_primary_10_1016_j_triboint_2018_12_035 crossref_primary_10_1021_acssuschemeng_7b02557 crossref_primary_10_1039_D2TA07261K crossref_primary_10_1002_advs_202304071 crossref_primary_10_1002_cssc_201700693 crossref_primary_10_1016_j_ijhydene_2023_09_040 crossref_primary_10_1002_celc_202400457 crossref_primary_10_1016_j_electacta_2017_08_063 crossref_primary_10_1021_acsami_4c12409 crossref_primary_10_1021_acs_jpcc_4c00247 crossref_primary_10_1016_j_jechem_2018_08_016 crossref_primary_10_1016_j_matlet_2020_128285 crossref_primary_10_1016_j_ultsonch_2023_106503 crossref_primary_10_1002_ppsc_201700189 crossref_primary_10_1016_j_crcon_2020_12_007 crossref_primary_10_1016_j_ijhydene_2020_02_212 crossref_primary_10_1039_C8DT01587B crossref_primary_10_1016_j_electacta_2019_06_060 crossref_primary_10_1016_S1872_2067_19_63284_5 crossref_primary_10_1016_j_chemosphere_2023_140314 crossref_primary_10_1021_acsami_8b22260 crossref_primary_10_1002_cctc_202201670 crossref_primary_10_1021_acssuschemeng_0c06052 crossref_primary_10_1002_aenm_202002863 crossref_primary_10_1016_j_ceramint_2024_11_274 crossref_primary_10_1039_D1CS00186H crossref_primary_10_1002_cssc_201701358 crossref_primary_10_1016_j_mtsust_2024_100782 crossref_primary_10_34133_2020_3976278 crossref_primary_10_1002_anie_202207279 crossref_primary_10_3390_ma15020668 crossref_primary_10_3390_catal8050214 crossref_primary_10_1016_j_ijhydene_2022_04_213 crossref_primary_10_1021_acsami_4c10721 crossref_primary_10_1016_j_ijhydene_2022_04_296 crossref_primary_10_1039_C9CC06065K crossref_primary_10_1016_j_jpowsour_2018_04_027 crossref_primary_10_1007_s10562_021_03766_7 crossref_primary_10_1016_j_ijoes_2023_100425 crossref_primary_10_1039_C9DT01819K crossref_primary_10_1021_acs_analchem_1c04663 crossref_primary_10_1039_C7QI00780A crossref_primary_10_1002_smll_202311047 crossref_primary_10_1039_C9MH01494B crossref_primary_10_1016_j_ijhydene_2019_07_018 crossref_primary_10_1039_D0MA00355G crossref_primary_10_1016_j_jpowsour_2018_04_090 crossref_primary_10_1016_j_apcatb_2019_118532 crossref_primary_10_1016_j_ccr_2022_214666 crossref_primary_10_1021_acs_energyfuels_1c03475 crossref_primary_10_1016_j_apsusc_2021_150080 crossref_primary_10_1007_s11705_018_1719_6 crossref_primary_10_1016_j_jcis_2018_12_069 crossref_primary_10_1016_j_apsusc_2018_03_235 crossref_primary_10_1016_j_foodchem_2023_137295 crossref_primary_10_3390_catal11111394 crossref_primary_10_1021_acsaem_9b02130 crossref_primary_10_1002_aenm_201803358 crossref_primary_10_1007_s42114_022_00537_9 crossref_primary_10_1016_j_electacta_2020_136256 crossref_primary_10_1016_j_mtbio_2024_101047 crossref_primary_10_1016_j_jechem_2021_09_023 crossref_primary_10_1021_acsaem_8b00076 crossref_primary_10_1021_acsanm_2c04491 crossref_primary_10_1002_adfm_202104543 crossref_primary_10_1021_acsaem_0c01439 crossref_primary_10_1016_j_jallcom_2023_168848 crossref_primary_10_1021_acsami_1c14469 crossref_primary_10_1016_j_seppur_2021_119113 crossref_primary_10_1016_j_pmatsci_2019_100631 crossref_primary_10_1039_D0TA04172F crossref_primary_10_1016_j_jallcom_2022_166665 crossref_primary_10_1039_D2EE00396A crossref_primary_10_1002_asia_201800092 crossref_primary_10_1039_C8DT04610G crossref_primary_10_1039_D0TA09788H crossref_primary_10_1016_j_jcis_2022_02_037 crossref_primary_10_1016_j_susmat_2021_e00252 crossref_primary_10_1007_s10853_021_06451_7 crossref_primary_10_1016_j_electacta_2020_136228 crossref_primary_10_1002_advs_201800064 crossref_primary_10_1360_SSC_2022_0242 crossref_primary_10_1021_acsami_2c12542 crossref_primary_10_1016_j_jechem_2018_07_007 crossref_primary_10_1016_j_flatc_2022_100458 crossref_primary_10_1016_j_jechem_2021_09_012 crossref_primary_10_1016_j_apsusc_2022_154287 crossref_primary_10_1039_D0TA10712C crossref_primary_10_1002_ange_202207279 crossref_primary_10_1088_1361_6528_aab6c1 crossref_primary_10_1039_C9QI01367A crossref_primary_10_1039_C9SE00700H crossref_primary_10_1016_j_jallcom_2018_07_168 crossref_primary_10_1016_j_apsusc_2019_05_301 crossref_primary_10_1039_D3NR06058F crossref_primary_10_1016_j_jelechem_2023_117640 crossref_primary_10_1016_j_jallcom_2020_156514 crossref_primary_10_1039_D0TA11910E crossref_primary_10_1007_s11237_024_09796_7 crossref_primary_10_1016_j_jes_2025_02_040 crossref_primary_10_1007_s10853_020_05182_5 crossref_primary_10_1002_celc_202001441 crossref_primary_10_1016_j_ijhydene_2024_12_388 crossref_primary_10_1016_j_nanoen_2017_04_011 crossref_primary_10_1021_acsaem_0c01538 crossref_primary_10_1016_j_ccr_2025_216613 crossref_primary_10_1039_C9SE00701F crossref_primary_10_1038_s41699_021_00249_6 crossref_primary_10_1002_slct_202000151 crossref_primary_10_1149_1945_7111_abc7e7 crossref_primary_10_1016_j_electacta_2019_04_065 crossref_primary_10_1021_acsami_4c11055 crossref_primary_10_1016_j_jallcom_2021_159311 crossref_primary_10_1016_S1872_2067_20_63724_X crossref_primary_10_1007_s11426_024_2215_y crossref_primary_10_1016_j_jpowsour_2019_227375 crossref_primary_10_1016_j_ijhydene_2019_07_214 crossref_primary_10_3390_molecules28114464 crossref_primary_10_1016_j_ijhydene_2024_02_196 crossref_primary_10_1039_D0CC00814A crossref_primary_10_1016_j_cej_2023_144348 crossref_primary_10_1016_j_mtphys_2020_100292 crossref_primary_10_31613_ceramist_2024_00164 crossref_primary_10_1016_j_jcis_2023_12_102 crossref_primary_10_1016_j_jpowsour_2019_05_037 crossref_primary_10_1016_j_colsurfa_2020_124507 crossref_primary_10_1021_acsami_9b18186 crossref_primary_10_3389_fchem_2022_951639 crossref_primary_10_1016_j_jpowsour_2018_07_125 crossref_primary_10_1016_j_jtice_2021_01_022 crossref_primary_10_1016_j_jpowsour_2017_08_099 crossref_primary_10_1007_s12598_024_02817_3 crossref_primary_10_1016_j_ultsonch_2023_106485 crossref_primary_10_1016_j_cej_2024_156219 crossref_primary_10_1016_j_electacta_2021_137726 crossref_primary_10_1016_j_jcis_2018_05_075 crossref_primary_10_3390_nano12152640 |
Cites_doi | 10.1002/anie.201408998 10.1039/C6EE00377J 10.1039/C4CS00160E 10.1039/C6TA02334G 10.1039/C5CC02626A 10.1039/C5CC04936A 10.1021/am501256x 10.1021/acscatal.5b00349 10.1016/j.jpowsour.2015.06.098 10.1021/ja307507a 10.1039/c0jm03430d 10.1038/ncomms5477 10.1002/ange.201506480 10.1021/nl502775u 10.1021/cr1002326 10.1016/j.synthmet.2011.11.019 10.1016/j.ultsonch.2009.04.007 10.1021/nn5069836 10.1021/ja407115p 10.1002/smll.201302224 10.1039/C4CP02020K 10.1002/anie.201509758 10.1021/ja4027715 10.1039/C5SC02417J 10.1039/C4DT03803G 10.1016/j.mattod.2015.10.006 10.1016/j.elecom.2015.08.011 10.1016/j.jpowsour.2015.01.192 10.1016/j.jpowsour.2015.12.097 10.1016/j.elecom.2015.12.012 10.1016/j.jpowsour.2016.10.096 10.1039/C4CC08856E 10.1039/C3TC32578D 10.1002/ange.201301066 10.1039/C5CC05511C 10.1021/la801499y 10.1021/ja5096733 10.1016/j.ultsonch.2003.09.004 10.1038/srep13801 10.1002/pola.21646 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jpowsour.2017.02.062 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2755 |
EndPage | 200 |
ExternalDocumentID | 10_1016_j_jpowsour_2017_02_062 S0378775317302367 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SAC SCB SCE SEW SSH T9H VH1 VOH WUQ |
ID | FETCH-LOGICAL-c415t-e8f1931011fb2efb92978d0cc17d8e6d7be9272bc057ada2b95f2ef9101a99f53 |
IEDL.DBID | .~1 |
ISSN | 0378-7753 |
IngestDate | Thu Apr 24 23:12:32 EDT 2025 Tue Jul 01 01:39:59 EDT 2025 Fri Feb 23 02:31:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | In-situ intercalation Oxygen evolution reaction NiFe LDH Layered compounds Electrocatalysts |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-e8f1931011fb2efb92978d0cc17d8e6d7be9272bc057ada2b95f2ef9101a99f53 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jpowsour_2017_02_062 crossref_primary_10_1016_j_jpowsour_2017_02_062 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2017_02_062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-15 |
PublicationDateYYYYMMDD | 2017-04-15 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Journal of power sources |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Tang, Liu, Wu, Liu, Han, Han, Huang, Liu, Kang (bib29) 2014; 6 Ryu, Jung, Jang, Kim, Yoo (bib34) 2015; 5 Tian, Wan, Wang, Kang (bib19) 2004; 11 Wang, Zhong, Qin, Zhang (bib9) 2013; 125 Li, Zhao, Du, Wang, Hao, Liu, Guan (bib13) 2012; 162 Ma, Cao, Jaroniec, Qiao (bib25) 2016; 55 Long, Wang, Xiao, An, Yang (bib3) 2016; 19 Shinagawa, Garcia-Esparza, Takanabe (bib24) 2015; 5 Le Ngoc, Takaomi (bib16) 2010; 17 Viswanathan, Pickrahn, Luntz, Bent, Nørskov (bib8) 2014; 14 Bikkarolla, Papakonstantinou (bib39) 2015; 281 Trotochaud, Ranney, Williams, Boettcher (bib23) 2012; 134 Abellán, Carrasco, Coronado, Romero, Varela (bib7) 2014; 2 Xia, Zhu, Luo, Zeng, Guan, Ng, Zhang, Fan (bib10) 2014; 10 Hunter, Hieringer, Winkler, Graya, Müller (bib40) 2016; 9 Li, Hao, Abudula, Guan (bib1) 2016; 4 Jagadale, Guan, Li, Du, Ma, Hao, Abudula (bib11) 2016; 306 Han, Chen, Sun, Xua, Du (bib32) 2015; 51 Li, Guan, Du, Cao, Hao, Ma, Jagadale, Abudula (bib14) 2015; 51 Youn, Park, Kim, Magesh, Jang, Lee (bib15) 2015; 294 Wang, Zhan, Fu, Li, Sheng, Zhao, Xiao, Ma, Ma, Yao (bib18) 2008; 24 Yu, Shi, Liu, Wang, Yang, Wang, Yan, Sun, Jing (bib6) 2014; 16 Walter, Warren, McKone, Boettcher, Mi, Santori, Lewis (bib20) 2010; 110 McCrory, Jung, Peters, Jaramillo (bib21) 2013; 135 Gong, Li, Wang, Liang, Wu, Zhou, Wang, Regier, Wei, Dai (bib22) 2013; 135 Woo, Song, Kim, Kim, Ju, Lee, Kim, Choy, Hwang (bib5) 2011; 21 Liu, Liang, Liu, Sun, He, Asiri (bib35) 2015; 60 Fan, Li, Evans, Duan (bib2) 2014; 43 Song, Hu (bib4) 2014; 5 Long, Xiao, Wang, Zheng, Yang (bib30) 2015; 51 Li, Shao, An, Wang, Xu, Wei, Evansa, Duan (bib27) 2015; 6 Chen, Xu, Fang, Tong, Wu, Lu, Peng, Ding, Wu, Xie (bib12) 2015; 127 Song, Hu (bib31) 2014; 136 Paulusse, Sijbesma (bib17) 2006; 44 Li, Zhou, Luo, Xu, Li, Li, Cheng, Yuan (bib33) 2017; 341 Hyun, Ahilan, Kim, Shanmugam (bib37) 2016; 63 Zhu, Zhou, Chen, Chen, Su, Tadé, Shao (bib26) 2015; 54 Ma, Ma, Wang, Liang, Liu, Zhou, Sasak (bib28) 2015; 9 Yu, Jiang, Yang (bib38) 2015; 51 Lv, Zhu, Jiang, Yang, Liu, Su, Huang, Yao, Li (bib36) 2015; 44 Ryu (10.1016/j.jpowsour.2017.02.062_bib34) 2015; 5 Wang (10.1016/j.jpowsour.2017.02.062_bib18) 2008; 24 Tang (10.1016/j.jpowsour.2017.02.062_bib29) 2014; 6 Li (10.1016/j.jpowsour.2017.02.062_bib33) 2017; 341 Li (10.1016/j.jpowsour.2017.02.062_bib14) 2015; 51 Zhu (10.1016/j.jpowsour.2017.02.062_bib26) 2015; 54 Fan (10.1016/j.jpowsour.2017.02.062_bib2) 2014; 43 Hunter (10.1016/j.jpowsour.2017.02.062_bib40) 2016; 9 Long (10.1016/j.jpowsour.2017.02.062_bib3) 2016; 19 McCrory (10.1016/j.jpowsour.2017.02.062_bib21) 2013; 135 Ma (10.1016/j.jpowsour.2017.02.062_bib28) 2015; 9 Jagadale (10.1016/j.jpowsour.2017.02.062_bib11) 2016; 306 Han (10.1016/j.jpowsour.2017.02.062_bib32) 2015; 51 Le Ngoc (10.1016/j.jpowsour.2017.02.062_bib16) 2010; 17 Gong (10.1016/j.jpowsour.2017.02.062_bib22) 2013; 135 Li (10.1016/j.jpowsour.2017.02.062_bib1) 2016; 4 Long (10.1016/j.jpowsour.2017.02.062_bib30) 2015; 51 Song (10.1016/j.jpowsour.2017.02.062_bib4) 2014; 5 Youn (10.1016/j.jpowsour.2017.02.062_bib15) 2015; 294 Song (10.1016/j.jpowsour.2017.02.062_bib31) 2014; 136 Lv (10.1016/j.jpowsour.2017.02.062_bib36) 2015; 44 Viswanathan (10.1016/j.jpowsour.2017.02.062_bib8) 2014; 14 Bikkarolla (10.1016/j.jpowsour.2017.02.062_bib39) 2015; 281 Yu (10.1016/j.jpowsour.2017.02.062_bib38) 2015; 51 Yu (10.1016/j.jpowsour.2017.02.062_bib6) 2014; 16 Chen (10.1016/j.jpowsour.2017.02.062_bib12) 2015; 127 Li (10.1016/j.jpowsour.2017.02.062_bib13) 2012; 162 Abellán (10.1016/j.jpowsour.2017.02.062_bib7) 2014; 2 Trotochaud (10.1016/j.jpowsour.2017.02.062_bib23) 2012; 134 Xia (10.1016/j.jpowsour.2017.02.062_bib10) 2014; 10 Shinagawa (10.1016/j.jpowsour.2017.02.062_bib24) 2015; 5 Ma (10.1016/j.jpowsour.2017.02.062_bib25) 2016; 55 Paulusse (10.1016/j.jpowsour.2017.02.062_bib17) 2006; 44 Tian (10.1016/j.jpowsour.2017.02.062_bib19) 2004; 11 Woo (10.1016/j.jpowsour.2017.02.062_bib5) 2011; 21 Walter (10.1016/j.jpowsour.2017.02.062_bib20) 2010; 110 Li (10.1016/j.jpowsour.2017.02.062_bib27) 2015; 6 Liu (10.1016/j.jpowsour.2017.02.062_bib35) 2015; 60 Hyun (10.1016/j.jpowsour.2017.02.062_bib37) 2016; 63 Wang (10.1016/j.jpowsour.2017.02.062_bib9) 2013; 125 |
References_xml | – volume: 51 start-page: 1120 year: 2015 end-page: 1123 ident: bib30 article-title: Co intake mediated formation of ultrathin nanosheets of transition metal LDH—an advanced electrocatalyst for oxygen evolution reaction publication-title: Chem. Commun. – volume: 281 start-page: 243 year: 2015 end-page: 251 ident: bib39 article-title: CuCo publication-title: J. Power Sources – volume: 9 start-page: 1734 year: 2016 end-page: 1743 ident: bib40 article-title: Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity publication-title: Energy Environ. Sci. – volume: 14 start-page: 5853 year: 2014 end-page: 5857 ident: bib8 article-title: Nanoscale limitations in metal oxide electrocatalysts for oxygen evolution publication-title: Nano Lett. – volume: 341 start-page: 250 year: 2017 end-page: 256 ident: bib33 article-title: The urchin-like sphere arrays Co publication-title: J. Power Sources – volume: 21 start-page: 4286 year: 2011 end-page: 4292 ident: bib5 article-title: Mixed valence Zn–Co-layered double hydroxides and their exfoliated nanosheets with electrode functionality publication-title: J. Mater. Chem. – volume: 135 start-page: 16977 year: 2013 end-page: 16987 ident: bib21 article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 766 year: 2014 end-page: 773 ident: bib10 article-title: Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application publication-title: Small – volume: 9 start-page: 1977 year: 2015 end-page: 1984 ident: bib28 article-title: A superlattice of alternately stacked Ni–Fe hydroxide nanosheets and graphene for efficient splitting of water publication-title: ACS Nano – volume: 63 start-page: 44 year: 2016 end-page: 47 ident: bib37 article-title: The influence of Co publication-title: Electrochem. Commun. – volume: 43 start-page: 7040 year: 2014 end-page: 7066 ident: bib2 article-title: Catalytic applications of layered double hydroxides: recent advances and perspectives publication-title: Chem. Soc. Rev. – volume: 6 start-page: 6624 year: 2015 end-page: 6631 ident: bib27 article-title: Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions publication-title: Chem. Sci. – volume: 16 start-page: 17936 year: 2014 end-page: 17942 ident: bib6 article-title: Facile synthesis of exfoliated Co–Al LDH–carbon nanotube composites with high performance as supercapacitor electrodes publication-title: Phys. Chem. Chem. Phys. – volume: 135 start-page: 8452 year: 2013 end-page: 8455 ident: bib22 article-title: An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 7918 year: 2014 end-page: 7925 ident: bib29 article-title: Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation publication-title: ACS Appl. Mater. Interfaces – volume: 51 start-page: 14361 year: 2015 end-page: 14364 ident: bib38 article-title: Ultrathin nanosheets constructed CoMoO publication-title: Chem. Commun. – volume: 51 start-page: 11626 year: 2015 end-page: 11629 ident: bib32 article-title: High catalytic activity for water oxidation based on nanostructured nickel phosphide precursors publication-title: Chem. Commun. – volume: 24 start-page: 7635 year: 2008 end-page: 7638 ident: bib18 article-title: Switch from intra- to intermolecular h-bonds by ultrasound: induced gelation and distinct nanoscale morphologies publication-title: Langmuir – volume: 54 start-page: 3897 year: 2015 end-page: 3901 ident: bib26 article-title: SrNb publication-title: Angew. Chem. Int. Ed. – volume: 19 start-page: 213 year: 2016 end-page: 226 ident: bib3 article-title: Transition metal based layered double hydroxides tailored for energy conversion and storage publication-title: Mater. Today – volume: 51 start-page: 15012 year: 2015 end-page: 15014 ident: bib14 article-title: A sea anemone-like CuO/Co publication-title: Chem. Commun. – volume: 17 start-page: 186 year: 2010 end-page: 192 ident: bib16 article-title: Ultrasound stimulus effect on hydrogen bonding in networked alumina and polyacrylic acid slurry publication-title: Ultrason. Sonochem. – volume: 127 start-page: 14923 year: 2015 end-page: 14927 ident: bib12 article-title: Metallic Co publication-title: Angew. Chem. – volume: 44 start-page: 5445 year: 2006 end-page: 5453 ident: bib17 article-title: Ultrasound in polymer chemistry: revival of an established technique publication-title: J. Polym. Sci. Part A Polym. Chem. – volume: 136 start-page: 16481 year: 2014 end-page: 16484 ident: bib31 article-title: Ultrathin cobalt–manganese layered double hydroxide is an efficient oxygen evolution catalyst publication-title: J. Am. Chem. Soc. – volume: 162 start-page: 107 year: 2012 end-page: 113 ident: bib13 article-title: Capacitance behaviors of nanorod polyaniline films controllably synthesized by using a novel unipolar pulse electro-polymerization method publication-title: Synth. Met. – volume: 306 start-page: 526 year: 2016 end-page: 534 ident: bib11 article-title: Ultrathin nanoflakes of cobalt–manganese layered double hydroxide with high reversibility for asymmetric supercapacitor publication-title: J. Power Sources – volume: 5 year: 2014 ident: bib4 article-title: Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis publication-title: Nat. Commun. – volume: 55 start-page: 1138 year: 2016 end-page: 1142 ident: bib25 article-title: Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 399 year: 2004 end-page: 404 ident: bib19 article-title: Effects of ultrasound and additives on the function and structure of trypsin publication-title: Ultrason. Sonochem. – volume: 60 start-page: 92 year: 2015 end-page: 96 ident: bib35 article-title: Electrodeposition of cobalt-sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction publication-title: Electrochem. Commun. – volume: 5 start-page: 13801 year: 2015 ident: bib24 article-title: Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion publication-title: Sci. Rep. – volume: 134 start-page: 17253 year: 2012 end-page: 17261 ident: bib23 article-title: Solution-cast metal oxide thin film electrocatalysts for oxygen evolution publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 4148 year: 2015 end-page: 4154 ident: bib36 article-title: Hollow mesoporous NiCo publication-title: Dalton Trans. – volume: 125 start-page: 5356 year: 2013 end-page: 5361 ident: bib9 article-title: An efficient three-dimensional oxygen evolution electrode publication-title: Angew. Chem. – volume: 110 start-page: 6446 year: 2010 end-page: 6473 ident: bib20 article-title: Solar water splitting cells publication-title: Chem. Rev. – volume: 5 start-page: 4066 year: 2015 end-page: 4074 ident: bib34 article-title: In situ transformation of hydrogen-evolving CoP nanoparticles: toward efficient oxygen evolution catalysts bearing dispersed morphologies with Co-oxo/hydroxo molecular units publication-title: ACS Catal. – volume: 4 start-page: 11973 year: 2016 end-page: 12000 ident: bib1 article-title: Nanostructured catalysts for electrochemical water splitting: current state and prospects publication-title: J. Mater. Chem. A – volume: 2 start-page: 3723 year: 2014 end-page: 3731 ident: bib7 article-title: Alkoxide-intercalated CoFe-layered double hydroxides as precursors of colloidal nanosheet suspensions: structural, magnetic and electrochemical properties publication-title: J. Mater. Chem. C – volume: 294 start-page: 437 year: 2015 end-page: 443 ident: bib15 article-title: One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation publication-title: J. Power Sources – volume: 54 start-page: 3897 year: 2015 ident: 10.1016/j.jpowsour.2017.02.062_bib26 article-title: SrNb0.1Co0.7Fe0.2O3−δ Perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201408998 – volume: 9 start-page: 1734 year: 2016 ident: 10.1016/j.jpowsour.2017.02.062_bib40 article-title: Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00377J – volume: 43 start-page: 7040 year: 2014 ident: 10.1016/j.jpowsour.2017.02.062_bib2 article-title: Catalytic applications of layered double hydroxides: recent advances and perspectives publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00160E – volume: 4 start-page: 11973 year: 2016 ident: 10.1016/j.jpowsour.2017.02.062_bib1 article-title: Nanostructured catalysts for electrochemical water splitting: current state and prospects publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02334G – volume: 51 start-page: 11626 year: 2015 ident: 10.1016/j.jpowsour.2017.02.062_bib32 article-title: High catalytic activity for water oxidation based on nanostructured nickel phosphide precursors publication-title: Chem. Commun. doi: 10.1039/C5CC02626A – volume: 51 start-page: 15012 year: 2015 ident: 10.1016/j.jpowsour.2017.02.062_bib14 article-title: A sea anemone-like CuO/Co3O4 composite: an effective catalyst for electrochemical water splitting publication-title: Chem. Commun. doi: 10.1039/C5CC04936A – volume: 6 start-page: 7918 year: 2014 ident: 10.1016/j.jpowsour.2017.02.062_bib29 article-title: Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am501256x – volume: 5 start-page: 4066 year: 2015 ident: 10.1016/j.jpowsour.2017.02.062_bib34 article-title: In situ transformation of hydrogen-evolving CoP nanoparticles: toward efficient oxygen evolution catalysts bearing dispersed morphologies with Co-oxo/hydroxo molecular units publication-title: ACS Catal. doi: 10.1021/acscatal.5b00349 – volume: 294 start-page: 437 year: 2015 ident: 10.1016/j.jpowsour.2017.02.062_bib15 article-title: One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.06.098 – volume: 134 start-page: 17253 year: 2012 ident: 10.1016/j.jpowsour.2017.02.062_bib23 article-title: Solution-cast metal oxide thin film electrocatalysts for oxygen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/ja307507a – volume: 21 start-page: 4286 year: 2011 ident: 10.1016/j.jpowsour.2017.02.062_bib5 article-title: Mixed valence Zn–Co-layered double hydroxides and their exfoliated nanosheets with electrode functionality publication-title: J. Mater. Chem. doi: 10.1039/c0jm03430d – volume: 5 year: 2014 ident: 10.1016/j.jpowsour.2017.02.062_bib4 article-title: Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis publication-title: Nat. Commun. doi: 10.1038/ncomms5477 – volume: 127 start-page: 14923 year: 2015 ident: 10.1016/j.jpowsour.2017.02.062_bib12 article-title: Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction publication-title: Angew. Chem. doi: 10.1002/ange.201506480 – volume: 14 start-page: 5853 year: 2014 ident: 10.1016/j.jpowsour.2017.02.062_bib8 article-title: Nanoscale limitations in metal oxide electrocatalysts for oxygen evolution publication-title: Nano Lett. doi: 10.1021/nl502775u – volume: 110 start-page: 6446 year: 2010 ident: 10.1016/j.jpowsour.2017.02.062_bib20 article-title: Solar water splitting cells publication-title: Chem. Rev. doi: 10.1021/cr1002326 – volume: 162 start-page: 107 year: 2012 ident: 10.1016/j.jpowsour.2017.02.062_bib13 article-title: Capacitance behaviors of nanorod polyaniline films controllably synthesized by using a novel unipolar pulse electro-polymerization method publication-title: Synth. Met. doi: 10.1016/j.synthmet.2011.11.019 – volume: 17 start-page: 186 year: 2010 ident: 10.1016/j.jpowsour.2017.02.062_bib16 article-title: Ultrasound stimulus effect on hydrogen bonding in networked alumina and polyacrylic acid slurry publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2009.04.007 – volume: 9 start-page: 1977 year: 2015 ident: 10.1016/j.jpowsour.2017.02.062_bib28 article-title: A superlattice of alternately stacked Ni–Fe hydroxide nanosheets and graphene for efficient splitting of water publication-title: ACS Nano doi: 10.1021/nn5069836 – volume: 135 start-page: 16977 year: 2013 ident: 10.1016/j.jpowsour.2017.02.062_bib21 article-title: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407115p – volume: 10 start-page: 766 year: 2014 ident: 10.1016/j.jpowsour.2017.02.062_bib10 article-title: Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application publication-title: Small doi: 10.1002/smll.201302224 – volume: 16 start-page: 17936 year: 2014 ident: 10.1016/j.jpowsour.2017.02.062_bib6 article-title: Facile synthesis of exfoliated Co–Al LDH–carbon nanotube composites with high performance as supercapacitor electrodes publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP02020K – volume: 55 start-page: 1138 year: 2016 ident: 10.1016/j.jpowsour.2017.02.062_bib25 article-title: Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201509758 – volume: 135 start-page: 8452 year: 2013 ident: 10.1016/j.jpowsour.2017.02.062_bib22 article-title: An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4027715 – volume: 6 start-page: 6624 year: 2015 ident: 10.1016/j.jpowsour.2017.02.062_bib27 article-title: Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions publication-title: Chem. Sci. doi: 10.1039/C5SC02417J – volume: 44 start-page: 4148 year: 2015 ident: 10.1016/j.jpowsour.2017.02.062_bib36 article-title: Hollow mesoporous NiCo2O4 nanocages as efficient electrocatalysts for oxygen evolution reaction publication-title: Dalton Trans. doi: 10.1039/C4DT03803G – volume: 19 start-page: 213 year: 2016 ident: 10.1016/j.jpowsour.2017.02.062_bib3 article-title: Transition metal based layered double hydroxides tailored for energy conversion and storage publication-title: Mater. Today doi: 10.1016/j.mattod.2015.10.006 – volume: 60 start-page: 92 year: 2015 ident: 10.1016/j.jpowsour.2017.02.062_bib35 article-title: Electrodeposition of cobalt-sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2015.08.011 – volume: 281 start-page: 243 year: 2015 ident: 10.1016/j.jpowsour.2017.02.062_bib39 article-title: CuCo2O4 nanoparticles on nitrogenated graphene as highly efficient oxygen evolution catalyst publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.01.192 – volume: 306 start-page: 526 year: 2016 ident: 10.1016/j.jpowsour.2017.02.062_bib11 article-title: Ultrathin nanoflakes of cobalt–manganese layered double hydroxide with high reversibility for asymmetric supercapacitor publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.12.097 – volume: 63 start-page: 44 year: 2016 ident: 10.1016/j.jpowsour.2017.02.062_bib37 article-title: The influence of Co3V2O8 morphology on the oxygen evolution reaction activity and stability publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2015.12.012 – volume: 341 start-page: 250 year: 2017 ident: 10.1016/j.jpowsour.2017.02.062_bib33 article-title: The urchin-like sphere arrays Co3O4 as a bifunctional catalyst for hydrogen evolution reaction and oxygen evolution reaction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.10.096 – volume: 51 start-page: 1120 year: 2015 ident: 10.1016/j.jpowsour.2017.02.062_bib30 article-title: Co intake mediated formation of ultrathin nanosheets of transition metal LDH—an advanced electrocatalyst for oxygen evolution reaction publication-title: Chem. Commun. doi: 10.1039/C4CC08856E – volume: 2 start-page: 3723 year: 2014 ident: 10.1016/j.jpowsour.2017.02.062_bib7 article-title: Alkoxide-intercalated CoFe-layered double hydroxides as precursors of colloidal nanosheet suspensions: structural, magnetic and electrochemical properties publication-title: J. Mater. Chem. C doi: 10.1039/C3TC32578D – volume: 125 start-page: 5356 year: 2013 ident: 10.1016/j.jpowsour.2017.02.062_bib9 article-title: An efficient three-dimensional oxygen evolution electrode publication-title: Angew. Chem. doi: 10.1002/ange.201301066 – volume: 51 start-page: 14361 year: 2015 ident: 10.1016/j.jpowsour.2017.02.062_bib38 article-title: Ultrathin nanosheets constructed CoMoO4 porous flowers with high activity for electrocatalytic oxygen evolution publication-title: Chem. Commun. doi: 10.1039/C5CC05511C – volume: 24 start-page: 7635 year: 2008 ident: 10.1016/j.jpowsour.2017.02.062_bib18 article-title: Switch from intra- to intermolecular h-bonds by ultrasound: induced gelation and distinct nanoscale morphologies publication-title: Langmuir doi: 10.1021/la801499y – volume: 136 start-page: 16481 year: 2014 ident: 10.1016/j.jpowsour.2017.02.062_bib31 article-title: Ultrathin cobalt–manganese layered double hydroxide is an efficient oxygen evolution catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5096733 – volume: 11 start-page: 399 year: 2004 ident: 10.1016/j.jpowsour.2017.02.062_bib19 article-title: Effects of ultrasound and additives on the function and structure of trypsin publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2003.09.004 – volume: 5 start-page: 13801 year: 2015 ident: 10.1016/j.jpowsour.2017.02.062_bib24 article-title: Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion publication-title: Sci. Rep. doi: 10.1038/srep13801 – volume: 44 start-page: 5445 year: 2006 ident: 10.1016/j.jpowsour.2017.02.062_bib17 article-title: Ultrasound in polymer chemistry: revival of an established technique publication-title: J. Polym. Sci. Part A Polym. Chem. doi: 10.1002/pola.21646 |
SSID | ssj0001170 |
Score | 2.5836656 |
Snippet | Intercalation and exfoliation are effective approaches for enlarging the interlayer distance and increasing ion exchange capacity of layered materials. Here,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 193 |
SubjectTerms | Electrocatalysts In-situ intercalation Layered compounds NiFe LDH Oxygen evolution reaction |
Title | In-situ intercalation of NiFe LDH materials: An efficient approach to improve electrocatalytic activity and stability for water splitting |
URI | https://dx.doi.org/10.1016/j.jpowsour.2017.02.062 |
Volume | 347 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8NADD6hssCAeIrykgfW0FyayzVsFVCVVxdAYot6LykVSqs2FWJh519jXxMoEhIDY6I4iWzn_MVnf2bsVNpEYRTB71snOogVj4OUmDCFCrVMtRLG53TvB0n_Kb55Fs8r7KLuhaGyymrtX6zpfrWuzrQqbbYmed56CNvobIi2uaTBNwl1lMexJC8_e_8u86DJKn4nAf-W6OqlLuHR2WgyfqUkOZV4Sc_dmUS_B6iloNPbZBsVWoTu4oW22Iotttn6EofgDvu4LoJZXs6BiB-mqHGvahg7GOQ9C3eXfUBQuvCzc-gWYD1pBMYaqPnEoRxD7pMLFqqxOD6r84ZPBWp8oPkSMCwMIJT0xbRvgFgXXum-MEMY64und9lT7-rxoh9U8xUCjWG7DGzHIXxDVXCnIusUIiXZMaHWXJqOTYxUNo1kpDRiuqEZRioVDq9DgMGHaepEe481inFh9xnwRMXCtDlGRBe3aYA5d6E0Tmj0EG1sk4laqZmuyMdpBsZLVleZjbLaGBkZIwujDI3RZK0vucmCfuNPibS2WfbDkTKMEX_IHvxD9pCt0RFtNHFxxBrldG6PEa-U6sQ75Alb7V7f9gefZpLvcQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF4hOLQ9VDxalZbHHMrRxOvY3hiJAyJESQm5ABK3bfYlOUJORIyiXHrv7-kfZGZj0yAh5YC42h7b2pmd-XZ2dj7GfgqbKowiOL91qoNY8TjIqBNmokItMq0S43O6V4O0exv_ukvu1ti_-iwMlVVWvn_h0723rq40qtFsTPK8cR020dgQbXNBxDepqCorL-18huu26WmvjUo-iqLOxc15N6ioBQKNEasMbMshckFz5E5F1ikECaJlQq25MC2bGqFsFolIaYQzQzOMVJY4fA5jKx9mmSOqCPT7GzG6C6JNOP7zv66EqFz81gUuz-j3lo4lj45Hk_GMsvJUUyZ8s9A0ej0iLkW5zib7XMFTOFuMwBZbs8U2-7TUtHCH_e0VwTQvH4E6TTygir1uYexgkHcs9NtdQBS8MOwTOCvA-i4VGNygbmAO5Rhyn82wUPHw-DTSHL8KdNKCCC1gWBhA7Oqrd-eA4Bpm9F6YIm721dpf2O27jPpXtl6MC_uNAU9VnJgmxxDs4iYxpnMXCuMSjSapjd1lST2oUlfdzol0417WZW0jWStDkjJkGElUxi5rPMtNFv0-Vkpktc7kC8uVGJRWyH5_g-wh-9C9uerLfm9w-YN9pDu0y8WTPbZePjzafQRLpTrwxgns93vPhictTSu6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-situ+intercalation+of+NiFe+LDH+materials%3A+An+efficient+approach+to+improve+electrocatalytic+activity+and+stability+for+water+splitting&rft.jtitle=Journal+of+power+sources&rft.au=Li%2C+Xiumin&rft.au=Hao%2C+Xiaogang&rft.au=Wang%2C+Zhongde&rft.au=Abudula%2C+Abuliti&rft.date=2017-04-15&rft.issn=0378-7753&rft.volume=347&rft.spage=193&rft.epage=200&rft_id=info:doi/10.1016%2Fj.jpowsour.2017.02.062&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2017_02_062 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |