Novel cross-linked sulfonated poly (arylene ether ketone) membranes for direct methanol fuel cell

To prepare a cross-linked proton exchange membrane with low methanol permeability and high proton conductivity, poly (vinyl alcohol) is first blended with sulfonated poly (arylene ether ketone) bearing carboxylic acid groups (SPAEK-C) and then heated to induce a cross-linking reaction between the ca...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 35; no. 5; pp. 2176 - 2182
Main Authors Zhao, Chengji, Lin, Haidan, Na, Hui
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.03.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To prepare a cross-linked proton exchange membrane with low methanol permeability and high proton conductivity, poly (vinyl alcohol) is first blended with sulfonated poly (arylene ether ketone) bearing carboxylic acid groups (SPAEK-C) and then heated to induce a cross-linking reaction between the carboxyl groups in SPAEK-C and the hydroxyl groups in PVA. Fourier transform infrared spectroscopy is used to characterize and confirm the structure of SPAEK-C and the cross-linked membranes. The proton conductivity of the cross-linked membrane with 15% PVA in weight reaches up to 0.18 S cm −1 at 80 °C (100% relative humidity), which is higher than that of Nafion membrane, while the methanol permeability is nearly five times lower than Nafion. The ion-exchange capacity, water uptake and thermal stability are investigated to confirm their applicability in fuel cells.
AbstractList To prepare a cross-linked proton exchange membrane with low methanol permeability and high proton conductivity, poly (vinyl alcohol) is first blended with sulfonated poly (arylene ether ketone) bearing carboxylic acid groups (SPAEK-C) and then heated to induce a cross-linking reaction between the carboxyl groups in SPAEK-C and the hydroxyl groups in PVA. Fourier transform infrared spectroscopy is used to characterize and confirm the structure of SPAEK-C and the cross-linked membranes. The proton conductivity of the cross-linked membrane with 15% PVA in weight reaches up to 0.18 S cm −1 at 80 °C (100% relative humidity), which is higher than that of Nafion membrane, while the methanol permeability is nearly five times lower than Nafion. The ion-exchange capacity, water uptake and thermal stability are investigated to confirm their applicability in fuel cells.
To prepare a cross-linked proton exchange membrane with low methanol permeability and high proton conductivity, poly (vinyl alcohol) is first blended with sulfonated poly (arylene ether ketone) bearing carboxylic acid groups (SPAEK-C) and then heated to induce a cross-linking reaction between the carboxyl groups in SPAEK-C and the hydroxyl groups in PVA. Fourier transform infrared spectroscopy is used to characterize and confirm the structure of SPAEK-C and the cross-linked membranes. The proton conductivity of the cross-linked membrane with 15% PVA in weight reaches up to 0.18 S cm super(-1 at 80 degree C (100% relative humidity), which is higher than that of Nafion membrane, while the methanol permeability is nearly five times lower than Nafion. The ion-exchange capacity, water uptake and thermal stability are investigated to confirm their applicability in fuel cells.)
Author Zhao, Chengji
Na, Hui
Lin, Haidan
Author_xml – sequence: 1
  givenname: Chengji
  surname: Zhao
  fullname: Zhao, Chengji
– sequence: 2
  givenname: Haidan
  surname: Lin
  fullname: Lin, Haidan
– sequence: 3
  givenname: Hui
  surname: Na
  fullname: Na, Hui
  email: huina@jlu.edu.cn
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22602930$$DView record in Pascal Francis
BookMark eNqFkEtvUzEQhS1UJNLCX0DeIGBxLx77viyxoKp4SRVsYG059lhx6tjBdirl3-OQwoJNVzManXN05rskFzFFJOQlsB4YTO-2vd9ujhYj9pwx2QPvYZBPyAqWWXZiWOYLsmJiYp0AKZ-Ry1K2jMHMBrki-lu6x0BNTqV0wcc7tLQcgktR17buUzjSNzofQ4unWDeY6R3WVuAt3eFunXXEQl3K1PqMprZj3eiYAnWHUyyG8Jw8dToUfPEwr8jPTx9_3Hzpbr9__npzfduZAcba4Txpux4NGxzw0brZWkDDZjvAMji76BmcXhvHuDCCG-Ccz4tAqzkbJ2lQXJHX59x9Tr8OWKra-XIq0CqmQ1GysVpAjLwpXz0odTE6uPaE8UXts9-1TxXnE-NSsKabzro_dDK6fxJg6oRebdVf9OqEXgFXDX0zvv_PaHzV1adYs_bhcfuHsx0brnuPWRXjMRo8M1Y2-ccifgM8hagk
CODEN IJHEDX
CitedBy_id crossref_primary_10_1016_j_jpowsour_2014_11_114
crossref_primary_10_1002_app_36741
crossref_primary_10_1016_j_ijhydene_2019_10_166
crossref_primary_10_1039_C6RA09383C
crossref_primary_10_1002_er_7914
crossref_primary_10_1016_j_memsci_2016_03_059
crossref_primary_10_1007_s10965_013_0108_6
crossref_primary_10_1016_j_eurpolymj_2011_07_016
crossref_primary_10_1016_j_ijhydene_2020_02_101
crossref_primary_10_3390_polym4020913
crossref_primary_10_1039_C5RA24894A
crossref_primary_10_1016_j_ijhydene_2011_10_122
crossref_primary_10_1016_j_memsci_2012_07_038
crossref_primary_10_1016_j_memsci_2015_08_047
crossref_primary_10_1016_j_ijhydene_2016_08_113
crossref_primary_10_3390_membranes13070684
crossref_primary_10_3390_polym15061534
crossref_primary_10_1016_j_ijhydene_2011_06_025
crossref_primary_10_1039_C4PY00234B
crossref_primary_10_1002_er_1889
crossref_primary_10_20964_2016_12_18
crossref_primary_10_1080_25740881_2019_1587770
crossref_primary_10_1016_j_ssi_2019_02_005
crossref_primary_10_1007_s10965_013_0182_9
crossref_primary_10_1002_aenm_201100366
crossref_primary_10_1016_j_memsci_2014_12_002
crossref_primary_10_1007_s11581_013_1026_7
crossref_primary_10_1002_app_41760
crossref_primary_10_1149_2_0921514jes
crossref_primary_10_1016_j_polymer_2013_02_037
crossref_primary_10_1016_j_ijhydene_2011_04_044
crossref_primary_10_1080_19443994_2013_768748
crossref_primary_10_1016_j_ijhydene_2010_08_085
crossref_primary_10_1016_j_memsci_2018_09_023
crossref_primary_10_1016_j_jpowsour_2012_08_079
crossref_primary_10_1016_j_polymer_2021_123757
crossref_primary_10_1177_0095244312459283
crossref_primary_10_1016_j_ijhydene_2011_05_158
crossref_primary_10_1002_pola_29348
crossref_primary_10_1016_j_ijhydene_2016_01_066
crossref_primary_10_1016_j_ssi_2014_12_012
crossref_primary_10_1016_j_jpowsour_2020_228440
crossref_primary_10_1021_ie502491d
crossref_primary_10_1002_er_4348
crossref_primary_10_1016_j_matpr_2020_02_093
crossref_primary_10_1016_j_memsci_2011_07_010
crossref_primary_10_1039_C8RA01731J
crossref_primary_10_1016_j_ijhydene_2011_08_093
crossref_primary_10_1002_app_40256
crossref_primary_10_3390_nano9091292
crossref_primary_10_1016_j_ijhydene_2018_01_059
crossref_primary_10_1016_j_ijhydene_2011_09_085
crossref_primary_10_1039_c2cs15269j
crossref_primary_10_1016_j_electacta_2017_10_002
crossref_primary_10_3390_membranes12040419
crossref_primary_10_1016_j_jpowsour_2019_227427
crossref_primary_10_1016_j_jpowsour_2010_10_003
crossref_primary_10_1134_S1811238220020125
crossref_primary_10_1016_j_ijhydene_2017_08_167
ContentType Journal Article
Copyright 2009 Professor T. Nejat Veziroglu
2015 INIST-CNRS
Copyright_xml – notice: 2009 Professor T. Nejat Veziroglu
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SP
8FD
H8D
L7M
DOI 10.1016/j.ijhydene.2009.12.149
DatabaseName CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-3487
EndPage 2182
ExternalDocumentID 22602930
10_1016_j_ijhydene_2009_12_149
S0360319909021065
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
T9H
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SP
8FD
H8D
L7M
ID FETCH-LOGICAL-c415t-e76adb5c04f125df7dd1ec07d4184fd8a71fabcf023c32c1222783eda20569ce3
IEDL.DBID .~1
ISSN 0360-3199
IngestDate Fri Jul 11 16:32:31 EDT 2025
Mon Jul 21 09:12:00 EDT 2025
Tue Jul 01 03:39:11 EDT 2025
Thu Apr 24 22:59:34 EDT 2025
Fri Feb 23 02:34:47 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Sulfonated poly (arylene ether ketone)
Proton exchange membrane
Cross-linking
Poly (vinyl alcohol)
Fuel cell
Relative humidity
Stability
Alcohol fuel cells
Infrared spectrometry
Polyvinylalcohol
Proton conductivity
Membrane
Ion exchange
Proton exchange
Methanol
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-e76adb5c04f125df7dd1ec07d4184fd8a71fabcf023c32c1222783eda20569ce3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 901681352
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_901681352
pascalfrancis_primary_22602930
crossref_primary_10_1016_j_ijhydene_2009_12_149
crossref_citationtrail_10_1016_j_ijhydene_2009_12_149
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2009_12_149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-03-01
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of hydrogen energy
PublicationYear 2010
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Jung, Weng, Su, Wang, Yu, Lin (bib5) 2008; 33
Hou, Sun, Wu, Jin, Xin (bib7) 2008; 33
Lin, Zhao, Cui, Ma, Fu, Na (bib24) 2009; 193
Costamagna, Srinivasan (bib1) 2001; 102
Krumova, Lopez, Benavente, Mijangos, Perena (bib19) 2000; 41
Kreuer (bib29) 2001; 185
Sen, Uenueguer, Ata, Bozkurt (bib4) 2008; 33
Rahman, Aiba, Susan, Watanabe (bib13) 2004; 50
Woo, Oh, Kang, Jung (bib27) 2003; 220
Xing, Robertson, Guiver, Mikhailenko, Kaliaguine (bib10) 2005; 46
Carretta, Tricoli, Picchioni (bib28) 2000; 166
Kim, Park, Rhim, Lee (bib22) 2005; 176
Bouchet, Siebert (bib9) 1999; 118
Hickner, Ghassemi, Kim, Einsla, McGrath (bib11) 2004; 104
Asensio, Borros (bib8) 2003; 5
Li, Zhang, Wang, Li, Zhang (bib25) 2009; 50
Kundu, Kim, Ahn, Han, Shul (bib15) 2007; 171
Jung, Jung, Yang, Peak, Jung, Kim (bib6) 2007; 32
Lebrun, Silva, Metayer (bib18) 2002; 84
Hwang, Chang, Weng, Su, Chen (bib2) 2008; 33
Oh, Lee, Yoo, Kim, Han, Kim (bib16) 2008; 323
Rhima, Park, Lee, Jun, Kim, Lee (bib26) 2004; 238
Wang, Hickner, Kim, Zawodzinski, McGrath (bib12) 2002; 197
Guo, Pintauro, Tang, O'Connor (bib17) 1999; 154
Alberti, Casciola (bib3) 2003; 33
Kim, Kim, Lee, Kim (bib20) 1992; 44
Xing, Robertson Gilles, Guiver Michael, Mikhailenko, Wang, Kaliaguine (bib30) 2004; 229
Marechal (bib21) 1989; vol. 6
Cai, Shao, Zhong, Zhao, Zhang, Li (bib14) 2007; 297
Silva, Muniz, Rubira (bib23) 2008; 49
References_xml – volume: 41
  start-page: 9265
  year: 2000
  end-page: 9272
  ident: bib19
  article-title: Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol)
  publication-title: Polymer
– volume: 185
  start-page: 29
  year: 2001
  end-page: 39
  ident: bib29
  article-title: On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells
  publication-title: J Membr Sci
– volume: 104
  start-page: 4587
  year: 2004
  end-page: 4612
  ident: bib11
  article-title: Alternative polymer systems for proton exchange membranes (PEMs)
  publication-title: Chem Rev
– volume: 46
  start-page: 3257
  year: 2005
  end-page: 3263
  ident: bib10
  article-title: Synthesis and characterization of poly(aryl ether ketone) copolymers containing (hexafluoroisopropylidene)-diphenol moiety as proton exchange membrane materials
  publication-title: Polymer
– volume: 44
  start-page: 1823
  year: 1992
  end-page: 1828
  ident: bib20
  article-title: Controlled release of riboflavin and insulin through crosslinked poly(vinyl alcohol)/chitosan blend membrane
  publication-title: J Appl Polym Sci
– volume: 197
  start-page: 231
  year: 2002
  end-page: 242
  ident: bib12
  article-title: Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes
  publication-title: J Membr Sci
– volume: 32
  start-page: 903
  year: 2007
  end-page: 907
  ident: bib6
  article-title: Methanol crossover through PtRu/nafion composite membrane for a direct methanol fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 33
  start-page: 3402
  year: 2008
  end-page: 3409
  ident: bib7
  article-title: Zirconium phosphate/Nafion115 composite membrane for high-concentration DMFC
  publication-title: Int J Hydrogen Energy
– volume: 50
  start-page: 633
  year: 2004
  end-page: 638
  ident: bib13
  article-title: Proton exchange membranes based on sulfonimide for fuel cell applications
  publication-title: Electrochim Acta
– volume: 50
  start-page: 3600
  year: 2009
  end-page: 3608
  ident: bib25
  article-title: Dispersions of carbon nanotube in sulfonated poly[bis(benzimidazobenzisoquinolinones)] and their proton-conducting composite membranes
  publication-title: Polymer
– volume: 171
  start-page: 86
  year: 2007
  end-page: 91
  ident: bib15
  article-title: Formation and evaluation of semi-IPN of nafion 117 membrane for direct methanol fuel cell: 1. Crosslinked sulfonated polystyrene in the pores of nafion 117
  publication-title: J Power Sources
– volume: 33
  start-page: 3801
  year: 2008
  end-page: 3807
  ident: bib2
  article-title: Development of a small vehicular PEM fuel cell system
  publication-title: Int J Hydrogen Energy
– volume: 166
  start-page: 189
  year: 2000
  end-page: 197
  ident: bib28
  article-title: Ionomeric membranes based on partially sulfonated poly(styrene): synthesis, proton conduction and methanol permeation
  publication-title: J Membr Sci
– volume: 118
  start-page: 287
  year: 1999
  end-page: 299
  ident: bib9
  article-title: Proton conduction in acid doped polybenzimidazole
  publication-title: Solid State Ionics
– volume: vol. 6
  start-page: 1
  year: 1989
  ident: bib21
  publication-title: Comprehensive polymer science
– volume: 5
  start-page: 967
  year: 2003
  end-page: 972
  ident: bib8
  article-title: Enhanced conductivity in polyanion-containing polybenzimidazoles. Improved materials for proton-exchange membranes and PEM fuel cells
  publication-title: Electrochem Commun
– volume: 238
  start-page: 143
  year: 2004
  end-page: 151
  ident: bib26
  article-title: Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes
  publication-title: J Membr Sci
– volume: 323
  start-page: 309
  year: 2008
  end-page: 315
  ident: bib16
  article-title: Synthesis of novel crosslinked sulfonated poly(ether sulfone)s using bisazide and their properties for fuel cell application
  publication-title: J Membr Sci
– volume: 102
  start-page: 253
  year: 2001
  end-page: 269
  ident: bib1
  article-title: Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: part II. Engineering, technology development and application aspects
  publication-title: J Power Sources
– volume: 33
  start-page: 2413
  year: 2008
  end-page: 2417
  ident: bib5
  article-title: Nafion/PTFE/silicate membranes for high-temperature proton exchange membrane fuel cells
  publication-title: Int J Hydrogen Energy
– volume: 84
  start-page: 1572
  year: 2002
  end-page: 1580
  ident: bib18
  article-title: Elaboration of ion-exchange membranes with semi-interpenetrating polymer networks containing poly(vinyl alcohol) as polymer matrix
  publication-title: J Appl Polym Sci
– volume: 229
  start-page: 95
  year: 2004
  end-page: 106
  ident: bib30
  article-title: Synthesis and characterization of sulfonated poly (ether ether ketone) for proton exchange membrane
  publication-title: J Membr Sci
– volume: 220
  start-page: 31
  year: 2003
  end-page: 45
  ident: bib27
  article-title: Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell
  publication-title: J Membr Sci
– volume: 33
  start-page: 2808
  year: 2008
  end-page: 2815
  ident: bib4
  article-title: Anhydrous proton conducting membranes for PEM fuel cells based on nafion/azole composites
  publication-title: Int J Hydrogen Energy
– volume: 297
  start-page: 162
  year: 2007
  end-page: 173
  ident: bib14
  article-title: Properties of composite membranes based on sulfonated poly(ether ether ketone)s (SPEEK)/phenoxy resin (PHR) for direct methanol fuel cells usages
  publication-title: J Membr Sci
– volume: 193
  start-page: 507
  year: 2009
  end-page: 514
  ident: bib24
  article-title: Novel sulfonated poly(arylene ether ketone) copolymers bearing carboxylic or benzimidazole pendant groups for proton exchange membranes
  publication-title: J Power Sources
– volume: 176
  start-page: 117
  year: 2005
  end-page: 126
  ident: bib22
  article-title: Proton conductivity and methanol transport behavior of cross-linked PVA/PAA/silica hybrid membranes
  publication-title: Solid State Ionics
– volume: 49
  start-page: 4066
  year: 2008
  end-page: 4075
  ident: bib23
  article-title: Multiple hydrophilic polymer ultra-thin layers covalently anchored to polyethylene films
  publication-title: Polymer
– volume: 33
  start-page: 129
  year: 2003
  end-page: 154
  ident: bib3
  article-title: Composite membranes for medium-temperature PEM fuel cells
  publication-title: Annu Rev Mater Res
– volume: 154
  start-page: 175
  year: 1999
  end-page: 181
  ident: bib17
  article-title: Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes
  publication-title: J Membr Sci
SSID ssj0017049
Score 2.2354956
Snippet To prepare a cross-linked proton exchange membrane with low methanol permeability and high proton conductivity, poly (vinyl alcohol) is first blended with...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2176
SubjectTerms Applied sciences
Cross-linking
Crosslinking
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Ethers
Exact sciences and technology
Fuel cell
Fuel cells
Ketones
Membranes
Methyl alcohol
Permeability
Poly (vinyl alcohol)
Polyvinyl alcohols
Proton exchange membrane
Sulfonated poly (arylene ether ketone)
Title Novel cross-linked sulfonated poly (arylene ether ketone) membranes for direct methanol fuel cell
URI https://dx.doi.org/10.1016/j.ijhydene.2009.12.149
https://www.proquest.com/docview/901681352
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iF0XEJ9ZHycGDHtZu0uzrKKJUxV5U8LZkkwm2bh_YVujF3-7MPooi4sHbsmw24Ztk5pvdeTB2opFTyCij9u0y9JSOrReHGgUCSoDvnAsMJSffd8POk7p9Dp6X2GWdC0NhlZXuL3V6oa2rO60Kzda412s9oO6lFJyEIgvRsaFEc6Ui2uXnH4swDxFVFBgf9ujpL1nC_fNe_2WOxxvKupVCot5IfjNQ62M9Qdhc2e_ih-ou7NH1JtuoiCS_KNe6xZZguM3WvpQX3GG6O3qHnBfzePSnFiyfzHJHH8zxcjzK5_xUv83R8AAvEn_5K1Bx7jM-gAG60agGOZJaXmLEqdu0Ho5y7mb0WsjzXfZ0ffV42fGqlgqeQUs99SAKtc0C4yuHzMa6yFoBxo-sQk_P2VhHwunMOLTkpi2NKDJl22C1RKKUGGjvseUhrmOfcRGawMoI2gYEsrpEB5mSwrpYx1KhX9lgQY1jaqp649T2Ik_rwLJ-WuNPzTCTVEh0RJIGay3GjcuKG3-OSGoxpd_2Topm4c-xzW9yXUyJtNRHKuQ3GK8FneLJI2wR_dFskiKTCmOBBPbgH_MfstUyHoGi2o7Y8vRtBsdIc6ZZs9jHTbZycXPX6X4Cjs__GQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5ROLRVhaAPNS0PHzjQwyZr7_tYoaIASS6AxM3y2mORsCQRyVbKpb-9431EoKrKgdtqtV5bM_bMN7sz8wGcKMIUIskdfbuIvVClxktjRQrBkKNvrY20K04ejuL-bXh5F91twVlbC-PSKhvbX9v0ylo3d3qNNHvz8bh3TbbXleBkLrOQApvoDeyEdHwdjUH3zzrPgycNBqanPff4szLhSXc8uV_R-ca6cSUXZDiy_3moD3O1ILnZmvDiH9tdOaTzPdhtkCT7WS92H7Zw-hHeP-sv-AnUaPYbC1bN47lftWjYoiys-2JOl_NZsWKn6mlFngdZVfnLHtB15_7BHvGR4miyg4xQLauFxBzdtJrOCmZL91osis9we_7r5qzvNZwKniZXvfQwiZXJI-2HlqCNsYkxHLWfmJBCPWtSlXCrcm3JletAaF6VygZolCCklGkMvsD2lNbxFRiPdWREgoFGTrAuU1EeCm5sqlIRUmDZgaiVo9RNw3HHe1HINrNsIlv5OzbMTHJBkUjWgd563LxuubFxRNaqSb7YPJL8wsaxRy_0up6ScKlPWMjvAGsVLenoOdmS9GflQhKUilNOCPbbK-Y_hrf9m-FADi5GV9_hXZ2c4FLcDmB7-VTiIWGeZX5U7em_VBQAtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+cross-linked+sulfonated+poly+%28arylene+ether+ketone%29+membranes+for+direct+methanol+fuel+cell&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Zhao%2C+Chengji&rft.au=Lin%2C+Haidan&rft.au=Na%2C+Hui&rft.date=2010-03-01&rft.issn=0360-3199&rft.volume=35&rft.issue=5&rft.spage=2176&rft.epage=2182&rft_id=info:doi/10.1016%2Fj.ijhydene.2009.12.149&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon