Scalable influence maximization for independent cascade model in large-scale social networks

Influence maximization, defined by Kempe et al. (SIGKDD 2003 ), is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under certain influence cascade models. The scalability of influence maximization is a key factor for enabling prevalent vira...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 25; no. 3; pp. 545 - 576
Main Authors Wang, Chi, Chen, Wei, Wang, Yajun
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.11.2012
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Influence maximization, defined by Kempe et al. (SIGKDD 2003 ), is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under certain influence cascade models. The scalability of influence maximization is a key factor for enabling prevalent viral marketing in large-scale online social networks. Prior solutions, such as the greedy algorithm of Kempe et al. (SIGKDD 2003 ) and its improvements are slow and not scalable, while other heuristic algorithms do not provide consistently good performance on influence spreads. In this article, we design a new heuristic algorithm that is easily scalable to millions of nodes and edges in our experiments. Our algorithm has a simple tunable parameter for users to control the balance between the running time and the influence spread of the algorithm. Our results from extensive simulations on several real-world and synthetic networks demonstrate that our algorithm is currently the best scalable solution to the influence maximization problem: (a) our algorithm scales beyond million-sized graphs where the greedy algorithm becomes infeasible, and (b) in all size ranges, our algorithm performs consistently well in influence spread—it is always among the best algorithms, and in most cases it significantly outperforms all other scalable heuristics to as much as 100–260% increase in influence spread.
AbstractList Influence maximization, defined by Kempe et al. (SIGKDD 2003), is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under certain influence cascade models. The scalability of influence maximization is a key factor for enabling prevalent viral marketing in large-scale online social networks. Prior solutions, such as the greedy algorithm of Kempe et al. (SIGKDD 2003) and its improvements are slow and not scalable, while other heuristic algorithms do not provide consistently good performance on influence spreads. In this article, we design a new heuristic algorithm that is easily scalable to millions of nodes and edges in our experiments. Our algorithm has a simple tunable parameter for users to control the balance between the running time and the influence spread of the algorithm. Our results from extensive simulations on several real-world and synthetic networks demonstrate that our algorithm is currently the best scalable solution to the influence maximization problem: (a) our algorithm scales beyond million-sized graphs where the greedy algorithm becomes infeasible, and (b) in all size ranges, our algorithm performs consistently well in influence spread-it is always among the best algorithms, and in most cases it significantly outperforms all other scalable heuristics to as much as 100-260% increase in influence spread.
Issue Title: Special Issue: Data Mining Technologies for Computational Social Science Influence maximization, defined by Kempe et al. (SIGKDD 2003), is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under certain influence cascade models. The scalability of influence maximization is a key factor for enabling prevalent viral marketing in large-scale online social networks. Prior solutions, such as the greedy algorithm of Kempe et al. (SIGKDD 2003) and its improvements are slow and not scalable, while other heuristic algorithms do not provide consistently good performance on influence spreads. In this article, we design a new heuristic algorithm that is easily scalable to millions of nodes and edges in our experiments. Our algorithm has a simple tunable parameter for users to control the balance between the running time and the influence spread of the algorithm. Our results from extensive simulations on several real-world and synthetic networks demonstrate that our algorithm is currently the best scalable solution to the influence maximization problem: (a) our algorithm scales beyond million-sized graphs where the greedy algorithm becomes infeasible, and (b) in all size ranges, our algorithm performs consistently well in influence spread--it is always among the best algorithms, and in most cases it significantly outperforms all other scalable heuristics to as much as 100-260% increase in influence spread.[PUBLICATION ABSTRACT]
Influence maximization, defined by Kempe et al. (SIGKDD 2003 ), is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under certain influence cascade models. The scalability of influence maximization is a key factor for enabling prevalent viral marketing in large-scale online social networks. Prior solutions, such as the greedy algorithm of Kempe et al. (SIGKDD 2003 ) and its improvements are slow and not scalable, while other heuristic algorithms do not provide consistently good performance on influence spreads. In this article, we design a new heuristic algorithm that is easily scalable to millions of nodes and edges in our experiments. Our algorithm has a simple tunable parameter for users to control the balance between the running time and the influence spread of the algorithm. Our results from extensive simulations on several real-world and synthetic networks demonstrate that our algorithm is currently the best scalable solution to the influence maximization problem: (a) our algorithm scales beyond million-sized graphs where the greedy algorithm becomes infeasible, and (b) in all size ranges, our algorithm performs consistently well in influence spread—it is always among the best algorithms, and in most cases it significantly outperforms all other scalable heuristics to as much as 100–260% increase in influence spread.
Author Chen, Wei
Wang, Chi
Wang, Yajun
Author_xml – sequence: 1
  givenname: Chi
  surname: Wang
  fullname: Wang, Chi
  email: chiwang1@illinois.edu
  organization: University of Illinois at Urbana-Champaign
– sequence: 2
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: Microsoft Research Asia
– sequence: 3
  givenname: Yajun
  surname: Wang
  fullname: Wang, Yajun
  organization: Microsoft Research Asia
BookMark eNp9kEFrFTEQx4NUsH36Abwt9OIldibZbOJRSluFBz1UwYMQstnZkpqXPJN9VP305vl6kEJ7SULm95sZ_ifsKOVEjL1FeI8A-qwiDGg4oOAgBsHxBTtGpSXXavh21N7S9FwZhFfspNY7AFBCwjH7fuNddGOkLqQ57ih56jbuV9iEP24JOXVzLq000ZbakZbOu-rd1KA8UWyVLrpyS7x9th41--Bil2i5z-VHfc1ezi5WevNwr9jXy4sv55_4-vrq8_nHNfc9qoUTmnkYRxBiVjAZZTSMM0pvBjOCEeT0pCfXw6QkqqkfFQpwQMYLrftBS7li7w59tyX_3FFd7CZUTzG6RHlXLaIcpJHamIaePkLv8q6ktp1FkFoM_QfVNwoPlC-51kKz3ZawceV3g-w-b3vI27a87T5vi83Rjxwfln8ZLsWF-KwpDmZtU9Itlf93ekr6Cyy7lco
CitedBy_id crossref_primary_10_1186_s40649_021_00090_3
crossref_primary_10_1007_s00607_021_00945_7
crossref_primary_10_1007_s10589_017_9958_x
crossref_primary_10_1007_s12652_020_01760_2
crossref_primary_10_12677_CSA_2018_89160
crossref_primary_10_1109_JSYST_2014_2369526
crossref_primary_10_1145_3664618
crossref_primary_10_32604_iasc_2023_026134
crossref_primary_10_1007_s13278_016_0392_3
crossref_primary_10_1007_s13278_020_00704_0
crossref_primary_10_1080_02664763_2020_1761948
crossref_primary_10_1016_j_envsoft_2024_106316
crossref_primary_10_1109_ACCESS_2020_2966056
crossref_primary_10_4018_JOEUC_302662
crossref_primary_10_1016_j_jnca_2016_01_004
crossref_primary_10_1109_ACCESS_2020_3029657
crossref_primary_10_4018_IJCBPL_298685
crossref_primary_10_2139_ssrn_3386417
crossref_primary_10_1109_ACCESS_2019_2940762
crossref_primary_10_1109_TCSS_2023_3243936
crossref_primary_10_1080_24725854_2019_1680909
crossref_primary_10_1016_j_omega_2021_102496
crossref_primary_10_1109_TNSE_2021_3091943
crossref_primary_10_1016_j_artint_2016_06_008
crossref_primary_10_1109_TCDS_2022_3141952
crossref_primary_10_1287_opre_2022_2290
crossref_primary_10_1109_TCSS_2022_3166182
crossref_primary_10_1016_j_ifacol_2017_08_2288
crossref_primary_10_1016_j_eswa_2020_114346
crossref_primary_10_2200_S00527ED1V01Y201308DTM037
crossref_primary_10_1098_rsif_2021_0435
crossref_primary_10_1371_journal_pone_0303051
crossref_primary_10_1016_j_chaos_2024_115192
crossref_primary_10_1016_j_is_2015_12_002
crossref_primary_10_1016_j_knosys_2022_109654
crossref_primary_10_1088_1742_6596_1881_2_022079
crossref_primary_10_1038_s41562_018_0346_z
crossref_primary_10_14778_3461535_3461536
crossref_primary_10_1177_26339137221128542
crossref_primary_10_3233_IDA_215790
crossref_primary_10_2139_ssrn_4160053
crossref_primary_10_3233_JIFS_169027
crossref_primary_10_1007_s10115_023_01982_8
crossref_primary_10_1155_2021_9988847
crossref_primary_10_1007_s10878_024_01238_3
crossref_primary_10_1007_s11432_018_9609_7
crossref_primary_10_1109_ACCESS_2021_3123248
crossref_primary_10_1109_TKDE_2017_2728064
crossref_primary_10_1007_s00224_016_9670_8
crossref_primary_10_1007_s10115_020_01461_4
crossref_primary_10_1016_j_physa_2021_125928
crossref_primary_10_1016_j_jocs_2017_10_015
crossref_primary_10_1016_j_swevo_2018_02_003
crossref_primary_10_1016_j_physa_2018_08_053
crossref_primary_10_1016_j_comcom_2025_108045
crossref_primary_10_1371_journal_pone_0199845
crossref_primary_10_30853_phil20220381
crossref_primary_10_3390_en11040953
crossref_primary_10_1016_j_eswa_2019_01_070
crossref_primary_10_3233_JIFS_200383
crossref_primary_10_14778_3681954_3682029
crossref_primary_10_1007_s00500_016_2068_3
crossref_primary_10_1007_s11192_018_2952_y
crossref_primary_10_1016_j_rsma_2025_104128
crossref_primary_10_1109_TCSS_2022_3148778
crossref_primary_10_1109_ACCESS_2018_2888895
crossref_primary_10_1038_s41598_018_32081_2
crossref_primary_10_1142_S0218194020400161
crossref_primary_10_1007_s11390_018_1820_9
crossref_primary_10_1007_s13278_018_0548_4
crossref_primary_10_1007_s11227_022_04418_2
crossref_primary_10_1007_s12652_019_01308_z
crossref_primary_10_1007_s41109_018_0062_7
crossref_primary_10_3390_info8040118
crossref_primary_10_1007_s10878_020_00674_1
crossref_primary_10_1016_j_ipm_2022_103161
crossref_primary_10_1016_j_knosys_2020_106600
crossref_primary_10_1016_j_tcs_2024_114813
crossref_primary_10_1089_big_2020_0259
crossref_primary_10_3233_JHS_170561
crossref_primary_10_1016_j_joi_2024_101545
crossref_primary_10_1016_j_swevo_2024_101609
crossref_primary_10_1007_s11277_023_10412_5
crossref_primary_10_1109_ACCESS_2020_3023185
crossref_primary_10_2200_S00759ED1V01Y201702DMK013
crossref_primary_10_1007_s00607_022_01125_x
crossref_primary_10_1016_j_swevo_2023_101424
crossref_primary_10_1007_s10878_020_00629_6
crossref_primary_10_1002_ett_3054
crossref_primary_10_1016_j_ins_2016_03_029
crossref_primary_10_1016_j_ins_2022_11_041
crossref_primary_10_1109_TCYB_2020_2989427
crossref_primary_10_1007_s13278_024_01357_z
crossref_primary_10_1007_s11042_021_11606_4
crossref_primary_10_1155_2023_4586047
crossref_primary_10_1142_S1793830915500378
crossref_primary_10_1109_ACCESS_2019_2900708
crossref_primary_10_1109_ACCESS_2020_2977424
crossref_primary_10_1007_s42452_020_03812_w
crossref_primary_10_1016_j_eswa_2022_118869
crossref_primary_10_1007_s00778_021_00679_0
crossref_primary_10_1016_j_eswa_2022_117657
crossref_primary_10_1016_j_physa_2021_126841
crossref_primary_10_1088_1742_5468_ab054b
crossref_primary_10_14778_3547305_3547324
crossref_primary_10_1016_j_eswa_2024_125393
crossref_primary_10_1088_1757_899X_392_6_062201
crossref_primary_10_1155_2017_5049836
crossref_primary_10_1155_2022_9168899
crossref_primary_10_1016_j_ins_2015_03_034
crossref_primary_10_1016_j_physa_2022_128179
crossref_primary_10_1088_1742_6596_1168_5_052038
crossref_primary_10_1371_journal_pone_0209372
crossref_primary_10_1007_s00500_023_09218_1
crossref_primary_10_1016_j_knosys_2020_106623
crossref_primary_10_1016_j_omega_2015_06_014
crossref_primary_10_1007_s10878_013_9686_9
crossref_primary_10_1089_big_2023_0117
crossref_primary_10_1109_TNSE_2020_2964882
crossref_primary_10_3390_app10249019
crossref_primary_10_1007_s12083_025_01909_w
crossref_primary_10_1016_j_procs_2020_06_037
crossref_primary_10_1007_s13278_024_01311_z
crossref_primary_10_1109_ACCESS_2019_2926439
crossref_primary_10_1007_s13278_023_01122_8
crossref_primary_10_1080_0144929X_2016_1212932
crossref_primary_10_1145_3233227
crossref_primary_10_1109_ACCESS_2019_2894155
crossref_primary_10_1103_PhysRevE_106_034316
crossref_primary_10_1145_3690644
crossref_primary_10_1038_s41598_017_00937_8
crossref_primary_10_1108_K_09_2019_0637
crossref_primary_10_1007_s13278_016_0360_y
crossref_primary_10_1016_j_inffus_2024_102808
crossref_primary_10_1051_matecconf_201823201011
crossref_primary_10_1007_s11227_021_04079_7
crossref_primary_10_1016_j_enbuild_2013_06_029
crossref_primary_10_1016_j_ins_2022_04_062
crossref_primary_10_1016_j_ejor_2019_04_010
crossref_primary_10_1016_j_tcs_2020_04_017
crossref_primary_10_1109_ACCESS_2018_2876141
crossref_primary_10_1109_TKDE_2021_3077491
crossref_primary_10_1093_comjnl_bxac073
crossref_primary_10_1007_s13278_021_00850_z
crossref_primary_10_1016_j_aci_2017_11_001
crossref_primary_10_1007_s41109_023_00594_z
crossref_primary_10_1007_s00607_021_00987_x
crossref_primary_10_1109_ACCESS_2019_2943412
crossref_primary_10_1177_0165551515602808
crossref_primary_10_1109_TCSS_2020_2998777
crossref_primary_10_1145_2809814
crossref_primary_10_1007_s10844_020_00629_2
crossref_primary_10_1007_s11036_018_1004_4
crossref_primary_10_1016_j_cosrev_2021_100393
crossref_primary_10_1142_S0219525924500048
crossref_primary_10_1016_j_knosys_2021_106942
crossref_primary_10_1186_s40649_016_0033_z
crossref_primary_10_1109_TNSE_2021_3137353
crossref_primary_10_1109_TCSS_2022_3192410
crossref_primary_10_1016_j_physa_2021_126318
crossref_primary_10_1016_j_comnet_2023_109693
crossref_primary_10_1038_s41598_019_41822_w
crossref_primary_10_1109_TFUZZ_2017_2755581
crossref_primary_10_1016_j_ejor_2017_10_056
crossref_primary_10_1016_j_neucom_2023_02_059
crossref_primary_10_1007_s13278_024_01336_4
Cites_doi 10.1145/1557019.1557047
10.1145/988672.988739
10.1145/335305.335326
10.1145/285055.285059
10.1145/956750.956769
10.1137/1.9781611972818.33
10.1145/1835804.1835934
10.1137/0208032
10.1145/1557019.1557108
10.1145/1718487.1718518
10.1007/11871637_27
10.1145/775047.775057
10.21236/ADA476748
10.1145/1281192.1281239
10.1145/1526709.1526806
10.1109/ICDM.2010.118
10.1007/BF01588971
10.1145/502512.502525
10.1145/1566374.1566421
10.1145/1835804.1835933
10.1145/2009916.2009945
10.1016/0378-8733(78)90021-7
ContentType Journal Article
Copyright The Author(s) 2012
Copyright_xml – notice: The Author(s) 2012
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10618-012-0262-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts
ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 576
ExternalDocumentID 2748849681
10_1007_s10618_012_0262_1
Genre Feature
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c415t-e18f6bb022f50d85870bf13c868b082ea7d7da40d5315d4b5120a0e8c27746733
IEDL.DBID BENPR
ISSN 1384-5810
IngestDate Fri Jul 11 00:12:48 EDT 2025
Sat Aug 23 13:48:24 EDT 2025
Tue Jul 01 00:40:29 EDT 2025
Thu Apr 24 23:06:41 EDT 2025
Fri Feb 21 02:33:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Influence maximization
Social networks
Viral marketing
Independent cascade model
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-e18f6bb022f50d85870bf13c868b082ea7d7da40d5315d4b5120a0e8c27746733
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1037264954
PQPubID 43030
PageCount 32
ParticipantIDs proquest_miscellaneous_1136383788
proquest_journals_1037264954
crossref_primary_10_1007_s10618_012_0262_1
crossref_citationtrail_10_1007_s10618_012_0262_1
springer_journals_10_1007_s10618_012_0262_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-01
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2012
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BrinSPageLThe anatomy of a large-scale hypertextual web search engineComput Netw1998301-7107117
MisnerIRThe world’s best known marketing secret: Building your business with word-of-mouth marketing19992AustinBard Press
Cui P, Wang F, Liu S, Ou M, Yang S, Sun L (2011) Who should share what?: item-level social influence prediction for users and posts ranking. In: SIGIR ’11
Kimura M, Saito K (2006) Tractable models for information diffusion in social networks. In: PKDD ’06
Aiello W, Chung FRK, Lu L (2000) A random graph model for massive graphs. In: STOC ’00
Cha M, Mislove A, Gummadi KP (2009) A measurement-driven analysis of information propagation in the flickr social network. In: WWW ’09
Rodriguez MG, Leskovec J, Krause A (2010) Inferring networks of diffusion and influence. In: KDD ’10
Streeter M, Golovin D (2007) An online algorithm for maximizing submodular functions. Technical Report CMU-CS-07-171, Carnegie Mellon University, Pittsburgh
Chen W, Collins A, Cummings R, Ke T, Liu Z, Rincon D, Sun X, Wang Y, Wei W, Yuan Y (2011) Influence maximization in social networks when negative opinions may emerge and propagate. In: SDM ’11
Richardson M, Domingos P (2002) Mining knowledge-sharing sites for viral marketing. In: KDD ’02
ValiantLGThe complexity of enumeration and reliability problemsSIAM J Comput1979834104215392580419.6808210.1137/0208032
Goyal A, Bonchi F, Lakshmanan LV (2010) Learning influence probabilities in social networks. In: WSDM ’10
NemhauserGWolseyLFisherMAn analysis of the approximations for maximizing submodular set functionsMath Program1978142652945038660374.9004510.1007/BF01588971
Bakshy E, Karrer B, Adamic LA (2009) Social influence and the diffusion of user-created content. In: EC ’09: Proc. 10th ACM Conf. Electronic Commerce
Chen W, Yuan Y, Zhang L (2010b) Scalable influence maximization in social networks under the linear threshold model. In: ICDM ’10
Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: KDD ’09
FeigeUA threshold of ln n for approximating set coverJ ACM199845463465216750951065.6857310.1145/285055.285059
Chen W, Wang C, Wang Y (2010a) Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: KDD ’10
Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance NS (2007) Cost-effective outbreak detection in networks. In: KDD ’07
Domingos P, Richardson M (2001) Mining the network value of customers. In: KDD ’01
FreemanLCentrality in social networks: conceptual clarificationSoc Netw1979121523910.1016/0378-8733(78)90021-7
Kempe D, Kleinberg JM, Tardos É (2003) Maximizing the spread of influence through a social network. In: KDD ’03
Tang J, Sun J, Wang C, Yang Z (2009) Social influence analysis in large-scale networks. In: KDD ’09
Nail J (2004) The consumer advertising backlash. Forrester Research and Intelliseek Market Research Report
Gruhl D, Guha RV, Liben-Nowell D, Tomkins A (2004) Information diffusion through blogspace. In: WWW ’04
VaziraniVVApproximation algorithms2004BerlinSpringer
U Feige (262_CR11) 1998; 45
S Brin (262_CR3) 1998; 30
262_CR10
IR Misner (262_CR18) 1999
262_CR8
262_CR9
262_CR24
262_CR23
262_CR22
262_CR2
262_CR1
G Nemhauser (262_CR20) 1978; 14
262_CR6
VV Vazirani (262_CR26) 2004
262_CR7
262_CR4
262_CR5
262_CR21
262_CR17
262_CR16
262_CR15
262_CR14
262_CR13
L Freeman (262_CR12) 1979; 1
262_CR19
LG Valiant (262_CR25) 1979; 8
References_xml – reference: Chen W, Collins A, Cummings R, Ke T, Liu Z, Rincon D, Sun X, Wang Y, Wei W, Yuan Y (2011) Influence maximization in social networks when negative opinions may emerge and propagate. In: SDM ’11
– reference: Domingos P, Richardson M (2001) Mining the network value of customers. In: KDD ’01
– reference: Gruhl D, Guha RV, Liben-Nowell D, Tomkins A (2004) Information diffusion through blogspace. In: WWW ’04
– reference: FeigeUA threshold of ln n for approximating set coverJ ACM199845463465216750951065.6857310.1145/285055.285059
– reference: ValiantLGThe complexity of enumeration and reliability problemsSIAM J Comput1979834104215392580419.6808210.1137/0208032
– reference: FreemanLCentrality in social networks: conceptual clarificationSoc Netw1979121523910.1016/0378-8733(78)90021-7
– reference: Goyal A, Bonchi F, Lakshmanan LV (2010) Learning influence probabilities in social networks. In: WSDM ’10
– reference: Cui P, Wang F, Liu S, Ou M, Yang S, Sun L (2011) Who should share what?: item-level social influence prediction for users and posts ranking. In: SIGIR ’11
– reference: Aiello W, Chung FRK, Lu L (2000) A random graph model for massive graphs. In: STOC ’00
– reference: MisnerIRThe world’s best known marketing secret: Building your business with word-of-mouth marketing19992AustinBard Press
– reference: Cha M, Mislove A, Gummadi KP (2009) A measurement-driven analysis of information propagation in the flickr social network. In: WWW ’09
– reference: Bakshy E, Karrer B, Adamic LA (2009) Social influence and the diffusion of user-created content. In: EC ’09: Proc. 10th ACM Conf. Electronic Commerce
– reference: Streeter M, Golovin D (2007) An online algorithm for maximizing submodular functions. Technical Report CMU-CS-07-171, Carnegie Mellon University, Pittsburgh
– reference: Nail J (2004) The consumer advertising backlash. Forrester Research and Intelliseek Market Research Report
– reference: Kimura M, Saito K (2006) Tractable models for information diffusion in social networks. In: PKDD ’06
– reference: BrinSPageLThe anatomy of a large-scale hypertextual web search engineComput Netw1998301-7107117
– reference: Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance NS (2007) Cost-effective outbreak detection in networks. In: KDD ’07
– reference: Chen W, Wang C, Wang Y (2010a) Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: KDD ’10
– reference: Rodriguez MG, Leskovec J, Krause A (2010) Inferring networks of diffusion and influence. In: KDD ’10
– reference: Kempe D, Kleinberg JM, Tardos É (2003) Maximizing the spread of influence through a social network. In: KDD ’03
– reference: VaziraniVVApproximation algorithms2004BerlinSpringer
– reference: NemhauserGWolseyLFisherMAn analysis of the approximations for maximizing submodular set functionsMath Program1978142652945038660374.9004510.1007/BF01588971
– reference: Chen W, Yuan Y, Zhang L (2010b) Scalable influence maximization in social networks under the linear threshold model. In: ICDM ’10
– reference: Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: KDD ’09
– reference: Richardson M, Domingos P (2002) Mining knowledge-sharing sites for viral marketing. In: KDD ’02
– reference: Tang J, Sun J, Wang C, Yang Z (2009) Social influence analysis in large-scale networks. In: KDD ’09
– ident: 262_CR5
  doi: 10.1145/1557019.1557047
– ident: 262_CR14
  doi: 10.1145/988672.988739
– ident: 262_CR1
  doi: 10.1145/335305.335326
– volume: 45
  start-page: 634
  issue: 4
  year: 1998
  ident: 262_CR11
  publication-title: J ACM
  doi: 10.1145/285055.285059
– ident: 262_CR15
  doi: 10.1145/956750.956769
– ident: 262_CR8
  doi: 10.1137/1.9781611972818.33
– ident: 262_CR6
  doi: 10.1145/1835804.1835934
– volume: 8
  start-page: 410
  issue: 3
  year: 1979
  ident: 262_CR25
  publication-title: SIAM J Comput
  doi: 10.1137/0208032
– ident: 262_CR24
  doi: 10.1145/1557019.1557108
– ident: 262_CR13
  doi: 10.1145/1718487.1718518
– ident: 262_CR16
  doi: 10.1007/11871637_27
– ident: 262_CR21
  doi: 10.1145/775047.775057
– volume-title: The world’s best known marketing secret: Building your business with word-of-mouth marketing
  year: 1999
  ident: 262_CR18
– ident: 262_CR23
  doi: 10.21236/ADA476748
– ident: 262_CR17
  doi: 10.1145/1281192.1281239
– volume-title: Approximation algorithms
  year: 2004
  ident: 262_CR26
– ident: 262_CR4
  doi: 10.1145/1526709.1526806
– ident: 262_CR7
  doi: 10.1109/ICDM.2010.118
– volume: 30
  start-page: 107
  issue: 1-7
  year: 1998
  ident: 262_CR3
  publication-title: Comput Netw
– volume: 14
  start-page: 265
  year: 1978
  ident: 262_CR20
  publication-title: Math Program
  doi: 10.1007/BF01588971
– ident: 262_CR10
  doi: 10.1145/502512.502525
– ident: 262_CR2
  doi: 10.1145/1566374.1566421
– ident: 262_CR22
  doi: 10.1145/1835804.1835933
– ident: 262_CR9
  doi: 10.1145/2009916.2009945
– ident: 262_CR19
– volume: 1
  start-page: 215
  year: 1979
  ident: 262_CR12
  publication-title: Soc Netw
  doi: 10.1016/0378-8733(78)90021-7
SSID ssj0005230
Score 2.4710712
Snippet Influence maximization, defined by Kempe et al. (SIGKDD 2003 ), is the problem of finding a small set of seed nodes in a social network that maximizes the...
Issue Title: Special Issue: Data Mining Technologies for Computational Social Science Influence maximization, defined by Kempe et al. (SIGKDD 2003), is the...
Influence maximization, defined by Kempe et al. (SIGKDD 2003), is the problem of finding a small set of seed nodes in a social network that maximizes the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 545
SubjectTerms Algorithms
Approximation
Artificial Intelligence
Cascades
Chemistry and Earth Sciences
Computer Science
Data Mining and Knowledge Discovery
Graphs
Greedy algorithms
Heuristic
Heuristic methods
Information Storage and Retrieval
Mathematical models
Maximization
Physics
Seeds
Social networks
Spreads
Statistics for Engineering
Viral marketing
Word of mouth advertising
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA4yEXzxx1SsTongkxJom6RNH4c4hqAvOtiDUJI0hcHWie3AP99L-mNTVPC1TVO45Ppdet_dh9A1YDjNcxYTrhQngNecKNjHRLHE-BBA69hpETw-ReMJe5jyaVPHXbZs9zYl6b7UG8VuUWCJVyGBc0NI4MizzeHobnlck3C4weugdWmwYISLoEtl_jTFVzBaR5jfkqIOa0YHaK8JEvGwXtVDtGWKPtpvBRhw4499tOP4m7o8Qq_PYGtbBYVnreoIXsiP2aIps8QQm-JZJ3lbYS1Ly4zHTgkH7uC5pYQTuAhz1D_ScVFTxMtjNBndv9yNSSOcQDTgcUVMIPJIKYDnnPuZ4OCTKg-oFpFQAPlGxlmcSeZn4IA8YwpA35e-ETqMrfoIpSeoVywLc4qwCKnxpbKyMIpRnUmYVmZWnCPJuUmoh_zWgqluuopbcYt5uu6HbI2egtFTa_Q08NBN98hb3VLjr8GDdlnSxrvK1NY2QiCXcOahq-42-IVNdsjCLFcwJqARdd3yPXTbLufmFL-88Oxfo8_Rbmi3kytOHKBe9b4yFxClVOrS7cpPtfbcDQ
  priority: 102
  providerName: Springer Nature
Title Scalable influence maximization for independent cascade model in large-scale social networks
URI https://link.springer.com/article/10.1007/s10618-012-0262-1
https://www.proquest.com/docview/1037264954
https://www.proquest.com/docview/1136383788
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED50e_HF3-J0jgg-KcG2adr0SaZsiqKIOlAQStKmMNg6dRX887206TYFfU3SBC53-a65u3wAR4jhLMv8kHKlOEW85lShHlPlR9pBBzoJSy6C27vgauBfP_Nne-E2tWmV9ZlYHtTpJDF35Kemng3BO-L-2ds7NaxRJrpqKTSWoYlHsBANaJ737u4fFpI8WFUnLHzKhTuLa1bFc4FrErk8iv8hHnV_ItPc3fwVIS2Bp78Oq9ZjJN1qizdgSeebsFazMRBrnFvw-ojiNoVQZFgTj5Cx_BqObaUlQfeUDGestwVJ5NQkx5OSDAd7yMhkhVNsxDmqu3SSV1ni020Y9HtPF1fUcifQBCG5oNoVWaAUInTGnVRwNEuVuSwRgVCI-lqGaZhK30nRBnnqK8R9RzpaJF5oCEgY24FGPsn1LhDhMe1IZZhhlM-SVOK0MjX8HFHGdcRa4NRyixP7sLjhtxjF8yeRjahjFHVsRB27LTieffJWvarx3-B2vRmxNbBpPFeHFhzOutE0TLxD5nryiWNcFrDywfwWnNSbuDjFHwvu_b_gPqx4RmvKgsQ2NIqPT32AnkmhOrAs-pcdaHYvX256HauM2Drwut9mO-Fs
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB4WPejFt7g-I-hFCbZN0nYPIqKu6_OiggehJm0KC9pVdxf1T_kbneljVwW9eW3SBCZf8k2SmXwAG8jhIk1lwJUxiiNfK24Qx9zIhnXQgY6DXIvg4tJv3cjTW3Vbg48qF4bCKqs1MV-ok05MZ-Q7lM-G5N1Qcu_pmZNqFN2uVhIaBSzO7Psrbtm6uyeHOL6bntc8uj5o8VJVgMdIVj1u3TD1jUHuSpWThAoBa1JXxKEfGuRDq4MkSLR0EkSnSqRBRnS0Y8PYC0iagw5AcckflQKZnDLTm8dfQkpEkZUcSq5Cd3CLWqTq-S6FjXkcdz0ed7_z4NC5_XEfm9NccwomSv-U7ReAmoaazWZgstJ-YOVSMAt3Vzi4lHbF2pXMCXvUb-3HMq-ToTPM2gON3R6LdZdC8VkuvYMl7IFi0Dl-xDaKk3uWFTHp3Tm4-RebzsNI1snsArDQE9bRhnRojBRxorFZnZAaSCNVtiHq4FR2i-LyGXNS03iIhg8wk6kjNHVEpo7cOmwNfnkq3vD4q_JyNRhROZ270RB8dVgfFONEpNsVndlOH-u4whf58_x12K4G8WsTv3S4-HeHazDWur44j85PLs-WYNwjBOWpkMsw0nvp2xX0iXpmNQcig_v_Rv4n0hkYIA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZSwMxEB5KBfHFW6xnBH1RQvfK7vZBxKt4FvGAPghrspuFQt2qbVH_mr_OmT1aFexbXzfZBCZf8k2SmXwA28jhdhw7HhdKCY58LbhCHHPl1LSBDnTopVoE1w337MG5aIpmCb6KXBgKqyzWxHShjjohnZFXKZ8NybsmnGqch0XcnNQPXl45KUjRTWshp5FB5FJ_vuP2rbt_foJjvWNZ9dP74zOeKwzwEImrx7Xpx65SyGOxMCJfIHhVbNqh7_oKuVFLL_Ii6RgRIlVEjkJ2NKSh_dDySKaDDkNx-Z_waFdUhomj08bN7Y8AEzvLUfYdLnxzcKeaJe65JgWRWRz3QBY3f7Pi0NX9czubkl59FqZzb5UdZvCag5JO5mGmUIJg-cKwAI93ONSUhMVahegJe5Yfrec8y5Oha8xaA8XdHgtllwLzWSrEgyWsTRHpHD9iG9k5PkuyCPXuIjyMxapLUE46iV4G5lu2NqQiVRrl2GEksVkZkTZILRa6ZlfAKOwWhPmj5qSt0Q6GzzGTqQM0dUCmDswK7A5-ecle9BhVea0YjCCf3N1gCMUKbA2KcVrSXYtMdKePdUzbtdPH-iuwVwzizyb-6XBldIebMImoD67OG5erMGURgNK8yDUo9976eh0dpJ7ayJHI4Gnc4P8Gw04dsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+influence+maximization+for+independent+cascade+model+in+large-scale+social+networks&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Wang%2C+Chi&rft.au=Chen%2C+Wei&rft.au=Wang%2C+Yajun&rft.date=2012-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=25&rft.issue=3&rft.spage=545&rft_id=info:doi/10.1007%2Fs10618-012-0262-1&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2748849681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon