Scalable influence maximization for independent cascade model in large-scale social networks
Influence maximization, defined by Kempe et al. (SIGKDD 2003 ), is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under certain influence cascade models. The scalability of influence maximization is a key factor for enabling prevalent vira...
Saved in:
Published in | Data mining and knowledge discovery Vol. 25; no. 3; pp. 545 - 576 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.11.2012
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Influence maximization, defined by Kempe et al. (SIGKDD
2003
), is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under certain influence cascade models. The scalability of influence maximization is a key factor for enabling prevalent viral marketing in large-scale online social networks. Prior solutions, such as the greedy algorithm of Kempe et al. (SIGKDD
2003
) and its improvements are slow and not scalable, while other heuristic algorithms do not provide consistently good performance on influence spreads. In this article, we design a new heuristic algorithm that is easily scalable to millions of nodes and edges in our experiments. Our algorithm has a simple tunable parameter for users to control the balance between the running time and the influence spread of the algorithm. Our results from extensive simulations on several real-world and synthetic networks demonstrate that our algorithm is currently the best scalable solution to the influence maximization problem: (a) our algorithm scales beyond million-sized graphs where the greedy algorithm becomes infeasible, and (b) in all size ranges, our algorithm performs consistently well in influence spread—it is always among the best algorithms, and in most cases it significantly outperforms all other scalable heuristics to as much as 100–260% increase in influence spread. |
---|---|
AbstractList | Influence maximization, defined by Kempe et al. (SIGKDD 2003), is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under certain influence cascade models. The scalability of influence maximization is a key factor for enabling prevalent viral marketing in large-scale online social networks. Prior solutions, such as the greedy algorithm of Kempe et al. (SIGKDD 2003) and its improvements are slow and not scalable, while other heuristic algorithms do not provide consistently good performance on influence spreads. In this article, we design a new heuristic algorithm that is easily scalable to millions of nodes and edges in our experiments. Our algorithm has a simple tunable parameter for users to control the balance between the running time and the influence spread of the algorithm. Our results from extensive simulations on several real-world and synthetic networks demonstrate that our algorithm is currently the best scalable solution to the influence maximization problem: (a) our algorithm scales beyond million-sized graphs where the greedy algorithm becomes infeasible, and (b) in all size ranges, our algorithm performs consistently well in influence spread-it is always among the best algorithms, and in most cases it significantly outperforms all other scalable heuristics to as much as 100-260% increase in influence spread. Issue Title: Special Issue: Data Mining Technologies for Computational Social Science Influence maximization, defined by Kempe et al. (SIGKDD 2003), is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under certain influence cascade models. The scalability of influence maximization is a key factor for enabling prevalent viral marketing in large-scale online social networks. Prior solutions, such as the greedy algorithm of Kempe et al. (SIGKDD 2003) and its improvements are slow and not scalable, while other heuristic algorithms do not provide consistently good performance on influence spreads. In this article, we design a new heuristic algorithm that is easily scalable to millions of nodes and edges in our experiments. Our algorithm has a simple tunable parameter for users to control the balance between the running time and the influence spread of the algorithm. Our results from extensive simulations on several real-world and synthetic networks demonstrate that our algorithm is currently the best scalable solution to the influence maximization problem: (a) our algorithm scales beyond million-sized graphs where the greedy algorithm becomes infeasible, and (b) in all size ranges, our algorithm performs consistently well in influence spread--it is always among the best algorithms, and in most cases it significantly outperforms all other scalable heuristics to as much as 100-260% increase in influence spread.[PUBLICATION ABSTRACT] Influence maximization, defined by Kempe et al. (SIGKDD 2003 ), is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under certain influence cascade models. The scalability of influence maximization is a key factor for enabling prevalent viral marketing in large-scale online social networks. Prior solutions, such as the greedy algorithm of Kempe et al. (SIGKDD 2003 ) and its improvements are slow and not scalable, while other heuristic algorithms do not provide consistently good performance on influence spreads. In this article, we design a new heuristic algorithm that is easily scalable to millions of nodes and edges in our experiments. Our algorithm has a simple tunable parameter for users to control the balance between the running time and the influence spread of the algorithm. Our results from extensive simulations on several real-world and synthetic networks demonstrate that our algorithm is currently the best scalable solution to the influence maximization problem: (a) our algorithm scales beyond million-sized graphs where the greedy algorithm becomes infeasible, and (b) in all size ranges, our algorithm performs consistently well in influence spread—it is always among the best algorithms, and in most cases it significantly outperforms all other scalable heuristics to as much as 100–260% increase in influence spread. |
Author | Chen, Wei Wang, Chi Wang, Yajun |
Author_xml | – sequence: 1 givenname: Chi surname: Wang fullname: Wang, Chi email: chiwang1@illinois.edu organization: University of Illinois at Urbana-Champaign – sequence: 2 givenname: Wei surname: Chen fullname: Chen, Wei organization: Microsoft Research Asia – sequence: 3 givenname: Yajun surname: Wang fullname: Wang, Yajun organization: Microsoft Research Asia |
BookMark | eNp9kEFrFTEQx4NUsH36Abwt9OIldibZbOJRSluFBz1UwYMQstnZkpqXPJN9VP305vl6kEJ7SULm95sZ_ifsKOVEjL1FeI8A-qwiDGg4oOAgBsHxBTtGpSXXavh21N7S9FwZhFfspNY7AFBCwjH7fuNddGOkLqQ57ih56jbuV9iEP24JOXVzLq000ZbakZbOu-rd1KA8UWyVLrpyS7x9th41--Bil2i5z-VHfc1ezi5WevNwr9jXy4sv55_4-vrq8_nHNfc9qoUTmnkYRxBiVjAZZTSMM0pvBjOCEeT0pCfXw6QkqqkfFQpwQMYLrftBS7li7w59tyX_3FFd7CZUTzG6RHlXLaIcpJHamIaePkLv8q6ktp1FkFoM_QfVNwoPlC-51kKz3ZawceV3g-w-b3vI27a87T5vi83Rjxwfln8ZLsWF-KwpDmZtU9Itlf93ekr6Cyy7lco |
CitedBy_id | crossref_primary_10_1186_s40649_021_00090_3 crossref_primary_10_1007_s00607_021_00945_7 crossref_primary_10_1007_s10589_017_9958_x crossref_primary_10_1007_s12652_020_01760_2 crossref_primary_10_12677_CSA_2018_89160 crossref_primary_10_1109_JSYST_2014_2369526 crossref_primary_10_1145_3664618 crossref_primary_10_32604_iasc_2023_026134 crossref_primary_10_1007_s13278_016_0392_3 crossref_primary_10_1007_s13278_020_00704_0 crossref_primary_10_1080_02664763_2020_1761948 crossref_primary_10_1016_j_envsoft_2024_106316 crossref_primary_10_1109_ACCESS_2020_2966056 crossref_primary_10_4018_JOEUC_302662 crossref_primary_10_1016_j_jnca_2016_01_004 crossref_primary_10_1109_ACCESS_2020_3029657 crossref_primary_10_4018_IJCBPL_298685 crossref_primary_10_2139_ssrn_3386417 crossref_primary_10_1109_ACCESS_2019_2940762 crossref_primary_10_1109_TCSS_2023_3243936 crossref_primary_10_1080_24725854_2019_1680909 crossref_primary_10_1016_j_omega_2021_102496 crossref_primary_10_1109_TNSE_2021_3091943 crossref_primary_10_1016_j_artint_2016_06_008 crossref_primary_10_1109_TCDS_2022_3141952 crossref_primary_10_1287_opre_2022_2290 crossref_primary_10_1109_TCSS_2022_3166182 crossref_primary_10_1016_j_ifacol_2017_08_2288 crossref_primary_10_1016_j_eswa_2020_114346 crossref_primary_10_2200_S00527ED1V01Y201308DTM037 crossref_primary_10_1098_rsif_2021_0435 crossref_primary_10_1371_journal_pone_0303051 crossref_primary_10_1016_j_chaos_2024_115192 crossref_primary_10_1016_j_is_2015_12_002 crossref_primary_10_1016_j_knosys_2022_109654 crossref_primary_10_1088_1742_6596_1881_2_022079 crossref_primary_10_1038_s41562_018_0346_z crossref_primary_10_14778_3461535_3461536 crossref_primary_10_1177_26339137221128542 crossref_primary_10_3233_IDA_215790 crossref_primary_10_2139_ssrn_4160053 crossref_primary_10_3233_JIFS_169027 crossref_primary_10_1007_s10115_023_01982_8 crossref_primary_10_1155_2021_9988847 crossref_primary_10_1007_s10878_024_01238_3 crossref_primary_10_1007_s11432_018_9609_7 crossref_primary_10_1109_ACCESS_2021_3123248 crossref_primary_10_1109_TKDE_2017_2728064 crossref_primary_10_1007_s00224_016_9670_8 crossref_primary_10_1007_s10115_020_01461_4 crossref_primary_10_1016_j_physa_2021_125928 crossref_primary_10_1016_j_jocs_2017_10_015 crossref_primary_10_1016_j_swevo_2018_02_003 crossref_primary_10_1016_j_physa_2018_08_053 crossref_primary_10_1016_j_comcom_2025_108045 crossref_primary_10_1371_journal_pone_0199845 crossref_primary_10_30853_phil20220381 crossref_primary_10_3390_en11040953 crossref_primary_10_1016_j_eswa_2019_01_070 crossref_primary_10_3233_JIFS_200383 crossref_primary_10_14778_3681954_3682029 crossref_primary_10_1007_s00500_016_2068_3 crossref_primary_10_1007_s11192_018_2952_y crossref_primary_10_1016_j_rsma_2025_104128 crossref_primary_10_1109_TCSS_2022_3148778 crossref_primary_10_1109_ACCESS_2018_2888895 crossref_primary_10_1038_s41598_018_32081_2 crossref_primary_10_1142_S0218194020400161 crossref_primary_10_1007_s11390_018_1820_9 crossref_primary_10_1007_s13278_018_0548_4 crossref_primary_10_1007_s11227_022_04418_2 crossref_primary_10_1007_s12652_019_01308_z crossref_primary_10_1007_s41109_018_0062_7 crossref_primary_10_3390_info8040118 crossref_primary_10_1007_s10878_020_00674_1 crossref_primary_10_1016_j_ipm_2022_103161 crossref_primary_10_1016_j_knosys_2020_106600 crossref_primary_10_1016_j_tcs_2024_114813 crossref_primary_10_1089_big_2020_0259 crossref_primary_10_3233_JHS_170561 crossref_primary_10_1016_j_joi_2024_101545 crossref_primary_10_1016_j_swevo_2024_101609 crossref_primary_10_1007_s11277_023_10412_5 crossref_primary_10_1109_ACCESS_2020_3023185 crossref_primary_10_2200_S00759ED1V01Y201702DMK013 crossref_primary_10_1007_s00607_022_01125_x crossref_primary_10_1016_j_swevo_2023_101424 crossref_primary_10_1007_s10878_020_00629_6 crossref_primary_10_1002_ett_3054 crossref_primary_10_1016_j_ins_2016_03_029 crossref_primary_10_1016_j_ins_2022_11_041 crossref_primary_10_1109_TCYB_2020_2989427 crossref_primary_10_1007_s13278_024_01357_z crossref_primary_10_1007_s11042_021_11606_4 crossref_primary_10_1155_2023_4586047 crossref_primary_10_1142_S1793830915500378 crossref_primary_10_1109_ACCESS_2019_2900708 crossref_primary_10_1109_ACCESS_2020_2977424 crossref_primary_10_1007_s42452_020_03812_w crossref_primary_10_1016_j_eswa_2022_118869 crossref_primary_10_1007_s00778_021_00679_0 crossref_primary_10_1016_j_eswa_2022_117657 crossref_primary_10_1016_j_physa_2021_126841 crossref_primary_10_1088_1742_5468_ab054b crossref_primary_10_14778_3547305_3547324 crossref_primary_10_1016_j_eswa_2024_125393 crossref_primary_10_1088_1757_899X_392_6_062201 crossref_primary_10_1155_2017_5049836 crossref_primary_10_1155_2022_9168899 crossref_primary_10_1016_j_ins_2015_03_034 crossref_primary_10_1016_j_physa_2022_128179 crossref_primary_10_1088_1742_6596_1168_5_052038 crossref_primary_10_1371_journal_pone_0209372 crossref_primary_10_1007_s00500_023_09218_1 crossref_primary_10_1016_j_knosys_2020_106623 crossref_primary_10_1016_j_omega_2015_06_014 crossref_primary_10_1007_s10878_013_9686_9 crossref_primary_10_1089_big_2023_0117 crossref_primary_10_1109_TNSE_2020_2964882 crossref_primary_10_3390_app10249019 crossref_primary_10_1007_s12083_025_01909_w crossref_primary_10_1016_j_procs_2020_06_037 crossref_primary_10_1007_s13278_024_01311_z crossref_primary_10_1109_ACCESS_2019_2926439 crossref_primary_10_1007_s13278_023_01122_8 crossref_primary_10_1080_0144929X_2016_1212932 crossref_primary_10_1145_3233227 crossref_primary_10_1109_ACCESS_2019_2894155 crossref_primary_10_1103_PhysRevE_106_034316 crossref_primary_10_1145_3690644 crossref_primary_10_1038_s41598_017_00937_8 crossref_primary_10_1108_K_09_2019_0637 crossref_primary_10_1007_s13278_016_0360_y crossref_primary_10_1016_j_inffus_2024_102808 crossref_primary_10_1051_matecconf_201823201011 crossref_primary_10_1007_s11227_021_04079_7 crossref_primary_10_1016_j_enbuild_2013_06_029 crossref_primary_10_1016_j_ins_2022_04_062 crossref_primary_10_1016_j_ejor_2019_04_010 crossref_primary_10_1016_j_tcs_2020_04_017 crossref_primary_10_1109_ACCESS_2018_2876141 crossref_primary_10_1109_TKDE_2021_3077491 crossref_primary_10_1093_comjnl_bxac073 crossref_primary_10_1007_s13278_021_00850_z crossref_primary_10_1016_j_aci_2017_11_001 crossref_primary_10_1007_s41109_023_00594_z crossref_primary_10_1007_s00607_021_00987_x crossref_primary_10_1109_ACCESS_2019_2943412 crossref_primary_10_1177_0165551515602808 crossref_primary_10_1109_TCSS_2020_2998777 crossref_primary_10_1145_2809814 crossref_primary_10_1007_s10844_020_00629_2 crossref_primary_10_1007_s11036_018_1004_4 crossref_primary_10_1016_j_cosrev_2021_100393 crossref_primary_10_1142_S0219525924500048 crossref_primary_10_1016_j_knosys_2021_106942 crossref_primary_10_1186_s40649_016_0033_z crossref_primary_10_1109_TNSE_2021_3137353 crossref_primary_10_1109_TCSS_2022_3192410 crossref_primary_10_1016_j_physa_2021_126318 crossref_primary_10_1016_j_comnet_2023_109693 crossref_primary_10_1038_s41598_019_41822_w crossref_primary_10_1109_TFUZZ_2017_2755581 crossref_primary_10_1016_j_ejor_2017_10_056 crossref_primary_10_1016_j_neucom_2023_02_059 crossref_primary_10_1007_s13278_024_01336_4 |
Cites_doi | 10.1145/1557019.1557047 10.1145/988672.988739 10.1145/335305.335326 10.1145/285055.285059 10.1145/956750.956769 10.1137/1.9781611972818.33 10.1145/1835804.1835934 10.1137/0208032 10.1145/1557019.1557108 10.1145/1718487.1718518 10.1007/11871637_27 10.1145/775047.775057 10.21236/ADA476748 10.1145/1281192.1281239 10.1145/1526709.1526806 10.1109/ICDM.2010.118 10.1007/BF01588971 10.1145/502512.502525 10.1145/1566374.1566421 10.1145/1835804.1835933 10.1145/2009916.2009945 10.1016/0378-8733(78)90021-7 |
ContentType | Journal Article |
Copyright | The Author(s) 2012 |
Copyright_xml | – notice: The Author(s) 2012 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s10618-012-0262-1 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Computer and Information Systems Abstracts ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 576 |
ExternalDocumentID | 2748849681 10_1007_s10618_012_0262_1 |
Genre | Feature |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c415t-e18f6bb022f50d85870bf13c868b082ea7d7da40d5315d4b5120a0e8c27746733 |
IEDL.DBID | BENPR |
ISSN | 1384-5810 |
IngestDate | Fri Jul 11 00:12:48 EDT 2025 Sat Aug 23 13:48:24 EDT 2025 Tue Jul 01 00:40:29 EDT 2025 Thu Apr 24 23:06:41 EDT 2025 Fri Feb 21 02:33:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Influence maximization Social networks Viral marketing Independent cascade model |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-e18f6bb022f50d85870bf13c868b082ea7d7da40d5315d4b5120a0e8c27746733 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 1037264954 |
PQPubID | 43030 |
PageCount | 32 |
ParticipantIDs | proquest_miscellaneous_1136383788 proquest_journals_1037264954 crossref_primary_10_1007_s10618_012_0262_1 crossref_citationtrail_10_1007_s10618_012_0262_1 springer_journals_10_1007_s10618_012_0262_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-11-01 |
PublicationDateYYYYMMDD | 2012-11-01 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2012 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | BrinSPageLThe anatomy of a large-scale hypertextual web search engineComput Netw1998301-7107117 MisnerIRThe world’s best known marketing secret: Building your business with word-of-mouth marketing19992AustinBard Press Cui P, Wang F, Liu S, Ou M, Yang S, Sun L (2011) Who should share what?: item-level social influence prediction for users and posts ranking. In: SIGIR ’11 Kimura M, Saito K (2006) Tractable models for information diffusion in social networks. In: PKDD ’06 Aiello W, Chung FRK, Lu L (2000) A random graph model for massive graphs. In: STOC ’00 Cha M, Mislove A, Gummadi KP (2009) A measurement-driven analysis of information propagation in the flickr social network. In: WWW ’09 Rodriguez MG, Leskovec J, Krause A (2010) Inferring networks of diffusion and influence. In: KDD ’10 Streeter M, Golovin D (2007) An online algorithm for maximizing submodular functions. Technical Report CMU-CS-07-171, Carnegie Mellon University, Pittsburgh Chen W, Collins A, Cummings R, Ke T, Liu Z, Rincon D, Sun X, Wang Y, Wei W, Yuan Y (2011) Influence maximization in social networks when negative opinions may emerge and propagate. In: SDM ’11 Richardson M, Domingos P (2002) Mining knowledge-sharing sites for viral marketing. In: KDD ’02 ValiantLGThe complexity of enumeration and reliability problemsSIAM J Comput1979834104215392580419.6808210.1137/0208032 Goyal A, Bonchi F, Lakshmanan LV (2010) Learning influence probabilities in social networks. In: WSDM ’10 NemhauserGWolseyLFisherMAn analysis of the approximations for maximizing submodular set functionsMath Program1978142652945038660374.9004510.1007/BF01588971 Bakshy E, Karrer B, Adamic LA (2009) Social influence and the diffusion of user-created content. In: EC ’09: Proc. 10th ACM Conf. Electronic Commerce Chen W, Yuan Y, Zhang L (2010b) Scalable influence maximization in social networks under the linear threshold model. In: ICDM ’10 Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: KDD ’09 FeigeUA threshold of ln n for approximating set coverJ ACM199845463465216750951065.6857310.1145/285055.285059 Chen W, Wang C, Wang Y (2010a) Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: KDD ’10 Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance NS (2007) Cost-effective outbreak detection in networks. In: KDD ’07 Domingos P, Richardson M (2001) Mining the network value of customers. In: KDD ’01 FreemanLCentrality in social networks: conceptual clarificationSoc Netw1979121523910.1016/0378-8733(78)90021-7 Kempe D, Kleinberg JM, Tardos É (2003) Maximizing the spread of influence through a social network. In: KDD ’03 Tang J, Sun J, Wang C, Yang Z (2009) Social influence analysis in large-scale networks. In: KDD ’09 Nail J (2004) The consumer advertising backlash. Forrester Research and Intelliseek Market Research Report Gruhl D, Guha RV, Liben-Nowell D, Tomkins A (2004) Information diffusion through blogspace. In: WWW ’04 VaziraniVVApproximation algorithms2004BerlinSpringer U Feige (262_CR11) 1998; 45 S Brin (262_CR3) 1998; 30 262_CR10 IR Misner (262_CR18) 1999 262_CR8 262_CR9 262_CR24 262_CR23 262_CR22 262_CR2 262_CR1 G Nemhauser (262_CR20) 1978; 14 262_CR6 VV Vazirani (262_CR26) 2004 262_CR7 262_CR4 262_CR5 262_CR21 262_CR17 262_CR16 262_CR15 262_CR14 262_CR13 L Freeman (262_CR12) 1979; 1 262_CR19 LG Valiant (262_CR25) 1979; 8 |
References_xml | – reference: Chen W, Collins A, Cummings R, Ke T, Liu Z, Rincon D, Sun X, Wang Y, Wei W, Yuan Y (2011) Influence maximization in social networks when negative opinions may emerge and propagate. In: SDM ’11 – reference: Domingos P, Richardson M (2001) Mining the network value of customers. In: KDD ’01 – reference: Gruhl D, Guha RV, Liben-Nowell D, Tomkins A (2004) Information diffusion through blogspace. In: WWW ’04 – reference: FeigeUA threshold of ln n for approximating set coverJ ACM199845463465216750951065.6857310.1145/285055.285059 – reference: ValiantLGThe complexity of enumeration and reliability problemsSIAM J Comput1979834104215392580419.6808210.1137/0208032 – reference: FreemanLCentrality in social networks: conceptual clarificationSoc Netw1979121523910.1016/0378-8733(78)90021-7 – reference: Goyal A, Bonchi F, Lakshmanan LV (2010) Learning influence probabilities in social networks. In: WSDM ’10 – reference: Cui P, Wang F, Liu S, Ou M, Yang S, Sun L (2011) Who should share what?: item-level social influence prediction for users and posts ranking. In: SIGIR ’11 – reference: Aiello W, Chung FRK, Lu L (2000) A random graph model for massive graphs. In: STOC ’00 – reference: MisnerIRThe world’s best known marketing secret: Building your business with word-of-mouth marketing19992AustinBard Press – reference: Cha M, Mislove A, Gummadi KP (2009) A measurement-driven analysis of information propagation in the flickr social network. In: WWW ’09 – reference: Bakshy E, Karrer B, Adamic LA (2009) Social influence and the diffusion of user-created content. In: EC ’09: Proc. 10th ACM Conf. Electronic Commerce – reference: Streeter M, Golovin D (2007) An online algorithm for maximizing submodular functions. Technical Report CMU-CS-07-171, Carnegie Mellon University, Pittsburgh – reference: Nail J (2004) The consumer advertising backlash. Forrester Research and Intelliseek Market Research Report – reference: Kimura M, Saito K (2006) Tractable models for information diffusion in social networks. In: PKDD ’06 – reference: BrinSPageLThe anatomy of a large-scale hypertextual web search engineComput Netw1998301-7107117 – reference: Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance NS (2007) Cost-effective outbreak detection in networks. In: KDD ’07 – reference: Chen W, Wang C, Wang Y (2010a) Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: KDD ’10 – reference: Rodriguez MG, Leskovec J, Krause A (2010) Inferring networks of diffusion and influence. In: KDD ’10 – reference: Kempe D, Kleinberg JM, Tardos É (2003) Maximizing the spread of influence through a social network. In: KDD ’03 – reference: VaziraniVVApproximation algorithms2004BerlinSpringer – reference: NemhauserGWolseyLFisherMAn analysis of the approximations for maximizing submodular set functionsMath Program1978142652945038660374.9004510.1007/BF01588971 – reference: Chen W, Yuan Y, Zhang L (2010b) Scalable influence maximization in social networks under the linear threshold model. In: ICDM ’10 – reference: Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: KDD ’09 – reference: Richardson M, Domingos P (2002) Mining knowledge-sharing sites for viral marketing. In: KDD ’02 – reference: Tang J, Sun J, Wang C, Yang Z (2009) Social influence analysis in large-scale networks. In: KDD ’09 – ident: 262_CR5 doi: 10.1145/1557019.1557047 – ident: 262_CR14 doi: 10.1145/988672.988739 – ident: 262_CR1 doi: 10.1145/335305.335326 – volume: 45 start-page: 634 issue: 4 year: 1998 ident: 262_CR11 publication-title: J ACM doi: 10.1145/285055.285059 – ident: 262_CR15 doi: 10.1145/956750.956769 – ident: 262_CR8 doi: 10.1137/1.9781611972818.33 – ident: 262_CR6 doi: 10.1145/1835804.1835934 – volume: 8 start-page: 410 issue: 3 year: 1979 ident: 262_CR25 publication-title: SIAM J Comput doi: 10.1137/0208032 – ident: 262_CR24 doi: 10.1145/1557019.1557108 – ident: 262_CR13 doi: 10.1145/1718487.1718518 – ident: 262_CR16 doi: 10.1007/11871637_27 – ident: 262_CR21 doi: 10.1145/775047.775057 – volume-title: The world’s best known marketing secret: Building your business with word-of-mouth marketing year: 1999 ident: 262_CR18 – ident: 262_CR23 doi: 10.21236/ADA476748 – ident: 262_CR17 doi: 10.1145/1281192.1281239 – volume-title: Approximation algorithms year: 2004 ident: 262_CR26 – ident: 262_CR4 doi: 10.1145/1526709.1526806 – ident: 262_CR7 doi: 10.1109/ICDM.2010.118 – volume: 30 start-page: 107 issue: 1-7 year: 1998 ident: 262_CR3 publication-title: Comput Netw – volume: 14 start-page: 265 year: 1978 ident: 262_CR20 publication-title: Math Program doi: 10.1007/BF01588971 – ident: 262_CR10 doi: 10.1145/502512.502525 – ident: 262_CR2 doi: 10.1145/1566374.1566421 – ident: 262_CR22 doi: 10.1145/1835804.1835933 – ident: 262_CR9 doi: 10.1145/2009916.2009945 – ident: 262_CR19 – volume: 1 start-page: 215 year: 1979 ident: 262_CR12 publication-title: Soc Netw doi: 10.1016/0378-8733(78)90021-7 |
SSID | ssj0005230 |
Score | 2.4710712 |
Snippet | Influence maximization, defined by Kempe et al. (SIGKDD
2003
), is the problem of finding a small set of seed nodes in a social network that maximizes the... Issue Title: Special Issue: Data Mining Technologies for Computational Social Science Influence maximization, defined by Kempe et al. (SIGKDD 2003), is the... Influence maximization, defined by Kempe et al. (SIGKDD 2003), is the problem of finding a small set of seed nodes in a social network that maximizes the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 545 |
SubjectTerms | Algorithms Approximation Artificial Intelligence Cascades Chemistry and Earth Sciences Computer Science Data Mining and Knowledge Discovery Graphs Greedy algorithms Heuristic Heuristic methods Information Storage and Retrieval Mathematical models Maximization Physics Seeds Social networks Spreads Statistics for Engineering Viral marketing Word of mouth advertising |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA4yEXzxx1SsTongkxJom6RNH4c4hqAvOtiDUJI0hcHWie3AP99L-mNTVPC1TVO45Ppdet_dh9A1YDjNcxYTrhQngNecKNjHRLHE-BBA69hpETw-ReMJe5jyaVPHXbZs9zYl6b7UG8VuUWCJVyGBc0NI4MizzeHobnlck3C4weugdWmwYISLoEtl_jTFVzBaR5jfkqIOa0YHaK8JEvGwXtVDtGWKPtpvBRhw4499tOP4m7o8Qq_PYGtbBYVnreoIXsiP2aIps8QQm-JZJ3lbYS1Ly4zHTgkH7uC5pYQTuAhz1D_ScVFTxMtjNBndv9yNSSOcQDTgcUVMIPJIKYDnnPuZ4OCTKg-oFpFQAPlGxlmcSeZn4IA8YwpA35e-ETqMrfoIpSeoVywLc4qwCKnxpbKyMIpRnUmYVmZWnCPJuUmoh_zWgqluuopbcYt5uu6HbI2egtFTa_Q08NBN98hb3VLjr8GDdlnSxrvK1NY2QiCXcOahq-42-IVNdsjCLFcwJqARdd3yPXTbLufmFL-88Oxfo8_Rbmi3kytOHKBe9b4yFxClVOrS7cpPtfbcDQ priority: 102 providerName: Springer Nature |
Title | Scalable influence maximization for independent cascade model in large-scale social networks |
URI | https://link.springer.com/article/10.1007/s10618-012-0262-1 https://www.proquest.com/docview/1037264954 https://www.proquest.com/docview/1136383788 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED50e_HF3-J0jgg-KcG2adr0SaZsiqKIOlAQStKmMNg6dRX887206TYFfU3SBC53-a65u3wAR4jhLMv8kHKlOEW85lShHlPlR9pBBzoJSy6C27vgauBfP_Nne-E2tWmV9ZlYHtTpJDF35Kemng3BO-L-2ds7NaxRJrpqKTSWoYlHsBANaJ737u4fFpI8WFUnLHzKhTuLa1bFc4FrErk8iv8hHnV_ItPc3fwVIS2Bp78Oq9ZjJN1qizdgSeebsFazMRBrnFvw-ojiNoVQZFgTj5Cx_BqObaUlQfeUDGestwVJ5NQkx5OSDAd7yMhkhVNsxDmqu3SSV1ni020Y9HtPF1fUcifQBCG5oNoVWaAUInTGnVRwNEuVuSwRgVCI-lqGaZhK30nRBnnqK8R9RzpaJF5oCEgY24FGPsn1LhDhMe1IZZhhlM-SVOK0MjX8HFHGdcRa4NRyixP7sLjhtxjF8yeRjahjFHVsRB27LTieffJWvarx3-B2vRmxNbBpPFeHFhzOutE0TLxD5nryiWNcFrDywfwWnNSbuDjFHwvu_b_gPqx4RmvKgsQ2NIqPT32AnkmhOrAs-pcdaHYvX256HauM2Drwut9mO-Fs |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB4WPejFt7g-I-hFCbZN0nYPIqKu6_OiggehJm0KC9pVdxf1T_kbneljVwW9eW3SBCZf8k2SmXwAG8jhIk1lwJUxiiNfK24Qx9zIhnXQgY6DXIvg4tJv3cjTW3Vbg48qF4bCKqs1MV-ok05MZ-Q7lM-G5N1Qcu_pmZNqFN2uVhIaBSzO7Psrbtm6uyeHOL6bntc8uj5o8VJVgMdIVj1u3TD1jUHuSpWThAoBa1JXxKEfGuRDq4MkSLR0EkSnSqRBRnS0Y8PYC0iagw5AcckflQKZnDLTm8dfQkpEkZUcSq5Cd3CLWqTq-S6FjXkcdz0ed7_z4NC5_XEfm9NccwomSv-U7ReAmoaazWZgstJ-YOVSMAt3Vzi4lHbF2pXMCXvUb-3HMq-ToTPM2gON3R6LdZdC8VkuvYMl7IFi0Dl-xDaKk3uWFTHp3Tm4-RebzsNI1snsArDQE9bRhnRojBRxorFZnZAaSCNVtiHq4FR2i-LyGXNS03iIhg8wk6kjNHVEpo7cOmwNfnkq3vD4q_JyNRhROZ270RB8dVgfFONEpNsVndlOH-u4whf58_x12K4G8WsTv3S4-HeHazDWur44j85PLs-WYNwjBOWpkMsw0nvp2xX0iXpmNQcig_v_Rv4n0hkYIA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZSwMxEB5KBfHFW6xnBH1RQvfK7vZBxKt4FvGAPghrspuFQt2qbVH_mr_OmT1aFexbXzfZBCZf8k2SmXwA28jhdhw7HhdKCY58LbhCHHPl1LSBDnTopVoE1w337MG5aIpmCb6KXBgKqyzWxHShjjohnZFXKZ8NybsmnGqch0XcnNQPXl45KUjRTWshp5FB5FJ_vuP2rbt_foJjvWNZ9dP74zOeKwzwEImrx7Xpx65SyGOxMCJfIHhVbNqh7_oKuVFLL_Ii6RgRIlVEjkJ2NKSh_dDySKaDDkNx-Z_waFdUhomj08bN7Y8AEzvLUfYdLnxzcKeaJe65JgWRWRz3QBY3f7Pi0NX9czubkl59FqZzb5UdZvCag5JO5mGmUIJg-cKwAI93ONSUhMVahegJe5Yfrec8y5Oha8xaA8XdHgtllwLzWSrEgyWsTRHpHD9iG9k5PkuyCPXuIjyMxapLUE46iV4G5lu2NqQiVRrl2GEksVkZkTZILRa6ZlfAKOwWhPmj5qSt0Q6GzzGTqQM0dUCmDswK7A5-ecle9BhVea0YjCCf3N1gCMUKbA2KcVrSXYtMdKePdUzbtdPH-iuwVwzizyb-6XBldIebMImoD67OG5erMGURgNK8yDUo9976eh0dpJ7ayJHI4Gnc4P8Gw04dsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+influence+maximization+for+independent+cascade+model+in+large-scale+social+networks&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Wang%2C+Chi&rft.au=Chen%2C+Wei&rft.au=Wang%2C+Yajun&rft.date=2012-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=25&rft.issue=3&rft.spage=545&rft_id=info:doi/10.1007%2Fs10618-012-0262-1&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2748849681 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |