Accelerating Biomedical Signal Processing Using GPU: A Case Study of Snore Sound Feature Extraction
The advent of ‘Big Data’ and ‘Deep Learning’ offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based biomedical data analysis, feature extraction is a key step for ‘feeding’ the subsequent classifiers. With increasing numbers of biomedical data,...
Saved in:
Published in | Interdisciplinary sciences : computational life sciences Vol. 9; no. 4; pp. 550 - 555 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The advent of ‘Big Data’ and ‘Deep Learning’ offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based biomedical data analysis, feature extraction is a key step for ‘feeding’ the subsequent classifiers. With increasing numbers of biomedical data, extracting features from these ‘big’ data is an intensive and time-consuming task. In this case study, we employ a Graphics Processing Unit (GPU) via Python to extract features from a large corpus of snore sound data. Those features can subsequently be imported into many well-known deep learning training frameworks without any format processing. The snore sound data were collected from several hospitals (20 subjects, with 770–990 MB per subject – in total 17.20 GB). Experimental results show that our GPU-based processing significantly speeds up the feature extraction phase, by up to seven times, as compared to the previous CPU system. |
---|---|
AbstractList | The advent of 'Big Data' and 'Deep Learning' offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based biomedical data analysis, feature extraction is a key step for 'feeding' the subsequent classifiers. With increasing numbers of biomedical data, extracting features from these 'big' data is an intensive and time-consuming task. In this case study, we employ a Graphics Processing Unit (GPU) via Python to extract features from a large corpus of snore sound data. Those features can subsequently be imported into many well-known deep learning training frameworks without any format processing. The snore sound data were collected from several hospitals (20 subjects, with 770-990 MB per subject - in total 17.20 GB). Experimental results show that our GPU-based processing significantly speeds up the feature extraction phase, by up to seven times, as compared to the previous CPU system.The advent of 'Big Data' and 'Deep Learning' offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based biomedical data analysis, feature extraction is a key step for 'feeding' the subsequent classifiers. With increasing numbers of biomedical data, extracting features from these 'big' data is an intensive and time-consuming task. In this case study, we employ a Graphics Processing Unit (GPU) via Python to extract features from a large corpus of snore sound data. Those features can subsequently be imported into many well-known deep learning training frameworks without any format processing. The snore sound data were collected from several hospitals (20 subjects, with 770-990 MB per subject - in total 17.20 GB). Experimental results show that our GPU-based processing significantly speeds up the feature extraction phase, by up to seven times, as compared to the previous CPU system. The advent of ‘Big Data’ and ‘Deep Learning’ offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based biomedical data analysis, feature extraction is a key step for ‘feeding’ the subsequent classifiers. With increasing numbers of biomedical data, extracting features from these ‘big’ data is an intensive and time-consuming task. In this case study, we employ a Graphics Processing Unit (GPU) via Python to extract features from a large corpus of snore sound data. Those features can subsequently be imported into many well-known deep learning training frameworks without any format processing. The snore sound data were collected from several hospitals (20 subjects, with 770–990 MB per subject – in total 17.20 GB). Experimental results show that our GPU-based processing significantly speeds up the feature extraction phase, by up to seven times, as compared to the previous CPU system. The advent of 'Big Data' and 'Deep Learning' offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based biomedical data analysis, feature extraction is a key step for 'feeding' the subsequent classifiers. With increasing numbers of biomedical data, extracting features from these 'big' data is an intensive and time-consuming task. In this case study, we employ a Graphics Processing Unit (GPU) via Python to extract features from a large corpus of snore sound data. Those features can subsequently be imported into many well-known deep learning training frameworks without any format processing. The snore sound data were collected from several hospitals (20 subjects, with 770-990 MB per subject - in total 17.20 GB). Experimental results show that our GPU-based processing significantly speeds up the feature extraction phase, by up to seven times, as compared to the previous CPU system. |
Author | Guo, Jian Zhang, Gongxuan Qian, Kun Xu, Huijie Schuller, Björn |
Author_xml | – sequence: 1 givenname: Jian surname: Guo fullname: Guo, Jian organization: School of Computer Science and Engineering, Nanjing University of Science Technology – sequence: 2 givenname: Kun surname: Qian fullname: Qian, Kun organization: Department of Electrical and Computer Engineering, MISP group, MMK Technische University Munchen – sequence: 3 givenname: Gongxuan surname: Zhang fullname: Zhang, Gongxuan email: gongxuan@njust.edu.cn organization: School of Computer Science and Engineering, Nanjing University of Science Technology – sequence: 4 givenname: Huijie surname: Xu fullname: Xu, Huijie organization: Department of Otolaryngology, Beijing Hospital – sequence: 5 givenname: Björn surname: Schuller fullname: Schuller, Björn organization: Bjorn Schuller Department of Computing, Machine Learning Group Imperial College London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28948531$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1LHDEUhkOx1K_-AG9kwJveTM3J1yTerYtaQaiw7nXIJpklMptoMgP675vtKgXB3uTkkOc95D3vIdqLKXqETgD_BIy78wKEU9Vi6FpMKGnVF3QAUnQtMEH26l0BbUnHYR8dlvKIsWCS4m9on0jFJKdwgOzMWj_4bMYQ181lSBvvgjVDswjrWMt9TtaXsn1c_j1v7pcXzayZm-KbxTi51yb1zSKmXNs0RddcezNOtbt6GbOxY0jxGH3tzVD897d6hJbXVw_zX-3d75vb-eyutQz42DqjZOeE8BQow9xRi4HJXvUCg8cGeq5Wlji7cg6oYw5sJTnjllnwFgt6hH7s5j7l9Dz5MupNKNXdYKJPU9GgGCVSCE4revYBfUxTroaLJoA7JSXnXaVO36hpVfein3LYmPyq39dXgW4H2JxKyb7XNoxm67l6D4MGrLdB6V1Qugalt0FpVZXwQfk-_H8astOUysa1z_8-_bnoDzHeoyI |
CitedBy_id | crossref_primary_10_1016_j_jpdc_2020_04_003 crossref_primary_10_1007_s13369_022_07057_0 |
Cites_doi | 10.1007/s12539-016-0158-7 10.1007/s12539-015-0022-1 10.1109/TBME.2010.2061846 10.1109/MCSE.2011.37 10.1088/0967-3334/34/2/99 10.1109/CSCS.2015.37 10.1016/j.procs.2013.05.164 10.1109/TBME.2016.2619675 10.1111/j.1365-2796.2011.02491.x 10.1145/2647868.2654889 10.1007/s12539-013-0203-8 10.1016/j.smrv.2009.06.002 10.1145/3022670.2976746 10.1056/NEJM199601113340207 10.1109/ICASSP.2016.7471669 10.1007/s11517-012-0885-9 |
ContentType | Journal Article |
Copyright | Springer-Verlag 2017 Interdisciplinary Sciences: Computational Life Sciences is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: Springer-Verlag 2017 – notice: Interdisciplinary Sciences: Computational Life Sciences is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7X2 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K9. L7M LK8 L~C L~D M0K M0S M1P M7P P5Z P62 P64 PATMY PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 |
DOI | 10.1007/s12539-017-0232-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest : Agricultural & Environmental Science Collection [unlimited simultaneous users] ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central - New (Subscription) Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Agricultural Science Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Agricultural & Environmental Science Collection Advanced Technologies Database with Aerospace ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1867-1462 |
EndPage | 555 |
ExternalDocumentID | 28948531 10_1007_s12539_017_0232_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: European Union’s Seventh Framework and Horizon 2020 Programmes grantid: 338164; 645378 – fundername: National Natural Science Foundation of China grantid: 61472189; 61272420 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 61272420 – fundername: European Union's Seventh Framework and Horizon 2020 Programmes grantid: 645378 – fundername: National Natural Science Foundation of China grantid: 61472189 – fundername: European Union's Seventh Framework and Horizon 2020 Programmes grantid: 338164 |
GroupedDBID | --- -56 -5G -BR -EM -~C 06C 06D 0R~ 0VY 1N0 29~ 2KG 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 67N 6NX 7X2 7X7 7XC 88E 8CJ 8FE 8FG 8FH 8FI 8FJ 96X AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AEUYN AEVLU AEXYK AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG APEBS ARAPS ASPBG ATCPS AUKKA AVWKF AXYYD AZFZN BA0 BBNVY BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BVXVI CAG CCPQU COF D1J D1K DDRTE DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI FYUFA G-Y G-Z GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG6 HLICF HMCUK HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IZIGR I~X J-C JBSCW JCJTX JZLTJ K6- KOV LK5 LK8 LLZTM M0K M1P M4Y M7P M7R NPVJJ NQJWS NU0 O9- O9J P62 PATMY PCBAR PQQKQ PROAC PSQYO PT4 PYCSY Q2X QOR QOS R89 RLLFE ROL RSV S1Z S27 S3A S3B SBL SCL SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 T13 TSG U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE AFDZB AFOHR AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 7SC 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ JQ2 K9. L7M L~C L~D P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c415t-da987d66e313405d3c0148f9f601e0a1f59bc2dcbdd13d4d1ce31545c4c1ec063 |
IEDL.DBID | 7X7 |
ISSN | 1913-2751 1867-1462 |
IngestDate | Tue Aug 05 11:34:16 EDT 2025 Fri Jul 25 10:20:02 EDT 2025 Wed Feb 19 02:42:00 EST 2025 Thu Apr 24 22:52:29 EDT 2025 Tue Jul 01 02:19:18 EDT 2025 Fri Feb 21 02:33:13 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Keywords | Signal processing Feature extraction GPU Biomedical Python |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-da987d66e313405d3c0148f9f601e0a1f59bc2dcbdd13d4d1ce31545c4c1ec063 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://zenodo.org/record/3500994 |
PMID | 28948531 |
PQID | 2107988557 |
PQPubID | 326319 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1943286653 proquest_journals_2107988557 pubmed_primary_28948531 crossref_citationtrail_10_1007_s12539_017_0232_9 crossref_primary_10_1007_s12539_017_0232_9 springer_journals_10_1007_s12539_017_0232_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20171200 2017-12-00 2017-Dec 20171201 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 20171200 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Bromont |
PublicationSubtitle | Computational Life Sciences |
PublicationTitle | Interdisciplinary sciences : computational life sciences |
PublicationTitleAbbrev | Interdiscip Sci Comput Life Sci |
PublicationTitleAlternate | Interdiscip Sci |
PublicationYear | 2017 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | MesquitaJSolà-SolerJFizJAMoreraJJanéRAll night analysis of time interval between snores in subjects with sleep apnea hypopnea syndromeMed Biol Eng Computing20125043733811:STN:280:DC%2BC38vmt1yjsA%3D%3D10.1007/s11517-012-0885-9 HuijieXWeiningHYulishengCLSpectral analysis of snoring sound and site of obstruction in obstructive sleep apnea/hypopnea syndromeAm J Audiol Speech Pathol20111009 Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell (2014) Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on Multimedia. ACM, pp. 675–678 StrolloPJJrRogersRMObstructive sleep apneaN Engl J Med199633429910410.1056/NEJM1996011133402078531966 Al-AmeenZSulongGDeblurring computed tomography medical images using a novel amended landweber algorithmInterdiscip Sci20157331932510.1007/s12539-015-0022-126199211 BergstraJBastienFBreuleuxOLamblinPPascanuRDelalleauODesjardinsGWarde-FarleyDGoodfellowIBergeronATheano: deep learning on gpus with python, in NIPS 20112011GranadaBigLearning Workshop M. Schmitt, C. Janott, V. Pandit, K. Qian, C. Heiser, W. Hemmert, and B. Schuller (2016) A bag-of-audio-words approach for snore sounds excitation localisation. In: Proceedings of 12th ITG Conference on Speech Communication. pp. 230–234 QianKJanottCPanditVZhangZHeiserCHohenhorstWHerzogMHemmertWSchullerBClassification of the excitation location of snore sounds in the upper airway by acoustic multi-feature analysisIEEE Trans Biomed Eng20176481110.1109/TBME.2016.2619675 C. Analytics (2015) Anaconda software distribution, Computer software, nov. [Online]. Available: https://continuum.io E. Jones, T. Oliphant, P. Peterson et al. (2001) Open source scientific tools for python H. Ali (2015) Big data analytics in biomedical informatics, BIOSTEC. Tech Rep A. Adeshina and R. Hashim (2016) Computational approach for securing radiology-diagnostic data in connected health network using high-performance gpu-accelerated aes. Interdiscip Sci 1–13 G. Van Rossum et al. (2007) Python programming language. In: USENIX Annual Technical Conference. vol. 41 GrossmanRWhiteKA vision for a biomedical cloudJ Intern Med201227121221301:CAS:528:DC%2BC38Xjt1Wkurc%3D10.1111/j.1365-2796.2011.02491.x22142244 T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang (2015) Mxnet: a flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274 PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: machine learning in pythonJ Mach Learn Res20111228252830 AbeyratneUDe SilvaSHukinsCDuceBObstructive sleep apnea screening by integrating snore feature classesPhysiol Meas2013342991:STN:280:DC%2BC3szhs1ersQ%3D%3D10.1088/0967-3334/34/2/9923343563 M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin et al. (2015) Tensorflow: large-scale machine learning on heterogeneous systems, Software available from tensorflow. org 1 M. S. Kamal and S. F. Nimmy (2016) Strucbreak: a computational framework for structural break detection in dna sequences. Interdiscip Sci 1–16 PevernagieDAartsRMDe MeyerMThe acoustics of snoringSleep Med Rev201014213114410.1016/j.smrv.2009.06.00219665907 Van Der WaltSColbertSCVaroquauxGThe numpy array: a structure for efficient numerical computationComputing Sci Eng2011132223010.1109/MCSE.2011.37 AzarbarzinAMoussaviZMAutomatic and unsupervised snore sound extraction from respiratory sound signalsIEEE Trans Biomed Eng20115851156116210.1109/TBME.2010.206184620679022 K. Qian, C. Janott, Z. Zhang, C. Heiser, and B. Schuller, “Wavelet Features for Classification of VOTE Snore Sounds,” in Proceedings ICASSP.Shanghai, P. R. China: IEEE, 2016, pp. 221–225 I. Dogaru and R. Dogaru (2015) Using python and julia for efficient implementation of natural computing and complexity related algorithms. In: 2015 20th International Conference on Control Systems and Computer Science. IEEE, pp. 599–604 BastrakovSMeyerovIGergelVGonoskovAGorshkovAEfimenkoEIvanchenkoMKirillinMMalovaAOsipovGHigh performance computing in biomedical applicationsProcedia Comput Sci201318101910.1016/j.procs.2013.05.164 QianKGuoJXuHZhuZZhangGSnore related signals processing in a private cloud computing systemInterdiscip Sci20146321622110.1007/s12539-013-0203-825205499 232_CR19 232_CR18 A Azarbarzin (232_CR15) 2011; 58 232_CR6 J Mesquita (232_CR9) 2012; 50 S Bastrakov (232_CR4) 2013; 18 232_CR22 232_CR21 U Abeyratne (232_CR10) 2013; 34 R Grossman (232_CR3) 2012; 271 232_CR2 PJ Strollo Jr (232_CR7) 1996; 334 232_CR20 232_CR1 K Qian (232_CR5) 2014; 6 232_CR26 232_CR25 J Bergstra (232_CR23) 2011 D Pevernagie (232_CR8) 2010; 14 K Qian (232_CR12) 2017; 64 Z Al-Ameen (232_CR16) 2015; 7 232_CR11 232_CR13 S Walt Van Der (232_CR17) 2011; 13 X Huijie (232_CR14) 2011; 1 F Pedregosa (232_CR24) 2011; 12 |
References_xml | – reference: AzarbarzinAMoussaviZMAutomatic and unsupervised snore sound extraction from respiratory sound signalsIEEE Trans Biomed Eng20115851156116210.1109/TBME.2010.206184620679022 – reference: StrolloPJJrRogersRMObstructive sleep apneaN Engl J Med199633429910410.1056/NEJM1996011133402078531966 – reference: Al-AmeenZSulongGDeblurring computed tomography medical images using a novel amended landweber algorithmInterdiscip Sci20157331932510.1007/s12539-015-0022-126199211 – reference: GrossmanRWhiteKA vision for a biomedical cloudJ Intern Med201227121221301:CAS:528:DC%2BC38Xjt1Wkurc%3D10.1111/j.1365-2796.2011.02491.x22142244 – reference: G. Van Rossum et al. (2007) Python programming language. In: USENIX Annual Technical Conference. vol. 41 – reference: MesquitaJSolà-SolerJFizJAMoreraJJanéRAll night analysis of time interval between snores in subjects with sleep apnea hypopnea syndromeMed Biol Eng Computing20125043733811:STN:280:DC%2BC38vmt1yjsA%3D%3D10.1007/s11517-012-0885-9 – reference: HuijieXWeiningHYulishengCLSpectral analysis of snoring sound and site of obstruction in obstructive sleep apnea/hypopnea syndromeAm J Audiol Speech Pathol20111009 – reference: BastrakovSMeyerovIGergelVGonoskovAGorshkovAEfimenkoEIvanchenkoMKirillinMMalovaAOsipovGHigh performance computing in biomedical applicationsProcedia Comput Sci201318101910.1016/j.procs.2013.05.164 – reference: AbeyratneUDe SilvaSHukinsCDuceBObstructive sleep apnea screening by integrating snore feature classesPhysiol Meas2013342991:STN:280:DC%2BC3szhs1ersQ%3D%3D10.1088/0967-3334/34/2/9923343563 – reference: PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: machine learning in pythonJ Mach Learn Res20111228252830 – reference: Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell (2014) Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on Multimedia. ACM, pp. 675–678 – reference: A. Adeshina and R. Hashim (2016) Computational approach for securing radiology-diagnostic data in connected health network using high-performance gpu-accelerated aes. Interdiscip Sci 1–13 – reference: QianKJanottCPanditVZhangZHeiserCHohenhorstWHerzogMHemmertWSchullerBClassification of the excitation location of snore sounds in the upper airway by acoustic multi-feature analysisIEEE Trans Biomed Eng20176481110.1109/TBME.2016.2619675 – reference: M. S. Kamal and S. F. Nimmy (2016) Strucbreak: a computational framework for structural break detection in dna sequences. Interdiscip Sci 1–16 – reference: BergstraJBastienFBreuleuxOLamblinPPascanuRDelalleauODesjardinsGWarde-FarleyDGoodfellowIBergeronATheano: deep learning on gpus with python, in NIPS 20112011GranadaBigLearning Workshop – reference: C. Analytics (2015) Anaconda software distribution, Computer software, nov. [Online]. Available: https://continuum.io – reference: H. Ali (2015) Big data analytics in biomedical informatics, BIOSTEC. Tech Rep – reference: M. Schmitt, C. Janott, V. Pandit, K. Qian, C. Heiser, W. Hemmert, and B. Schuller (2016) A bag-of-audio-words approach for snore sounds excitation localisation. In: Proceedings of 12th ITG Conference on Speech Communication. pp. 230–234 – reference: I. Dogaru and R. Dogaru (2015) Using python and julia for efficient implementation of natural computing and complexity related algorithms. In: 2015 20th International Conference on Control Systems and Computer Science. IEEE, pp. 599–604 – reference: QianKGuoJXuHZhuZZhangGSnore related signals processing in a private cloud computing systemInterdiscip Sci20146321622110.1007/s12539-013-0203-825205499 – reference: E. Jones, T. Oliphant, P. Peterson et al. (2001) Open source scientific tools for python – reference: M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin et al. (2015) Tensorflow: large-scale machine learning on heterogeneous systems, Software available from tensorflow. org 1 – reference: T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang (2015) Mxnet: a flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274 – reference: Van Der WaltSColbertSCVaroquauxGThe numpy array: a structure for efficient numerical computationComputing Sci Eng2011132223010.1109/MCSE.2011.37 – reference: PevernagieDAartsRMDe MeyerMThe acoustics of snoringSleep Med Rev201014213114410.1016/j.smrv.2009.06.00219665907 – reference: K. Qian, C. Janott, Z. Zhang, C. Heiser, and B. Schuller, “Wavelet Features for Classification of VOTE Snore Sounds,” in Proceedings ICASSP.Shanghai, P. R. China: IEEE, 2016, pp. 221–225 – ident: 232_CR2 doi: 10.1007/s12539-016-0158-7 – ident: 232_CR25 – volume: 7 start-page: 319 issue: 3 year: 2015 ident: 232_CR16 publication-title: Interdiscip Sci doi: 10.1007/s12539-015-0022-1 – volume: 58 start-page: 1156 issue: 5 year: 2011 ident: 232_CR15 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2061846 – ident: 232_CR19 – volume: 13 start-page: 22 issue: 2 year: 2011 ident: 232_CR17 publication-title: Computing Sci Eng doi: 10.1109/MCSE.2011.37 – volume: 34 start-page: 99 issue: 2 year: 2013 ident: 232_CR10 publication-title: Physiol Meas doi: 10.1088/0967-3334/34/2/99 – ident: 232_CR6 doi: 10.1109/CSCS.2015.37 – volume: 18 start-page: 10 year: 2013 ident: 232_CR4 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2013.05.164 – volume: 64 start-page: 11 issue: 8 year: 2017 ident: 232_CR12 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2016.2619675 – volume: 271 start-page: 122 issue: 2 year: 2012 ident: 232_CR3 publication-title: J Intern Med doi: 10.1111/j.1365-2796.2011.02491.x – ident: 232_CR18 – ident: 232_CR20 doi: 10.1145/2647868.2654889 – volume: 6 start-page: 216 issue: 3 year: 2014 ident: 232_CR5 publication-title: Interdiscip Sci doi: 10.1007/s12539-013-0203-8 – ident: 232_CR21 – volume: 14 start-page: 131 issue: 2 year: 2010 ident: 232_CR8 publication-title: Sleep Med Rev doi: 10.1016/j.smrv.2009.06.002 – volume: 12 start-page: 2825 year: 2011 ident: 232_CR24 publication-title: J Mach Learn Res – ident: 232_CR22 doi: 10.1145/3022670.2976746 – ident: 232_CR11 – volume: 334 start-page: 99 issue: 2 year: 1996 ident: 232_CR7 publication-title: N Engl J Med doi: 10.1056/NEJM199601113340207 – ident: 232_CR13 – ident: 232_CR26 doi: 10.1109/ICASSP.2016.7471669 – volume-title: Theano: deep learning on gpus with python, in NIPS 2011 year: 2011 ident: 232_CR23 – ident: 232_CR1 – volume: 1 start-page: 009 year: 2011 ident: 232_CR14 publication-title: Am J Audiol Speech Pathol – volume: 50 start-page: 373 issue: 4 year: 2012 ident: 232_CR9 publication-title: Med Biol Eng Computing doi: 10.1007/s11517-012-0885-9 |
SSID | ssj0064830 |
Score | 2.0575645 |
Snippet | The advent of ‘Big Data’ and ‘Deep Learning’ offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based... The advent of 'Big Data' and 'Deep Learning' offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 550 |
SubjectTerms | Algorithms Biomedical and Life Sciences Biomedical data Case studies Computational Biology/Bioinformatics Computational Science and Engineering Computer Appl. in Life Sciences Data analysis Data management Data processing Feature extraction Graphics processing units Health Sciences Humans Learning algorithms Life Sciences Machine Learning Mathematical and Computational Physics Medicine Original Research Article Signal processing Snoring Sound Statistics for Life Sciences Theoretical Theoretical and Computational Chemistry |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rSxwxEB-qRfGL-KpdayWCn5SA2WR3L367ivYoXBH0wG_L7iQRQfbKPUD_e2f2cYfYFvwY8thlJsn8JvMCONEBA7qekVi4IE3QQVqHThZlgoTPQ5bV75DD3-lgZH7dJ_dtHPe083bvTJL1Tb0MdosTzb49mSQ5E0u7Ap8TUt3Zj2sU97vrNzW9usAI6SFaxlmiOlPm35Z4K4zeIcx31tFa6FxvwWaLFkW_Ye82fPLVDqw19SNfdmB92FrGdwH7iCRBmJ_Vg_hRB9Uz_cXt4wMv0QYEcGftJSB-3owuRF9ckhQT7Ez4IsZB3FbjCTW51JJgcDin1tXzbNJEP-zB6Prq7nIg2wIKEkkuz6QrbC9zaeq10gTMnEZ-Pww2kBbmzwsVElti7LB0TmlnnEIaSZAKDSqPBF6-wGo1rvxXEHGZ-qB8aV3pjXWkViHnbQl0agtX2hDBeUfJHNvs4lzk4ilf5kVm4udE_JyJn9sIThdT_jSpNf43-LBjT96esmlO6iqnW0uSLILjRTedDzZ6FJUfz6e5skbHnNRPR7DfsHXxNVI2DcEVFcFZx-fl4v_8lYMPjf4GGzFvuNoD5hBWZ5O5_044ZlYe1fv2FV5v6Cg priority: 102 providerName: Springer Nature |
Title | Accelerating Biomedical Signal Processing Using GPU: A Case Study of Snore Sound Feature Extraction |
URI | https://link.springer.com/article/10.1007/s12539-017-0232-9 https://www.ncbi.nlm.nih.gov/pubmed/28948531 https://www.proquest.com/docview/2107988557 https://www.proquest.com/docview/1943286653 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDBddy2AvY-u-snXFgz1tmNVxPs57GWm5u7KxUtYd3J5CIttlMJLuPmD97yc5yR2ltC8Jie3ESLb1kyxLAO-1R492lEisrJeJ114ai1ZWdYqEz32eBzvk97PsdJZ8nafz3uC27N0qhzUxLNS2RbaRfyLVhENrpWn-5eqv5KxRvLvap9B4AHscuoxHdT7fKFxZMgq5Rkgl0TLOUzXsaoajc3Gq2VMolyS1YmluyqVbYPPWRmmQP5Mn8LgHjqLoOP0UdlyzDw-7VJLXzwALRJIgzM_mUhyHQ_VMf3Hx-5Lb9QcCuDB4CYjp-eyzKMQJSTHBzoTXovXiomkX9MiplgSDwzU9jf-tFt3ph-cwm4x_npzKPoGCRJLLK2krM8ptljmtNAEzq5Hth9540sLcUaV8amqMLdbWKm0Tq5BqEqTCBJVDAi8vYLdpG_cKRFxnzitXG1u7xFhSq5DjtniatZWtjY_gaCBfiX10cU5y8afcxkVmipdE8ZIpXpoIPmyaXHWhNe6rfDDwpOxn2bLcjokI3m2KaX7wpkfVuHa9LJVJdMxB_XQELztebv5GymZCcEVF8HFg7vbjd3bl9f1deQOPYh5WweXlAHZXi7V7S8BlVR-G0UnX0WR6CHvF9Ne3Md2Px2fnP-jtLC7-A7UM7X0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZahRBsIgR0RfxdjRqC_qiNGame2bSgsgas9mYAyFZyFs7U90dBJmJe6D7U36jVXPsIsG85XHoY5qq6jq6LoBXKmBAt6UlFi5IHVSQxqGTRZki6echz5t3yMOjbDTWX07T0zX40-fCcFhlzxMbRu1q5Dfyd2SacGmtNM0_nv-U3DWKvat9C42WLPb94heZbNMPe58Jv6-TZLhzsj2SXVcBiSSsZtIVZGa7LPMqVqStOIX8qBZMINPEbxZxSE2JicPSuVg57WKkmaRnoMbYI0l02vcaXNeKJDlnpg93e86f6a2mtwmZQEomeRr3XtQmVS9JFUcm5ZKkZCLNv3LwgnJ7wTHbyLvhHbjdKapi0FLWXVjz1T240bauXNwHHCCSxGL6qc7EpyaJn_Etjr-f8bouAYEHm6gEsft1_F4MxDZJTcHBiwtRB3Fc1RP65NZOgpXROX3t_J5N2myLBzC-EtA-hPWqrvxjEEmZ-RD70rjSa-PIjEOuExOISxSuNCGCzR58Frtq5txU44dd1WFmiFuCuGWIWxPBm-WS87aUx2WTN3qc2O5WT-2KBiN4uRym-8hOlqLy9XxqY6NVwkUEVQSPWlwu_0bGrSb1KI7gbY_c1eb_PcqTy4_yAm6OTg4P7MHe0f5TuJUwiTXhNhuwPpvM_TNSmmbl84ZSBXy76qvxF4CrJcE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB-0YvFFav1arRrBJyW02WR3L3271p71o6VQD_oWdidJEWSv3O2B_e-d2Y87SlXwMSSbXWYmO7_JfAG80xEj-pGRWPooTdRRWo9ellWGhM9jUbT3kCen-fHUfLnILvo-p4sh2n1wSXY5DVylqW52r3zcXSe-pZnmOJ9Cks5Jpb0L9wwnA5NAT9Px8CvOzahtNkI2iZZpkanBrfmnLW4qplto85antFVAky142CNHMe5Y_QjuhHob7ne9JK-3YfOk95I_BhwjkjZh3taX4qBNsGdeiPMfl7xFnxzAk23EgPh0Nt0XY3FIGk1wYOG1mEVxXs_mNOS2S4KB4pJGR7-aeZcJ8QSmk6Pvh8eyb6YgkXR0I31pR4XP86CVJpDmNfJdYrSRLLKwV6qY2QpTj5X3SnvjFdJKgldoUAUkIPMUNupZHZ6DSKs8RBUq66tgrCcTC7mGS6QTXPrKxgT2Bko67CuNc8OLn25dI5mJ74j4jonvbALvV49cdWU2_rV4Z2CP60_cwpHpyqXXsqxI4O1qms4KO0DKOsyWC6es0SkX-NMJPOvYunobGZ6GoItK4MPA5_Xmf_2UF_-1-g1snn2cuG-fT7--hAcpy14bGLMDG818GV4RvGmq160I_wYSTe9O |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+Biomedical+Signal+Processing+Using+GPU%3A+A+Case+Study+of+Snore+Sound+Feature+Extraction&rft.jtitle=Interdisciplinary+sciences+%3A+computational+life+sciences&rft.au=Guo%2C+Jian&rft.au=Qian%2C+Kun&rft.au=Zhang%2C+Gongxuan&rft.au=Xu%2C+Huijie&rft.date=2017-12-01&rft.issn=1913-2751&rft.eissn=1867-1462&rft.volume=9&rft.issue=4&rft.spage=550&rft.epage=555&rft_id=info:doi/10.1007%2Fs12539-017-0232-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12539_017_0232_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1913-2751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1913-2751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1913-2751&client=summon |