Accelerating Biomedical Signal Processing Using GPU: A Case Study of Snore Sound Feature Extraction

The advent of ‘Big Data’ and ‘Deep Learning’ offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based biomedical data analysis, feature extraction is a key step for ‘feeding’ the subsequent classifiers. With increasing numbers of biomedical data,...

Full description

Saved in:
Bibliographic Details
Published inInterdisciplinary sciences : computational life sciences Vol. 9; no. 4; pp. 550 - 555
Main Authors Guo, Jian, Qian, Kun, Zhang, Gongxuan, Xu, Huijie, Schuller, Björn
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The advent of ‘Big Data’ and ‘Deep Learning’ offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based biomedical data analysis, feature extraction is a key step for ‘feeding’ the subsequent classifiers. With increasing numbers of biomedical data, extracting features from these ‘big’ data is an intensive and time-consuming task. In this case study, we employ a Graphics Processing Unit (GPU) via Python to extract features from a large corpus of snore sound data. Those features can subsequently be imported into many well-known deep learning training frameworks without any format processing. The snore sound data were collected from several hospitals (20 subjects, with 770–990 MB per subject – in total 17.20 GB). Experimental results show that our GPU-based processing significantly speeds up the feature extraction phase, by up to seven times, as compared to the previous CPU system.
AbstractList The advent of 'Big Data' and 'Deep Learning' offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based biomedical data analysis, feature extraction is a key step for 'feeding' the subsequent classifiers. With increasing numbers of biomedical data, extracting features from these 'big' data is an intensive and time-consuming task. In this case study, we employ a Graphics Processing Unit (GPU) via Python to extract features from a large corpus of snore sound data. Those features can subsequently be imported into many well-known deep learning training frameworks without any format processing. The snore sound data were collected from several hospitals (20 subjects, with 770-990 MB per subject - in total 17.20 GB). Experimental results show that our GPU-based processing significantly speeds up the feature extraction phase, by up to seven times, as compared to the previous CPU system.The advent of 'Big Data' and 'Deep Learning' offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based biomedical data analysis, feature extraction is a key step for 'feeding' the subsequent classifiers. With increasing numbers of biomedical data, extracting features from these 'big' data is an intensive and time-consuming task. In this case study, we employ a Graphics Processing Unit (GPU) via Python to extract features from a large corpus of snore sound data. Those features can subsequently be imported into many well-known deep learning training frameworks without any format processing. The snore sound data were collected from several hospitals (20 subjects, with 770-990 MB per subject - in total 17.20 GB). Experimental results show that our GPU-based processing significantly speeds up the feature extraction phase, by up to seven times, as compared to the previous CPU system.
The advent of ‘Big Data’ and ‘Deep Learning’ offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based biomedical data analysis, feature extraction is a key step for ‘feeding’ the subsequent classifiers. With increasing numbers of biomedical data, extracting features from these ‘big’ data is an intensive and time-consuming task. In this case study, we employ a Graphics Processing Unit (GPU) via Python to extract features from a large corpus of snore sound data. Those features can subsequently be imported into many well-known deep learning training frameworks without any format processing. The snore sound data were collected from several hospitals (20 subjects, with 770–990 MB per subject – in total 17.20 GB). Experimental results show that our GPU-based processing significantly speeds up the feature extraction phase, by up to seven times, as compared to the previous CPU system.
The advent of 'Big Data' and 'Deep Learning' offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based biomedical data analysis, feature extraction is a key step for 'feeding' the subsequent classifiers. With increasing numbers of biomedical data, extracting features from these 'big' data is an intensive and time-consuming task. In this case study, we employ a Graphics Processing Unit (GPU) via Python to extract features from a large corpus of snore sound data. Those features can subsequently be imported into many well-known deep learning training frameworks without any format processing. The snore sound data were collected from several hospitals (20 subjects, with 770-990 MB per subject - in total 17.20 GB). Experimental results show that our GPU-based processing significantly speeds up the feature extraction phase, by up to seven times, as compared to the previous CPU system.
Author Guo, Jian
Zhang, Gongxuan
Qian, Kun
Xu, Huijie
Schuller, Björn
Author_xml – sequence: 1
  givenname: Jian
  surname: Guo
  fullname: Guo, Jian
  organization: School of Computer Science and Engineering, Nanjing University of Science Technology
– sequence: 2
  givenname: Kun
  surname: Qian
  fullname: Qian, Kun
  organization: Department of Electrical and Computer Engineering, MISP group, MMK Technische University Munchen
– sequence: 3
  givenname: Gongxuan
  surname: Zhang
  fullname: Zhang, Gongxuan
  email: gongxuan@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science Technology
– sequence: 4
  givenname: Huijie
  surname: Xu
  fullname: Xu, Huijie
  organization: Department of Otolaryngology, Beijing Hospital
– sequence: 5
  givenname: Björn
  surname: Schuller
  fullname: Schuller, Björn
  organization: Bjorn Schuller Department of Computing, Machine Learning Group Imperial College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28948531$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1LHDEUhkOx1K_-AG9kwJveTM3J1yTerYtaQaiw7nXIJpklMptoMgP675vtKgXB3uTkkOc95D3vIdqLKXqETgD_BIy78wKEU9Vi6FpMKGnVF3QAUnQtMEH26l0BbUnHYR8dlvKIsWCS4m9on0jFJKdwgOzMWj_4bMYQ181lSBvvgjVDswjrWMt9TtaXsn1c_j1v7pcXzayZm-KbxTi51yb1zSKmXNs0RddcezNOtbt6GbOxY0jxGH3tzVD897d6hJbXVw_zX-3d75vb-eyutQz42DqjZOeE8BQow9xRi4HJXvUCg8cGeq5Wlji7cg6oYw5sJTnjllnwFgt6hH7s5j7l9Dz5MupNKNXdYKJPU9GgGCVSCE4revYBfUxTroaLJoA7JSXnXaVO36hpVfein3LYmPyq39dXgW4H2JxKyb7XNoxm67l6D4MGrLdB6V1Qugalt0FpVZXwQfk-_H8astOUysa1z_8-_bnoDzHeoyI
CitedBy_id crossref_primary_10_1016_j_jpdc_2020_04_003
crossref_primary_10_1007_s13369_022_07057_0
Cites_doi 10.1007/s12539-016-0158-7
10.1007/s12539-015-0022-1
10.1109/TBME.2010.2061846
10.1109/MCSE.2011.37
10.1088/0967-3334/34/2/99
10.1109/CSCS.2015.37
10.1016/j.procs.2013.05.164
10.1109/TBME.2016.2619675
10.1111/j.1365-2796.2011.02491.x
10.1145/2647868.2654889
10.1007/s12539-013-0203-8
10.1016/j.smrv.2009.06.002
10.1145/3022670.2976746
10.1056/NEJM199601113340207
10.1109/ICASSP.2016.7471669
10.1007/s11517-012-0885-9
ContentType Journal Article
Copyright Springer-Verlag 2017
Interdisciplinary Sciences: Computational Life Sciences is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag 2017
– notice: Interdisciplinary Sciences: Computational Life Sciences is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X2
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K9.
L7M
LK8
L~C
L~D
M0K
M0S
M1P
M7P
P5Z
P62
P64
PATMY
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7X8
DOI 10.1007/s12539-017-0232-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest : Agricultural & Environmental Science Collection [unlimited simultaneous users]
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central - New (Subscription)
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
Advanced Technologies Database with Aerospace
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Agricultural Science Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1867-1462
EndPage 555
ExternalDocumentID 28948531
10_1007_s12539_017_0232_9
Genre Journal Article
GrantInformation_xml – fundername: European Union’s Seventh Framework and Horizon 2020 Programmes
  grantid: 338164; 645378
– fundername: National Natural Science Foundation of China
  grantid: 61472189; 61272420
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 61272420
– fundername: European Union's Seventh Framework and Horizon 2020 Programmes
  grantid: 645378
– fundername: National Natural Science Foundation of China
  grantid: 61472189
– fundername: European Union's Seventh Framework and Horizon 2020 Programmes
  grantid: 338164
GroupedDBID ---
-56
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
1N0
29~
2KG
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
67N
6NX
7X2
7X7
7XC
88E
8CJ
8FE
8FG
8FH
8FI
8FJ
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AEUYN
AEVLU
AEXYK
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
APEBS
ARAPS
ASPBG
ATCPS
AUKKA
AVWKF
AXYYD
AZFZN
BA0
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BVXVI
CAG
CCPQU
COF
D1J
D1K
DDRTE
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IZIGR
I~X
J-C
JBSCW
JCJTX
JZLTJ
K6-
KOV
LK5
LK8
LLZTM
M0K
M1P
M4Y
M7P
M7R
NPVJJ
NQJWS
NU0
O9-
O9J
P62
PATMY
PCBAR
PQQKQ
PROAC
PSQYO
PT4
PYCSY
Q2X
QOR
QOS
R89
RLLFE
ROL
RSV
S1Z
S27
S3A
S3B
SBL
SCL
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
T13
TSG
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
AFDZB
AFOHR
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
7XB
8FD
8FK
ABRTQ
AZQEC
DWQXO
FR3
GNUQQ
JQ2
K9.
L7M
L~C
L~D
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c415t-da987d66e313405d3c0148f9f601e0a1f59bc2dcbdd13d4d1ce31545c4c1ec063
IEDL.DBID 7X7
ISSN 1913-2751
1867-1462
IngestDate Tue Aug 05 11:34:16 EDT 2025
Fri Jul 25 10:20:02 EDT 2025
Wed Feb 19 02:42:00 EST 2025
Thu Apr 24 22:52:29 EDT 2025
Tue Jul 01 02:19:18 EDT 2025
Fri Feb 21 02:33:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords Signal processing
Feature extraction
GPU
Biomedical
Python
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-da987d66e313405d3c0148f9f601e0a1f59bc2dcbdd13d4d1ce31545c4c1ec063
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://zenodo.org/record/3500994
PMID 28948531
PQID 2107988557
PQPubID 326319
PageCount 6
ParticipantIDs proquest_miscellaneous_1943286653
proquest_journals_2107988557
pubmed_primary_28948531
crossref_citationtrail_10_1007_s12539_017_0232_9
crossref_primary_10_1007_s12539_017_0232_9
springer_journals_10_1007_s12539_017_0232_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20171200
2017-12-00
2017-Dec
20171201
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 20171200
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Bromont
PublicationSubtitle Computational Life Sciences
PublicationTitle Interdisciplinary sciences : computational life sciences
PublicationTitleAbbrev Interdiscip Sci Comput Life Sci
PublicationTitleAlternate Interdiscip Sci
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References MesquitaJSolà-SolerJFizJAMoreraJJanéRAll night analysis of time interval between snores in subjects with sleep apnea hypopnea syndromeMed Biol Eng Computing20125043733811:STN:280:DC%2BC38vmt1yjsA%3D%3D10.1007/s11517-012-0885-9
HuijieXWeiningHYulishengCLSpectral analysis of snoring sound and site of obstruction in obstructive sleep apnea/hypopnea syndromeAm J Audiol Speech Pathol20111009
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell (2014) Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on Multimedia. ACM, pp. 675–678
StrolloPJJrRogersRMObstructive sleep apneaN Engl J Med199633429910410.1056/NEJM1996011133402078531966
Al-AmeenZSulongGDeblurring computed tomography medical images using a novel amended landweber algorithmInterdiscip Sci20157331932510.1007/s12539-015-0022-126199211
BergstraJBastienFBreuleuxOLamblinPPascanuRDelalleauODesjardinsGWarde-FarleyDGoodfellowIBergeronATheano: deep learning on gpus with python, in NIPS 20112011GranadaBigLearning Workshop
M. Schmitt, C. Janott, V. Pandit, K. Qian, C. Heiser, W. Hemmert, and B. Schuller (2016) A bag-of-audio-words approach for snore sounds excitation localisation. In: Proceedings of 12th ITG Conference on Speech Communication. pp. 230–234
QianKJanottCPanditVZhangZHeiserCHohenhorstWHerzogMHemmertWSchullerBClassification of the excitation location of snore sounds in the upper airway by acoustic multi-feature analysisIEEE Trans Biomed Eng20176481110.1109/TBME.2016.2619675
C. Analytics (2015) Anaconda software distribution, Computer software, nov. [Online]. Available: https://continuum.io
E. Jones, T. Oliphant, P. Peterson et al. (2001) Open source scientific tools for python
H. Ali (2015) Big data analytics in biomedical informatics, BIOSTEC. Tech Rep
A. Adeshina and R. Hashim (2016) Computational approach for securing radiology-diagnostic data in connected health network using high-performance gpu-accelerated aes. Interdiscip Sci 1–13
G. Van Rossum et al. (2007) Python programming language. In: USENIX Annual Technical Conference. vol. 41
GrossmanRWhiteKA vision for a biomedical cloudJ Intern Med201227121221301:CAS:528:DC%2BC38Xjt1Wkurc%3D10.1111/j.1365-2796.2011.02491.x22142244
T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang (2015) Mxnet: a flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274
PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: machine learning in pythonJ Mach Learn Res20111228252830
AbeyratneUDe SilvaSHukinsCDuceBObstructive sleep apnea screening by integrating snore feature classesPhysiol Meas2013342991:STN:280:DC%2BC3szhs1ersQ%3D%3D10.1088/0967-3334/34/2/9923343563
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin et al. (2015) Tensorflow: large-scale machine learning on heterogeneous systems, Software available from tensorflow. org 1
M. S. Kamal and S. F. Nimmy (2016) Strucbreak: a computational framework for structural break detection in dna sequences. Interdiscip Sci 1–16
PevernagieDAartsRMDe MeyerMThe acoustics of snoringSleep Med Rev201014213114410.1016/j.smrv.2009.06.00219665907
Van Der WaltSColbertSCVaroquauxGThe numpy array: a structure for efficient numerical computationComputing Sci Eng2011132223010.1109/MCSE.2011.37
AzarbarzinAMoussaviZMAutomatic and unsupervised snore sound extraction from respiratory sound signalsIEEE Trans Biomed Eng20115851156116210.1109/TBME.2010.206184620679022
K. Qian, C. Janott, Z. Zhang, C. Heiser, and B. Schuller, “Wavelet Features for Classification of VOTE Snore Sounds,” in Proceedings ICASSP.Shanghai, P. R. China: IEEE, 2016, pp. 221–225
I. Dogaru and R. Dogaru (2015) Using python and julia for efficient implementation of natural computing and complexity related algorithms. In: 2015 20th International Conference on Control Systems and Computer Science. IEEE, pp. 599–604
BastrakovSMeyerovIGergelVGonoskovAGorshkovAEfimenkoEIvanchenkoMKirillinMMalovaAOsipovGHigh performance computing in biomedical applicationsProcedia Comput Sci201318101910.1016/j.procs.2013.05.164
QianKGuoJXuHZhuZZhangGSnore related signals processing in a private cloud computing systemInterdiscip Sci20146321622110.1007/s12539-013-0203-825205499
232_CR19
232_CR18
A Azarbarzin (232_CR15) 2011; 58
232_CR6
J Mesquita (232_CR9) 2012; 50
S Bastrakov (232_CR4) 2013; 18
232_CR22
232_CR21
U Abeyratne (232_CR10) 2013; 34
R Grossman (232_CR3) 2012; 271
232_CR2
PJ Strollo Jr (232_CR7) 1996; 334
232_CR20
232_CR1
K Qian (232_CR5) 2014; 6
232_CR26
232_CR25
J Bergstra (232_CR23) 2011
D Pevernagie (232_CR8) 2010; 14
K Qian (232_CR12) 2017; 64
Z Al-Ameen (232_CR16) 2015; 7
232_CR11
232_CR13
S Walt Van Der (232_CR17) 2011; 13
X Huijie (232_CR14) 2011; 1
F Pedregosa (232_CR24) 2011; 12
References_xml – reference: AzarbarzinAMoussaviZMAutomatic and unsupervised snore sound extraction from respiratory sound signalsIEEE Trans Biomed Eng20115851156116210.1109/TBME.2010.206184620679022
– reference: StrolloPJJrRogersRMObstructive sleep apneaN Engl J Med199633429910410.1056/NEJM1996011133402078531966
– reference: Al-AmeenZSulongGDeblurring computed tomography medical images using a novel amended landweber algorithmInterdiscip Sci20157331932510.1007/s12539-015-0022-126199211
– reference: GrossmanRWhiteKA vision for a biomedical cloudJ Intern Med201227121221301:CAS:528:DC%2BC38Xjt1Wkurc%3D10.1111/j.1365-2796.2011.02491.x22142244
– reference: G. Van Rossum et al. (2007) Python programming language. In: USENIX Annual Technical Conference. vol. 41
– reference: MesquitaJSolà-SolerJFizJAMoreraJJanéRAll night analysis of time interval between snores in subjects with sleep apnea hypopnea syndromeMed Biol Eng Computing20125043733811:STN:280:DC%2BC38vmt1yjsA%3D%3D10.1007/s11517-012-0885-9
– reference: HuijieXWeiningHYulishengCLSpectral analysis of snoring sound and site of obstruction in obstructive sleep apnea/hypopnea syndromeAm J Audiol Speech Pathol20111009
– reference: BastrakovSMeyerovIGergelVGonoskovAGorshkovAEfimenkoEIvanchenkoMKirillinMMalovaAOsipovGHigh performance computing in biomedical applicationsProcedia Comput Sci201318101910.1016/j.procs.2013.05.164
– reference: AbeyratneUDe SilvaSHukinsCDuceBObstructive sleep apnea screening by integrating snore feature classesPhysiol Meas2013342991:STN:280:DC%2BC3szhs1ersQ%3D%3D10.1088/0967-3334/34/2/9923343563
– reference: PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: machine learning in pythonJ Mach Learn Res20111228252830
– reference: Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell (2014) Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on Multimedia. ACM, pp. 675–678
– reference: A. Adeshina and R. Hashim (2016) Computational approach for securing radiology-diagnostic data in connected health network using high-performance gpu-accelerated aes. Interdiscip Sci 1–13
– reference: QianKJanottCPanditVZhangZHeiserCHohenhorstWHerzogMHemmertWSchullerBClassification of the excitation location of snore sounds in the upper airway by acoustic multi-feature analysisIEEE Trans Biomed Eng20176481110.1109/TBME.2016.2619675
– reference: M. S. Kamal and S. F. Nimmy (2016) Strucbreak: a computational framework for structural break detection in dna sequences. Interdiscip Sci 1–16
– reference: BergstraJBastienFBreuleuxOLamblinPPascanuRDelalleauODesjardinsGWarde-FarleyDGoodfellowIBergeronATheano: deep learning on gpus with python, in NIPS 20112011GranadaBigLearning Workshop
– reference: C. Analytics (2015) Anaconda software distribution, Computer software, nov. [Online]. Available: https://continuum.io
– reference: H. Ali (2015) Big data analytics in biomedical informatics, BIOSTEC. Tech Rep
– reference: M. Schmitt, C. Janott, V. Pandit, K. Qian, C. Heiser, W. Hemmert, and B. Schuller (2016) A bag-of-audio-words approach for snore sounds excitation localisation. In: Proceedings of 12th ITG Conference on Speech Communication. pp. 230–234
– reference: I. Dogaru and R. Dogaru (2015) Using python and julia for efficient implementation of natural computing and complexity related algorithms. In: 2015 20th International Conference on Control Systems and Computer Science. IEEE, pp. 599–604
– reference: QianKGuoJXuHZhuZZhangGSnore related signals processing in a private cloud computing systemInterdiscip Sci20146321622110.1007/s12539-013-0203-825205499
– reference: E. Jones, T. Oliphant, P. Peterson et al. (2001) Open source scientific tools for python
– reference: M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin et al. (2015) Tensorflow: large-scale machine learning on heterogeneous systems, Software available from tensorflow. org 1
– reference: T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang (2015) Mxnet: a flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274
– reference: Van Der WaltSColbertSCVaroquauxGThe numpy array: a structure for efficient numerical computationComputing Sci Eng2011132223010.1109/MCSE.2011.37
– reference: PevernagieDAartsRMDe MeyerMThe acoustics of snoringSleep Med Rev201014213114410.1016/j.smrv.2009.06.00219665907
– reference: K. Qian, C. Janott, Z. Zhang, C. Heiser, and B. Schuller, “Wavelet Features for Classification of VOTE Snore Sounds,” in Proceedings ICASSP.Shanghai, P. R. China: IEEE, 2016, pp. 221–225
– ident: 232_CR2
  doi: 10.1007/s12539-016-0158-7
– ident: 232_CR25
– volume: 7
  start-page: 319
  issue: 3
  year: 2015
  ident: 232_CR16
  publication-title: Interdiscip Sci
  doi: 10.1007/s12539-015-0022-1
– volume: 58
  start-page: 1156
  issue: 5
  year: 2011
  ident: 232_CR15
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2010.2061846
– ident: 232_CR19
– volume: 13
  start-page: 22
  issue: 2
  year: 2011
  ident: 232_CR17
  publication-title: Computing Sci Eng
  doi: 10.1109/MCSE.2011.37
– volume: 34
  start-page: 99
  issue: 2
  year: 2013
  ident: 232_CR10
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/34/2/99
– ident: 232_CR6
  doi: 10.1109/CSCS.2015.37
– volume: 18
  start-page: 10
  year: 2013
  ident: 232_CR4
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2013.05.164
– volume: 64
  start-page: 11
  issue: 8
  year: 2017
  ident: 232_CR12
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2016.2619675
– volume: 271
  start-page: 122
  issue: 2
  year: 2012
  ident: 232_CR3
  publication-title: J Intern Med
  doi: 10.1111/j.1365-2796.2011.02491.x
– ident: 232_CR18
– ident: 232_CR20
  doi: 10.1145/2647868.2654889
– volume: 6
  start-page: 216
  issue: 3
  year: 2014
  ident: 232_CR5
  publication-title: Interdiscip Sci
  doi: 10.1007/s12539-013-0203-8
– ident: 232_CR21
– volume: 14
  start-page: 131
  issue: 2
  year: 2010
  ident: 232_CR8
  publication-title: Sleep Med Rev
  doi: 10.1016/j.smrv.2009.06.002
– volume: 12
  start-page: 2825
  year: 2011
  ident: 232_CR24
  publication-title: J Mach Learn Res
– ident: 232_CR22
  doi: 10.1145/3022670.2976746
– ident: 232_CR11
– volume: 334
  start-page: 99
  issue: 2
  year: 1996
  ident: 232_CR7
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199601113340207
– ident: 232_CR13
– ident: 232_CR26
  doi: 10.1109/ICASSP.2016.7471669
– volume-title: Theano: deep learning on gpus with python, in NIPS 2011
  year: 2011
  ident: 232_CR23
– ident: 232_CR1
– volume: 1
  start-page: 009
  year: 2011
  ident: 232_CR14
  publication-title: Am J Audiol Speech Pathol
– volume: 50
  start-page: 373
  issue: 4
  year: 2012
  ident: 232_CR9
  publication-title: Med Biol Eng Computing
  doi: 10.1007/s11517-012-0885-9
SSID ssj0064830
Score 2.0575645
Snippet The advent of ‘Big Data’ and ‘Deep Learning’ offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based...
The advent of 'Big Data' and 'Deep Learning' offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 550
SubjectTerms Algorithms
Biomedical and Life Sciences
Biomedical data
Case studies
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Appl. in Life Sciences
Data analysis
Data management
Data processing
Feature extraction
Graphics processing units
Health Sciences
Humans
Learning algorithms
Life Sciences
Machine Learning
Mathematical and Computational Physics
Medicine
Original Research Article
Signal processing
Snoring
Sound
Statistics for Life Sciences
Theoretical
Theoretical and Computational Chemistry
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rSxwxEB-qRfGL-KpdayWCn5SA2WR3L367ivYoXBH0wG_L7iQRQfbKPUD_e2f2cYfYFvwY8thlJsn8JvMCONEBA7qekVi4IE3QQVqHThZlgoTPQ5bV75DD3-lgZH7dJ_dtHPe083bvTJL1Tb0MdosTzb49mSQ5E0u7Ap8TUt3Zj2sU97vrNzW9usAI6SFaxlmiOlPm35Z4K4zeIcx31tFa6FxvwWaLFkW_Ye82fPLVDqw19SNfdmB92FrGdwH7iCRBmJ_Vg_hRB9Uz_cXt4wMv0QYEcGftJSB-3owuRF9ckhQT7Ez4IsZB3FbjCTW51JJgcDin1tXzbNJEP-zB6Prq7nIg2wIKEkkuz6QrbC9zaeq10gTMnEZ-Pww2kBbmzwsVElti7LB0TmlnnEIaSZAKDSqPBF6-wGo1rvxXEHGZ-qB8aV3pjXWkViHnbQl0agtX2hDBeUfJHNvs4lzk4ilf5kVm4udE_JyJn9sIThdT_jSpNf43-LBjT96esmlO6iqnW0uSLILjRTedDzZ6FJUfz6e5skbHnNRPR7DfsHXxNVI2DcEVFcFZx-fl4v_8lYMPjf4GGzFvuNoD5hBWZ5O5_044ZlYe1fv2FV5v6Cg
  priority: 102
  providerName: Springer Nature
Title Accelerating Biomedical Signal Processing Using GPU: A Case Study of Snore Sound Feature Extraction
URI https://link.springer.com/article/10.1007/s12539-017-0232-9
https://www.ncbi.nlm.nih.gov/pubmed/28948531
https://www.proquest.com/docview/2107988557
https://www.proquest.com/docview/1943286653
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDBddy2AvY-u-snXFgz1tmNVxPs57GWm5u7KxUtYd3J5CIttlMJLuPmD97yc5yR2ltC8Jie3ESLb1kyxLAO-1R492lEisrJeJ114ai1ZWdYqEz32eBzvk97PsdJZ8nafz3uC27N0qhzUxLNS2RbaRfyLVhENrpWn-5eqv5KxRvLvap9B4AHscuoxHdT7fKFxZMgq5Rkgl0TLOUzXsaoajc3Gq2VMolyS1YmluyqVbYPPWRmmQP5Mn8LgHjqLoOP0UdlyzDw-7VJLXzwALRJIgzM_mUhyHQ_VMf3Hx-5Lb9QcCuDB4CYjp-eyzKMQJSTHBzoTXovXiomkX9MiplgSDwzU9jf-tFt3ph-cwm4x_npzKPoGCRJLLK2krM8ptljmtNAEzq5Hth9540sLcUaV8amqMLdbWKm0Tq5BqEqTCBJVDAi8vYLdpG_cKRFxnzitXG1u7xFhSq5DjtniatZWtjY_gaCBfiX10cU5y8afcxkVmipdE8ZIpXpoIPmyaXHWhNe6rfDDwpOxn2bLcjokI3m2KaX7wpkfVuHa9LJVJdMxB_XQELztebv5GymZCcEVF8HFg7vbjd3bl9f1deQOPYh5WweXlAHZXi7V7S8BlVR-G0UnX0WR6CHvF9Ne3Md2Px2fnP-jtLC7-A7UM7X0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZahRBsIgR0RfxdjRqC_qiNGame2bSgsgas9mYAyFZyFs7U90dBJmJe6D7U36jVXPsIsG85XHoY5qq6jq6LoBXKmBAt6UlFi5IHVSQxqGTRZki6echz5t3yMOjbDTWX07T0zX40-fCcFhlzxMbRu1q5Dfyd2SacGmtNM0_nv-U3DWKvat9C42WLPb94heZbNMPe58Jv6-TZLhzsj2SXVcBiSSsZtIVZGa7LPMqVqStOIX8qBZMINPEbxZxSE2JicPSuVg57WKkmaRnoMbYI0l02vcaXNeKJDlnpg93e86f6a2mtwmZQEomeRr3XtQmVS9JFUcm5ZKkZCLNv3LwgnJ7wTHbyLvhHbjdKapi0FLWXVjz1T240bauXNwHHCCSxGL6qc7EpyaJn_Etjr-f8bouAYEHm6gEsft1_F4MxDZJTcHBiwtRB3Fc1RP65NZOgpXROX3t_J5N2myLBzC-EtA-hPWqrvxjEEmZ-RD70rjSa-PIjEOuExOISxSuNCGCzR58Frtq5txU44dd1WFmiFuCuGWIWxPBm-WS87aUx2WTN3qc2O5WT-2KBiN4uRym-8hOlqLy9XxqY6NVwkUEVQSPWlwu_0bGrSb1KI7gbY_c1eb_PcqTy4_yAm6OTg4P7MHe0f5TuJUwiTXhNhuwPpvM_TNSmmbl84ZSBXy76qvxF4CrJcE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB-0YvFFav1arRrBJyW02WR3L3271p71o6VQD_oWdidJEWSv3O2B_e-d2Y87SlXwMSSbXWYmO7_JfAG80xEj-pGRWPooTdRRWo9ellWGhM9jUbT3kCen-fHUfLnILvo-p4sh2n1wSXY5DVylqW52r3zcXSe-pZnmOJ9Cks5Jpb0L9wwnA5NAT9Px8CvOzahtNkI2iZZpkanBrfmnLW4qplto85antFVAky142CNHMe5Y_QjuhHob7ne9JK-3YfOk95I_BhwjkjZh3taX4qBNsGdeiPMfl7xFnxzAk23EgPh0Nt0XY3FIGk1wYOG1mEVxXs_mNOS2S4KB4pJGR7-aeZcJ8QSmk6Pvh8eyb6YgkXR0I31pR4XP86CVJpDmNfJdYrSRLLKwV6qY2QpTj5X3SnvjFdJKgldoUAUkIPMUNupZHZ6DSKs8RBUq66tgrCcTC7mGS6QTXPrKxgT2Bko67CuNc8OLn25dI5mJ74j4jonvbALvV49cdWU2_rV4Z2CP60_cwpHpyqXXsqxI4O1qms4KO0DKOsyWC6es0SkX-NMJPOvYunobGZ6GoItK4MPA5_Xmf_2UF_-1-g1snn2cuG-fT7--hAcpy14bGLMDG818GV4RvGmq160I_wYSTe9O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+Biomedical+Signal+Processing+Using+GPU%3A+A+Case+Study+of+Snore+Sound+Feature+Extraction&rft.jtitle=Interdisciplinary+sciences+%3A+computational+life+sciences&rft.au=Guo%2C+Jian&rft.au=Qian%2C+Kun&rft.au=Zhang%2C+Gongxuan&rft.au=Xu%2C+Huijie&rft.date=2017-12-01&rft.issn=1913-2751&rft.eissn=1867-1462&rft.volume=9&rft.issue=4&rft.spage=550&rft.epage=555&rft_id=info:doi/10.1007%2Fs12539-017-0232-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12539_017_0232_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1913-2751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1913-2751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1913-2751&client=summon