Accelerating Biomedical Signal Processing Using GPU: A Case Study of Snore Sound Feature Extraction
The advent of ‘Big Data’ and ‘Deep Learning’ offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based biomedical data analysis, feature extraction is a key step for ‘feeding’ the subsequent classifiers. With increasing numbers of biomedical data,...
Saved in:
Published in | Interdisciplinary sciences : computational life sciences Vol. 9; no. 4; pp. 550 - 555 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The advent of ‘Big Data’ and ‘Deep Learning’ offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based biomedical data analysis, feature extraction is a key step for ‘feeding’ the subsequent classifiers. With increasing numbers of biomedical data, extracting features from these ‘big’ data is an intensive and time-consuming task. In this case study, we employ a Graphics Processing Unit (GPU) via Python to extract features from a large corpus of snore sound data. Those features can subsequently be imported into many well-known deep learning training frameworks without any format processing. The snore sound data were collected from several hospitals (20 subjects, with 770–990 MB per subject – in total 17.20 GB). Experimental results show that our GPU-based processing significantly speeds up the feature extraction phase, by up to seven times, as compared to the previous CPU system. |
---|---|
Bibliography: | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1913-2751 1867-1462 1867-1462 |
DOI: | 10.1007/s12539-017-0232-9 |