Multimodal Machine Learning Using Visual Fields and Peripapillary Circular OCT Scans in Detection of Glaucomatous Optic Neuropathy
To develop and validate a multimodal artificial intelligence algorithm, FusionNet, using the pattern deviation probability plots from visual field (VF) reports and circular peripapillary OCT scans to detect glaucomatous optic neuropathy (GON). Cross-sectional study. Two thousand four hundred sixty-t...
Saved in:
Published in | Ophthalmology (Rochester, Minn.) Vol. 129; no. 2; pp. 171 - 180 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To develop and validate a multimodal artificial intelligence algorithm, FusionNet, using the pattern deviation probability plots from visual field (VF) reports and circular peripapillary OCT scans to detect glaucomatous optic neuropathy (GON).
Cross-sectional study.
Two thousand four hundred sixty-three pairs of VF and OCT images from 1083 patients.
FusionNet based on bimodal input of VF and OCT paired data was developed to detect GON. Visual field data were collected using the Humphrey Field Analyzer (HFA). OCT images were collected from 3 types of devices (DRI-OCT, Cirrus OCT, and Spectralis). Two thousand four hundred sixty-three pairs of VF and OCT images were divided into 4 datasets: 1567 for training (HFA and DRI-OCT), 441 for primary validation (HFA and DRI-OCT), 255 for the internal test (HFA and Cirrus OCT), and 200 for the external test set (HFA and Spectralis). GON was defined as retinal nerve fiber layer thinning with corresponding VF defects.
Diagnostic performance of FusionNet compared with that of VFNet (with VF data as input) and OCTNet (with OCT data as input).
FusionNet achieved an area under the receiver operating characteristic curve (AUC) of 0.950 (0.931–0.968) and outperformed VFNet (AUC, 0.868 [95% confidence interval (CI), 0.834–0.902]), OCTNet (AUC, 0.809 [95% CI, 0.768–0.850]), and 2 glaucoma specialists (glaucoma specialist 1: AUC, 0.882 [95% CI, 0.847–0.917]; glaucoma specialist 2: AUC, 0.883 [95% CI, 0.849–0.918]) in the primary validation set. In the internal and external test sets, the performances of FusionNet were also superior to VFNet and OCTNet (FusionNet vs VFNet vs OCTNet: internal test set 0.917 vs 0.854 vs 0.811; external test set 0.873 vs 0.772 vs 0.785). No significant difference was found between the 2 glaucoma specialists and FusionNet in the internal and external test sets, except for glaucoma specialist 2 (AUC, 0.858 [95% CI, 0.805–0.912]) in the internal test set.
FusionNet, developed using paired VF and OCT data, demonstrated superior performance to both VFNet and OCTNet in detecting GON, suggesting that multimodal machine learning models are valuable in detecting GON. |
---|---|
AbstractList | To develop and validate a multimodal artificial intelligence algorithm, FusionNet, using the pattern deviation probability plots from visual field (VF) reports and circular peripapillary OCT scans to detect glaucomatous optic neuropathy (GON).
Cross-sectional study.
Two thousand four hundred sixty-three pairs of VF and OCT images from 1083 patients.
FusionNet based on bimodal input of VF and OCT paired data was developed to detect GON. Visual field data were collected using the Humphrey Field Analyzer (HFA). OCT images were collected from 3 types of devices (DRI-OCT, Cirrus OCT, and Spectralis). Two thousand four hundred sixty-three pairs of VF and OCT images were divided into 4 datasets: 1567 for training (HFA and DRI-OCT), 441 for primary validation (HFA and DRI-OCT), 255 for the internal test (HFA and Cirrus OCT), and 200 for the external test set (HFA and Spectralis). GON was defined as retinal nerve fiber layer thinning with corresponding VF defects.
Diagnostic performance of FusionNet compared with that of VFNet (with VF data as input) and OCTNet (with OCT data as input).
FusionNet achieved an area under the receiver operating characteristic curve (AUC) of 0.950 (0.931–0.968) and outperformed VFNet (AUC, 0.868 [95% confidence interval (CI), 0.834–0.902]), OCTNet (AUC, 0.809 [95% CI, 0.768–0.850]), and 2 glaucoma specialists (glaucoma specialist 1: AUC, 0.882 [95% CI, 0.847–0.917]; glaucoma specialist 2: AUC, 0.883 [95% CI, 0.849–0.918]) in the primary validation set. In the internal and external test sets, the performances of FusionNet were also superior to VFNet and OCTNet (FusionNet vs VFNet vs OCTNet: internal test set 0.917 vs 0.854 vs 0.811; external test set 0.873 vs 0.772 vs 0.785). No significant difference was found between the 2 glaucoma specialists and FusionNet in the internal and external test sets, except for glaucoma specialist 2 (AUC, 0.858 [95% CI, 0.805–0.912]) in the internal test set.
FusionNet, developed using paired VF and OCT data, demonstrated superior performance to both VFNet and OCTNet in detecting GON, suggesting that multimodal machine learning models are valuable in detecting GON. To develop and validate a multimodal artificial intelligence algorithm, FusionNet, using the pattern deviation probability plots from visual field (VF) reports and circular peripapillary OCT scans to detect glaucomatous optic neuropathy (GON).PURPOSETo develop and validate a multimodal artificial intelligence algorithm, FusionNet, using the pattern deviation probability plots from visual field (VF) reports and circular peripapillary OCT scans to detect glaucomatous optic neuropathy (GON).Cross-sectional study.DESIGNCross-sectional study.Two thousand four hundred sixty-three pairs of VF and OCT images from 1083 patients.SUBJECTSTwo thousand four hundred sixty-three pairs of VF and OCT images from 1083 patients.FusionNet based on bimodal input of VF and OCT paired data was developed to detect GON. Visual field data were collected using the Humphrey Field Analyzer (HFA). OCT images were collected from 3 types of devices (DRI-OCT, Cirrus OCT, and Spectralis). Two thousand four hundred sixty-three pairs of VF and OCT images were divided into 4 datasets: 1567 for training (HFA and DRI-OCT), 441 for primary validation (HFA and DRI-OCT), 255 for the internal test (HFA and Cirrus OCT), and 200 for the external test set (HFA and Spectralis). GON was defined as retinal nerve fiber layer thinning with corresponding VF defects.METHODSFusionNet based on bimodal input of VF and OCT paired data was developed to detect GON. Visual field data were collected using the Humphrey Field Analyzer (HFA). OCT images were collected from 3 types of devices (DRI-OCT, Cirrus OCT, and Spectralis). Two thousand four hundred sixty-three pairs of VF and OCT images were divided into 4 datasets: 1567 for training (HFA and DRI-OCT), 441 for primary validation (HFA and DRI-OCT), 255 for the internal test (HFA and Cirrus OCT), and 200 for the external test set (HFA and Spectralis). GON was defined as retinal nerve fiber layer thinning with corresponding VF defects.Diagnostic performance of FusionNet compared with that of VFNet (with VF data as input) and OCTNet (with OCT data as input).MAIN OUTCOME MEASURESDiagnostic performance of FusionNet compared with that of VFNet (with VF data as input) and OCTNet (with OCT data as input).FusionNet achieved an area under the receiver operating characteristic curve (AUC) of 0.950 (0.931-0.968) and outperformed VFNet (AUC, 0.868 [95% confidence interval (CI), 0.834-0.902]), OCTNet (AUC, 0.809 [95% CI, 0.768-0.850]), and 2 glaucoma specialists (glaucoma specialist 1: AUC, 0.882 [95% CI, 0.847-0.917]; glaucoma specialist 2: AUC, 0.883 [95% CI, 0.849-0.918]) in the primary validation set. In the internal and external test sets, the performances of FusionNet were also superior to VFNet and OCTNet (FusionNet vs VFNet vs OCTNet: internal test set 0.917 vs 0.854 vs 0.811; external test set 0.873 vs 0.772 vs 0.785). No significant difference was found between the 2 glaucoma specialists and FusionNet in the internal and external test sets, except for glaucoma specialist 2 (AUC, 0.858 [95% CI, 0.805-0.912]) in the internal test set.RESULTSFusionNet achieved an area under the receiver operating characteristic curve (AUC) of 0.950 (0.931-0.968) and outperformed VFNet (AUC, 0.868 [95% confidence interval (CI), 0.834-0.902]), OCTNet (AUC, 0.809 [95% CI, 0.768-0.850]), and 2 glaucoma specialists (glaucoma specialist 1: AUC, 0.882 [95% CI, 0.847-0.917]; glaucoma specialist 2: AUC, 0.883 [95% CI, 0.849-0.918]) in the primary validation set. In the internal and external test sets, the performances of FusionNet were also superior to VFNet and OCTNet (FusionNet vs VFNet vs OCTNet: internal test set 0.917 vs 0.854 vs 0.811; external test set 0.873 vs 0.772 vs 0.785). No significant difference was found between the 2 glaucoma specialists and FusionNet in the internal and external test sets, except for glaucoma specialist 2 (AUC, 0.858 [95% CI, 0.805-0.912]) in the internal test set.FusionNet, developed using paired VF and OCT data, demonstrated superior performance to both VFNet and OCTNet in detecting GON, suggesting that multimodal machine learning models are valuable in detecting GON.CONCLUSIONSFusionNet, developed using paired VF and OCT data, demonstrated superior performance to both VFNet and OCTNet in detecting GON, suggesting that multimodal machine learning models are valuable in detecting GON. |
Author | Hu, Kun Cheng, Weijing Zhang, Hengli Lin, Fengbin Zhang, Xiulan Aung, Tin Song, Yunhe Xiong, Jian Qiao, Yu Olivia Li, Ji-Peng Tang, Guangxian Song, Diping Li, Fei Wang, Peiyuan He, Junjun Gao, Kai Ting, Daniel |
Author_xml | – sequence: 1 givenname: Jian surname: Xiong fullname: Xiong, Jian organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China – sequence: 2 givenname: Fei surname: Li fullname: Li, Fei organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China – sequence: 3 givenname: Diping surname: Song fullname: Song, Diping organization: ShenZhen Key Lab of Computer Vision and Pattern Recognition, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China – sequence: 4 givenname: Guangxian surname: Tang fullname: Tang, Guangxian organization: The First Hospital of Shijiazhuang City, Shijiazhuang, People’s Republic of China – sequence: 5 givenname: Junjun surname: He fullname: He, Junjun organization: ShenZhen Key Lab of Computer Vision and Pattern Recognition, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China – sequence: 6 givenname: Kai surname: Gao fullname: Gao, Kai organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China – sequence: 7 givenname: Hengli surname: Zhang fullname: Zhang, Hengli organization: The First Hospital of Shijiazhuang City, Shijiazhuang, People’s Republic of China – sequence: 8 givenname: Weijing surname: Cheng fullname: Cheng, Weijing organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China – sequence: 9 givenname: Yunhe orcidid: 0000-0003-3106-6945 surname: Song fullname: Song, Yunhe organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China – sequence: 10 givenname: Fengbin surname: Lin fullname: Lin, Fengbin organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China – sequence: 11 givenname: Kun surname: Hu fullname: Hu, Kun organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China – sequence: 12 givenname: Peiyuan surname: Wang fullname: Wang, Peiyuan organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China – sequence: 13 givenname: Ji-Peng surname: Olivia Li fullname: Olivia Li, Ji-Peng organization: Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom – sequence: 14 givenname: Tin surname: Aung fullname: Aung, Tin email: aung.tin@singhealth.com.sg organization: Singapore Eye Research Institute, Singapore National Eye Center, and Duke-NUS Medical School, Singapore, Republic of Singapore – sequence: 15 givenname: Yu surname: Qiao fullname: Qiao, Yu email: yu.qiao@siat.ac.cn organization: ShenZhen Key Lab of Computer Vision and Pattern Recognition, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China – sequence: 16 givenname: Xiulan orcidid: 0000-0002-9288-0767 surname: Zhang fullname: Zhang, Xiulan email: zhangxl2@mail.sysu.edu.cn organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China – sequence: 17 givenname: Daniel surname: Ting fullname: Ting, Daniel organization: Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34339778$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9vEzEQxS1URNPCN0DIRy4J9tr7DyGkKtCClBIkWq7WxDshEzb2YnuRcuWT4yiFQy-52Jb8e08z712wM-cdMvZSipkUsnqznflhkzYwK0QhZ6KeCVU8YRNZ6naqa6nO2CRjclrpQpyzixi3QoiqUvoZO1daqbaumwn7czv2iXa-g57fgt2QQ75ACI7cD34fD-d3imP-vSbsu8jBdfwrBhpgoL6HsOdzCnbML76c3_FvFlzk5PgHTGgTecf9mt_0MFq_g-THyJdDIsu_4Bj8AGmzf86erqGP-OLhvmT31x_v5p-mi-XN5_nVYmq1LNO0K2S3WiEUCioNbSObdVnoWoiu1o1uqwJFjSssLbQAUDa27JpKrCotVaG0tOqSvT76DsH_GjEms6NoMS_hMM9lirKsS1W1osnoqwd0XO2wM0OgXV7V_MstA_oI2OBjDLj-j0hhDvWYrTnWYw71GFGbXE-WvX0ks5TgkFIKQP0p8fujGHNIvwmDiZbQWewo5KhN5-mUwbtHBrYnRxb6n7g_Lf8LMq3DAA |
CitedBy_id | crossref_primary_10_2147_OPTH_S410905 crossref_primary_10_1186_s40662_024_00405_1 crossref_primary_10_1002_ksa_12657 crossref_primary_10_1016_j_jbi_2022_104233 crossref_primary_10_1016_j_apjo_2024_100123 crossref_primary_10_1136_bjo_2023_324188 crossref_primary_10_3390_bioengineering10111266 crossref_primary_10_1016_j_xops_2025_100721 crossref_primary_10_1088_1361_6560_ad0520 crossref_primary_10_4236_jbm_2025_132039 crossref_primary_10_1016_j_ogla_2021_12_003 crossref_primary_10_1038_s41746_025_01461_0 crossref_primary_10_3389_fcell_2024_1487482 crossref_primary_10_3390_diagnostics12112835 crossref_primary_10_1016_j_compbiomed_2024_108635 crossref_primary_10_1016_j_cmpb_2024_108253 crossref_primary_10_1186_s40537_024_00913_w crossref_primary_10_1016_j_ophtha_2021_12_009 crossref_primary_10_1016_j_preteyeres_2024_101291 crossref_primary_10_1038_s41433_025_03678_5 crossref_primary_10_3389_fmed_2022_891369 crossref_primary_10_1016_j_ajo_2023_04_007 crossref_primary_10_53432_2078_4104_2023_22_1_115_128 crossref_primary_10_1097_ICU_0000000000000846 crossref_primary_10_1080_02713683_2024_2375401 crossref_primary_10_1097_ICU_0000000000001022 crossref_primary_10_1167_iovs_65_8_18 crossref_primary_10_4103_tjo_TJO_D_24_00044 crossref_primary_10_3390_bioengineering11020122 crossref_primary_10_1186_s12938_023_01097_9 crossref_primary_10_1007_s00417_024_06393_1 crossref_primary_10_1016_j_xops_2025_100703 crossref_primary_10_1016_j_ophtha_2021_12_010 crossref_primary_10_1080_08164622_2022_2111201 crossref_primary_10_1016_j_xcrm_2023_101095 crossref_primary_10_3390_jcm14072139 crossref_primary_10_1016_j_heliyon_2023_e22244 crossref_primary_10_3390_diagnostics13172770 crossref_primary_10_17116_oftalma202414003182 crossref_primary_10_1136_bjo_2022_322940 crossref_primary_10_1136_bjo_2022_321651 crossref_primary_10_3389_fcell_2023_1170068 crossref_primary_10_4103_tjo_TJO_D_24_00059 crossref_primary_10_1097_IJG_0000000000002267 crossref_primary_10_1172_JCI157968 crossref_primary_10_1016_j_compbiomed_2022_106283 crossref_primary_10_1080_08164622_2023_2235346 crossref_primary_10_3390_jcto2020005 crossref_primary_10_1038_s41433_024_03026_z |
Cites_doi | 10.1016/S2589-7500(19)30085-8 10.1167/iovs.12-10428 10.1109/ISBI.2019.8759178 10.1364/BOE.2.001097 10.1016/j.neuron.2019.08.034 10.1016/j.ophtha.2018.01.023 10.1109/5.726791 10.1097/IJG.0000000000000765 10.1038/s41746-020-00329-9 10.1016/j.ophtha.2017.07.015 10.1016/j.ophtha.2005.06.020 10.2307/2531595 10.1097/IJG.0b013e31822af27a 10.1167/iovs.08-2697 10.1038/s41598-018-23220-w 10.1167/iovs.12-9794 10.1186/s12880-018-0273-5 10.1136/bjo.2010.196907 10.1001/jama.2014.3192 10.1016/j.ajo.2018.10.007 10.1167/iovs.13-13482 10.1016/j.ophtha.2014.05.013 10.1186/s12886-019-1054-9 10.1016/S2214-109X(13)70113-X 10.1136/bjophthalmol-2016-EGSguideline.003 10.1016/j.ophtha.2017.05.006 |
ContentType | Journal Article |
Copyright | 2021 American Academy of Ophthalmology Copyright © 2021 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 American Academy of Ophthalmology – notice: Copyright © 2021 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.ophtha.2021.07.032 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1549-4713 |
EndPage | 180 |
ExternalDocumentID | 34339778 10_1016_j_ophtha_2021_07_032 S0161642021005650 |
Genre | Validation Study Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K .1- .55 .FO .GJ 0R~ 123 1B1 1CY 1P~ 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M AAEDT AAEDW AALRI AAQFI AAQQT AAQXK AAXUO ABCQX ABFRF ABJNI ABLJU ABMAC ABOCM ABWVN ACGFO ACGFS ACIUM ACNCT ACRPL ACVFH ADCNI ADMUD ADNMO AEFWE AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AGCQF AGQPQ AIGII AITUG AJUYK AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BELOY C5W CS3 DU5 EBS EFJIC EFKBS EJD F5P FDB FEDTE FGOYB GBLVA HVGLF HZ~ IHE J1W K-O KOM L7B M27 M41 MO0 N4W N9A NQ- O9- OF- OPF OQ~ P2P R2- ROL RPZ SDG SEL SES SSZ UHS UNMZH UV1 WH7 X7M XH2 XPP Z5R ZGI ZXP AAIAV ADPAM AGZHU AHPSJ ALXNB RIG ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c415t-d21dbbea23a64a9818f524700d7484962e07ebe5ca9aaa58c5d860b64132341c3 |
ISSN | 0161-6420 1549-4713 |
IngestDate | Fri Jul 11 16:14:19 EDT 2025 Thu Jan 02 22:54:02 EST 2025 Tue Jul 01 00:44:20 EDT 2025 Thu Apr 24 23:11:29 EDT 2025 Fri Feb 23 02:41:34 EST 2024 Tue Aug 26 16:34:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Glaucoma CNN HFA RNFL CI GON AUC ZOC Deep learning VF Glaucomatous optic neuropathy MD PDP Bimodal data |
Language | English |
License | Copyright © 2021 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c415t-d21dbbea23a64a9818f524700d7484962e07ebe5ca9aaa58c5d860b64132341c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0003-3106-6945 0000-0002-9288-0767 |
PMID | 34339778 |
PQID | 2557536908 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2557536908 pubmed_primary_34339778 crossref_primary_10_1016_j_ophtha_2021_07_032 crossref_citationtrail_10_1016_j_ophtha_2021_07_032 elsevier_sciencedirect_doi_10_1016_j_ophtha_2021_07_032 elsevier_clinicalkey_doi_10_1016_j_ophtha_2021_07_032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Ophthalmology (Rochester, Minn.) |
PublicationTitleAlternate | Ophthalmology |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Tham, Li, Wong (bib3) 2014; 121 Lopes, Matsubara, Almeida (bib28) 2019; 19 Pan, Luo, Shi, Tang (bib18) 2018 Leite, Zangwill, Weinreb (bib29) 2012; 21 (bib16) 2017; 101 Asaoka, Russell, Malik (bib24) 2012; 53 Russell, Crabb, Malik, Garway-Heath (bib7) 2012; 53 LeCun, Bottou, Bengio, Haffner (bib19) 1998; 86 Tatham, Medeiros (bib5) 2017; 124 Li, Wang, Qu (bib15) 2018; 18 Kingma, JJapa (bib21) 2014 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE; 2019:1234-1237. Wang Z, Wang Z, Qu G, et al. Yohannan, Boland (bib25) 2017; 124 DeLong, DeLong, Clarke-Pearson (bib23) 1988; 44 Weinreb, Aung, Medeiros (bib2) 2014; 311 Bourne, Stevens, White (bib1) 2013; 1 Sinz, Pitkow, Reimer (bib32) 2019; 103 Hood, Raza (bib31) 2011; 2 Zangwill, Bowd (bib6) 2006; 17 Pollet-Villard, Chiquet, Romanet (bib27) 2014; 55 Muhammad, Fuchs, De Cuir (bib11) 2017; 26 Selvaraju, Cogswell, Das (bib22) 2017 Li, Song, Chen (bib14) 2020; 3 Wollstein, Kagemann, Bilonick (bib26) 2012; 96 Paszke, Gross, Chintala (bib20) 2017 He, Zhang, Ren, Sun (bib17) 2016 Wu, Medeiros (bib8) 2018; 8 Miglior, Zeyen, Pfeiffer (bib4) 2005; 112 Ran, Cheung, Wang (bib12) 2019; 1 Asaoka, Murata, Hirasawa (bib9) 2019; 198 Hood, Anderson, Wall (bib30) 2009; 50 Li, He, Keel (bib10) 2018; 125 Leite (10.1016/j.ophtha.2021.07.032_bib29) 2012; 21 Li (10.1016/j.ophtha.2021.07.032_bib10) 2018; 125 Li (10.1016/j.ophtha.2021.07.032_bib14) 2020; 3 Wu (10.1016/j.ophtha.2021.07.032_bib8) 2018; 8 DeLong (10.1016/j.ophtha.2021.07.032_bib23) 1988; 44 Yohannan (10.1016/j.ophtha.2021.07.032_bib25) 2017; 124 (10.1016/j.ophtha.2021.07.032_bib16) 2017; 101 Lopes (10.1016/j.ophtha.2021.07.032_bib28) 2019; 19 Sinz (10.1016/j.ophtha.2021.07.032_bib32) 2019; 103 Ran (10.1016/j.ophtha.2021.07.032_bib12) 2019; 1 Wollstein (10.1016/j.ophtha.2021.07.032_bib26) 2012; 96 Russell (10.1016/j.ophtha.2021.07.032_bib7) 2012; 53 10.1016/j.ophtha.2021.07.032_bib13 Tatham (10.1016/j.ophtha.2021.07.032_bib5) 2017; 124 He (10.1016/j.ophtha.2021.07.032_bib17) 2016 Hood (10.1016/j.ophtha.2021.07.032_bib31) 2011; 2 Asaoka (10.1016/j.ophtha.2021.07.032_bib9) 2019; 198 LeCun (10.1016/j.ophtha.2021.07.032_bib19) 1998; 86 Miglior (10.1016/j.ophtha.2021.07.032_bib4) 2005; 112 Pollet-Villard (10.1016/j.ophtha.2021.07.032_bib27) 2014; 55 Zangwill (10.1016/j.ophtha.2021.07.032_bib6) 2006; 17 Li (10.1016/j.ophtha.2021.07.032_bib15) 2018; 18 Muhammad (10.1016/j.ophtha.2021.07.032_bib11) 2017; 26 Tham (10.1016/j.ophtha.2021.07.032_bib3) 2014; 121 Weinreb (10.1016/j.ophtha.2021.07.032_bib2) 2014; 311 Kingma (10.1016/j.ophtha.2021.07.032_bib21) 2014 Pan (10.1016/j.ophtha.2021.07.032_bib18) 2018 Bourne (10.1016/j.ophtha.2021.07.032_bib1) 2013; 1 Selvaraju (10.1016/j.ophtha.2021.07.032_bib22) 2017 Paszke (10.1016/j.ophtha.2021.07.032_bib20) 2017 Asaoka (10.1016/j.ophtha.2021.07.032_bib24) 2012; 53 Hood (10.1016/j.ophtha.2021.07.032_bib30) 2009; 50 35058071 - Ophthalmology. 2022 Apr;129(4):e38 35058070 - Ophthalmology. 2022 Apr;129(4):e38-e39 |
References_xml | – volume: 19 start-page: 52 year: 2019 ident: bib28 article-title: Structure-function relationships in glaucoma using enhanced depth imaging optical coherence tomography-derived parameters: a cross-sectional observational study publication-title: BMC Ophthalmol – volume: 121 start-page: 2081 year: 2014 end-page: 2090 ident: bib3 article-title: Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis publication-title: Ophthalmology – volume: 17 start-page: 120 year: 2006 end-page: 131 ident: bib6 article-title: Retinal nerve fiber layer analysis in the diagnosis of glaucoma publication-title: Curr Opin Ophthalmol – volume: 53 start-page: 8396 year: 2012 end-page: 8404 ident: bib24 article-title: A novel distribution of visual field test points to improve the correlation between structure-function measurements publication-title: Invest Ophthalmol Vis Sci – volume: 21 start-page: 49 year: 2012 end-page: 54 ident: bib29 article-title: Structure-function relationships using the Cirrus spectral domain optical coherence tomograph and standard automated perimetry publication-title: J Glaucoma – volume: 53 start-page: 5985 year: 2012 end-page: 5990 ident: bib7 article-title: The relationship between variability and sensitivity in large-scale longitudinal visual field data publication-title: Invest Ophthalmol Vis Sci – volume: 44 start-page: 837 year: 1988 end-page: 845 ident: bib23 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics – volume: 96 start-page: 47 year: 2012 end-page: 52 ident: bib26 article-title: Retinal nerve fibre layer and visual function loss in glaucoma: the tipping point publication-title: Br J Ophthalmol – volume: 3 start-page: 123 year: 2020 ident: bib14 article-title: Development and clinical deployment of a smartphone-based visual field deep learning system for glaucoma detection publication-title: NPJ Digit Med – volume: 55 start-page: 2953 year: 2014 end-page: 2962 ident: bib27 article-title: Structure-function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements publication-title: Invest Ophthalmol Vis Sci – volume: 124 start-page: S66 year: 2017 end-page: S70 ident: bib25 article-title: The evolving role of the relationship between optic nerve structure and function in glaucoma publication-title: Ophthalmology – volume: 1 start-page: e172 year: 2019 end-page: e182 ident: bib12 article-title: Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis publication-title: Lancet Digital Health – volume: 18 start-page: 35 year: 2018 ident: bib15 article-title: Automatic differentiation of glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network publication-title: BMC Med Imaging – volume: 26 start-page: 1086 year: 2017 end-page: 1094 ident: bib11 article-title: Hybrid deep learning on single wide-field optical coherence tomography scans accurately classifies glaucoma suspects publication-title: J Glaucoma – volume: 1 start-page: e339 year: 2013 end-page: e349 ident: bib1 article-title: Causes of vision loss worldwide, 1990–2010: a systematic analysis publication-title: Lancet Glob Health – start-page: 464 year: 2018 end-page: 479 ident: bib18 article-title: Two at once: enhancing learning and generalization capacities via ibn-net publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: bib19 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE – volume: 112 start-page: 366 year: 2005 end-page: 375 ident: bib4 article-title: Results of the European Glaucoma Prevention Study publication-title: Ophthalmology – year: 2017 ident: bib20 article-title: Automatic differentiation in pytorch publication-title: 31st Conference on Neural Information Processing Systems (NIPS 2017) – volume: 311 start-page: 1901 year: 2014 end-page: 1911 ident: bib2 article-title: The pathophysiology and treatment of glaucoma: a review publication-title: JAMA – volume: 8 start-page: 4889 year: 2018 ident: bib8 article-title: Impact of different visual field testing paradigms on sample size requirements for glaucoma clinical trials publication-title: Sci Rep – volume: 125 start-page: 1199 year: 2018 end-page: 1206 ident: bib10 article-title: Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs publication-title: Ophthalmology – volume: 124 start-page: S57 year: 2017 end-page: S65 ident: bib5 article-title: Detecting structural progression in glaucoma with optical coherence tomography publication-title: Ophthalmology – reference: Wang Z, Wang Z, Qu G, et al. – year: 2014 ident: bib21 article-title: Adam: a method for stochastic optimization publication-title: 3rd International Conference for Learning Representations – volume: 198 start-page: 136 year: 2019 end-page: 145 ident: bib9 article-title: Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images publication-title: Am J Ophthalmol – start-page: 618 year: 2017 end-page: 626 ident: bib22 article-title: Grad-cam: visual explanations from deep networks via gradient-based localization publication-title: Proceedings of the IEEE international conference on computer vision – reference: . 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE; 2019:1234-1237. – volume: 50 start-page: 4254 year: 2009 end-page: 4266 ident: bib30 article-title: A test of a linear model of glaucomatous structure-function loss reveals sources of variability in retinal nerve fiber and visual field measurements publication-title: Invest Ophthalmol Vis Sci – start-page: 770 year: 2016 end-page: 778 ident: bib17 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 101 start-page: 130 year: 2017 end-page: 195 ident: bib16 article-title: European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition—chapter 3: treatment principles and options supported by the EGS Foundation: Part 1: foreword; introduction; glossary; chapter 3: treatment principles and options publication-title: Br J Ophthalmol – volume: 2 start-page: 1097 year: 2011 end-page: 1105 ident: bib31 article-title: Method for comparing visual field defects to local RNFL and RGC damage seen on frequency domain OCT in patients with glaucoma publication-title: Biomed Opt Express – volume: 103 start-page: 967 year: 2019 end-page: 979 ident: bib32 article-title: Engineering a less artificial intelligence publication-title: Neuron – volume: 1 start-page: e172 year: 2019 ident: 10.1016/j.ophtha.2021.07.032_bib12 article-title: Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis publication-title: Lancet Digital Health doi: 10.1016/S2589-7500(19)30085-8 – volume: 53 start-page: 5985 year: 2012 ident: 10.1016/j.ophtha.2021.07.032_bib7 article-title: The relationship between variability and sensitivity in large-scale longitudinal visual field data publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.12-10428 – ident: 10.1016/j.ophtha.2021.07.032_bib13 doi: 10.1109/ISBI.2019.8759178 – volume: 2 start-page: 1097 year: 2011 ident: 10.1016/j.ophtha.2021.07.032_bib31 article-title: Method for comparing visual field defects to local RNFL and RGC damage seen on frequency domain OCT in patients with glaucoma publication-title: Biomed Opt Express doi: 10.1364/BOE.2.001097 – volume: 103 start-page: 967 issue: 6 year: 2019 ident: 10.1016/j.ophtha.2021.07.032_bib32 article-title: Engineering a less artificial intelligence publication-title: Neuron doi: 10.1016/j.neuron.2019.08.034 – volume: 125 start-page: 1199 year: 2018 ident: 10.1016/j.ophtha.2021.07.032_bib10 article-title: Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs publication-title: Ophthalmology doi: 10.1016/j.ophtha.2018.01.023 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.ophtha.2021.07.032_bib19 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE doi: 10.1109/5.726791 – start-page: 618 year: 2017 ident: 10.1016/j.ophtha.2021.07.032_bib22 article-title: Grad-cam: visual explanations from deep networks via gradient-based localization publication-title: Proceedings of the IEEE international conference on computer vision – volume: 26 start-page: 1086 year: 2017 ident: 10.1016/j.ophtha.2021.07.032_bib11 article-title: Hybrid deep learning on single wide-field optical coherence tomography scans accurately classifies glaucoma suspects publication-title: J Glaucoma doi: 10.1097/IJG.0000000000000765 – start-page: 464 year: 2018 ident: 10.1016/j.ophtha.2021.07.032_bib18 article-title: Two at once: enhancing learning and generalization capacities via ibn-net publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – volume: 3 start-page: 123 year: 2020 ident: 10.1016/j.ophtha.2021.07.032_bib14 article-title: Development and clinical deployment of a smartphone-based visual field deep learning system for glaucoma detection publication-title: NPJ Digit Med doi: 10.1038/s41746-020-00329-9 – volume: 124 start-page: S57 year: 2017 ident: 10.1016/j.ophtha.2021.07.032_bib5 article-title: Detecting structural progression in glaucoma with optical coherence tomography publication-title: Ophthalmology doi: 10.1016/j.ophtha.2017.07.015 – volume: 112 start-page: 366 year: 2005 ident: 10.1016/j.ophtha.2021.07.032_bib4 article-title: Results of the European Glaucoma Prevention Study publication-title: Ophthalmology doi: 10.1016/j.ophtha.2005.06.020 – volume: 44 start-page: 837 issue: 3 year: 1988 ident: 10.1016/j.ophtha.2021.07.032_bib23 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 – volume: 21 start-page: 49 year: 2012 ident: 10.1016/j.ophtha.2021.07.032_bib29 article-title: Structure-function relationships using the Cirrus spectral domain optical coherence tomograph and standard automated perimetry publication-title: J Glaucoma doi: 10.1097/IJG.0b013e31822af27a – volume: 50 start-page: 4254 year: 2009 ident: 10.1016/j.ophtha.2021.07.032_bib30 article-title: A test of a linear model of glaucomatous structure-function loss reveals sources of variability in retinal nerve fiber and visual field measurements publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.08-2697 – year: 2014 ident: 10.1016/j.ophtha.2021.07.032_bib21 article-title: Adam: a method for stochastic optimization publication-title: 3rd International Conference for Learning Representations – volume: 8 start-page: 4889 year: 2018 ident: 10.1016/j.ophtha.2021.07.032_bib8 article-title: Impact of different visual field testing paradigms on sample size requirements for glaucoma clinical trials publication-title: Sci Rep doi: 10.1038/s41598-018-23220-w – volume: 53 start-page: 8396 year: 2012 ident: 10.1016/j.ophtha.2021.07.032_bib24 article-title: A novel distribution of visual field test points to improve the correlation between structure-function measurements publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.12-9794 – volume: 18 start-page: 35 year: 2018 ident: 10.1016/j.ophtha.2021.07.032_bib15 article-title: Automatic differentiation of glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network publication-title: BMC Med Imaging doi: 10.1186/s12880-018-0273-5 – volume: 96 start-page: 47 year: 2012 ident: 10.1016/j.ophtha.2021.07.032_bib26 article-title: Retinal nerve fibre layer and visual function loss in glaucoma: the tipping point publication-title: Br J Ophthalmol doi: 10.1136/bjo.2010.196907 – volume: 311 start-page: 1901 year: 2014 ident: 10.1016/j.ophtha.2021.07.032_bib2 article-title: The pathophysiology and treatment of glaucoma: a review publication-title: JAMA doi: 10.1001/jama.2014.3192 – volume: 198 start-page: 136 year: 2019 ident: 10.1016/j.ophtha.2021.07.032_bib9 article-title: Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2018.10.007 – volume: 55 start-page: 2953 year: 2014 ident: 10.1016/j.ophtha.2021.07.032_bib27 article-title: Structure-function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.13-13482 – volume: 121 start-page: 2081 year: 2014 ident: 10.1016/j.ophtha.2021.07.032_bib3 article-title: Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis publication-title: Ophthalmology doi: 10.1016/j.ophtha.2014.05.013 – volume: 19 start-page: 52 year: 2019 ident: 10.1016/j.ophtha.2021.07.032_bib28 article-title: Structure-function relationships in glaucoma using enhanced depth imaging optical coherence tomography-derived parameters: a cross-sectional observational study publication-title: BMC Ophthalmol doi: 10.1186/s12886-019-1054-9 – volume: 1 start-page: e339 year: 2013 ident: 10.1016/j.ophtha.2021.07.032_bib1 article-title: Causes of vision loss worldwide, 1990–2010: a systematic analysis publication-title: Lancet Glob Health doi: 10.1016/S2214-109X(13)70113-X – volume: 101 start-page: 130 year: 2017 ident: 10.1016/j.ophtha.2021.07.032_bib16 article-title: European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition—chapter 3: treatment principles and options supported by the EGS Foundation: Part 1: foreword; introduction; glossary; chapter 3: treatment principles and options publication-title: Br J Ophthalmol doi: 10.1136/bjophthalmol-2016-EGSguideline.003 – volume: 17 start-page: 120 year: 2006 ident: 10.1016/j.ophtha.2021.07.032_bib6 article-title: Retinal nerve fiber layer analysis in the diagnosis of glaucoma publication-title: Curr Opin Ophthalmol – volume: 124 start-page: S66 year: 2017 ident: 10.1016/j.ophtha.2021.07.032_bib25 article-title: The evolving role of the relationship between optic nerve structure and function in glaucoma publication-title: Ophthalmology doi: 10.1016/j.ophtha.2017.05.006 – year: 2017 ident: 10.1016/j.ophtha.2021.07.032_bib20 article-title: Automatic differentiation in pytorch publication-title: 31st Conference on Neural Information Processing Systems (NIPS 2017) – start-page: 770 year: 2016 ident: 10.1016/j.ophtha.2021.07.032_bib17 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: 35058071 - Ophthalmology. 2022 Apr;129(4):e38 – reference: 35058070 - Ophthalmology. 2022 Apr;129(4):e38-e39 |
SSID | ssj0006634 |
Score | 2.582098 |
Snippet | To develop and validate a multimodal artificial intelligence algorithm, FusionNet, using the pattern deviation probability plots from visual field (VF) reports... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 171 |
SubjectTerms | Adult Aged Algorithms Area Under Curve Bimodal data Cross-Sectional Studies Deep learning Female Glaucoma Glaucoma, Open-Angle - diagnostic imaging Glaucoma, Open-Angle - physiopathology Glaucomatous optic neuropathy Humans Intraocular Pressure Machine Learning Male Middle Aged Multimodal Imaging Nerve Fibers - pathology Optic Nerve Diseases - diagnostic imaging Optic Nerve Diseases - physiopathology Retinal Ganglion Cells - pathology ROC Curve Tomography, Optical Coherence Vision Disorders - physiopathology Visual Field Tests Visual Fields - physiology |
Title | Multimodal Machine Learning Using Visual Fields and Peripapillary Circular OCT Scans in Detection of Glaucomatous Optic Neuropathy |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0161642021005650 https://dx.doi.org/10.1016/j.ophtha.2021.07.032 https://www.ncbi.nlm.nih.gov/pubmed/34339778 https://www.proquest.com/docview/2557536908 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBYhhbGXsfvSXdBgb8VBlm3ZfiztsrKuy9jSLW9GtuXUJXVM6sDY437IfuuObo5NV9r1xQRhJSc6n6XvHJ8LQu9gu4vTqPAd188Lxw8y7gCPi51CFBkLfcYZldnIJ5_Z0an_cR7MB4M_nailTZOOs1__zCu5i1ZhDPQqs2T_Q7Ptl8IAfAb9whU0DNdb6Vhlz16scplfq4Iiha2XutjTsQDfy0uZHzKRcWq6GvMXEKzmtWw2tIbtoFzrQNTpwQyec67Dyg9FIzJLJT8s-QaEl73TL_emtSzwqip6yF7GvXfC0_qsOePLC13VSbkmTDcuHZ9fVeOO32Fe2mDgDkA_qdiCiShbx4-56VC22F5s3Qx6FPBdLX7a-cZ3AWYv6cWBtEk1vZhPSUIdMItIb5M28pUdY1lvua5u4WJOb1f3hbpyMGgfxfl4pZZiDMK4qmirca72S25_kyJICcAeBoIoXUI7FMwQOkQ7-8dffxy3Zz3wNVM9XotskzNVBOHV37qO_Fxn3CiSM3uIHhjrBO9rqD1CA1E9RvdOTPzFE_R7izhsEIct4rBCHNaIwxpxGBCHe4jDFnEYEIcV4nBZ4RZxeFXgLuKwQhzeIu4pOp28nx0cOaaLh5MBOWycnLp5mgpOPc58HgNBLALqh4TksoxtzKggIewksEvEnPMgyoI8YiRlwK4oUKzMe4aG1aoSLxCG0SD0cp6nXiDr7kUk4FxeYkoKxvgIeXZ5k8yUuJedVpaJjWU8T7RSEqmUhIQJKGWEnHZWrUu83HB_YDWX2PRlOHATgNoN88J2nqG3mrbeYuZbC5AEdn_5So9XAnSQ0ADMLY_FJBqh5xo57X_wYInAuot27yjvS3R_-8y-QsNmvRGvgYE36RvzGPwF1qPd4w |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+Machine+Learning+Using+Visual+Fields+and+Peripapillary+Circular+OCT+Scans+in+Detection+of+Glaucomatous+Optic+Neuropathy&rft.jtitle=Ophthalmology+%28Rochester%2C+Minn.%29&rft.au=Xiong%2C+Jian&rft.au=Li%2C+Fei&rft.au=Song%2C+Diping&rft.au=Tang%2C+Guangxian&rft.date=2022-02-01&rft.pub=Elsevier+Inc&rft.issn=0161-6420&rft.volume=129&rft.issue=2&rft.spage=171&rft.epage=180&rft_id=info:doi/10.1016%2Fj.ophtha.2021.07.032&rft.externalDocID=S0161642021005650 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-6420&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-6420&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-6420&client=summon |