Multimodal Machine Learning Using Visual Fields and Peripapillary Circular OCT Scans in Detection of Glaucomatous Optic Neuropathy

To develop and validate a multimodal artificial intelligence algorithm, FusionNet, using the pattern deviation probability plots from visual field (VF) reports and circular peripapillary OCT scans to detect glaucomatous optic neuropathy (GON). Cross-sectional study. Two thousand four hundred sixty-t...

Full description

Saved in:
Bibliographic Details
Published inOphthalmology (Rochester, Minn.) Vol. 129; no. 2; pp. 171 - 180
Main Authors Xiong, Jian, Li, Fei, Song, Diping, Tang, Guangxian, He, Junjun, Gao, Kai, Zhang, Hengli, Cheng, Weijing, Song, Yunhe, Lin, Fengbin, Hu, Kun, Wang, Peiyuan, Olivia Li, Ji-Peng, Aung, Tin, Qiao, Yu, Zhang, Xiulan, Ting, Daniel
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To develop and validate a multimodal artificial intelligence algorithm, FusionNet, using the pattern deviation probability plots from visual field (VF) reports and circular peripapillary OCT scans to detect glaucomatous optic neuropathy (GON). Cross-sectional study. Two thousand four hundred sixty-three pairs of VF and OCT images from 1083 patients. FusionNet based on bimodal input of VF and OCT paired data was developed to detect GON. Visual field data were collected using the Humphrey Field Analyzer (HFA). OCT images were collected from 3 types of devices (DRI-OCT, Cirrus OCT, and Spectralis). Two thousand four hundred sixty-three pairs of VF and OCT images were divided into 4 datasets: 1567 for training (HFA and DRI-OCT), 441 for primary validation (HFA and DRI-OCT), 255 for the internal test (HFA and Cirrus OCT), and 200 for the external test set (HFA and Spectralis). GON was defined as retinal nerve fiber layer thinning with corresponding VF defects. Diagnostic performance of FusionNet compared with that of VFNet (with VF data as input) and OCTNet (with OCT data as input). FusionNet achieved an area under the receiver operating characteristic curve (AUC) of 0.950 (0.931–0.968) and outperformed VFNet (AUC, 0.868 [95% confidence interval (CI), 0.834–0.902]), OCTNet (AUC, 0.809 [95% CI, 0.768–0.850]), and 2 glaucoma specialists (glaucoma specialist 1: AUC, 0.882 [95% CI, 0.847–0.917]; glaucoma specialist 2: AUC, 0.883 [95% CI, 0.849–0.918]) in the primary validation set. In the internal and external test sets, the performances of FusionNet were also superior to VFNet and OCTNet (FusionNet vs VFNet vs OCTNet: internal test set 0.917 vs 0.854 vs 0.811; external test set 0.873 vs 0.772 vs 0.785). No significant difference was found between the 2 glaucoma specialists and FusionNet in the internal and external test sets, except for glaucoma specialist 2 (AUC, 0.858 [95% CI, 0.805–0.912]) in the internal test set. FusionNet, developed using paired VF and OCT data, demonstrated superior performance to both VFNet and OCTNet in detecting GON, suggesting that multimodal machine learning models are valuable in detecting GON.
AbstractList To develop and validate a multimodal artificial intelligence algorithm, FusionNet, using the pattern deviation probability plots from visual field (VF) reports and circular peripapillary OCT scans to detect glaucomatous optic neuropathy (GON). Cross-sectional study. Two thousand four hundred sixty-three pairs of VF and OCT images from 1083 patients. FusionNet based on bimodal input of VF and OCT paired data was developed to detect GON. Visual field data were collected using the Humphrey Field Analyzer (HFA). OCT images were collected from 3 types of devices (DRI-OCT, Cirrus OCT, and Spectralis). Two thousand four hundred sixty-three pairs of VF and OCT images were divided into 4 datasets: 1567 for training (HFA and DRI-OCT), 441 for primary validation (HFA and DRI-OCT), 255 for the internal test (HFA and Cirrus OCT), and 200 for the external test set (HFA and Spectralis). GON was defined as retinal nerve fiber layer thinning with corresponding VF defects. Diagnostic performance of FusionNet compared with that of VFNet (with VF data as input) and OCTNet (with OCT data as input). FusionNet achieved an area under the receiver operating characteristic curve (AUC) of 0.950 (0.931–0.968) and outperformed VFNet (AUC, 0.868 [95% confidence interval (CI), 0.834–0.902]), OCTNet (AUC, 0.809 [95% CI, 0.768–0.850]), and 2 glaucoma specialists (glaucoma specialist 1: AUC, 0.882 [95% CI, 0.847–0.917]; glaucoma specialist 2: AUC, 0.883 [95% CI, 0.849–0.918]) in the primary validation set. In the internal and external test sets, the performances of FusionNet were also superior to VFNet and OCTNet (FusionNet vs VFNet vs OCTNet: internal test set 0.917 vs 0.854 vs 0.811; external test set 0.873 vs 0.772 vs 0.785). No significant difference was found between the 2 glaucoma specialists and FusionNet in the internal and external test sets, except for glaucoma specialist 2 (AUC, 0.858 [95% CI, 0.805–0.912]) in the internal test set. FusionNet, developed using paired VF and OCT data, demonstrated superior performance to both VFNet and OCTNet in detecting GON, suggesting that multimodal machine learning models are valuable in detecting GON.
To develop and validate a multimodal artificial intelligence algorithm, FusionNet, using the pattern deviation probability plots from visual field (VF) reports and circular peripapillary OCT scans to detect glaucomatous optic neuropathy (GON).PURPOSETo develop and validate a multimodal artificial intelligence algorithm, FusionNet, using the pattern deviation probability plots from visual field (VF) reports and circular peripapillary OCT scans to detect glaucomatous optic neuropathy (GON).Cross-sectional study.DESIGNCross-sectional study.Two thousand four hundred sixty-three pairs of VF and OCT images from 1083 patients.SUBJECTSTwo thousand four hundred sixty-three pairs of VF and OCT images from 1083 patients.FusionNet based on bimodal input of VF and OCT paired data was developed to detect GON. Visual field data were collected using the Humphrey Field Analyzer (HFA). OCT images were collected from 3 types of devices (DRI-OCT, Cirrus OCT, and Spectralis). Two thousand four hundred sixty-three pairs of VF and OCT images were divided into 4 datasets: 1567 for training (HFA and DRI-OCT), 441 for primary validation (HFA and DRI-OCT), 255 for the internal test (HFA and Cirrus OCT), and 200 for the external test set (HFA and Spectralis). GON was defined as retinal nerve fiber layer thinning with corresponding VF defects.METHODSFusionNet based on bimodal input of VF and OCT paired data was developed to detect GON. Visual field data were collected using the Humphrey Field Analyzer (HFA). OCT images were collected from 3 types of devices (DRI-OCT, Cirrus OCT, and Spectralis). Two thousand four hundred sixty-three pairs of VF and OCT images were divided into 4 datasets: 1567 for training (HFA and DRI-OCT), 441 for primary validation (HFA and DRI-OCT), 255 for the internal test (HFA and Cirrus OCT), and 200 for the external test set (HFA and Spectralis). GON was defined as retinal nerve fiber layer thinning with corresponding VF defects.Diagnostic performance of FusionNet compared with that of VFNet (with VF data as input) and OCTNet (with OCT data as input).MAIN OUTCOME MEASURESDiagnostic performance of FusionNet compared with that of VFNet (with VF data as input) and OCTNet (with OCT data as input).FusionNet achieved an area under the receiver operating characteristic curve (AUC) of 0.950 (0.931-0.968) and outperformed VFNet (AUC, 0.868 [95% confidence interval (CI), 0.834-0.902]), OCTNet (AUC, 0.809 [95% CI, 0.768-0.850]), and 2 glaucoma specialists (glaucoma specialist 1: AUC, 0.882 [95% CI, 0.847-0.917]; glaucoma specialist 2: AUC, 0.883 [95% CI, 0.849-0.918]) in the primary validation set. In the internal and external test sets, the performances of FusionNet were also superior to VFNet and OCTNet (FusionNet vs VFNet vs OCTNet: internal test set 0.917 vs 0.854 vs 0.811; external test set 0.873 vs 0.772 vs 0.785). No significant difference was found between the 2 glaucoma specialists and FusionNet in the internal and external test sets, except for glaucoma specialist 2 (AUC, 0.858 [95% CI, 0.805-0.912]) in the internal test set.RESULTSFusionNet achieved an area under the receiver operating characteristic curve (AUC) of 0.950 (0.931-0.968) and outperformed VFNet (AUC, 0.868 [95% confidence interval (CI), 0.834-0.902]), OCTNet (AUC, 0.809 [95% CI, 0.768-0.850]), and 2 glaucoma specialists (glaucoma specialist 1: AUC, 0.882 [95% CI, 0.847-0.917]; glaucoma specialist 2: AUC, 0.883 [95% CI, 0.849-0.918]) in the primary validation set. In the internal and external test sets, the performances of FusionNet were also superior to VFNet and OCTNet (FusionNet vs VFNet vs OCTNet: internal test set 0.917 vs 0.854 vs 0.811; external test set 0.873 vs 0.772 vs 0.785). No significant difference was found between the 2 glaucoma specialists and FusionNet in the internal and external test sets, except for glaucoma specialist 2 (AUC, 0.858 [95% CI, 0.805-0.912]) in the internal test set.FusionNet, developed using paired VF and OCT data, demonstrated superior performance to both VFNet and OCTNet in detecting GON, suggesting that multimodal machine learning models are valuable in detecting GON.CONCLUSIONSFusionNet, developed using paired VF and OCT data, demonstrated superior performance to both VFNet and OCTNet in detecting GON, suggesting that multimodal machine learning models are valuable in detecting GON.
Author Hu, Kun
Cheng, Weijing
Zhang, Hengli
Lin, Fengbin
Zhang, Xiulan
Aung, Tin
Song, Yunhe
Xiong, Jian
Qiao, Yu
Olivia Li, Ji-Peng
Tang, Guangxian
Song, Diping
Li, Fei
Wang, Peiyuan
He, Junjun
Gao, Kai
Ting, Daniel
Author_xml – sequence: 1
  givenname: Jian
  surname: Xiong
  fullname: Xiong, Jian
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
– sequence: 2
  givenname: Fei
  surname: Li
  fullname: Li, Fei
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
– sequence: 3
  givenname: Diping
  surname: Song
  fullname: Song, Diping
  organization: ShenZhen Key Lab of Computer Vision and Pattern Recognition, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
– sequence: 4
  givenname: Guangxian
  surname: Tang
  fullname: Tang, Guangxian
  organization: The First Hospital of Shijiazhuang City, Shijiazhuang, People’s Republic of China
– sequence: 5
  givenname: Junjun
  surname: He
  fullname: He, Junjun
  organization: ShenZhen Key Lab of Computer Vision and Pattern Recognition, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
– sequence: 6
  givenname: Kai
  surname: Gao
  fullname: Gao, Kai
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
– sequence: 7
  givenname: Hengli
  surname: Zhang
  fullname: Zhang, Hengli
  organization: The First Hospital of Shijiazhuang City, Shijiazhuang, People’s Republic of China
– sequence: 8
  givenname: Weijing
  surname: Cheng
  fullname: Cheng, Weijing
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
– sequence: 9
  givenname: Yunhe
  orcidid: 0000-0003-3106-6945
  surname: Song
  fullname: Song, Yunhe
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
– sequence: 10
  givenname: Fengbin
  surname: Lin
  fullname: Lin, Fengbin
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
– sequence: 11
  givenname: Kun
  surname: Hu
  fullname: Hu, Kun
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
– sequence: 12
  givenname: Peiyuan
  surname: Wang
  fullname: Wang, Peiyuan
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
– sequence: 13
  givenname: Ji-Peng
  surname: Olivia Li
  fullname: Olivia Li, Ji-Peng
  organization: Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
– sequence: 14
  givenname: Tin
  surname: Aung
  fullname: Aung, Tin
  email: aung.tin@singhealth.com.sg
  organization: Singapore Eye Research Institute, Singapore National Eye Center, and Duke-NUS Medical School, Singapore, Republic of Singapore
– sequence: 15
  givenname: Yu
  surname: Qiao
  fullname: Qiao, Yu
  email: yu.qiao@siat.ac.cn
  organization: ShenZhen Key Lab of Computer Vision and Pattern Recognition, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China
– sequence: 16
  givenname: Xiulan
  orcidid: 0000-0002-9288-0767
  surname: Zhang
  fullname: Zhang, Xiulan
  email: zhangxl2@mail.sysu.edu.cn
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
– sequence: 17
  givenname: Daniel
  surname: Ting
  fullname: Ting, Daniel
  organization: Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34339778$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9vEzEQxS1URNPCN0DIRy4J9tr7DyGkKtCClBIkWq7WxDshEzb2YnuRcuWT4yiFQy-52Jb8e08z712wM-cdMvZSipkUsnqznflhkzYwK0QhZ6KeCVU8YRNZ6naqa6nO2CRjclrpQpyzixi3QoiqUvoZO1daqbaumwn7czv2iXa-g57fgt2QQ75ACI7cD34fD-d3imP-vSbsu8jBdfwrBhpgoL6HsOdzCnbML76c3_FvFlzk5PgHTGgTecf9mt_0MFq_g-THyJdDIsu_4Bj8AGmzf86erqGP-OLhvmT31x_v5p-mi-XN5_nVYmq1LNO0K2S3WiEUCioNbSObdVnoWoiu1o1uqwJFjSssLbQAUDa27JpKrCotVaG0tOqSvT76DsH_GjEms6NoMS_hMM9lirKsS1W1osnoqwd0XO2wM0OgXV7V_MstA_oI2OBjDLj-j0hhDvWYrTnWYw71GFGbXE-WvX0ks5TgkFIKQP0p8fujGHNIvwmDiZbQWewo5KhN5-mUwbtHBrYnRxb6n7g_Lf8LMq3DAA
CitedBy_id crossref_primary_10_2147_OPTH_S410905
crossref_primary_10_1186_s40662_024_00405_1
crossref_primary_10_1002_ksa_12657
crossref_primary_10_1016_j_jbi_2022_104233
crossref_primary_10_1016_j_apjo_2024_100123
crossref_primary_10_1136_bjo_2023_324188
crossref_primary_10_3390_bioengineering10111266
crossref_primary_10_1016_j_xops_2025_100721
crossref_primary_10_1088_1361_6560_ad0520
crossref_primary_10_4236_jbm_2025_132039
crossref_primary_10_1016_j_ogla_2021_12_003
crossref_primary_10_1038_s41746_025_01461_0
crossref_primary_10_3389_fcell_2024_1487482
crossref_primary_10_3390_diagnostics12112835
crossref_primary_10_1016_j_compbiomed_2024_108635
crossref_primary_10_1016_j_cmpb_2024_108253
crossref_primary_10_1186_s40537_024_00913_w
crossref_primary_10_1016_j_ophtha_2021_12_009
crossref_primary_10_1016_j_preteyeres_2024_101291
crossref_primary_10_1038_s41433_025_03678_5
crossref_primary_10_3389_fmed_2022_891369
crossref_primary_10_1016_j_ajo_2023_04_007
crossref_primary_10_53432_2078_4104_2023_22_1_115_128
crossref_primary_10_1097_ICU_0000000000000846
crossref_primary_10_1080_02713683_2024_2375401
crossref_primary_10_1097_ICU_0000000000001022
crossref_primary_10_1167_iovs_65_8_18
crossref_primary_10_4103_tjo_TJO_D_24_00044
crossref_primary_10_3390_bioengineering11020122
crossref_primary_10_1186_s12938_023_01097_9
crossref_primary_10_1007_s00417_024_06393_1
crossref_primary_10_1016_j_xops_2025_100703
crossref_primary_10_1016_j_ophtha_2021_12_010
crossref_primary_10_1080_08164622_2022_2111201
crossref_primary_10_1016_j_xcrm_2023_101095
crossref_primary_10_3390_jcm14072139
crossref_primary_10_1016_j_heliyon_2023_e22244
crossref_primary_10_3390_diagnostics13172770
crossref_primary_10_17116_oftalma202414003182
crossref_primary_10_1136_bjo_2022_322940
crossref_primary_10_1136_bjo_2022_321651
crossref_primary_10_3389_fcell_2023_1170068
crossref_primary_10_4103_tjo_TJO_D_24_00059
crossref_primary_10_1097_IJG_0000000000002267
crossref_primary_10_1172_JCI157968
crossref_primary_10_1016_j_compbiomed_2022_106283
crossref_primary_10_1080_08164622_2023_2235346
crossref_primary_10_3390_jcto2020005
crossref_primary_10_1038_s41433_024_03026_z
Cites_doi 10.1016/S2589-7500(19)30085-8
10.1167/iovs.12-10428
10.1109/ISBI.2019.8759178
10.1364/BOE.2.001097
10.1016/j.neuron.2019.08.034
10.1016/j.ophtha.2018.01.023
10.1109/5.726791
10.1097/IJG.0000000000000765
10.1038/s41746-020-00329-9
10.1016/j.ophtha.2017.07.015
10.1016/j.ophtha.2005.06.020
10.2307/2531595
10.1097/IJG.0b013e31822af27a
10.1167/iovs.08-2697
10.1038/s41598-018-23220-w
10.1167/iovs.12-9794
10.1186/s12880-018-0273-5
10.1136/bjo.2010.196907
10.1001/jama.2014.3192
10.1016/j.ajo.2018.10.007
10.1167/iovs.13-13482
10.1016/j.ophtha.2014.05.013
10.1186/s12886-019-1054-9
10.1016/S2214-109X(13)70113-X
10.1136/bjophthalmol-2016-EGSguideline.003
10.1016/j.ophtha.2017.05.006
ContentType Journal Article
Copyright 2021 American Academy of Ophthalmology
Copyright © 2021 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 American Academy of Ophthalmology
– notice: Copyright © 2021 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ophtha.2021.07.032
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1549-4713
EndPage 180
ExternalDocumentID 34339778
10_1016_j_ophtha_2021_07_032
S0161642021005650
Genre Validation Study
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
.1-
.55
.FO
.GJ
0R~
123
1B1
1CY
1P~
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
AAEDT
AAEDW
AALRI
AAQFI
AAQQT
AAQXK
AAXUO
ABCQX
ABFRF
ABJNI
ABLJU
ABMAC
ABOCM
ABWVN
ACGFO
ACGFS
ACIUM
ACNCT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEFWE
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AGCQF
AGQPQ
AIGII
AITUG
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BELOY
C5W
CS3
DU5
EBS
EFJIC
EFKBS
EJD
F5P
FDB
FEDTE
FGOYB
GBLVA
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M27
M41
MO0
N4W
N9A
NQ-
O9-
OF-
OPF
OQ~
P2P
R2-
ROL
RPZ
SDG
SEL
SES
SSZ
UHS
UNMZH
UV1
WH7
X7M
XH2
XPP
Z5R
ZGI
ZXP
AAIAV
ADPAM
AGZHU
AHPSJ
ALXNB
RIG
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c415t-d21dbbea23a64a9818f524700d7484962e07ebe5ca9aaa58c5d860b64132341c3
ISSN 0161-6420
1549-4713
IngestDate Fri Jul 11 16:14:19 EDT 2025
Thu Jan 02 22:54:02 EST 2025
Tue Jul 01 00:44:20 EDT 2025
Thu Apr 24 23:11:29 EDT 2025
Fri Feb 23 02:41:34 EST 2024
Tue Aug 26 16:34:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Glaucoma
CNN
HFA
RNFL
CI
GON
AUC
ZOC
Deep learning
VF
Glaucomatous optic neuropathy
MD
PDP
Bimodal data
Language English
License Copyright © 2021 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c415t-d21dbbea23a64a9818f524700d7484962e07ebe5ca9aaa58c5d860b64132341c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ORCID 0000-0003-3106-6945
0000-0002-9288-0767
PMID 34339778
PQID 2557536908
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2557536908
pubmed_primary_34339778
crossref_primary_10_1016_j_ophtha_2021_07_032
crossref_citationtrail_10_1016_j_ophtha_2021_07_032
elsevier_sciencedirect_doi_10_1016_j_ophtha_2021_07_032
elsevier_clinicalkey_doi_10_1016_j_ophtha_2021_07_032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Ophthalmology (Rochester, Minn.)
PublicationTitleAlternate Ophthalmology
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Tham, Li, Wong (bib3) 2014; 121
Lopes, Matsubara, Almeida (bib28) 2019; 19
Pan, Luo, Shi, Tang (bib18) 2018
Leite, Zangwill, Weinreb (bib29) 2012; 21
(bib16) 2017; 101
Asaoka, Russell, Malik (bib24) 2012; 53
Russell, Crabb, Malik, Garway-Heath (bib7) 2012; 53
LeCun, Bottou, Bengio, Haffner (bib19) 1998; 86
Tatham, Medeiros (bib5) 2017; 124
Li, Wang, Qu (bib15) 2018; 18
Kingma, JJapa (bib21) 2014
2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE; 2019:1234-1237.
Wang Z, Wang Z, Qu G, et al.
Yohannan, Boland (bib25) 2017; 124
DeLong, DeLong, Clarke-Pearson (bib23) 1988; 44
Weinreb, Aung, Medeiros (bib2) 2014; 311
Bourne, Stevens, White (bib1) 2013; 1
Sinz, Pitkow, Reimer (bib32) 2019; 103
Hood, Raza (bib31) 2011; 2
Zangwill, Bowd (bib6) 2006; 17
Pollet-Villard, Chiquet, Romanet (bib27) 2014; 55
Muhammad, Fuchs, De Cuir (bib11) 2017; 26
Selvaraju, Cogswell, Das (bib22) 2017
Li, Song, Chen (bib14) 2020; 3
Wollstein, Kagemann, Bilonick (bib26) 2012; 96
Paszke, Gross, Chintala (bib20) 2017
He, Zhang, Ren, Sun (bib17) 2016
Wu, Medeiros (bib8) 2018; 8
Miglior, Zeyen, Pfeiffer (bib4) 2005; 112
Ran, Cheung, Wang (bib12) 2019; 1
Asaoka, Murata, Hirasawa (bib9) 2019; 198
Hood, Anderson, Wall (bib30) 2009; 50
Li, He, Keel (bib10) 2018; 125
Leite (10.1016/j.ophtha.2021.07.032_bib29) 2012; 21
Li (10.1016/j.ophtha.2021.07.032_bib10) 2018; 125
Li (10.1016/j.ophtha.2021.07.032_bib14) 2020; 3
Wu (10.1016/j.ophtha.2021.07.032_bib8) 2018; 8
DeLong (10.1016/j.ophtha.2021.07.032_bib23) 1988; 44
Yohannan (10.1016/j.ophtha.2021.07.032_bib25) 2017; 124
(10.1016/j.ophtha.2021.07.032_bib16) 2017; 101
Lopes (10.1016/j.ophtha.2021.07.032_bib28) 2019; 19
Sinz (10.1016/j.ophtha.2021.07.032_bib32) 2019; 103
Ran (10.1016/j.ophtha.2021.07.032_bib12) 2019; 1
Wollstein (10.1016/j.ophtha.2021.07.032_bib26) 2012; 96
Russell (10.1016/j.ophtha.2021.07.032_bib7) 2012; 53
10.1016/j.ophtha.2021.07.032_bib13
Tatham (10.1016/j.ophtha.2021.07.032_bib5) 2017; 124
He (10.1016/j.ophtha.2021.07.032_bib17) 2016
Hood (10.1016/j.ophtha.2021.07.032_bib31) 2011; 2
Asaoka (10.1016/j.ophtha.2021.07.032_bib9) 2019; 198
LeCun (10.1016/j.ophtha.2021.07.032_bib19) 1998; 86
Miglior (10.1016/j.ophtha.2021.07.032_bib4) 2005; 112
Pollet-Villard (10.1016/j.ophtha.2021.07.032_bib27) 2014; 55
Zangwill (10.1016/j.ophtha.2021.07.032_bib6) 2006; 17
Li (10.1016/j.ophtha.2021.07.032_bib15) 2018; 18
Muhammad (10.1016/j.ophtha.2021.07.032_bib11) 2017; 26
Tham (10.1016/j.ophtha.2021.07.032_bib3) 2014; 121
Weinreb (10.1016/j.ophtha.2021.07.032_bib2) 2014; 311
Kingma (10.1016/j.ophtha.2021.07.032_bib21) 2014
Pan (10.1016/j.ophtha.2021.07.032_bib18) 2018
Bourne (10.1016/j.ophtha.2021.07.032_bib1) 2013; 1
Selvaraju (10.1016/j.ophtha.2021.07.032_bib22) 2017
Paszke (10.1016/j.ophtha.2021.07.032_bib20) 2017
Asaoka (10.1016/j.ophtha.2021.07.032_bib24) 2012; 53
Hood (10.1016/j.ophtha.2021.07.032_bib30) 2009; 50
35058071 - Ophthalmology. 2022 Apr;129(4):e38
35058070 - Ophthalmology. 2022 Apr;129(4):e38-e39
References_xml – volume: 19
  start-page: 52
  year: 2019
  ident: bib28
  article-title: Structure-function relationships in glaucoma using enhanced depth imaging optical coherence tomography-derived parameters: a cross-sectional observational study
  publication-title: BMC Ophthalmol
– volume: 121
  start-page: 2081
  year: 2014
  end-page: 2090
  ident: bib3
  article-title: Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis
  publication-title: Ophthalmology
– volume: 17
  start-page: 120
  year: 2006
  end-page: 131
  ident: bib6
  article-title: Retinal nerve fiber layer analysis in the diagnosis of glaucoma
  publication-title: Curr Opin Ophthalmol
– volume: 53
  start-page: 8396
  year: 2012
  end-page: 8404
  ident: bib24
  article-title: A novel distribution of visual field test points to improve the correlation between structure-function measurements
  publication-title: Invest Ophthalmol Vis Sci
– volume: 21
  start-page: 49
  year: 2012
  end-page: 54
  ident: bib29
  article-title: Structure-function relationships using the Cirrus spectral domain optical coherence tomograph and standard automated perimetry
  publication-title: J Glaucoma
– volume: 53
  start-page: 5985
  year: 2012
  end-page: 5990
  ident: bib7
  article-title: The relationship between variability and sensitivity in large-scale longitudinal visual field data
  publication-title: Invest Ophthalmol Vis Sci
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  ident: bib23
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
– volume: 96
  start-page: 47
  year: 2012
  end-page: 52
  ident: bib26
  article-title: Retinal nerve fibre layer and visual function loss in glaucoma: the tipping point
  publication-title: Br J Ophthalmol
– volume: 3
  start-page: 123
  year: 2020
  ident: bib14
  article-title: Development and clinical deployment of a smartphone-based visual field deep learning system for glaucoma detection
  publication-title: NPJ Digit Med
– volume: 55
  start-page: 2953
  year: 2014
  end-page: 2962
  ident: bib27
  article-title: Structure-function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements
  publication-title: Invest Ophthalmol Vis Sci
– volume: 124
  start-page: S66
  year: 2017
  end-page: S70
  ident: bib25
  article-title: The evolving role of the relationship between optic nerve structure and function in glaucoma
  publication-title: Ophthalmology
– volume: 1
  start-page: e172
  year: 2019
  end-page: e182
  ident: bib12
  article-title: Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis
  publication-title: Lancet Digital Health
– volume: 18
  start-page: 35
  year: 2018
  ident: bib15
  article-title: Automatic differentiation of glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network
  publication-title: BMC Med Imaging
– volume: 26
  start-page: 1086
  year: 2017
  end-page: 1094
  ident: bib11
  article-title: Hybrid deep learning on single wide-field optical coherence tomography scans accurately classifies glaucoma suspects
  publication-title: J Glaucoma
– volume: 1
  start-page: e339
  year: 2013
  end-page: e349
  ident: bib1
  article-title: Causes of vision loss worldwide, 1990–2010: a systematic analysis
  publication-title: Lancet Glob Health
– start-page: 464
  year: 2018
  end-page: 479
  ident: bib18
  article-title: Two at once: enhancing learning and generalization capacities via ibn-net
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib19
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
– volume: 112
  start-page: 366
  year: 2005
  end-page: 375
  ident: bib4
  article-title: Results of the European Glaucoma Prevention Study
  publication-title: Ophthalmology
– year: 2017
  ident: bib20
  article-title: Automatic differentiation in pytorch
  publication-title: 31st Conference on Neural Information Processing Systems (NIPS 2017)
– volume: 311
  start-page: 1901
  year: 2014
  end-page: 1911
  ident: bib2
  article-title: The pathophysiology and treatment of glaucoma: a review
  publication-title: JAMA
– volume: 8
  start-page: 4889
  year: 2018
  ident: bib8
  article-title: Impact of different visual field testing paradigms on sample size requirements for glaucoma clinical trials
  publication-title: Sci Rep
– volume: 125
  start-page: 1199
  year: 2018
  end-page: 1206
  ident: bib10
  article-title: Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs
  publication-title: Ophthalmology
– volume: 124
  start-page: S57
  year: 2017
  end-page: S65
  ident: bib5
  article-title: Detecting structural progression in glaucoma with optical coherence tomography
  publication-title: Ophthalmology
– reference: Wang Z, Wang Z, Qu G, et al.
– year: 2014
  ident: bib21
  article-title: Adam: a method for stochastic optimization
  publication-title: 3rd International Conference for Learning Representations
– volume: 198
  start-page: 136
  year: 2019
  end-page: 145
  ident: bib9
  article-title: Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images
  publication-title: Am J Ophthalmol
– start-page: 618
  year: 2017
  end-page: 626
  ident: bib22
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization
  publication-title: Proceedings of the IEEE international conference on computer vision
– reference: . 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE; 2019:1234-1237.
– volume: 50
  start-page: 4254
  year: 2009
  end-page: 4266
  ident: bib30
  article-title: A test of a linear model of glaucomatous structure-function loss reveals sources of variability in retinal nerve fiber and visual field measurements
  publication-title: Invest Ophthalmol Vis Sci
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib17
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 101
  start-page: 130
  year: 2017
  end-page: 195
  ident: bib16
  article-title: European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition—chapter 3: treatment principles and options supported by the EGS Foundation: Part 1: foreword; introduction; glossary; chapter 3: treatment principles and options
  publication-title: Br J Ophthalmol
– volume: 2
  start-page: 1097
  year: 2011
  end-page: 1105
  ident: bib31
  article-title: Method for comparing visual field defects to local RNFL and RGC damage seen on frequency domain OCT in patients with glaucoma
  publication-title: Biomed Opt Express
– volume: 103
  start-page: 967
  year: 2019
  end-page: 979
  ident: bib32
  article-title: Engineering a less artificial intelligence
  publication-title: Neuron
– volume: 1
  start-page: e172
  year: 2019
  ident: 10.1016/j.ophtha.2021.07.032_bib12
  article-title: Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis
  publication-title: Lancet Digital Health
  doi: 10.1016/S2589-7500(19)30085-8
– volume: 53
  start-page: 5985
  year: 2012
  ident: 10.1016/j.ophtha.2021.07.032_bib7
  article-title: The relationship between variability and sensitivity in large-scale longitudinal visual field data
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.12-10428
– ident: 10.1016/j.ophtha.2021.07.032_bib13
  doi: 10.1109/ISBI.2019.8759178
– volume: 2
  start-page: 1097
  year: 2011
  ident: 10.1016/j.ophtha.2021.07.032_bib31
  article-title: Method for comparing visual field defects to local RNFL and RGC damage seen on frequency domain OCT in patients with glaucoma
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.2.001097
– volume: 103
  start-page: 967
  issue: 6
  year: 2019
  ident: 10.1016/j.ophtha.2021.07.032_bib32
  article-title: Engineering a less artificial intelligence
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.08.034
– volume: 125
  start-page: 1199
  year: 2018
  ident: 10.1016/j.ophtha.2021.07.032_bib10
  article-title: Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.01.023
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.ophtha.2021.07.032_bib19
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– start-page: 618
  year: 2017
  ident: 10.1016/j.ophtha.2021.07.032_bib22
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization
  publication-title: Proceedings of the IEEE international conference on computer vision
– volume: 26
  start-page: 1086
  year: 2017
  ident: 10.1016/j.ophtha.2021.07.032_bib11
  article-title: Hybrid deep learning on single wide-field optical coherence tomography scans accurately classifies glaucoma suspects
  publication-title: J Glaucoma
  doi: 10.1097/IJG.0000000000000765
– start-page: 464
  year: 2018
  ident: 10.1016/j.ophtha.2021.07.032_bib18
  article-title: Two at once: enhancing learning and generalization capacities via ibn-net
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– volume: 3
  start-page: 123
  year: 2020
  ident: 10.1016/j.ophtha.2021.07.032_bib14
  article-title: Development and clinical deployment of a smartphone-based visual field deep learning system for glaucoma detection
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-020-00329-9
– volume: 124
  start-page: S57
  year: 2017
  ident: 10.1016/j.ophtha.2021.07.032_bib5
  article-title: Detecting structural progression in glaucoma with optical coherence tomography
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.07.015
– volume: 112
  start-page: 366
  year: 2005
  ident: 10.1016/j.ophtha.2021.07.032_bib4
  article-title: Results of the European Glaucoma Prevention Study
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2005.06.020
– volume: 44
  start-page: 837
  issue: 3
  year: 1988
  ident: 10.1016/j.ophtha.2021.07.032_bib23
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 21
  start-page: 49
  year: 2012
  ident: 10.1016/j.ophtha.2021.07.032_bib29
  article-title: Structure-function relationships using the Cirrus spectral domain optical coherence tomograph and standard automated perimetry
  publication-title: J Glaucoma
  doi: 10.1097/IJG.0b013e31822af27a
– volume: 50
  start-page: 4254
  year: 2009
  ident: 10.1016/j.ophtha.2021.07.032_bib30
  article-title: A test of a linear model of glaucomatous structure-function loss reveals sources of variability in retinal nerve fiber and visual field measurements
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.08-2697
– year: 2014
  ident: 10.1016/j.ophtha.2021.07.032_bib21
  article-title: Adam: a method for stochastic optimization
  publication-title: 3rd International Conference for Learning Representations
– volume: 8
  start-page: 4889
  year: 2018
  ident: 10.1016/j.ophtha.2021.07.032_bib8
  article-title: Impact of different visual field testing paradigms on sample size requirements for glaucoma clinical trials
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-23220-w
– volume: 53
  start-page: 8396
  year: 2012
  ident: 10.1016/j.ophtha.2021.07.032_bib24
  article-title: A novel distribution of visual field test points to improve the correlation between structure-function measurements
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.12-9794
– volume: 18
  start-page: 35
  year: 2018
  ident: 10.1016/j.ophtha.2021.07.032_bib15
  article-title: Automatic differentiation of glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-018-0273-5
– volume: 96
  start-page: 47
  year: 2012
  ident: 10.1016/j.ophtha.2021.07.032_bib26
  article-title: Retinal nerve fibre layer and visual function loss in glaucoma: the tipping point
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.2010.196907
– volume: 311
  start-page: 1901
  year: 2014
  ident: 10.1016/j.ophtha.2021.07.032_bib2
  article-title: The pathophysiology and treatment of glaucoma: a review
  publication-title: JAMA
  doi: 10.1001/jama.2014.3192
– volume: 198
  start-page: 136
  year: 2019
  ident: 10.1016/j.ophtha.2021.07.032_bib9
  article-title: Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2018.10.007
– volume: 55
  start-page: 2953
  year: 2014
  ident: 10.1016/j.ophtha.2021.07.032_bib27
  article-title: Structure-function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.13-13482
– volume: 121
  start-page: 2081
  year: 2014
  ident: 10.1016/j.ophtha.2021.07.032_bib3
  article-title: Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2014.05.013
– volume: 19
  start-page: 52
  year: 2019
  ident: 10.1016/j.ophtha.2021.07.032_bib28
  article-title: Structure-function relationships in glaucoma using enhanced depth imaging optical coherence tomography-derived parameters: a cross-sectional observational study
  publication-title: BMC Ophthalmol
  doi: 10.1186/s12886-019-1054-9
– volume: 1
  start-page: e339
  year: 2013
  ident: 10.1016/j.ophtha.2021.07.032_bib1
  article-title: Causes of vision loss worldwide, 1990–2010: a systematic analysis
  publication-title: Lancet Glob Health
  doi: 10.1016/S2214-109X(13)70113-X
– volume: 101
  start-page: 130
  year: 2017
  ident: 10.1016/j.ophtha.2021.07.032_bib16
  article-title: European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition—chapter 3: treatment principles and options supported by the EGS Foundation: Part 1: foreword; introduction; glossary; chapter 3: treatment principles and options
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjophthalmol-2016-EGSguideline.003
– volume: 17
  start-page: 120
  year: 2006
  ident: 10.1016/j.ophtha.2021.07.032_bib6
  article-title: Retinal nerve fiber layer analysis in the diagnosis of glaucoma
  publication-title: Curr Opin Ophthalmol
– volume: 124
  start-page: S66
  year: 2017
  ident: 10.1016/j.ophtha.2021.07.032_bib25
  article-title: The evolving role of the relationship between optic nerve structure and function in glaucoma
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.05.006
– year: 2017
  ident: 10.1016/j.ophtha.2021.07.032_bib20
  article-title: Automatic differentiation in pytorch
  publication-title: 31st Conference on Neural Information Processing Systems (NIPS 2017)
– start-page: 770
  year: 2016
  ident: 10.1016/j.ophtha.2021.07.032_bib17
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: 35058071 - Ophthalmology. 2022 Apr;129(4):e38
– reference: 35058070 - Ophthalmology. 2022 Apr;129(4):e38-e39
SSID ssj0006634
Score 2.582098
Snippet To develop and validate a multimodal artificial intelligence algorithm, FusionNet, using the pattern deviation probability plots from visual field (VF) reports...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 171
SubjectTerms Adult
Aged
Algorithms
Area Under Curve
Bimodal data
Cross-Sectional Studies
Deep learning
Female
Glaucoma
Glaucoma, Open-Angle - diagnostic imaging
Glaucoma, Open-Angle - physiopathology
Glaucomatous optic neuropathy
Humans
Intraocular Pressure
Machine Learning
Male
Middle Aged
Multimodal Imaging
Nerve Fibers - pathology
Optic Nerve Diseases - diagnostic imaging
Optic Nerve Diseases - physiopathology
Retinal Ganglion Cells - pathology
ROC Curve
Tomography, Optical Coherence
Vision Disorders - physiopathology
Visual Field Tests
Visual Fields - physiology
Title Multimodal Machine Learning Using Visual Fields and Peripapillary Circular OCT Scans in Detection of Glaucomatous Optic Neuropathy
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0161642021005650
https://dx.doi.org/10.1016/j.ophtha.2021.07.032
https://www.ncbi.nlm.nih.gov/pubmed/34339778
https://www.proquest.com/docview/2557536908
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBYhhbGXsfvSXdBgb8VBlm3ZfiztsrKuy9jSLW9GtuXUJXVM6sDY437IfuuObo5NV9r1xQRhJSc6n6XvHJ8LQu9gu4vTqPAd188Lxw8y7gCPi51CFBkLfcYZldnIJ5_Z0an_cR7MB4M_nailTZOOs1__zCu5i1ZhDPQqs2T_Q7Ptl8IAfAb9whU0DNdb6Vhlz16scplfq4Iiha2XutjTsQDfy0uZHzKRcWq6GvMXEKzmtWw2tIbtoFzrQNTpwQyec67Dyg9FIzJLJT8s-QaEl73TL_emtSzwqip6yF7GvXfC0_qsOePLC13VSbkmTDcuHZ9fVeOO32Fe2mDgDkA_qdiCiShbx4-56VC22F5s3Qx6FPBdLX7a-cZ3AWYv6cWBtEk1vZhPSUIdMItIb5M28pUdY1lvua5u4WJOb1f3hbpyMGgfxfl4pZZiDMK4qmirca72S25_kyJICcAeBoIoXUI7FMwQOkQ7-8dffxy3Zz3wNVM9XotskzNVBOHV37qO_Fxn3CiSM3uIHhjrBO9rqD1CA1E9RvdOTPzFE_R7izhsEIct4rBCHNaIwxpxGBCHe4jDFnEYEIcV4nBZ4RZxeFXgLuKwQhzeIu4pOp28nx0cOaaLh5MBOWycnLp5mgpOPc58HgNBLALqh4TksoxtzKggIewksEvEnPMgyoI8YiRlwK4oUKzMe4aG1aoSLxCG0SD0cp6nXiDr7kUk4FxeYkoKxvgIeXZ5k8yUuJedVpaJjWU8T7RSEqmUhIQJKGWEnHZWrUu83HB_YDWX2PRlOHATgNoN88J2nqG3mrbeYuZbC5AEdn_5So9XAnSQ0ADMLY_FJBqh5xo57X_wYInAuot27yjvS3R_-8y-QsNmvRGvgYE36RvzGPwF1qPd4w
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+Machine+Learning+Using+Visual+Fields+and+Peripapillary+Circular+OCT+Scans+in+Detection+of+Glaucomatous+Optic+Neuropathy&rft.jtitle=Ophthalmology+%28Rochester%2C+Minn.%29&rft.au=Xiong%2C+Jian&rft.au=Li%2C+Fei&rft.au=Song%2C+Diping&rft.au=Tang%2C+Guangxian&rft.date=2022-02-01&rft.pub=Elsevier+Inc&rft.issn=0161-6420&rft.volume=129&rft.issue=2&rft.spage=171&rft.epage=180&rft_id=info:doi/10.1016%2Fj.ophtha.2021.07.032&rft.externalDocID=S0161642021005650
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-6420&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-6420&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-6420&client=summon