Deterioration of R-Wave Detection in Pathology and Noise: A Comprehensive Analysis Using Simultaneous Truth and Performance Level Estimation

Objective: For long-term electrocardiography (ECG) recordings, accurate R-wave detection is essential. Several algorithms have been proposed but not yet compared on large, noisy, or pathological data, since manual ground-truth establishment is impossible on such large data. Methods: We apply the sim...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 64; no. 9; pp. 2163 - 2175
Main Authors Kashif, Muhammad, Jonas, Stephan M., Deserno, Thomas M.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
DOI10.1109/TBME.2016.2633277

Cover

Abstract Objective: For long-term electrocardiography (ECG) recordings, accurate R-wave detection is essential. Several algorithms have been proposed but not yet compared on large, noisy, or pathological data, since manual ground-truth establishment is impossible on such large data. Methods: We apply the simultaneous truth and performance level estimation (STAPLE) method to ECG signals comparing nine R-wave detectors: Pan and Tompkins (1985), Chernenko (2007), Arzeno et al. (2008), Manikandan et al. (2012), Lentini et al. (2013), Sartor et al. (2014), Liu et al. (2014), Arteaga-Falconi et al. (2015), and Khamis et al. (2016). Experiments are performed on the MIT-BIH database, TELE database, PTB database, and 24/7 Holter recordings of 60 multimorbid subjects. Results: Existing approaches on R-wave detection perform excellently on healthy subjects (F-measure above 99% for most methods), but performance drops to a range of F = 90.10% (Khamis et al.) to F = 30.10% (Chernenko) when analyzing the 37 million R-waves of multimorbid subjects. STAPLE improves existing approaches (ΔF = 0.04 for the MIT-BIH database and ΔF = 0.95 for the TELE database) and yields a relative (not absolute) scale to compare algorithms' performances. Conclusion: More robust R-wave detection methods or flexible combinations are required to analyze continuous data captured from pathological subjects or that is recorded with dropouts and noise. Significance: STAPLE algorithm has been adopted from image to signal analysis to compare algorithms on large, incomplete, and noisy data without manual ground truth. Existing approaches on R-wave detection weakly perform on such data.
AbstractList Objective: For long-term electrocardiography (ECG) recordings, accurate R-wave detection is essential. Several algorithms have been proposed but not yet compared on large, noisy, or pathological data, since manual ground-truth establishment is impossible on such large data. Methods: We apply the simultaneous truth and performance level estimation (STAPLE) method to ECG signals comparing nine R-wave detectors: Pan and Tompkins (1985), Chernenko (2007), Arzeno et al. (2008), Manikandan et al. (2012), Lentini et al. (2013), Sartor et al. (2014), Liu et al. (2014), Arteaga-Falconi et al. (2015), and Khamis et al. (2016). Experiments are performed on the MIT-BIH database, TELE database, PTB database, and 24/7 Holter recordings of 60 multimorbid subjects. Results: Existing approaches on R-wave detection perform excellently on healthy subjects (F-measure above 99% for most methods), but performance drops to a range of F = 90.10% (Khamis et al.) to F = 30.10% (Chernenko) when analyzing the 37 million R-waves of multimorbid subjects. STAPLE improves existing approaches (ΔF = 0.04 for the MIT-BIH database and ΔF = 0.95 for the TELE database) and yields a relative (not absolute) scale to compare algorithms' performances. Conclusion: More robust R-wave detection methods or flexible combinations are required to analyze continuous data captured from pathological subjects or that is recorded with dropouts and noise. Significance: STAPLE algorithm has been adopted from image to signal analysis to compare algorithms on large, incomplete, and noisy data without manual ground truth. Existing approaches on R-wave detection weakly perform on such data.
For long-term electrocardiography (ECG) recordings, accurate R-wave detection is essential. Several algorithms have been proposed but not yet compared on large, noisy, or pathological data, since manual ground-truth establishment is impossible on such large data. We apply the simultaneous truth and performance level estimation (STAPLE) method to ECG signals comparing nine R-wave detectors: Pan and Tompkins (1985), Chernenko (2007), Arzeno et al. (2008), Manikandan et al. (2012), Lentini et al. (2013), Sartor et al. (2014), Liu et al. (2014), Arteaga-Falconi et al. (2015), and Khamis et al. (2016). Experiments are performed on the MIT-BIH database, TELE database, PTB database, and 24/7 Holter recordings of 60 multimorbid subjects. Existing approaches on R-wave detection perform excellently on healthy subjects (F-measure above 99% for most methods), but performance drops to a range of F = 90.10% (Khamis et al.) to F = 30.10% (Chernenko) when analyzing the 37 million R-waves of multimorbid subjects. STAPLE improves existing approaches (ΔF = 0.04 for the MIT-BIH database and ΔF = 0.95 for the TELE database) and yields a relative (not absolute) scale to compare algorithms' performances. More robust R-wave detection methods or flexible combinations are required to analyze continuous data captured from pathological subjects or that is recorded with dropouts and noise. STAPLE algorithm has been adopted from image to signal analysis to compare algorithms on large, incomplete, and noisy data without manual ground truth. Existing approaches on R-wave detection weakly perform on such data.
OBJECTIVEFor long-term electrocardiography (ECG) recordings, accurate R-wave detection is essential. Several algorithms have been proposed but not yet compared on large, noisy, or pathological data, since manual ground-truth establishment is impossible on such large data.METHODSWe apply the simultaneous truth and performance level estimation (STAPLE) method to ECG signals comparing nine R-wave detectors: Pan and Tompkins (1985), Chernenko (2007), Arzeno et al. (2008), Manikandan et al. (2012), Lentini et al. (2013), Sartor et al. (2014), Liu et al. (2014), Arteaga-Falconi et al. (2015), and Khamis et al. (2016). Experiments are performed on the MIT-BIH database, TELE database, PTB database, and 24/7 Holter recordings of 60 multimorbid subjects.RESULTSExisting approaches on R-wave detection perform excellently on healthy subjects (F-measure above 99% for most methods), but performance drops to a range of F = 90.10% (Khamis et al.) to F = 30.10% (Chernenko) when analyzing the 37 million R-waves of multimorbid subjects. STAPLE improves existing approaches (ΔF = 0.04 for the MIT-BIH database and ΔF = 0.95 for the TELE database) and yields a relative (not absolute) scale to compare algorithms' performances.CONCLUSIONMore robust R-wave detection methods or flexible combinations are required to analyze continuous data captured from pathological subjects or that is recorded with dropouts and noise.SIGNIFICANCESTAPLE algorithm has been adopted from image to signal analysis to compare algorithms on large, incomplete, and noisy data without manual ground truth. Existing approaches on R-wave detection weakly perform on such data.
Author Kashif, Muhammad
Jonas, Stephan M.
Deserno, Thomas M.
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Kashif
  fullname: Kashif, Muhammad
  email: muhammad.kashif@rwth-aachen.de
  organization: Department of Medical Informatics, RWTH Aachen University, Aachen, Germany
– sequence: 2
  givenname: Stephan M.
  surname: Jonas
  fullname: Jonas, Stephan M.
  organization: Department of Medical InformaticsRWTH Aachen University
– sequence: 3
  givenname: Thomas M.
  surname: Deserno
  fullname: Deserno, Thomas M.
  organization: Department of Medical InformaticsRWTH Aachen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27913321$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1u0zAYhi00xLrBBSAkZIkTTlL8E9sJZ6WUH6nABJ04tJzky-opsTvbmdR74KJJ2o6DHXBk2Xqez379XqAz5x0g9JKSOaWkfLf58G01Z4TKOZOcM6WeoBkVosiY4PQMzQihRVayMj9HFzHejtu8yOUzdM5USUeBztCfj5AgWB9Mst5h3-Kf2W9zD3g6rw9n1uErk7a-8zd7bFyDv3sb4T1e4KXvdwG24KIdjYUz3T7aiK-jdTf4l-2HLhkHfoh4E4a0PchXEFofeuNqwGu4hw6vYrL94frn6GlruggvTusluv602iy_ZOsfn78uF-uszqlIWd20hDXAc1NKVgmqqKyMaIlkTJZcCGUUrwmTDVF1KaFtcylaIZuKt1UhhOCX6O1x7i74uwFi0r2NNXTd8bWaFrkouCjVhL55hN76IYxJo2ZU5ZyWjNGRen2ihqqHRu_CmCjs9cM_j4A6AnXwMQZodW3TIXMKxnaaEj01qqdG9dSoPjU6mvSR-TD8f86ro2MB4B-vlGRjMP4Xvaarxg
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_ACCESS_2020_2997473
crossref_primary_10_1038_s41598_023_47484_z
crossref_primary_10_1016_j_cmpb_2021_105931
crossref_primary_10_1088_1361_6579_ad290b
crossref_primary_10_1109_RBME_2018_2810957
crossref_primary_10_1109_ACCESS_2020_2967775
crossref_primary_10_1148_radiol_2020191740
crossref_primary_10_3390_s21103542
crossref_primary_10_1007_s00399_020_00711_w
crossref_primary_10_3390_s22114198
Cites_doi 10.3414/ME15-01-0120
10.1109/IEMBS.2010.5628067
10.1016/j.jcrc.2013.02.015
10.1109/IEMBS.2009.5333578
10.1049/iet-spr.2008.0094
10.1161/01.CIR.101.23.e215
10.4015/S1016237214500070
10.1109/TPAMI.2012.143
10.1007/s11517-012-1021-6
10.1016/j.ihj.2014.01.005
10.1371/journal.pone.0084018
10.1007/978-3-540-39903-2_71
10.1109/TMI.2004.828354
10.1111/j.2517-6161.1977.tb01600.x
10.3414/ME15-05-0009
10.1109/TBME.2007.912658
10.1088/0967-3334/33/9/1517
10.1021/ac60214a047
10.1109/TBCAS.2009.2020093
10.1016/j.snb.2009.04.040
10.1109/TBME.1985.325532
10.1109/WISP.2015.7139157
10.1109/51.932724
10.1007/3-540-45786-0_37
10.1109/JBHI.2014.2310204
10.1109/TBME.2016.2549060
10.1007/s10916-009-9405-3
10.1016/j.bspc.2011.03.004
10.1016/j.compmedimag.2008.12.002
10.1109/TMI.2005.857652
10.1109/TITB.2006.875662
10.1088/0031-9155/60/24/9473
10.1007/978-3-319-42016-5_10
10.1016/j.media.2004.06.022
10.1007/978-3-642-54111-7_56
10.1016/j.rbmret.2003.08.002
10.1515/bmt-2011-0064
10.1109/CIC.1997.647841
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2016.2633277
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 2175
ExternalDocumentID 27913321
10_1109_TBME_2016_2633277
7762845
Genre orig-research
Validation Studies
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: German Academic Exchange Service (DAAD) and Higher Education Commission of Pakistan (HEC) scholarship program
  funderid: 10.13039/501100001650
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c415t-cdf02de34a962b51716ba5f0622693557a73c026d07c96eff465f56db3fb85553
IEDL.DBID RIE
ISSN 0018-9294
IngestDate Fri Sep 05 11:15:04 EDT 2025
Mon Jun 30 08:40:53 EDT 2025
Wed Feb 19 02:41:17 EST 2025
Tue Jul 01 03:28:29 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
Wed Aug 27 02:53:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-cdf02de34a962b51716ba5f0622693557a73c026d07c96eff465f56db3fb85553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
PMID 27913321
PQID 2174319221
PQPubID 85474
PageCount 13
ParticipantIDs crossref_primary_10_1109_TBME_2016_2633277
pubmed_primary_27913321
crossref_citationtrail_10_1109_TBME_2016_2633277
ieee_primary_7762845
proquest_miscellaneous_1845835975
proquest_journals_2174319221
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
robergs (ref37) 2002; 5
ref15
ref36
ref14
ref33
ref11
ref10
ref2
commowick (ref39) 0
ref17
ref38
ref16
mattern (ref23) 0
ref19
ref18
kaiser (ref31) 0
lentini (ref34) 0
ref46
ref24
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
dempster (ref40) 1977; 1
ref28
ref27
alwan (ref1) 2011
ref29
goldberger (ref43) 2000; 101
chernenko (ref30) 2012
ref8
ref7
ref9
ref4
ref3
williams (ref32) 2006
ref6
ref5
References_xml – year: 2006
  ident: ref32
  publication-title: Electronic Filter Design Handbook
– start-page: 139
  year: 0
  ident: ref23
  article-title: Adaptive performance-based classifier combination for generic object recognition
  publication-title: Proc 9th Int Fall Workshop Vis Modeling Vis
– ident: ref46
  doi: 10.3414/ME15-01-0120
– ident: ref41
  doi: 10.1109/IEMBS.2010.5628067
– ident: ref16
  doi: 10.1016/j.jcrc.2013.02.015
– ident: ref15
  doi: 10.1109/IEMBS.2009.5333578
– year: 2012
  ident: ref30
– ident: ref29
  doi: 10.1049/iet-spr.2008.0094
– volume: 101
  start-page: 215
  year: 2000
  ident: ref43
  article-title: Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref8
  doi: 10.4015/S1016237214500070
– ident: ref25
  doi: 10.1109/TPAMI.2012.143
– ident: ref45
  doi: 10.1007/s11517-012-1021-6
– ident: ref4
  doi: 10.1016/j.ihj.2014.01.005
– ident: ref2
  doi: 10.1371/journal.pone.0084018
– volume: 5
  start-page: 1
  year: 2002
  ident: ref37
  article-title: The surprising history of the 'HRmax= 220-age' equation
  publication-title: Exercise Physiology
– ident: ref21
  doi: 10.1007/978-3-540-39903-2_71
– ident: ref18
  doi: 10.1109/TMI.2004.828354
– volume: 1
  start-page: 1
  year: 1977
  ident: ref40
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J Roy Statist Soc Ser B Stat Methodol
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref3
  doi: 10.3414/ME15-05-0009
– ident: ref9
  doi: 10.1109/TBME.2007.912658
– ident: ref42
  doi: 10.1088/0967-3334/33/9/1517
– ident: ref36
  doi: 10.1021/ac60214a047
– ident: ref11
  doi: 10.1109/TBCAS.2009.2020093
– ident: ref5
  doi: 10.1016/j.snb.2009.04.040
– ident: ref6
  doi: 10.1109/TBME.1985.325532
– year: 2011
  ident: ref1
  article-title: Global status report on noncommunicable diseases 2010
  publication-title: World Health Org
– ident: ref7
  doi: 10.1109/WISP.2015.7139157
– ident: ref14
  doi: 10.1109/51.932724
– ident: ref17
  doi: 10.1007/3-540-45786-0_37
– ident: ref26
  doi: 10.1109/JBHI.2014.2310204
– ident: ref38
  doi: 10.1109/TBME.2016.2549060
– ident: ref12
  doi: 10.1007/s10916-009-9405-3
– start-page: 20
  year: 0
  ident: ref31
  article-title: Nonrecursive digital filter design using the I_0-sinh window function
  publication-title: Proc IEEE Int Symp Circuits Syst
– ident: ref10
  doi: 10.1016/j.bspc.2011.03.004
– ident: ref19
  doi: 10.1016/j.compmedimag.2008.12.002
– ident: ref20
  doi: 10.1109/TMI.2005.857652
– ident: ref13
  doi: 10.1109/TITB.2006.875662
– ident: ref22
  doi: 10.1088/0031-9155/60/24/9473
– ident: ref24
  doi: 10.1007/978-3-319-42016-5_10
– year: 0
  ident: ref34
  article-title: Long ECG an
  publication-title: Proc Int Conf Appl Math Inform
– ident: ref27
  doi: 10.1016/j.media.2004.06.022
– ident: ref35
  doi: 10.1007/978-3-642-54111-7_56
– start-page: 25
  year: 0
  ident: ref39
  article-title: Incorporating priors on expert performance parameters for segmentation validation and label fusion: A maximum a posteriori STAPLE
  publication-title: Proc Med Image Comput Comput -Assisted Intervention
– ident: ref28
  doi: 10.1016/j.rbmret.2003.08.002
– ident: ref44
  doi: 10.1515/bmt-2011-0064
– ident: ref33
  doi: 10.1109/CIC.1997.647841
SSID ssj0014846
Score 2.3128247
Snippet Objective: For long-term electrocardiography (ECG) recordings, accurate R-wave detection is essential. Several algorithms have been proposed but not yet...
For long-term electrocardiography (ECG) recordings, accurate R-wave detection is essential. Several algorithms have been proposed but not yet compared on...
OBJECTIVEFor long-term electrocardiography (ECG) recordings, accurate R-wave detection is essential. Several algorithms have been proposed but not yet compared...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2163
SubjectTerms Algorithms
Arrhythmias, Cardiac - diagnosis
Band-pass filters
Data processing
Diagnosis, Computer-Assisted - methods
EKG
Electrocardiography
Electrocardiography (ECG)
Electrocardiography, Ambulatory - methods
Feature extraction
Ground truth
Humans
Image processing
multimorbid subjects
Noise measurement
Pattern Recognition, Automated - methods
R-wave detection
Reproducibility of Results
Sensitivity and Specificity
Signal analysis
Signal-To-Noise Ratio
simultaneous truth and performance level estimation (STAPLE)
Transforms
Title Deterioration of R-Wave Detection in Pathology and Noise: A Comprehensive Analysis Using Simultaneous Truth and Performance Level Estimation
URI https://ieeexplore.ieee.org/document/7762845
https://www.ncbi.nlm.nih.gov/pubmed/27913321
https://www.proquest.com/docview/2174319221
https://www.proquest.com/docview/1845835975
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA4tNACXSjISJwQ2SZ-JeZWYKsKsVUFW9FbFMe2uqJKqt0EqfwGfjQe58FDgLhFeTgPf2N_k_lmDPDcCM0yKXkkjKdvvJQyUpkrIsoKzMQUidOYnDw_lSfn_N2FuNiAl2MujLU2iM_sFDdDLN_UZYu_yg5Tb7kZF5uw6WHW5WqNEQOedUk5ceINmCreRzCTWB0uXs9nKOKSUyoZoykuvEdT5b0zmvwyHYX1Vf5ONcOUc7wD8-FhO6XJ52nb6Gn59bc6jv_7Nndhu-ee5KgDyz3YsNUu3PmpIuEu3Jr3sfY9-PYWlTLLHiKkduRD9Kn4YgnuD9kQZFmRs6IJ4-cNKSpDTuvl2r4iRwSHmZW97NTxZKh8QoJAgXxcooyxqGzdrsli1TaX4eKzHzkM5D1qmcjMjz9dauV9OD-eLd6cRP3aDVHpKUETlcbF1FjGCyWpFliURxfCxdLTPSzpnhYpK73_Z-K0VNI6x6VwQhrNnM6EEOwBbFV1ZfeBJC4tqYqd0Vxxk_HMaOMHIsMdy6xJ5ATioQvzsi9sjutrXOXBwYlVjgDIEQB5D4AJvBgvue6qevzr5D3svPHEvt8mcDDgJO_tfp0HB8-TZppM4Nl42FsshmG675p7n1p43qtS38TDDl9j2wMsH_35no_hNkVaETRuB7DVrFr7xJOiRj8N1vAdO-QF5g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwEB6VInE8cLRQFgoYiSdEtoljOzFvBbZaYHdVwVbtWxTHtrqiStBuggS_gR-Nxzk4BIi3KLGdwzPjbzLfjAGeaq7iVAgWcO3gGyuECGRq84DGOWZi8sgqTE6eL8T0hL0942db8HzIhTHGePKZGeOhj-XrqmjwV9lB4jQ3ZfwSXHbrPuNtttYQM2Bpm5YTRk6FqWRdDDMK5cHy5XyCNC4xpiKOaYJb79FEOv-MRr8sSH6Hlb-DTb_oHN2Eef-4Ldfk47ip1bj4-lslx_99n1two0Of5LAVl9uwZcoduP5TTcIduDLvou278O01cmVWnZCQypL3wWn-2RA87_MhyKokx3ntLegXkpeaLKrVxrwghwQNzdqct_x40tc-IZ6iQD6skMiYl6ZqNmS5bupz3_n4RxYDmSGbiUycBWqTK-_AydFk-WoadLs3BIUDBXVQaBtSbWKWS0EVx7I8Kuc2FA7wYVH3JE_iwnmAOkwKKYy1THDLhVaxVSnnPL4L22VVmntAIpsUVIZWKyaZTlmqlXamSDMbp0ZHYgRhP4VZ0ZU2xx02LjLv4oQyQwHIUACyTgBG8Gzo8qmt6_Gvxrs4eUPDbt5GsN_LSdZp_ibzLp6DzTQawZPhstNZDMS03zVzXjV3yFcmboi9Vr6GsXuxvP_nez6Gq9PlfJbN3izePYBrFEGGZ7ztw3a9bsxDB5Fq9chrxncR5Qkz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deterioration+of+R-Wave+Detection+in+Pathology+and+Noise%3A+A+Comprehensive+Analysis+Using+Simultaneous+Truth+and+Performance+Level+Estimation&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Kashif%2C+Muhammad&rft.au=Jonas%2C+Stephan+M&rft.au=Deserno%2C+Thomas+M&rft.date=2017-09-01&rft.eissn=1558-2531&rft.volume=64&rft.issue=9&rft.spage=2163&rft.epage=2175&rft_id=info:doi/10.1109%2FTBME.2016.2633277&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon