Deterioration of R-Wave Detection in Pathology and Noise: A Comprehensive Analysis Using Simultaneous Truth and Performance Level Estimation
Objective: For long-term electrocardiography (ECG) recordings, accurate R-wave detection is essential. Several algorithms have been proposed but not yet compared on large, noisy, or pathological data, since manual ground-truth establishment is impossible on such large data. Methods: We apply the sim...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 64; no. 9; pp. 2163 - 2175 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 |
DOI | 10.1109/TBME.2016.2633277 |
Cover
Abstract | Objective: For long-term electrocardiography (ECG) recordings, accurate R-wave detection is essential. Several algorithms have been proposed but not yet compared on large, noisy, or pathological data, since manual ground-truth establishment is impossible on such large data. Methods: We apply the simultaneous truth and performance level estimation (STAPLE) method to ECG signals comparing nine R-wave detectors: Pan and Tompkins (1985), Chernenko (2007), Arzeno et al. (2008), Manikandan et al. (2012), Lentini et al. (2013), Sartor et al. (2014), Liu et al. (2014), Arteaga-Falconi et al. (2015), and Khamis et al. (2016). Experiments are performed on the MIT-BIH database, TELE database, PTB database, and 24/7 Holter recordings of 60 multimorbid subjects. Results: Existing approaches on R-wave detection perform excellently on healthy subjects (F-measure above 99% for most methods), but performance drops to a range of F = 90.10% (Khamis et al.) to F = 30.10% (Chernenko) when analyzing the 37 million R-waves of multimorbid subjects. STAPLE improves existing approaches (ΔF = 0.04 for the MIT-BIH database and ΔF = 0.95 for the TELE database) and yields a relative (not absolute) scale to compare algorithms' performances. Conclusion: More robust R-wave detection methods or flexible combinations are required to analyze continuous data captured from pathological subjects or that is recorded with dropouts and noise. Significance: STAPLE algorithm has been adopted from image to signal analysis to compare algorithms on large, incomplete, and noisy data without manual ground truth. Existing approaches on R-wave detection weakly perform on such data. |
---|---|
AbstractList | Objective: For long-term electrocardiography (ECG) recordings, accurate R-wave detection is essential. Several algorithms have been proposed but not yet compared on large, noisy, or pathological data, since manual ground-truth establishment is impossible on such large data. Methods: We apply the simultaneous truth and performance level estimation (STAPLE) method to ECG signals comparing nine R-wave detectors: Pan and Tompkins (1985), Chernenko (2007), Arzeno et al. (2008), Manikandan et al. (2012), Lentini et al. (2013), Sartor et al. (2014), Liu et al. (2014), Arteaga-Falconi et al. (2015), and Khamis et al. (2016). Experiments are performed on the MIT-BIH database, TELE database, PTB database, and 24/7 Holter recordings of 60 multimorbid subjects. Results: Existing approaches on R-wave detection perform excellently on healthy subjects (F-measure above 99% for most methods), but performance drops to a range of F = 90.10% (Khamis et al.) to F = 30.10% (Chernenko) when analyzing the 37 million R-waves of multimorbid subjects. STAPLE improves existing approaches (ΔF = 0.04 for the MIT-BIH database and ΔF = 0.95 for the TELE database) and yields a relative (not absolute) scale to compare algorithms' performances. Conclusion: More robust R-wave detection methods or flexible combinations are required to analyze continuous data captured from pathological subjects or that is recorded with dropouts and noise. Significance: STAPLE algorithm has been adopted from image to signal analysis to compare algorithms on large, incomplete, and noisy data without manual ground truth. Existing approaches on R-wave detection weakly perform on such data. For long-term electrocardiography (ECG) recordings, accurate R-wave detection is essential. Several algorithms have been proposed but not yet compared on large, noisy, or pathological data, since manual ground-truth establishment is impossible on such large data. We apply the simultaneous truth and performance level estimation (STAPLE) method to ECG signals comparing nine R-wave detectors: Pan and Tompkins (1985), Chernenko (2007), Arzeno et al. (2008), Manikandan et al. (2012), Lentini et al. (2013), Sartor et al. (2014), Liu et al. (2014), Arteaga-Falconi et al. (2015), and Khamis et al. (2016). Experiments are performed on the MIT-BIH database, TELE database, PTB database, and 24/7 Holter recordings of 60 multimorbid subjects. Existing approaches on R-wave detection perform excellently on healthy subjects (F-measure above 99% for most methods), but performance drops to a range of F = 90.10% (Khamis et al.) to F = 30.10% (Chernenko) when analyzing the 37 million R-waves of multimorbid subjects. STAPLE improves existing approaches (ΔF = 0.04 for the MIT-BIH database and ΔF = 0.95 for the TELE database) and yields a relative (not absolute) scale to compare algorithms' performances. More robust R-wave detection methods or flexible combinations are required to analyze continuous data captured from pathological subjects or that is recorded with dropouts and noise. STAPLE algorithm has been adopted from image to signal analysis to compare algorithms on large, incomplete, and noisy data without manual ground truth. Existing approaches on R-wave detection weakly perform on such data. OBJECTIVEFor long-term electrocardiography (ECG) recordings, accurate R-wave detection is essential. Several algorithms have been proposed but not yet compared on large, noisy, or pathological data, since manual ground-truth establishment is impossible on such large data.METHODSWe apply the simultaneous truth and performance level estimation (STAPLE) method to ECG signals comparing nine R-wave detectors: Pan and Tompkins (1985), Chernenko (2007), Arzeno et al. (2008), Manikandan et al. (2012), Lentini et al. (2013), Sartor et al. (2014), Liu et al. (2014), Arteaga-Falconi et al. (2015), and Khamis et al. (2016). Experiments are performed on the MIT-BIH database, TELE database, PTB database, and 24/7 Holter recordings of 60 multimorbid subjects.RESULTSExisting approaches on R-wave detection perform excellently on healthy subjects (F-measure above 99% for most methods), but performance drops to a range of F = 90.10% (Khamis et al.) to F = 30.10% (Chernenko) when analyzing the 37 million R-waves of multimorbid subjects. STAPLE improves existing approaches (ΔF = 0.04 for the MIT-BIH database and ΔF = 0.95 for the TELE database) and yields a relative (not absolute) scale to compare algorithms' performances.CONCLUSIONMore robust R-wave detection methods or flexible combinations are required to analyze continuous data captured from pathological subjects or that is recorded with dropouts and noise.SIGNIFICANCESTAPLE algorithm has been adopted from image to signal analysis to compare algorithms on large, incomplete, and noisy data without manual ground truth. Existing approaches on R-wave detection weakly perform on such data. |
Author | Kashif, Muhammad Jonas, Stephan M. Deserno, Thomas M. |
Author_xml | – sequence: 1 givenname: Muhammad surname: Kashif fullname: Kashif, Muhammad email: muhammad.kashif@rwth-aachen.de organization: Department of Medical Informatics, RWTH Aachen University, Aachen, Germany – sequence: 2 givenname: Stephan M. surname: Jonas fullname: Jonas, Stephan M. organization: Department of Medical InformaticsRWTH Aachen University – sequence: 3 givenname: Thomas M. surname: Deserno fullname: Deserno, Thomas M. organization: Department of Medical InformaticsRWTH Aachen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27913321$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd1u0zAYhi00xLrBBSAkZIkTTlL8E9sJZ6WUH6nABJ04tJzky-opsTvbmdR74KJJ2o6DHXBk2Xqez379XqAz5x0g9JKSOaWkfLf58G01Z4TKOZOcM6WeoBkVosiY4PQMzQihRVayMj9HFzHejtu8yOUzdM5USUeBztCfj5AgWB9Mst5h3-Kf2W9zD3g6rw9n1uErk7a-8zd7bFyDv3sb4T1e4KXvdwG24KIdjYUz3T7aiK-jdTf4l-2HLhkHfoh4E4a0PchXEFofeuNqwGu4hw6vYrL94frn6GlruggvTusluv602iy_ZOsfn78uF-uszqlIWd20hDXAc1NKVgmqqKyMaIlkTJZcCGUUrwmTDVF1KaFtcylaIZuKt1UhhOCX6O1x7i74uwFi0r2NNXTd8bWaFrkouCjVhL55hN76IYxJo2ZU5ZyWjNGRen2ihqqHRu_CmCjs9cM_j4A6AnXwMQZodW3TIXMKxnaaEj01qqdG9dSoPjU6mvSR-TD8f86ro2MB4B-vlGRjMP4Xvaarxg |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1109_ACCESS_2020_2997473 crossref_primary_10_1038_s41598_023_47484_z crossref_primary_10_1016_j_cmpb_2021_105931 crossref_primary_10_1088_1361_6579_ad290b crossref_primary_10_1109_RBME_2018_2810957 crossref_primary_10_1109_ACCESS_2020_2967775 crossref_primary_10_1148_radiol_2020191740 crossref_primary_10_3390_s21103542 crossref_primary_10_1007_s00399_020_00711_w crossref_primary_10_3390_s22114198 |
Cites_doi | 10.3414/ME15-01-0120 10.1109/IEMBS.2010.5628067 10.1016/j.jcrc.2013.02.015 10.1109/IEMBS.2009.5333578 10.1049/iet-spr.2008.0094 10.1161/01.CIR.101.23.e215 10.4015/S1016237214500070 10.1109/TPAMI.2012.143 10.1007/s11517-012-1021-6 10.1016/j.ihj.2014.01.005 10.1371/journal.pone.0084018 10.1007/978-3-540-39903-2_71 10.1109/TMI.2004.828354 10.1111/j.2517-6161.1977.tb01600.x 10.3414/ME15-05-0009 10.1109/TBME.2007.912658 10.1088/0967-3334/33/9/1517 10.1021/ac60214a047 10.1109/TBCAS.2009.2020093 10.1016/j.snb.2009.04.040 10.1109/TBME.1985.325532 10.1109/WISP.2015.7139157 10.1109/51.932724 10.1007/3-540-45786-0_37 10.1109/JBHI.2014.2310204 10.1109/TBME.2016.2549060 10.1007/s10916-009-9405-3 10.1016/j.bspc.2011.03.004 10.1016/j.compmedimag.2008.12.002 10.1109/TMI.2005.857652 10.1109/TITB.2006.875662 10.1088/0031-9155/60/24/9473 10.1007/978-3-319-42016-5_10 10.1016/j.media.2004.06.022 10.1007/978-3-642-54111-7_56 10.1016/j.rbmret.2003.08.002 10.1515/bmt-2011-0064 10.1109/CIC.1997.647841 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2016.2633277 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 2175 |
ExternalDocumentID | 27913321 10_1109_TBME_2016_2633277 7762845 |
Genre | orig-research Validation Studies Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: German Academic Exchange Service (DAAD) and Higher Education Commission of Pakistan (HEC) scholarship program funderid: 10.13039/501100001650 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c415t-cdf02de34a962b51716ba5f0622693557a73c026d07c96eff465f56db3fb85553 |
IEDL.DBID | RIE |
ISSN | 0018-9294 |
IngestDate | Fri Sep 05 11:15:04 EDT 2025 Mon Jun 30 08:40:53 EDT 2025 Wed Feb 19 02:41:17 EST 2025 Tue Jul 01 03:28:29 EDT 2025 Thu Apr 24 23:10:57 EDT 2025 Wed Aug 27 02:53:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-cdf02de34a962b51716ba5f0622693557a73c026d07c96eff465f56db3fb85553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
PMID | 27913321 |
PQID | 2174319221 |
PQPubID | 85474 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_TBME_2016_2633277 pubmed_primary_27913321 crossref_citationtrail_10_1109_TBME_2016_2633277 ieee_primary_7762845 proquest_miscellaneous_1845835975 proquest_journals_2174319221 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref12 robergs (ref37) 2002; 5 ref15 ref36 ref14 ref33 ref11 ref10 ref2 commowick (ref39) 0 ref17 ref38 ref16 mattern (ref23) 0 ref19 ref18 kaiser (ref31) 0 lentini (ref34) 0 ref46 ref24 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 dempster (ref40) 1977; 1 ref28 ref27 alwan (ref1) 2011 ref29 goldberger (ref43) 2000; 101 chernenko (ref30) 2012 ref8 ref7 ref9 ref4 ref3 williams (ref32) 2006 ref6 ref5 |
References_xml | – year: 2006 ident: ref32 publication-title: Electronic Filter Design Handbook – start-page: 139 year: 0 ident: ref23 article-title: Adaptive performance-based classifier combination for generic object recognition publication-title: Proc 9th Int Fall Workshop Vis Modeling Vis – ident: ref46 doi: 10.3414/ME15-01-0120 – ident: ref41 doi: 10.1109/IEMBS.2010.5628067 – ident: ref16 doi: 10.1016/j.jcrc.2013.02.015 – ident: ref15 doi: 10.1109/IEMBS.2009.5333578 – year: 2012 ident: ref30 – ident: ref29 doi: 10.1049/iet-spr.2008.0094 – volume: 101 start-page: 215 year: 2000 ident: ref43 article-title: Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – ident: ref8 doi: 10.4015/S1016237214500070 – ident: ref25 doi: 10.1109/TPAMI.2012.143 – ident: ref45 doi: 10.1007/s11517-012-1021-6 – ident: ref4 doi: 10.1016/j.ihj.2014.01.005 – ident: ref2 doi: 10.1371/journal.pone.0084018 – volume: 5 start-page: 1 year: 2002 ident: ref37 article-title: The surprising history of the 'HRmax= 220-age' equation publication-title: Exercise Physiology – ident: ref21 doi: 10.1007/978-3-540-39903-2_71 – ident: ref18 doi: 10.1109/TMI.2004.828354 – volume: 1 start-page: 1 year: 1977 ident: ref40 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J Roy Statist Soc Ser B Stat Methodol doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: ref3 doi: 10.3414/ME15-05-0009 – ident: ref9 doi: 10.1109/TBME.2007.912658 – ident: ref42 doi: 10.1088/0967-3334/33/9/1517 – ident: ref36 doi: 10.1021/ac60214a047 – ident: ref11 doi: 10.1109/TBCAS.2009.2020093 – ident: ref5 doi: 10.1016/j.snb.2009.04.040 – ident: ref6 doi: 10.1109/TBME.1985.325532 – year: 2011 ident: ref1 article-title: Global status report on noncommunicable diseases 2010 publication-title: World Health Org – ident: ref7 doi: 10.1109/WISP.2015.7139157 – ident: ref14 doi: 10.1109/51.932724 – ident: ref17 doi: 10.1007/3-540-45786-0_37 – ident: ref26 doi: 10.1109/JBHI.2014.2310204 – ident: ref38 doi: 10.1109/TBME.2016.2549060 – ident: ref12 doi: 10.1007/s10916-009-9405-3 – start-page: 20 year: 0 ident: ref31 article-title: Nonrecursive digital filter design using the I_0-sinh window function publication-title: Proc IEEE Int Symp Circuits Syst – ident: ref10 doi: 10.1016/j.bspc.2011.03.004 – ident: ref19 doi: 10.1016/j.compmedimag.2008.12.002 – ident: ref20 doi: 10.1109/TMI.2005.857652 – ident: ref13 doi: 10.1109/TITB.2006.875662 – ident: ref22 doi: 10.1088/0031-9155/60/24/9473 – ident: ref24 doi: 10.1007/978-3-319-42016-5_10 – year: 0 ident: ref34 article-title: Long ECG an publication-title: Proc Int Conf Appl Math Inform – ident: ref27 doi: 10.1016/j.media.2004.06.022 – ident: ref35 doi: 10.1007/978-3-642-54111-7_56 – start-page: 25 year: 0 ident: ref39 article-title: Incorporating priors on expert performance parameters for segmentation validation and label fusion: A maximum a posteriori STAPLE publication-title: Proc Med Image Comput Comput -Assisted Intervention – ident: ref28 doi: 10.1016/j.rbmret.2003.08.002 – ident: ref44 doi: 10.1515/bmt-2011-0064 – ident: ref33 doi: 10.1109/CIC.1997.647841 |
SSID | ssj0014846 |
Score | 2.3128247 |
Snippet | Objective: For long-term electrocardiography (ECG) recordings, accurate R-wave detection is essential. Several algorithms have been proposed but not yet... For long-term electrocardiography (ECG) recordings, accurate R-wave detection is essential. Several algorithms have been proposed but not yet compared on... OBJECTIVEFor long-term electrocardiography (ECG) recordings, accurate R-wave detection is essential. Several algorithms have been proposed but not yet compared... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2163 |
SubjectTerms | Algorithms Arrhythmias, Cardiac - diagnosis Band-pass filters Data processing Diagnosis, Computer-Assisted - methods EKG Electrocardiography Electrocardiography (ECG) Electrocardiography, Ambulatory - methods Feature extraction Ground truth Humans Image processing multimorbid subjects Noise measurement Pattern Recognition, Automated - methods R-wave detection Reproducibility of Results Sensitivity and Specificity Signal analysis Signal-To-Noise Ratio simultaneous truth and performance level estimation (STAPLE) Transforms |
Title | Deterioration of R-Wave Detection in Pathology and Noise: A Comprehensive Analysis Using Simultaneous Truth and Performance Level Estimation |
URI | https://ieeexplore.ieee.org/document/7762845 https://www.ncbi.nlm.nih.gov/pubmed/27913321 https://www.proquest.com/docview/2174319221 https://www.proquest.com/docview/1845835975 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA4tNACXSjISJwQ2SZ-JeZWYKsKsVUFW9FbFMe2uqJKqt0EqfwGfjQe58FDgLhFeTgPf2N_k_lmDPDcCM0yKXkkjKdvvJQyUpkrIsoKzMQUidOYnDw_lSfn_N2FuNiAl2MujLU2iM_sFDdDLN_UZYu_yg5Tb7kZF5uw6WHW5WqNEQOedUk5ceINmCreRzCTWB0uXs9nKOKSUyoZoykuvEdT5b0zmvwyHYX1Vf5ONcOUc7wD8-FhO6XJ52nb6Gn59bc6jv_7Nndhu-ee5KgDyz3YsNUu3PmpIuEu3Jr3sfY9-PYWlTLLHiKkduRD9Kn4YgnuD9kQZFmRs6IJ4-cNKSpDTuvl2r4iRwSHmZW97NTxZKh8QoJAgXxcooyxqGzdrsli1TaX4eKzHzkM5D1qmcjMjz9dauV9OD-eLd6cRP3aDVHpKUETlcbF1FjGCyWpFliURxfCxdLTPSzpnhYpK73_Z-K0VNI6x6VwQhrNnM6EEOwBbFV1ZfeBJC4tqYqd0Vxxk_HMaOMHIsMdy6xJ5ATioQvzsi9sjutrXOXBwYlVjgDIEQB5D4AJvBgvue6qevzr5D3svPHEvt8mcDDgJO_tfp0HB8-TZppM4Nl42FsshmG675p7n1p43qtS38TDDl9j2wMsH_35no_hNkVaETRuB7DVrFr7xJOiRj8N1vAdO-QF5g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwEB6VInE8cLRQFgoYiSdEtoljOzFvBbZaYHdVwVbtWxTHtrqiStBuggS_gR-Nxzk4BIi3KLGdwzPjbzLfjAGeaq7iVAgWcO3gGyuECGRq84DGOWZi8sgqTE6eL8T0hL0942db8HzIhTHGePKZGeOhj-XrqmjwV9lB4jQ3ZfwSXHbrPuNtttYQM2Bpm5YTRk6FqWRdDDMK5cHy5XyCNC4xpiKOaYJb79FEOv-MRr8sSH6Hlb-DTb_oHN2Eef-4Ldfk47ip1bj4-lslx_99n1two0Of5LAVl9uwZcoduP5TTcIduDLvou278O01cmVWnZCQypL3wWn-2RA87_MhyKokx3ntLegXkpeaLKrVxrwghwQNzdqct_x40tc-IZ6iQD6skMiYl6ZqNmS5bupz3_n4RxYDmSGbiUycBWqTK-_AydFk-WoadLs3BIUDBXVQaBtSbWKWS0EVx7I8Kuc2FA7wYVH3JE_iwnmAOkwKKYy1THDLhVaxVSnnPL4L22VVmntAIpsUVIZWKyaZTlmqlXamSDMbp0ZHYgRhP4VZ0ZU2xx02LjLv4oQyQwHIUACyTgBG8Gzo8qmt6_Gvxrs4eUPDbt5GsN_LSdZp_ibzLp6DzTQawZPhstNZDMS03zVzXjV3yFcmboi9Vr6GsXuxvP_nez6Gq9PlfJbN3izePYBrFEGGZ7ztw3a9bsxDB5Fq9chrxncR5Qkz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deterioration+of+R-Wave+Detection+in+Pathology+and+Noise%3A+A+Comprehensive+Analysis+Using+Simultaneous+Truth+and+Performance+Level+Estimation&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Kashif%2C+Muhammad&rft.au=Jonas%2C+Stephan+M&rft.au=Deserno%2C+Thomas+M&rft.date=2017-09-01&rft.eissn=1558-2531&rft.volume=64&rft.issue=9&rft.spage=2163&rft.epage=2175&rft_id=info:doi/10.1109%2FTBME.2016.2633277&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |