Intelligent real-time Arabic sign language classification using attention-based inception and BiLSTM

•Bio-Inspired novel attention-based inception architecture is proposed that can adapt to different types of spatial contexts using convolution filters of different sizes. The characteristics of each dataset are unique, hence the attention mechanism helps focus on those features to improve classifica...

Full description

Saved in:
Bibliographic Details
Published inComputers & electrical engineering Vol. 95; p. 107395
Main Authors Abdul, Wadood, Alsulaiman, Mansour, Amin, Syed Umar, Faisal, Mohammed, Muhammad, Ghulam, Albogamy, Fahad R., Bencherif, Mohamed A., Ghaleb, Hamid
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.10.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Bio-Inspired novel attention-based inception architecture is proposed that can adapt to different types of spatial contexts using convolution filters of different sizes. The characteristics of each dataset are unique, hence the attention mechanism helps focus on those features to improve classification performance.•The shallow inception model is designed with a two-layer attention mechanism with fewer layers but with a large number of convolution filters that can address the overfitting problem caused by small dataset sizes.•LSTM-based recurrent neural network (RNN) module is proposed to extract temporal features after the inception module is applied.•The proposed model is lightweight with fewer parameters and has less processing time.•The proposed model achieves good performance for both dynamic and static signs and gestures. Bio-inspired deep learning models have revolutionized sign language classification, achieving extraordinary accuracy and human-like video understanding. Recognition and classification of sign language videos in real-time are challenging because the duration and speed of each sign vary for different subjects, the background of videos is dynamic in most cases, and the classification result should be produced in real-time. This study proposes a model based on a convolution neural network (CNN) Inception model with an attention mechanism for extracting spatial features and Bi-LSTM (long short-term memory) for temporal feature extraction. The proposed model is tested on datasets with highly variable characteristics such as different clothing, variable lighting, and variable distance from the camera. Real-time classification achieves significant early detections while achieving performance comparable to the offline operation. The proposed model has fewer parameters, fewer deep learning layers, and requires significantly less processing time than state-of-the-art models. The Inception model with an attention mechanism with two attention blocks [Display omitted]
AbstractList •Bio-Inspired novel attention-based inception architecture is proposed that can adapt to different types of spatial contexts using convolution filters of different sizes. The characteristics of each dataset are unique, hence the attention mechanism helps focus on those features to improve classification performance.•The shallow inception model is designed with a two-layer attention mechanism with fewer layers but with a large number of convolution filters that can address the overfitting problem caused by small dataset sizes.•LSTM-based recurrent neural network (RNN) module is proposed to extract temporal features after the inception module is applied.•The proposed model is lightweight with fewer parameters and has less processing time.•The proposed model achieves good performance for both dynamic and static signs and gestures. Bio-inspired deep learning models have revolutionized sign language classification, achieving extraordinary accuracy and human-like video understanding. Recognition and classification of sign language videos in real-time are challenging because the duration and speed of each sign vary for different subjects, the background of videos is dynamic in most cases, and the classification result should be produced in real-time. This study proposes a model based on a convolution neural network (CNN) Inception model with an attention mechanism for extracting spatial features and Bi-LSTM (long short-term memory) for temporal feature extraction. The proposed model is tested on datasets with highly variable characteristics such as different clothing, variable lighting, and variable distance from the camera. Real-time classification achieves significant early detections while achieving performance comparable to the offline operation. The proposed model has fewer parameters, fewer deep learning layers, and requires significantly less processing time than state-of-the-art models. The Inception model with an attention mechanism with two attention blocks [Display omitted]
Bio-inspired deep learning models have revolutionized sign language classification, achieving extraordinary accuracy and human-like video understanding. Recognition and classification of sign language videos in real-time are challenging because the duration and speed of each sign vary for different subjects, the background of videos is dynamic in most cases, and the classification result should be produced in real-time. This study proposes a model based on a convolution neural network (CNN) Inception model with an attention mechanism for extracting spatial features and Bi-LSTM (long short-term memory) for temporal feature extraction. The proposed model is tested on datasets with highly variable characteristics such as different clothing, variable lighting, and variable distance from the camera. Real-time classification achieves significant early detections while achieving performance comparable to the offline operation. The proposed model has fewer parameters, fewer deep learning layers, and requires significantly less processing time than state-of-the-art models.
ArticleNumber 107395
Author Muhammad, Ghulam
Bencherif, Mohamed A.
Alsulaiman, Mansour
Amin, Syed Umar
Ghaleb, Hamid
Abdul, Wadood
Albogamy, Fahad R.
Faisal, Mohammed
Author_xml – sequence: 1
  givenname: Wadood
  surname: Abdul
  fullname: Abdul, Wadood
  organization: Computer Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
– sequence: 2
  givenname: Mansour
  surname: Alsulaiman
  fullname: Alsulaiman, Mansour
  email: msuliman@ksu.edu.sa
  organization: Computer Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
– sequence: 3
  givenname: Syed Umar
  surname: Amin
  fullname: Amin, Syed Umar
  email: samin@psu.edu.sa
  organization: Department of Computer Science, Prince Sultan University, Riyadh 11586, Saudi Arabia
– sequence: 4
  givenname: Mohammed
  surname: Faisal
  fullname: Faisal, Mohammed
  organization: College of Applied Computer Sciences, King Saud University, Saudi Arabia
– sequence: 5
  givenname: Ghulam
  surname: Muhammad
  fullname: Muhammad, Ghulam
  organization: Computer Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
– sequence: 6
  givenname: Fahad R.
  surname: Albogamy
  fullname: Albogamy, Fahad R.
  organization: Turabah University College, Computer Sciences Program, Taif University, Taif 21944, Saudi Arabia
– sequence: 7
  givenname: Mohamed A.
  surname: Bencherif
  fullname: Bencherif, Mohamed A.
  organization: Centre of Smart Robotics Research (CS2R), King Saud University, Riyadh 11543, Saudi Arabia
– sequence: 8
  givenname: Hamid
  surname: Ghaleb
  fullname: Ghaleb, Hamid
  organization: Software Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
BookMark eNqNkEFP3DAQha0KJBbKf3DFOVvbiRPnhGAFLdJWPRTOlnc8iWaVdRbbi8S_r2E5VD1xGr2ZeW803zk7CXNAxr5JsZRCtt-3S5h3e5wQMIxLJZQs_a7u9Re2kKbrK9FpfcIWQjS66nrRnrHzlLai6FaaBfMPIeM00Ygh84huqjLtkN9EtyHgicbAJxfGgxuRw-RSooHAZZoDPyQKI3c5F2vR1cYl9JwC4P597oLnt7T-8_jrKzsd3JTw8qNesKf7u8fVz2r9-8fD6mZdQSN1rqA3vWlbrx3UMPSoYKMGA015w3sN0tTKCdMao9qh8UJtZKeNMdp1Ste6g_qCXR1z93F-PmDKdjsfYignrdJ9U-gYU5et6-MWxDmliIMFyu8v5ehoslLYN7R2a_9Ba9_Q2iPaktD_l7CPtHPx9VPe1dGLBcQLYbQJCAs0TxEhWz_TJ1L-AizCnbk
CitedBy_id crossref_primary_10_1109_TIM_2022_3164167
crossref_primary_10_1007_s10209_024_01162_7
crossref_primary_10_1109_ACCESS_2024_3405341
crossref_primary_10_1007_s00138_024_01557_9
crossref_primary_10_20965_jaciii_2024_p0265
crossref_primary_10_3390_jimaging8070192
crossref_primary_10_3390_s24237798
crossref_primary_10_3390_s24103112
crossref_primary_10_1016_j_eswa_2023_119772
crossref_primary_10_1016_j_compeleceng_2024_109854
crossref_primary_10_1016_j_compeleceng_2024_109475
crossref_primary_10_1016_j_compeleceng_2022_107873
crossref_primary_10_32604_cmes_2023_045731
crossref_primary_10_1109_ACCESS_2024_3485131
crossref_primary_10_1109_ACCESS_2023_3332250
crossref_primary_10_1007_s13755_023_00256_5
crossref_primary_10_7717_peerj_cs_2063
crossref_primary_10_3390_computers13060153
crossref_primary_10_1145_3584984
crossref_primary_10_1016_j_compeleceng_2024_110020
crossref_primary_10_1109_ACCESS_2023_3337514
crossref_primary_10_1007_s00521_023_08319_0
crossref_primary_10_1007_s11554_024_01435_7
crossref_primary_10_3389_fenrg_2023_1239542
crossref_primary_10_1016_j_engappai_2024_108761
crossref_primary_10_1016_j_qsa_2024_100225
crossref_primary_10_1155_2022_8367155
crossref_primary_10_4236_jcc_2023_1110008
crossref_primary_10_1007_s00521_023_09011_z
crossref_primary_10_1155_2022_2721618
crossref_primary_10_1515_bmt_2023_0245
crossref_primary_10_1007_s12530_023_09512_1
crossref_primary_10_1007_s41939_024_00513_4
crossref_primary_10_2478_jsiot_2024_0006
crossref_primary_10_3390_s23167156
Cites_doi 10.1109/TIM.2014.2351331
10.1016/j.future.2019.06.027
10.1109/TNSRE.2019.2896269
10.1007/s11263-015-0846-5
10.1109/TPAMI.2002.1023803
10.1016/j.eswa.2020.113794
10.1109/TSMCB.2006.889630
10.1109/ACCESS.2020.2990434
10.1109/TSMCA.2011.2116004
10.1016/j.jvcir.2016.07.020
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV Oct 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV Oct 2021
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.compeleceng.2021.107395
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0755
ExternalDocumentID 10_1016_j_compeleceng_2021_107395
S0045790621003621
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7SC
7SP
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c415t-c989866d5ac3cf9e2cb2f8c4879dd5c1832a0868826f4d02b1758885a725357c3
IEDL.DBID .~1
ISSN 0045-7906
IngestDate Fri Jul 25 03:09:15 EDT 2025
Tue Jul 01 01:45:53 EDT 2025
Thu Apr 24 23:07:14 EDT 2025
Sun Apr 06 06:54:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords ICMEW
CNN
ICIP
LSTM
DL
CVPR
BiLSTM
ICCVW
Deep learning
Sign language
ECCV
SGD
Real-time classification
Abbreviations: ArSL
RNN
Inception
ASL
Bio-inspired computing
ICPR
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-c989866d5ac3cf9e2cb2f8c4879dd5c1832a0868826f4d02b1758885a725357c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2594202883
PQPubID 2045266
ParticipantIDs proquest_journals_2594202883
crossref_citationtrail_10_1016_j_compeleceng_2021_107395
crossref_primary_10_1016_j_compeleceng_2021_107395
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2021_107395
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers & electrical engineering
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Chai, Liu, Yin, Liu, Chen (bib0008) 2016
Molchanov, Yang, Gupta, Kim, Tyree, Kautz (bib0018) 2016
Wang, Oneata, Verbeek, Schmid (bib0025) 2016; 119(3)
Molchanov, Gupta, Kim, Kautz (bib0015) 2015
Xu, Xiang, Yun, Lantz, Kongqiao, Jihai (bib0006) 2011; 41
Cote-Allard (bib0007) 2019; 27
Amin, Muhammad, Abdul, Bencherif, Alsulaiman (bib0002) 2020; 2020
Zhou, Andonian, Oliva, Torralba (bib0021) 2018
Yang, Ahuja, Tabb (bib0009) 2002; 24
Rastgoo, Kiani, Escalera (bib0001) 2021; 164
Amin, Alsulaiman, Muhammad, Mekhtiche, Shamim Hossain (bib0003) 2019; 101
Lim, Tan, Tan (bib0010) 2016; 40
X. Chen and K. Gao, ‘DenseImage network: video spatial-temporal evolution encoding and understanding,’ arXiv Prepr. arXiv:1805.07550, 2018.
Z. Huang, W. Xu, and K. Yu, 2015, Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991.
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib0019) 2016
Abid, Petriu, Amjadian (bib0013) 2015; 64
Simonyan, Zisserman (bib0024) 2014
Kopuklu, Kose, Rigoll (bib0014) 2018
Assaleh, Shanableh, Fanaswala, Amin, Bajaj (bib0012) 2010; 02
Materzynska, Berger, Bax, Memisevic (bib0017) 2019
Karpathy, Toderici, Shetty, Leung, Sukthankar, Fei-Fei (bib0005) 2014
Al-Hammadi, Muhammad, Abdul, Alsulaiman, Bencherif, Mekhtiche (bib0004) 2020; 8
Yang, Li, Qiao, Wang, Li, Dou (bib0022) 2018
Shanableh, Assaleh, Al-Rousan (bib0011) 2007; 37
Wang, Xiong, Wang, Qiao, Lin, Tang, Van Gool (bib0023) 2016
Kopuklu (10.1016/j.compeleceng.2021.107395_bib0014) 2018
Shanableh (10.1016/j.compeleceng.2021.107395_bib0011) 2007; 37
Karpathy (10.1016/j.compeleceng.2021.107395_bib0005) 2014
Materzynska (10.1016/j.compeleceng.2021.107395_bib0017) 2019
Amin (10.1016/j.compeleceng.2021.107395_bib0003) 2019; 101
Xu (10.1016/j.compeleceng.2021.107395_bib0006) 2011; 41
Molchanov (10.1016/j.compeleceng.2021.107395_bib0015) 2015
Lim (10.1016/j.compeleceng.2021.107395_bib0010) 2016; 40
Assaleh (10.1016/j.compeleceng.2021.107395_bib0012) 2010; 02
Yang (10.1016/j.compeleceng.2021.107395_bib0009) 2002; 24
Chai (10.1016/j.compeleceng.2021.107395_bib0008) 2016
Al-Hammadi (10.1016/j.compeleceng.2021.107395_bib0004) 2020; 8
Szegedy (10.1016/j.compeleceng.2021.107395_bib0019) 2016
Yang (10.1016/j.compeleceng.2021.107395_bib0022) 2018
Molchanov (10.1016/j.compeleceng.2021.107395_bib0018) 2016
Abid (10.1016/j.compeleceng.2021.107395_bib0013) 2015; 64
Wang (10.1016/j.compeleceng.2021.107395_bib0025) 2016; 119(3)
10.1016/j.compeleceng.2021.107395_bib0020
Simonyan (10.1016/j.compeleceng.2021.107395_bib0024) 2014
Amin (10.1016/j.compeleceng.2021.107395_bib0002) 2020; 2020
Wang (10.1016/j.compeleceng.2021.107395_bib0023) 2016
Cote-Allard (10.1016/j.compeleceng.2021.107395_bib0007) 2019; 27
10.1016/j.compeleceng.2021.107395_bib0016
Rastgoo (10.1016/j.compeleceng.2021.107395_bib0001) 2021; 164
Zhou (10.1016/j.compeleceng.2021.107395_bib0021) 2018
References_xml – volume: 164
  year: 2021
  ident: bib0001
  article-title: Sign language recognition: a deep survey
  publication-title: Expert Syst Appl
– start-page: 4207
  year: 2016
  end-page: 4215
  ident: bib0018
  article-title: Online detection and classification of dynamic hand gestures with recurrent 3D convolutional neural networks
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)
– year: 2018
  ident: bib0014
  article-title: Motion fused frames: data level fusion strategy for hand gesture recognition
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 37
  start-page: 641
  year: 2007
  end-page: 650
  ident: bib0011
  article-title: Spatio-temporal feature-extraction techniques for isolated gesture recognition in Arabic sign language
  publication-title: IEEE Trans Syst Man Cybern B Cybern
– start-page: 831
  year: 2018
  end-page: 846
  ident: bib0021
  article-title: Temporal relational reasoning in videos
  publication-title: Proceedings of the lecture notes in computer science, European conference on computer vision (ECCV)
– year: 2014
  ident: bib0024
  article-title: Two-stream convolutional networks for action recognition
  publication-title: Proceedings of the 27th international conference on neural information processing systems NIPS
– start-page: 2818
  year: 2016
  end-page: 2826
  ident: bib0019
  article-title: Rethinking the inception architecture for computer vision
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 101
  start-page: 542
  year: 2019
  end-page: 554
  ident: bib0003
  article-title: Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion
  publication-title: Future Gener Comput Syst
– start-page: 20
  year: 2016
  end-page: 36
  ident: bib0023
  article-title: Temporal segment networks: towards good practices for deep action recognition
  publication-title: Proceedings of the lecture notes in computer science European conference on computer vision
– start-page: 2874
  year: 2019
  end-page: 2882
  ident: bib0017
  article-title: The jester dataset: a large-scale video dataset of human gestures
  publication-title: Proceedings of the IEEE/CVF international conference on computer vision workshop (ICCVW)
– volume: 02
  start-page: 19
  year: 2010
  end-page: 27
  ident: bib0012
  article-title: Continuous Arabic sign language recognition in user dependent mode
  publication-title: J Intell Learn Syst Appl
– year: 2015
  ident: bib0015
  article-title: Hand gesture recognition with 3D convolutional neural networks
  publication-title: IEEE conference on computer vision and pattern recognition Workshops (CVPRW)
– volume: 24
  start-page: 1061
  year: 2002
  end-page: 1074
  ident: bib0009
  article-title: Extraction of 2D motion trajectories and its application to hand gesture recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2014
  ident: bib0005
  article-title: Large-scale video classification with convolutional neural networks
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 6
  ident: bib0002
  article-title: Multi-CNN Feature Fusion for Efficient EEG Classification
  publication-title: Proceedings of the IEEE international conference on multimedia & expo workshops (ICMEW), London, United Kingdom
– reference: X. Chen and K. Gao, ‘DenseImage network: video spatial-temporal evolution encoding and understanding,’ arXiv Prepr. arXiv:1805.07550, 2018.
– volume: 41
  start-page: 1064
  year: 2011
  end-page: 1076
  ident: bib0006
  article-title: A framework for hand gesture recognition based on accelerometer and EMG sensors
  publication-title: IEEE Trans Syst Man Cybern A Syst Hum
– reference: Z. Huang, W. Xu, and K. Yu, 2015, Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991.
– start-page: 3104
  year: 2018
  end-page: 3108
  ident: bib0022
  article-title: Temporal Pyramid relation network for video-based gesture recognition
  publication-title: Proceedings of the 25th IEEE international conference on image processing (ICIP)
– volume: 8
  start-page: 79491
  year: 2020
  end-page: 79509
  ident: bib0004
  article-title: Hand gesture recognition for sign language using 3DCNN
  publication-title: IEEE Access
– volume: 40
  start-page: 538
  year: 2016
  end-page: 545
  ident: bib0010
  article-title: Block-based histogram of optical flow for isolated sign language recognition
  publication-title: J Vis Commun Image Represent
– volume: 64
  start-page: 596
  year: 2015
  end-page: 605
  ident: bib0013
  article-title: Dynamic sign language recognition for smart home interactive application using stochastic linear formal grammar
  publication-title: IEEE Trans Instrum Meas
– start-page: 31
  year: 2016
  end-page: 36
  ident: bib0008
  article-title: Two streams recurrent neural networks for large-scale continuous gesture recognition
  publication-title: Proceedings of the 23rd international conference on pattern recognition (ICPR)
– volume: 27
  start-page: 760
  year: 2019
  end-page: 771
  ident: bib0007
  article-title: Deep learning for electromyographic hand gesture signal classification using transfer learning
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 119(3)
  start-page: 219
  year: 2016
  end-page: 238
  ident: bib0025
  article-title: A robust and efficient video representation for action recognition
  publication-title: IJCV
– volume: 64
  start-page: 596
  issue: 3
  year: 2015
  ident: 10.1016/j.compeleceng.2021.107395_bib0013
  article-title: Dynamic sign language recognition for smart home interactive application using stochastic linear formal grammar
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2014.2351331
– volume: 101
  start-page: 542
  year: 2019
  ident: 10.1016/j.compeleceng.2021.107395_bib0003
  article-title: Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2019.06.027
– start-page: 31
  year: 2016
  ident: 10.1016/j.compeleceng.2021.107395_bib0008
  article-title: Two streams recurrent neural networks for large-scale continuous gesture recognition
– start-page: 2818
  year: 2016
  ident: 10.1016/j.compeleceng.2021.107395_bib0019
  article-title: Rethinking the inception architecture for computer vision
– volume: 27
  start-page: 760
  issue: 4
  year: 2019
  ident: 10.1016/j.compeleceng.2021.107395_bib0007
  article-title: Deep learning for electromyographic hand gesture signal classification using transfer learning
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2019.2896269
– year: 2015
  ident: 10.1016/j.compeleceng.2021.107395_bib0015
  article-title: Hand gesture recognition with 3D convolutional neural networks
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.compeleceng.2021.107395_bib0002
  article-title: Multi-CNN Feature Fusion for Efficient EEG Classification
– ident: 10.1016/j.compeleceng.2021.107395_bib0020
– volume: 119(3)
  start-page: 219
  year: 2016
  ident: 10.1016/j.compeleceng.2021.107395_bib0025
  article-title: A robust and efficient video representation for action recognition
  publication-title: IJCV
  doi: 10.1007/s11263-015-0846-5
– volume: 02
  start-page: 19
  issue: 1
  year: 2010
  ident: 10.1016/j.compeleceng.2021.107395_bib0012
  article-title: Continuous Arabic sign language recognition in user dependent mode
  publication-title: J Intell Learn Syst Appl
– volume: 24
  start-page: 1061
  issue: 8
  year: 2002
  ident: 10.1016/j.compeleceng.2021.107395_bib0009
  article-title: Extraction of 2D motion trajectories and its application to hand gesture recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2002.1023803
– year: 2018
  ident: 10.1016/j.compeleceng.2021.107395_bib0014
  article-title: Motion fused frames: data level fusion strategy for hand gesture recognition
– start-page: 3104
  year: 2018
  ident: 10.1016/j.compeleceng.2021.107395_bib0022
  article-title: Temporal Pyramid relation network for video-based gesture recognition
– volume: 164
  year: 2021
  ident: 10.1016/j.compeleceng.2021.107395_bib0001
  article-title: Sign language recognition: a deep survey
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113794
– start-page: 831
  year: 2018
  ident: 10.1016/j.compeleceng.2021.107395_bib0021
  article-title: Temporal relational reasoning in videos
– volume: 37
  start-page: 641
  issue: 3
  year: 2007
  ident: 10.1016/j.compeleceng.2021.107395_bib0011
  article-title: Spatio-temporal feature-extraction techniques for isolated gesture recognition in Arabic sign language
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2006.889630
– year: 2014
  ident: 10.1016/j.compeleceng.2021.107395_bib0024
  article-title: Two-stream convolutional networks for action recognition
– start-page: 4207
  year: 2016
  ident: 10.1016/j.compeleceng.2021.107395_bib0018
  article-title: Online detection and classification of dynamic hand gestures with recurrent 3D convolutional neural networks
– start-page: 20
  year: 2016
  ident: 10.1016/j.compeleceng.2021.107395_bib0023
  article-title: Temporal segment networks: towards good practices for deep action recognition
– ident: 10.1016/j.compeleceng.2021.107395_bib0016
– volume: 8
  start-page: 79491
  year: 2020
  ident: 10.1016/j.compeleceng.2021.107395_bib0004
  article-title: Hand gesture recognition for sign language using 3DCNN
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990434
– year: 2014
  ident: 10.1016/j.compeleceng.2021.107395_bib0005
  article-title: Large-scale video classification with convolutional neural networks
– start-page: 2874
  year: 2019
  ident: 10.1016/j.compeleceng.2021.107395_bib0017
  article-title: The jester dataset: a large-scale video dataset of human gestures
– volume: 41
  start-page: 1064
  issue: 6
  year: 2011
  ident: 10.1016/j.compeleceng.2021.107395_bib0006
  article-title: A framework for hand gesture recognition based on accelerometer and EMG sensors
  publication-title: IEEE Trans Syst Man Cybern A Syst Hum
  doi: 10.1109/TSMCA.2011.2116004
– volume: 40
  start-page: 538
  year: 2016
  ident: 10.1016/j.compeleceng.2021.107395_bib0010
  article-title: Block-based histogram of optical flow for isolated sign language recognition
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2016.07.020
SSID ssj0004618
Score 2.435146
Snippet •Bio-Inspired novel attention-based inception architecture is proposed that can adapt to different types of spatial contexts using convolution filters of...
Bio-inspired deep learning models have revolutionized sign language classification, achieving extraordinary accuracy and human-like video understanding....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107395
SubjectTerms Artificial neural networks
BiLSTM
Bio-inspired computing
Biomimetics
Classification
Deep learning
Feature extraction
Inception
Machine learning
Real time
Real-time classification
Sign language
Video data
Title Intelligent real-time Arabic sign language classification using attention-based inception and BiLSTM
URI https://dx.doi.org/10.1016/j.compeleceng.2021.107395
https://www.proquest.com/docview/2594202883
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5FQfQgPrFaSwSvsftINil4qcXSqu3FFnoL2SRbVspatF797Wb2UasgFDxu2FmWSTLzze6XbxC6TrzYF7FhxEbCEKqCmCjLPKJoW0UOJlkv73U4HEX9CX2YsmkNdauzMECrLGN_EdPzaF2OtEpvthZpCmd8KeMgs-vnoir5CXbKYZXffPprZyP9IhpTkGb0oh109c3xAto2tJux2cyVioHvxuHH1V856le0zlNQ7wDtl9gRd4rXO0Q1mx2hvTVFwWNkBiuJzSV2eHBOoHm8M1FxqjGQNXD1hRJrAM7AFMonBwMDfoZBbjMnQBLIbwanWcl7wSoz-C59eh4PT9Ckdz_u9knZSIFol5-XREOTyCgyTOlQJ20b6DhIhHa1StsYpmFXK1faOLAdJdR4QewwhauMmeIBCxnX4Snayl4ze4ZwIriylHuaK0GtCZXRPAQVKofMVChUHYnKdVKXKuPQ7GIuKzrZi1zzugSvy8LrdRSsTBeF1MYmRrfV_Mgf60a6lLCJeaOaU1lu3nfpKkLq7hEiPP_f0y_QLlwV3L8G2lq-fdhLh2GWcTNfpE203Rk89kdfNZTyqw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED5CAt36UNb9oO26VYW9iji2ZCuwlzSsJMuPl6XQNyFLcnApbmnT_793ttxmhUFgr7LPmJN095396TuAH0WUD1TuJPepclyYOOfGy4gbMTQpwiQf1b0OF8t0ciV-X8vrDozbszBEqwyxv4npdbQOI_3gzf59WdIZXyEzktkd1KIqWAL1SJ1KdqE3ms4my63jkYMmIAtSZ4zSPTh_pXkRc5s6zvhqjdViPMBx-nf1rzT1JmDXWejyAxwE-MhGzRseQsdXH2F_S1TwE7jpi8rmhiEkvOXUPx5NTF5aRnwN1n6kZJawM5GF6vlhRIJfM1LcrDmQnFKcY2UVqC_MVI5dlPM_q8VnuLr8tRpPeOilwC2m6A231CcyTZ00NrHF0Mc2jwtlsVwZOictbWyD1Q3i7bQQLopzhBVYHEuTxTKRmU2-QLe6q_wRsEJlxosssplRwrvEOJslJESF4MwkyhyDal2nbRAap34Xt7pllN3oLa9r8rpuvH4M8YvpfaO2sYvRz3Z-9F9LR2NW2MX8tJ1THfbvo8aiUOA9SiUn__f0M3g3WS3mej5dzr7Ce7rSUAFPobt5ePLfENJs8u9hyT4DhEb1XA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+real-time+Arabic+sign+language+classification+using+attention-based+inception+and+BiLSTM&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Abdul%2C+Wadood&rft.au=Alsulaiman%2C+Mansour&rft.au=Amin%2C+Syed+Umar&rft.au=Faisal%2C+Mohammed&rft.date=2021-10-01&rft.pub=Elsevier+BV&rft.issn=0045-7906&rft.eissn=1879-0755&rft.volume=95&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compeleceng.2021.107395&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon