Passivity and electrocatalysis of nanostructured nickel encapsulated in carbon
Metallic nickel is a powerful electrocatalyst in alkaline solution and is able to be used in the alkaline fuel cell. However, in acidic solution, electrocatalysis is impossible because the metal is subject to rapid corrosion at low pH for all potentials at which an acidic fuel cell would operate. He...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 13; no. 28; pp. 12968 - 12974 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metallic nickel is a powerful electrocatalyst in alkaline solution and is able to be used in the alkaline fuel cell. However, in acidic solution, electrocatalysis is impossible because the metal is subject to rapid corrosion at low pH for all potentials at which an acidic fuel cell would operate. Here we report the synthesis and passive nature of a nickel-carbon nanostructured material which shows electrocatalytic activity. A thin film composed of nickel and carbon prepared by co-sputtering a graphite target partially covered with a nickel foil shows remarkable passivity against corrosion when polarized in hot sulphuric acid. The film, which contains 21 atom-% nickel, also shows significant electrocatalysis of the hydrogen oxidation reaction, and therefore forms the basis of a new type of fuel cell anode catalyst. High-resolution transmission electron microscopy (HRTEM) reveals a nanostructure of carbon-encapsulated nickel nanocrystals of ≤ca. 4 nm diameter. The passive nature of the material against corrosion is due to protection generated by the presence of a very thin carbon-rich layer encapsulating the nanoparticulate catalyst: this is a new form of passivation. |
---|---|
AbstractList | Metallic nickel is a powerful electrocatalyst in alkaline solution and is able to be used in the alkaline fuel cell. However, in acidic solution, electrocatalysis is impossible because the metal is subject to rapid corrosion at low pH for all potentials at which an acidic fuel cell would operate. Here we report the synthesis and passive nature of a nickel-carbon nanostructured material which shows electrocatalytic activity. A thin film composed of nickel and carbon prepared by co-sputtering a graphite target partially covered with a nickel foil shows remarkable passivity against corrosion when polarized in hot sulphuric acid. The film, which contains 21 atom-% nickel, also shows significant electrocatalysis of the hydrogen oxidation reaction, and therefore forms the basis of a new type of fuel cell anode catalyst. High-resolution transmission electron microscopy (HRTEM) reveals a nanostructure of carbon-encapsulated nickel nanocrystals of ≤ca. 4 nm diameter. The passive nature of the material against corrosion is due to protection generated by the presence of a very thin carbon-rich layer encapsulating the nanoparticulate catalyst: this is a new form of passivation. Metallic nickel is a powerful electrocatalyst in alkaline solution and is able to be used in the alkaline fuel cell. However, in acidic solution, electrocatalysis is impossible because the metal is subject to rapid corrosion at low pH for all potentials at which an acidic fuel cell would operate. Here we report the synthesis and passive nature of a nickel-carbon nanostructured material which shows electrocatalytic activity. A thin film composed of nickel and carbon prepared by co-sputtering a graphite target partially covered with a nickel foil shows remarkable passivity against corrosion when polarized in hot sulphuric acid. The film, which contains 21 atom-% nickel, also shows significant electrocatalysis of the hydrogen oxidation reaction, and therefore forms the basis of a new type of fuel cell anode catalyst. High-resolution transmission electron microscopy (HRTEM) reveals a nanostructure of carbon-encapsulated nickel nanocrystals of [less-than-or-equal] ca. 4 nm diameter. The passive nature of the material against corrosion is due to protection generated by the presence of a very thin carbon-rich layer encapsulating the nanoparticulate catalyst: this is a new form of passivation. Metallic nickel is a powerful electrocatalyst in alkaline solution and is able to be used in the alkaline fuel cell. However, in acidic solution, electrocatalysis is impossible because the metal is subject to rapid corrosion at low pH for all potentials at which an acidic fuel cell would operate. Here we report the synthesis and passive nature of a nickel-carbon nanostructured material which shows electrocatalytic activity. A thin film composed of nickel and carbon prepared by co-sputtering a graphite target partially covered with a nickel foil shows remarkable passivity against corrosion when polarized in hot sulphuric acid. The film, which contains 21 atom-% nickel, also shows significant electrocatalysis of the hydrogen oxidation reaction, and therefore forms the basis of a new type of fuel cell anode catalyst. High-resolution transmission electron microscopy (HRTEM) reveals a nanostructure of carbon-encapsulated nickel nanocrystals of ≤ca. 4 nm diameter. The passive nature of the material against corrosion is due to protection generated by the presence of a very thin carbon-rich layer encapsulating the nanoparticulate catalyst: this is a new form of passivation.Metallic nickel is a powerful electrocatalyst in alkaline solution and is able to be used in the alkaline fuel cell. However, in acidic solution, electrocatalysis is impossible because the metal is subject to rapid corrosion at low pH for all potentials at which an acidic fuel cell would operate. Here we report the synthesis and passive nature of a nickel-carbon nanostructured material which shows electrocatalytic activity. A thin film composed of nickel and carbon prepared by co-sputtering a graphite target partially covered with a nickel foil shows remarkable passivity against corrosion when polarized in hot sulphuric acid. The film, which contains 21 atom-% nickel, also shows significant electrocatalysis of the hydrogen oxidation reaction, and therefore forms the basis of a new type of fuel cell anode catalyst. High-resolution transmission electron microscopy (HRTEM) reveals a nanostructure of carbon-encapsulated nickel nanocrystals of ≤ca. 4 nm diameter. The passive nature of the material against corrosion is due to protection generated by the presence of a very thin carbon-rich layer encapsulating the nanoparticulate catalyst: this is a new form of passivation. |
Author | Haslam, Gareth E. Chin, Xiao-Yao Burstein, G. Tim |
Author_xml | – sequence: 1 givenname: Gareth E. surname: Haslam fullname: Haslam, Gareth E. – sequence: 2 givenname: Xiao-Yao surname: Chin fullname: Chin, Xiao-Yao – sequence: 3 givenname: G. Tim surname: Burstein fullname: Burstein, G. Tim |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24349366$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21695331$$D View this record in MEDLINE/PubMed |
BookMark | eNp90d1r3DAMAHAzWvr9sj-g5GVsDK6V4sRxHkvZR-Fo97A-B0VxwK3PvtnO4P77pdy1hTL6JCF-EkI6Fns-eCPER4QLBNleMvK6hAZw_CCOsFJy0YKu9l7yRh2K45QeAABrlAfisETV1lLikbj9RSnZvzZvCvJDYZzhHANTJrdJNhVhLDz5kHKcOE_RDIW3_GhcYTzTOk2O8lyzvmCKffCnYn8kl8zZLp6I--_ffl__XCzvftxcXy0XXGGdF6wHWQ9Kt0oCthrUiIqoqftak4GmrHGUVTMgl6btTaNUP0pgAk2kQM6bn4jP27nrGP5MJuVuZRMb58ibMKVON3WlNbTlLL-8K1E1KEFJ-TT0fEenfmWGbh3tiuKme77WDD7tACUmN0bybNOrq2TVSqVm93XrOIaUohlfCEL39LLu9WUzhjeYbaZsg8-RrPtfyz-r3pgD |
CitedBy_id | crossref_primary_10_1021_jp207308g crossref_primary_10_1039_C7NR02225E crossref_primary_10_1002_cctc_202101284 crossref_primary_10_1016_j_electacta_2015_06_102 crossref_primary_10_1016_j_micromeso_2017_05_027 crossref_primary_10_1016_j_corsci_2011_12_003 crossref_primary_10_1016_j_porgcoat_2019_105244 crossref_primary_10_1002_anie_201204958 crossref_primary_10_1149_2_1081807jes crossref_primary_10_1016_j_apcata_2011_10_012 crossref_primary_10_1002_adfm_202010633 crossref_primary_10_1039_D0GC02421J crossref_primary_10_1039_D2SC00541G crossref_primary_10_1016_j_carbon_2017_12_119 crossref_primary_10_1016_j_matchemphys_2023_127361 crossref_primary_10_1002_cnma_201800432 crossref_primary_10_1039_D0GC03994B crossref_primary_10_1039_D1GC00981H crossref_primary_10_1007_s11244_013_0084_4 crossref_primary_10_1021_acs_jpcc_6b01555 crossref_primary_10_1007_s10853_016_9946_z crossref_primary_10_1016_j_jpowsour_2014_07_180 crossref_primary_10_1007_s12274_017_1563_x crossref_primary_10_1016_j_ijhydene_2012_11_134 crossref_primary_10_1021_am403340f crossref_primary_10_1016_j_nanoen_2017_11_057 crossref_primary_10_1002_ange_201204958 crossref_primary_10_1002_celc_202400299 crossref_primary_10_1016_j_scib_2020_09_014 crossref_primary_10_1039_D4TA02664K crossref_primary_10_1038_s41467_020_20503_7 crossref_primary_10_1016_j_corsci_2017_04_018 crossref_primary_10_1016_j_ijhydene_2021_09_116 crossref_primary_10_1016_j_electacta_2013_11_161 crossref_primary_10_1002_rpm_20240028 crossref_primary_10_1063_1_4722785 crossref_primary_10_1016_j_corsci_2013_09_013 crossref_primary_10_1016_j_ijhydene_2012_06_112 crossref_primary_10_1039_C4TA05735J crossref_primary_10_1002_adsu_201700032 crossref_primary_10_1007_s10853_017_1793_z |
Cites_doi | 10.1038/363603a0 10.1016/S0013-4686(96)00425-2 10.1016/S0927-796X(02)00005-0 10.1016/j.tsf.2008.06.005 10.1007/s10853-006-1453-1 10.1016/j.micron.2004.02.003 10.1515/zpch-1900-3416 10.1016/j.tsf.2004.11.162 10.1016/j.jpowsour.2008.11.074 10.1103/PhysRevB.50.15424 10.1002/sia.1758 10.1016/j.electacta.2007.02.065 10.1016/j.jpowsour.2005.05.098 10.1016/j.jpowsour.2008.01.002 10.1021/jp0353845 10.1021/j100785a001 10.1002/1097-4636(2001)58:3<319::AID-JBM1024>3.0.CO;2-F 10.1016/j.carbon.2005.03.035 10.1016/j.surfcoat.2005.11.050 10.1016/S0040-6090(98)01607-1 10.1016/j.carbon.2007.09.044 10.1038/2241299b0 10.1021/j100298a016 10.1149/1.2408111 10.1063/1.1852702 10.1016/0364-5916(87)90039-3 10.1149/1.2869868 10.1021/jp970930d 10.1103/PhysRevLett.84.686 10.1016/j.solidstatesciences.2009.04.022 10.1021/jp980114l 10.1103/PhysRevB.68.195406 10.1063/1.2001746 10.1016/S0378-7753(01)00987-9 10.1016/j.tsf.2003.11.278 10.1016/j.ultramic.2004.01.006 10.1021/jp810029g 10.1063/1.97968 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS This journal is © the Owner Societies 2011 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: This journal is © the Owner Societies 2011 |
DBID | AAYXX CITATION IQODW NPM 7SE 7U5 8FD JG9 L7M 7X8 |
DOI | 10.1039/c1cp20701f |
DatabaseName | CrossRef Pascal-Francis PubMed Corrosion Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Solid State and Superconductivity Abstracts Technology Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Applied Sciences |
EISSN | 1463-9084 |
EndPage | 12974 |
ExternalDocumentID | 21695331 24349366 10_1039_c1cp20701f |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 0-7 0R~ 0UZ 123 1TJ 29O 2WC 4.4 53G 6TJ 705 70~ 71~ 7~J 87K 9M8 AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACLDK ACNCT ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C6K CAG CITATION COF CS3 D0L DU5 EBS ECGLT EE0 EEHRC EF- EJD F5P FEDTE GGIMP GNO H13 HVGLF HZ~ H~9 H~N IDY IDZ J3G J3H J3I L-8 M4U MVM N9A NDZJH NHB O9- P2P R56 R7B R7C RAOCF RCLXC RCNCU RIG RNS ROL RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UHB VH6 WH7 XJT XOL YNT ZCG IQODW NPM 7SE 7U5 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c415t-c8d35d68963019806f16aa75b58ae07251f347d1c2e9be766bf30ca08aa603533 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 16:39:45 EDT 2025 Fri Jul 11 02:52:46 EDT 2025 Mon Jul 21 05:59:24 EDT 2025 Mon Jul 21 09:13:59 EDT 2025 Thu Apr 24 23:04:40 EDT 2025 Tue Jul 01 02:53:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | High resolution Anode Film Hydrogen Potential Sputtering Acidic solution Sulfuric acid Thin film Electrocatalysis Synthesis pH Oxidation Protection Diameter Nanocrystal Fuel cell Passivation Transition metal Nanostructure Carbon Foil Transmission electron microscopy Corrosion Graphite Nickel Catalyst |
Language | English |
License | CC BY 4.0 This journal is © the Owner Societies 2011 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c415t-c8d35d68963019806f16aa75b58ae07251f347d1c2e9be766bf30ca08aa603533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21695331 |
PQID | 1671306333 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_875488092 proquest_miscellaneous_1671306333 pubmed_primary_21695331 pascalfrancis_primary_24349366 crossref_primary_10_1039_c1cp20701f crossref_citationtrail_10_1039_c1cp20701f |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-01-01 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – month: 01 year: 2011 text: 2011-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge – name: England |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2011 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Cowan (c1cp20701f-(cit15)/*[position()=1]) 1971; 118 Rees (c1cp20701f-(cit28)/*[position()=1]) 2009; 188 Allen (c1cp20701f-(cit8)/*[position()=1]) 2001; 58 Ujvári (c1cp20701f-(cit24)/*[position()=1]) 2004; 36 McIntyre (c1cp20701f-(cit14)/*[position()=1]) 2002; 107 Zhao (c1cp20701f-(cit42)/*[position()=1]) 1994; 50 Li (c1cp20701f-(cit30)/*[position()=1]) 2004; 99 Bondi (c1cp20701f-(cit40)/*[position()=1]) 1964; 68 Dimigen (c1cp20701f-(cit10)/*[position()=1]) 1987; 50 Barnett (c1cp20701f-(cit1)/*[position()=1]) 1997; 42 Sedlácková (c1cp20701f-(cit17)/*[position()=1]) 2005; 43 Brady (c1cp20701f-(cit5)/*[position()=1]) 2008; 155 Banhart (c1cp20701f-(cit41)/*[position()=1]) 2000; 84 Wang (c1cp20701f-(cit2)/*[position()=1]) 2005; 152 Robertson (c1cp20701f-(cit6)/*[position()=1]) 2002; 37 Kovács (c1cp20701f-(cit7)/*[position()=1]) 2005; 98 Benchikh (c1cp20701f-(cit20)/*[position()=1]) 2005; 482 Tafel (c1cp20701f-(cit35)/*[position()=1]) 1900; 34 Brady (c1cp20701f-(cit12)/*[position()=1]) 2008; 179 Schiffmann (c1cp20701f-(cit26)/*[position()=1]) 1999; 347 Gabriel (c1cp20701f-(cit16)/*[position()=1]) 1987; 11 Babonneau (c1cp20701f-(cit25)/*[position()=1]) 2006; 200 Binder (c1cp20701f-(cit11)/*[position()=1]) 1969; 224 Iijima (c1cp20701f-(cit31)/*[position()=1]) 1993; 363 Abrasonis (c1cp20701f-(cit22)/*[position()=1]) 2009; 113 Nagai (c1cp20701f-(cit13)/*[position()=1]) 2007; 52 Kovács (c1cp20701f-(cit18)/*[position()=1]) 2008; 516 Egerton (c1cp20701f-(cit29)/*[position()=1]) 2004; 35 Stojkovic (c1cp20701f-(cit39)/*[position()=1]) 2003; 68 Tanaka (c1cp20701f-(cit3)/*[position()=1]) 1987; 91 Waqar (c1cp20701f-(cit37)/*[position()=1]) 2007; 42 Abrasonis (c1cp20701f-(cit21)/*[position()=1]) 2007; 45 Homma (c1cp20701f-(cit32)/*[position()=1]) 2003; 107 Markovic (c1cp20701f-(cit34)/*[position()=1]) 1997; 101 Fonseca (c1cp20701f-(cit9)/*[position()=1]) 2005; 97 Chambers (c1cp20701f-(cit36)/*[position()=1]) 1998; 102 Orlianges (c1cp20701f-(cit23)/*[position()=1]) 2004; 453–454 Koppert (c1cp20701f-(cit19)/*[position()=1]) 2009; 11 |
References_xml | – volume: 363 start-page: 603 year: 1993 ident: c1cp20701f-(cit31)/*[position()=1] publication-title: Nature doi: 10.1038/363603a0 – volume: 42 start-page: 2381 year: 1997 ident: c1cp20701f-(cit1)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(96)00425-2 – volume: 37 start-page: 129 year: 2002 ident: c1cp20701f-(cit6)/*[position()=1] publication-title: Mater. Sci. Eng., R doi: 10.1016/S0927-796X(02)00005-0 – volume: 516 start-page: 7942 year: 2008 ident: c1cp20701f-(cit18)/*[position()=1] publication-title: Thin Solid Films doi: 10.1016/j.tsf.2008.06.005 – volume: 42 start-page: 1169 year: 2007 ident: c1cp20701f-(cit37)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/s10853-006-1453-1 – volume: 35 start-page: 399 year: 2004 ident: c1cp20701f-(cit29)/*[position()=1] publication-title: Micron doi: 10.1016/j.micron.2004.02.003 – volume: 34 start-page: 187 year: 1900 ident: c1cp20701f-(cit35)/*[position()=1] publication-title: Z. Phys. Chem. doi: 10.1515/zpch-1900-3416 – volume: 482 start-page: 287 year: 2005 ident: c1cp20701f-(cit20)/*[position()=1] publication-title: Thin Solid Films doi: 10.1016/j.tsf.2004.11.162 – volume: 188 start-page: 75 year: 2009 ident: c1cp20701f-(cit28)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.11.074 – volume: 50 start-page: 15424 year: 1994 ident: c1cp20701f-(cit42)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter doi: 10.1103/PhysRevB.50.15424 – volume: 36 start-page: 760 year: 2004 ident: c1cp20701f-(cit24)/*[position()=1] publication-title: Surf. Interface Anal. doi: 10.1002/sia.1758 – volume: 52 start-page: 5430 year: 2007 ident: c1cp20701f-(cit13)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.02.065 – volume: 152 start-page: 1 year: 2005 ident: c1cp20701f-(cit2)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.05.098 – volume: 179 start-page: 17 year: 2008 ident: c1cp20701f-(cit12)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.01.002 – volume: 107 start-page: 12161 year: 2003 ident: c1cp20701f-(cit32)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp0353845 – volume: 68 start-page: 441 year: 1964 ident: c1cp20701f-(cit40)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100785a001 – volume: 58 start-page: 319 year: 2001 ident: c1cp20701f-(cit8)/*[position()=1] publication-title: J. Biomed. Mater. Res. doi: 10.1002/1097-4636(2001)58:3<319::AID-JBM1024>3.0.CO;2-F – volume: 43 start-page: 2192 year: 2005 ident: c1cp20701f-(cit17)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2005.03.035 – volume: 200 start-page: 6251 year: 2006 ident: c1cp20701f-(cit25)/*[position()=1] publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2005.11.050 – volume: 347 start-page: 60 year: 1999 ident: c1cp20701f-(cit26)/*[position()=1] publication-title: Thin Solid Films doi: 10.1016/S0040-6090(98)01607-1 – volume: 45 start-page: 2995 year: 2007 ident: c1cp20701f-(cit21)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2007.09.044 – volume: 224 start-page: 1299 year: 1969 ident: c1cp20701f-(cit11)/*[position()=1] publication-title: Nature doi: 10.1038/2241299b0 – volume: 91 start-page: 3799 year: 1987 ident: c1cp20701f-(cit3)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100298a016 – volume: 118 start-page: 557 year: 1971 ident: c1cp20701f-(cit15)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.2408111 – volume: 97 start-page: 044313 year: 2005 ident: c1cp20701f-(cit9)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1852702 – volume: 11 start-page: 203 year: 1987 ident: c1cp20701f-(cit16)/*[position()=1] publication-title: CALPHAD: Comput. Coupling Phase Diagrams Thermochem. doi: 10.1016/0364-5916(87)90039-3 – volume: 155 start-page: B461 year: 2008 ident: c1cp20701f-(cit5)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.2869868 – volume: 101 start-page: 5405 year: 1997 ident: c1cp20701f-(cit34)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp970930d – volume: 84 start-page: 686 year: 2000 ident: c1cp20701f-(cit41)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.686 – volume: 11 start-page: 1797 year: 2009 ident: c1cp20701f-(cit19)/*[position()=1] publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2009.04.022 – volume: 102 start-page: 4253 year: 1998 ident: c1cp20701f-(cit36)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp980114l – volume: 68 start-page: 195406 year: 2003 ident: c1cp20701f-(cit39)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.68.195406 – volume: 98 start-page: 034313 year: 2005 ident: c1cp20701f-(cit7)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.2001746 – volume: 107 start-page: 67 year: 2002 ident: c1cp20701f-(cit14)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00987-9 – volume: 453–454 start-page: 291 year: 2004 ident: c1cp20701f-(cit23)/*[position()=1] publication-title: Thin Solid Films doi: 10.1016/j.tsf.2003.11.278 – volume: 99 start-page: 257 year: 2004 ident: c1cp20701f-(cit30)/*[position()=1] publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2004.01.006 – volume: 113 start-page: 8645 year: 2009 ident: c1cp20701f-(cit22)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp810029g – volume: 50 start-page: 1056 year: 1987 ident: c1cp20701f-(cit10)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.97968 |
SSID | ssj0001513 |
Score | 2.1866202 |
Snippet | Metallic nickel is a powerful electrocatalyst in alkaline solution and is able to be used in the alkaline fuel cell. However, in acidic solution,... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 12968 |
SubjectTerms | Applied sciences Carbon Catalysis Catalysts Chemistry Corrosion Corrosion prevention Electrocatalysis Electrochemistry Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells General and physical chemistry Kinetics and mechanism of reactions Nanostructure Nickel Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
Title | Passivity and electrocatalysis of nanostructured nickel encapsulated in carbon |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21695331 https://www.proquest.com/docview/1671306333 https://www.proquest.com/docview/875488092 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBZt9tBCKX3XfSwq7aUszlqSLVvHJaS7Le2SQxbSkxkrEg0EO2ySy_76jiw_kn3AtpdghJzE-j6PvhlJM4R8yRLD1TxjoYCUh2jwZAgAOlQpFFarhIN1K7q_zuXZRfxjlsz6Fd36dMmmGOqrW8-V_A-q2Ia4ulOy_4Bs96XYgNeIL34iwvh5L4wnqHx98QcX_m4q2tQBmTbPSAll5VPEbt1G83KBL-3yCJ8B0DtegpObbiM6XBYNPI1OnbTw6bYgnL9yTT4Ysq6DCZPRaNIbsZZep6507p-j8bDfPOBTFcwWUIW_oeqCAFsUn025zdOhI85uFKI-i9dGIbzhjKUI0dFu0lrvtvkScJ21FTusas6Fe9uJysNX2Llh1SPhkqJqplccLRSz_dzVrtdfm9K6jYb1ErtQeX_vQ3LA0aPgA3JwMp5-_9lN2yh9hD-K5h-kzWUr1HF_9556ebKCNQ679RVQ7nZRaqkyfUaeNj4GPfGEeU4emPIFeTRqkXxJzjviUCQOvU4cWlm6TxzqiUN3iUMXJfXEeUUuvo2no7OwKawRatRrm1Bnc5HMZYbGFxV-FknLJECaFEkGJkpR8loRp3OmuVGFSaUsrIg0RBmAjAQ6CK_JoKxK85ZQoxJhlTWa8yJOpQEOJp1bVtg4YYbHAfnaDlium6zzrvjJMr8JTUA-d31XPtfKrb0O98a968pjESshZUA-tUDkOK5uAQxKU23XOZMpSjYphAgIvaMP-u9uTlM8IG88iP0PMOk2Y7N39_qf78nj_kX5QAYImfmIAnZTHDbU-wubm55a |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Passivity+and+electrocatalysis+of+nanostructured+nickel+encapsulated+in+carbon&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Haslam%2C+Gareth+E.&rft.au=Chin%2C+Xiao-Yao&rft.au=Burstein%2C+G.+Tim&rft.date=2011-01-01&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=13&rft.issue=28&rft.spage=12968&rft_id=info:doi/10.1039%2Fc1cp20701f&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_c1cp20701f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |