Passivity and electrocatalysis of nanostructured nickel encapsulated in carbon

Metallic nickel is a powerful electrocatalyst in alkaline solution and is able to be used in the alkaline fuel cell. However, in acidic solution, electrocatalysis is impossible because the metal is subject to rapid corrosion at low pH for all potentials at which an acidic fuel cell would operate. He...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 13; no. 28; pp. 12968 - 12974
Main Authors Haslam, Gareth E., Chin, Xiao-Yao, Burstein, G. Tim
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metallic nickel is a powerful electrocatalyst in alkaline solution and is able to be used in the alkaline fuel cell. However, in acidic solution, electrocatalysis is impossible because the metal is subject to rapid corrosion at low pH for all potentials at which an acidic fuel cell would operate. Here we report the synthesis and passive nature of a nickel-carbon nanostructured material which shows electrocatalytic activity. A thin film composed of nickel and carbon prepared by co-sputtering a graphite target partially covered with a nickel foil shows remarkable passivity against corrosion when polarized in hot sulphuric acid. The film, which contains 21 atom-% nickel, also shows significant electrocatalysis of the hydrogen oxidation reaction, and therefore forms the basis of a new type of fuel cell anode catalyst. High-resolution transmission electron microscopy (HRTEM) reveals a nanostructure of carbon-encapsulated nickel nanocrystals of ≤ca. 4 nm diameter. The passive nature of the material against corrosion is due to protection generated by the presence of a very thin carbon-rich layer encapsulating the nanoparticulate catalyst: this is a new form of passivation.
AbstractList Metallic nickel is a powerful electrocatalyst in alkaline solution and is able to be used in the alkaline fuel cell. However, in acidic solution, electrocatalysis is impossible because the metal is subject to rapid corrosion at low pH for all potentials at which an acidic fuel cell would operate. Here we report the synthesis and passive nature of a nickel-carbon nanostructured material which shows electrocatalytic activity. A thin film composed of nickel and carbon prepared by co-sputtering a graphite target partially covered with a nickel foil shows remarkable passivity against corrosion when polarized in hot sulphuric acid. The film, which contains 21 atom-% nickel, also shows significant electrocatalysis of the hydrogen oxidation reaction, and therefore forms the basis of a new type of fuel cell anode catalyst. High-resolution transmission electron microscopy (HRTEM) reveals a nanostructure of carbon-encapsulated nickel nanocrystals of ≤ca. 4 nm diameter. The passive nature of the material against corrosion is due to protection generated by the presence of a very thin carbon-rich layer encapsulating the nanoparticulate catalyst: this is a new form of passivation.
Metallic nickel is a powerful electrocatalyst in alkaline solution and is able to be used in the alkaline fuel cell. However, in acidic solution, electrocatalysis is impossible because the metal is subject to rapid corrosion at low pH for all potentials at which an acidic fuel cell would operate. Here we report the synthesis and passive nature of a nickel-carbon nanostructured material which shows electrocatalytic activity. A thin film composed of nickel and carbon prepared by co-sputtering a graphite target partially covered with a nickel foil shows remarkable passivity against corrosion when polarized in hot sulphuric acid. The film, which contains 21 atom-% nickel, also shows significant electrocatalysis of the hydrogen oxidation reaction, and therefore forms the basis of a new type of fuel cell anode catalyst. High-resolution transmission electron microscopy (HRTEM) reveals a nanostructure of carbon-encapsulated nickel nanocrystals of [less-than-or-equal] ca. 4 nm diameter. The passive nature of the material against corrosion is due to protection generated by the presence of a very thin carbon-rich layer encapsulating the nanoparticulate catalyst: this is a new form of passivation.
Metallic nickel is a powerful electrocatalyst in alkaline solution and is able to be used in the alkaline fuel cell. However, in acidic solution, electrocatalysis is impossible because the metal is subject to rapid corrosion at low pH for all potentials at which an acidic fuel cell would operate. Here we report the synthesis and passive nature of a nickel-carbon nanostructured material which shows electrocatalytic activity. A thin film composed of nickel and carbon prepared by co-sputtering a graphite target partially covered with a nickel foil shows remarkable passivity against corrosion when polarized in hot sulphuric acid. The film, which contains 21 atom-% nickel, also shows significant electrocatalysis of the hydrogen oxidation reaction, and therefore forms the basis of a new type of fuel cell anode catalyst. High-resolution transmission electron microscopy (HRTEM) reveals a nanostructure of carbon-encapsulated nickel nanocrystals of ≤ca. 4 nm diameter. The passive nature of the material against corrosion is due to protection generated by the presence of a very thin carbon-rich layer encapsulating the nanoparticulate catalyst: this is a new form of passivation.Metallic nickel is a powerful electrocatalyst in alkaline solution and is able to be used in the alkaline fuel cell. However, in acidic solution, electrocatalysis is impossible because the metal is subject to rapid corrosion at low pH for all potentials at which an acidic fuel cell would operate. Here we report the synthesis and passive nature of a nickel-carbon nanostructured material which shows electrocatalytic activity. A thin film composed of nickel and carbon prepared by co-sputtering a graphite target partially covered with a nickel foil shows remarkable passivity against corrosion when polarized in hot sulphuric acid. The film, which contains 21 atom-% nickel, also shows significant electrocatalysis of the hydrogen oxidation reaction, and therefore forms the basis of a new type of fuel cell anode catalyst. High-resolution transmission electron microscopy (HRTEM) reveals a nanostructure of carbon-encapsulated nickel nanocrystals of ≤ca. 4 nm diameter. The passive nature of the material against corrosion is due to protection generated by the presence of a very thin carbon-rich layer encapsulating the nanoparticulate catalyst: this is a new form of passivation.
Author Haslam, Gareth E.
Chin, Xiao-Yao
Burstein, G. Tim
Author_xml – sequence: 1
  givenname: Gareth E.
  surname: Haslam
  fullname: Haslam, Gareth E.
– sequence: 2
  givenname: Xiao-Yao
  surname: Chin
  fullname: Chin, Xiao-Yao
– sequence: 3
  givenname: G. Tim
  surname: Burstein
  fullname: Burstein, G. Tim
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24349366$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21695331$$D View this record in MEDLINE/PubMed
BookMark eNp90d1r3DAMAHAzWvr9sj-g5GVsDK6V4sRxHkvZR-Fo97A-B0VxwK3PvtnO4P77pdy1hTL6JCF-EkI6Fns-eCPER4QLBNleMvK6hAZw_CCOsFJy0YKu9l7yRh2K45QeAABrlAfisETV1lLikbj9RSnZvzZvCvJDYZzhHANTJrdJNhVhLDz5kHKcOE_RDIW3_GhcYTzTOk2O8lyzvmCKffCnYn8kl8zZLp6I--_ffl__XCzvftxcXy0XXGGdF6wHWQ9Kt0oCthrUiIqoqftak4GmrHGUVTMgl6btTaNUP0pgAk2kQM6bn4jP27nrGP5MJuVuZRMb58ibMKVON3WlNbTlLL-8K1E1KEFJ-TT0fEenfmWGbh3tiuKme77WDD7tACUmN0bybNOrq2TVSqVm93XrOIaUohlfCEL39LLu9WUzhjeYbaZsg8-RrPtfyz-r3pgD
CitedBy_id crossref_primary_10_1021_jp207308g
crossref_primary_10_1039_C7NR02225E
crossref_primary_10_1002_cctc_202101284
crossref_primary_10_1016_j_electacta_2015_06_102
crossref_primary_10_1016_j_micromeso_2017_05_027
crossref_primary_10_1016_j_corsci_2011_12_003
crossref_primary_10_1016_j_porgcoat_2019_105244
crossref_primary_10_1002_anie_201204958
crossref_primary_10_1149_2_1081807jes
crossref_primary_10_1016_j_apcata_2011_10_012
crossref_primary_10_1002_adfm_202010633
crossref_primary_10_1039_D0GC02421J
crossref_primary_10_1039_D2SC00541G
crossref_primary_10_1016_j_carbon_2017_12_119
crossref_primary_10_1016_j_matchemphys_2023_127361
crossref_primary_10_1002_cnma_201800432
crossref_primary_10_1039_D0GC03994B
crossref_primary_10_1039_D1GC00981H
crossref_primary_10_1007_s11244_013_0084_4
crossref_primary_10_1021_acs_jpcc_6b01555
crossref_primary_10_1007_s10853_016_9946_z
crossref_primary_10_1016_j_jpowsour_2014_07_180
crossref_primary_10_1007_s12274_017_1563_x
crossref_primary_10_1016_j_ijhydene_2012_11_134
crossref_primary_10_1021_am403340f
crossref_primary_10_1016_j_nanoen_2017_11_057
crossref_primary_10_1002_ange_201204958
crossref_primary_10_1002_celc_202400299
crossref_primary_10_1016_j_scib_2020_09_014
crossref_primary_10_1039_D4TA02664K
crossref_primary_10_1038_s41467_020_20503_7
crossref_primary_10_1016_j_corsci_2017_04_018
crossref_primary_10_1016_j_ijhydene_2021_09_116
crossref_primary_10_1016_j_electacta_2013_11_161
crossref_primary_10_1002_rpm_20240028
crossref_primary_10_1063_1_4722785
crossref_primary_10_1016_j_corsci_2013_09_013
crossref_primary_10_1016_j_ijhydene_2012_06_112
crossref_primary_10_1039_C4TA05735J
crossref_primary_10_1002_adsu_201700032
crossref_primary_10_1007_s10853_017_1793_z
Cites_doi 10.1038/363603a0
10.1016/S0013-4686(96)00425-2
10.1016/S0927-796X(02)00005-0
10.1016/j.tsf.2008.06.005
10.1007/s10853-006-1453-1
10.1016/j.micron.2004.02.003
10.1515/zpch-1900-3416
10.1016/j.tsf.2004.11.162
10.1016/j.jpowsour.2008.11.074
10.1103/PhysRevB.50.15424
10.1002/sia.1758
10.1016/j.electacta.2007.02.065
10.1016/j.jpowsour.2005.05.098
10.1016/j.jpowsour.2008.01.002
10.1021/jp0353845
10.1021/j100785a001
10.1002/1097-4636(2001)58:3<319::AID-JBM1024>3.0.CO;2-F
10.1016/j.carbon.2005.03.035
10.1016/j.surfcoat.2005.11.050
10.1016/S0040-6090(98)01607-1
10.1016/j.carbon.2007.09.044
10.1038/2241299b0
10.1021/j100298a016
10.1149/1.2408111
10.1063/1.1852702
10.1016/0364-5916(87)90039-3
10.1149/1.2869868
10.1021/jp970930d
10.1103/PhysRevLett.84.686
10.1016/j.solidstatesciences.2009.04.022
10.1021/jp980114l
10.1103/PhysRevB.68.195406
10.1063/1.2001746
10.1016/S0378-7753(01)00987-9
10.1016/j.tsf.2003.11.278
10.1016/j.ultramic.2004.01.006
10.1021/jp810029g
10.1063/1.97968
ContentType Journal Article
Copyright 2015 INIST-CNRS
This journal is © the Owner Societies 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: This journal is © the Owner Societies 2011
DBID AAYXX
CITATION
IQODW
NPM
7SE
7U5
8FD
JG9
L7M
7X8
DOI 10.1039/c1cp20701f
DatabaseName CrossRef
Pascal-Francis
PubMed
Corrosion Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Solid State and Superconductivity Abstracts
Technology Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Applied Sciences
EISSN 1463-9084
EndPage 12974
ExternalDocumentID 21695331
24349366
10_1039_c1cp20701f
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
0UZ
123
1TJ
29O
2WC
4.4
53G
6TJ
705
70~
71~
7~J
87K
9M8
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACNCT
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
MVM
N9A
NDZJH
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCLXC
RCNCU
RIG
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
XJT
XOL
YNT
ZCG
IQODW
NPM
7SE
7U5
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c415t-c8d35d68963019806f16aa75b58ae07251f347d1c2e9be766bf30ca08aa603533
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 16:39:45 EDT 2025
Fri Jul 11 02:52:46 EDT 2025
Mon Jul 21 05:59:24 EDT 2025
Mon Jul 21 09:13:59 EDT 2025
Thu Apr 24 23:04:40 EDT 2025
Tue Jul 01 02:53:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords High resolution
Anode
Film
Hydrogen
Potential
Sputtering
Acidic solution
Sulfuric acid
Thin film
Electrocatalysis
Synthesis
pH
Oxidation
Protection
Diameter
Nanocrystal
Fuel cell
Passivation
Transition metal
Nanostructure
Carbon
Foil
Transmission electron microscopy
Corrosion
Graphite
Nickel
Catalyst
Language English
License CC BY 4.0
This journal is © the Owner Societies 2011
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c415t-c8d35d68963019806f16aa75b58ae07251f347d1c2e9be766bf30ca08aa603533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21695331
PQID 1671306333
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_875488092
proquest_miscellaneous_1671306333
pubmed_primary_21695331
pascalfrancis_primary_24349366
crossref_primary_10_1039_c1cp20701f
crossref_citationtrail_10_1039_c1cp20701f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-01-01
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: England
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2011
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Cowan (c1cp20701f-(cit15)/*[position()=1]) 1971; 118
Rees (c1cp20701f-(cit28)/*[position()=1]) 2009; 188
Allen (c1cp20701f-(cit8)/*[position()=1]) 2001; 58
Ujvári (c1cp20701f-(cit24)/*[position()=1]) 2004; 36
McIntyre (c1cp20701f-(cit14)/*[position()=1]) 2002; 107
Zhao (c1cp20701f-(cit42)/*[position()=1]) 1994; 50
Li (c1cp20701f-(cit30)/*[position()=1]) 2004; 99
Bondi (c1cp20701f-(cit40)/*[position()=1]) 1964; 68
Dimigen (c1cp20701f-(cit10)/*[position()=1]) 1987; 50
Barnett (c1cp20701f-(cit1)/*[position()=1]) 1997; 42
Sedlácková (c1cp20701f-(cit17)/*[position()=1]) 2005; 43
Brady (c1cp20701f-(cit5)/*[position()=1]) 2008; 155
Banhart (c1cp20701f-(cit41)/*[position()=1]) 2000; 84
Wang (c1cp20701f-(cit2)/*[position()=1]) 2005; 152
Robertson (c1cp20701f-(cit6)/*[position()=1]) 2002; 37
Kovács (c1cp20701f-(cit7)/*[position()=1]) 2005; 98
Benchikh (c1cp20701f-(cit20)/*[position()=1]) 2005; 482
Tafel (c1cp20701f-(cit35)/*[position()=1]) 1900; 34
Brady (c1cp20701f-(cit12)/*[position()=1]) 2008; 179
Schiffmann (c1cp20701f-(cit26)/*[position()=1]) 1999; 347
Gabriel (c1cp20701f-(cit16)/*[position()=1]) 1987; 11
Babonneau (c1cp20701f-(cit25)/*[position()=1]) 2006; 200
Binder (c1cp20701f-(cit11)/*[position()=1]) 1969; 224
Iijima (c1cp20701f-(cit31)/*[position()=1]) 1993; 363
Abrasonis (c1cp20701f-(cit22)/*[position()=1]) 2009; 113
Nagai (c1cp20701f-(cit13)/*[position()=1]) 2007; 52
Kovács (c1cp20701f-(cit18)/*[position()=1]) 2008; 516
Egerton (c1cp20701f-(cit29)/*[position()=1]) 2004; 35
Stojkovic (c1cp20701f-(cit39)/*[position()=1]) 2003; 68
Tanaka (c1cp20701f-(cit3)/*[position()=1]) 1987; 91
Waqar (c1cp20701f-(cit37)/*[position()=1]) 2007; 42
Abrasonis (c1cp20701f-(cit21)/*[position()=1]) 2007; 45
Homma (c1cp20701f-(cit32)/*[position()=1]) 2003; 107
Markovic (c1cp20701f-(cit34)/*[position()=1]) 1997; 101
Fonseca (c1cp20701f-(cit9)/*[position()=1]) 2005; 97
Chambers (c1cp20701f-(cit36)/*[position()=1]) 1998; 102
Orlianges (c1cp20701f-(cit23)/*[position()=1]) 2004; 453–454
Koppert (c1cp20701f-(cit19)/*[position()=1]) 2009; 11
References_xml – volume: 363
  start-page: 603
  year: 1993
  ident: c1cp20701f-(cit31)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/363603a0
– volume: 42
  start-page: 2381
  year: 1997
  ident: c1cp20701f-(cit1)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(96)00425-2
– volume: 37
  start-page: 129
  year: 2002
  ident: c1cp20701f-(cit6)/*[position()=1]
  publication-title: Mater. Sci. Eng., R
  doi: 10.1016/S0927-796X(02)00005-0
– volume: 516
  start-page: 7942
  year: 2008
  ident: c1cp20701f-(cit18)/*[position()=1]
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2008.06.005
– volume: 42
  start-page: 1169
  year: 2007
  ident: c1cp20701f-(cit37)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-006-1453-1
– volume: 35
  start-page: 399
  year: 2004
  ident: c1cp20701f-(cit29)/*[position()=1]
  publication-title: Micron
  doi: 10.1016/j.micron.2004.02.003
– volume: 34
  start-page: 187
  year: 1900
  ident: c1cp20701f-(cit35)/*[position()=1]
  publication-title: Z. Phys. Chem.
  doi: 10.1515/zpch-1900-3416
– volume: 482
  start-page: 287
  year: 2005
  ident: c1cp20701f-(cit20)/*[position()=1]
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2004.11.162
– volume: 188
  start-page: 75
  year: 2009
  ident: c1cp20701f-(cit28)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.11.074
– volume: 50
  start-page: 15424
  year: 1994
  ident: c1cp20701f-(cit42)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.50.15424
– volume: 36
  start-page: 760
  year: 2004
  ident: c1cp20701f-(cit24)/*[position()=1]
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.1758
– volume: 52
  start-page: 5430
  year: 2007
  ident: c1cp20701f-(cit13)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.02.065
– volume: 152
  start-page: 1
  year: 2005
  ident: c1cp20701f-(cit2)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.05.098
– volume: 179
  start-page: 17
  year: 2008
  ident: c1cp20701f-(cit12)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.01.002
– volume: 107
  start-page: 12161
  year: 2003
  ident: c1cp20701f-(cit32)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0353845
– volume: 68
  start-page: 441
  year: 1964
  ident: c1cp20701f-(cit40)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100785a001
– volume: 58
  start-page: 319
  year: 2001
  ident: c1cp20701f-(cit8)/*[position()=1]
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/1097-4636(2001)58:3<319::AID-JBM1024>3.0.CO;2-F
– volume: 43
  start-page: 2192
  year: 2005
  ident: c1cp20701f-(cit17)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2005.03.035
– volume: 200
  start-page: 6251
  year: 2006
  ident: c1cp20701f-(cit25)/*[position()=1]
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2005.11.050
– volume: 347
  start-page: 60
  year: 1999
  ident: c1cp20701f-(cit26)/*[position()=1]
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(98)01607-1
– volume: 45
  start-page: 2995
  year: 2007
  ident: c1cp20701f-(cit21)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.09.044
– volume: 224
  start-page: 1299
  year: 1969
  ident: c1cp20701f-(cit11)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/2241299b0
– volume: 91
  start-page: 3799
  year: 1987
  ident: c1cp20701f-(cit3)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100298a016
– volume: 118
  start-page: 557
  year: 1971
  ident: c1cp20701f-(cit15)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2408111
– volume: 97
  start-page: 044313
  year: 2005
  ident: c1cp20701f-(cit9)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1852702
– volume: 11
  start-page: 203
  year: 1987
  ident: c1cp20701f-(cit16)/*[position()=1]
  publication-title: CALPHAD: Comput. Coupling Phase Diagrams Thermochem.
  doi: 10.1016/0364-5916(87)90039-3
– volume: 155
  start-page: B461
  year: 2008
  ident: c1cp20701f-(cit5)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2869868
– volume: 101
  start-page: 5405
  year: 1997
  ident: c1cp20701f-(cit34)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp970930d
– volume: 84
  start-page: 686
  year: 2000
  ident: c1cp20701f-(cit41)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.686
– volume: 11
  start-page: 1797
  year: 2009
  ident: c1cp20701f-(cit19)/*[position()=1]
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2009.04.022
– volume: 102
  start-page: 4253
  year: 1998
  ident: c1cp20701f-(cit36)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp980114l
– volume: 68
  start-page: 195406
  year: 2003
  ident: c1cp20701f-(cit39)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.68.195406
– volume: 98
  start-page: 034313
  year: 2005
  ident: c1cp20701f-(cit7)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2001746
– volume: 107
  start-page: 67
  year: 2002
  ident: c1cp20701f-(cit14)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00987-9
– volume: 453–454
  start-page: 291
  year: 2004
  ident: c1cp20701f-(cit23)/*[position()=1]
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2003.11.278
– volume: 99
  start-page: 257
  year: 2004
  ident: c1cp20701f-(cit30)/*[position()=1]
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2004.01.006
– volume: 113
  start-page: 8645
  year: 2009
  ident: c1cp20701f-(cit22)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp810029g
– volume: 50
  start-page: 1056
  year: 1987
  ident: c1cp20701f-(cit10)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.97968
SSID ssj0001513
Score 2.1866202
Snippet Metallic nickel is a powerful electrocatalyst in alkaline solution and is able to be used in the alkaline fuel cell. However, in acidic solution,...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 12968
SubjectTerms Applied sciences
Carbon
Catalysis
Catalysts
Chemistry
Corrosion
Corrosion prevention
Electrocatalysis
Electrochemistry
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
General and physical chemistry
Kinetics and mechanism of reactions
Nanostructure
Nickel
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Title Passivity and electrocatalysis of nanostructured nickel encapsulated in carbon
URI https://www.ncbi.nlm.nih.gov/pubmed/21695331
https://www.proquest.com/docview/1671306333
https://www.proquest.com/docview/875488092
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBZt9tBCKX3XfSwq7aUszlqSLVvHJaS7Le2SQxbSkxkrEg0EO2ySy_76jiw_kn3AtpdghJzE-j6PvhlJM4R8yRLD1TxjoYCUh2jwZAgAOlQpFFarhIN1K7q_zuXZRfxjlsz6Fd36dMmmGOqrW8-V_A-q2Ia4ulOy_4Bs96XYgNeIL34iwvh5L4wnqHx98QcX_m4q2tQBmTbPSAll5VPEbt1G83KBL-3yCJ8B0DtegpObbiM6XBYNPI1OnbTw6bYgnL9yTT4Ysq6DCZPRaNIbsZZep6507p-j8bDfPOBTFcwWUIW_oeqCAFsUn025zdOhI85uFKI-i9dGIbzhjKUI0dFu0lrvtvkScJ21FTusas6Fe9uJysNX2Llh1SPhkqJqplccLRSz_dzVrtdfm9K6jYb1ErtQeX_vQ3LA0aPgA3JwMp5-_9lN2yh9hD-K5h-kzWUr1HF_9556ebKCNQ679RVQ7nZRaqkyfUaeNj4GPfGEeU4emPIFeTRqkXxJzjviUCQOvU4cWlm6TxzqiUN3iUMXJfXEeUUuvo2no7OwKawRatRrm1Bnc5HMZYbGFxV-FknLJECaFEkGJkpR8loRp3OmuVGFSaUsrIg0RBmAjAQ6CK_JoKxK85ZQoxJhlTWa8yJOpQEOJp1bVtg4YYbHAfnaDlium6zzrvjJMr8JTUA-d31XPtfKrb0O98a968pjESshZUA-tUDkOK5uAQxKU23XOZMpSjYphAgIvaMP-u9uTlM8IG88iP0PMOk2Y7N39_qf78nj_kX5QAYImfmIAnZTHDbU-wubm55a
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Passivity+and+electrocatalysis+of+nanostructured+nickel+encapsulated+in+carbon&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Haslam%2C+Gareth+E.&rft.au=Chin%2C+Xiao-Yao&rft.au=Burstein%2C+G.+Tim&rft.date=2011-01-01&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=13&rft.issue=28&rft.spage=12968&rft_id=info:doi/10.1039%2Fc1cp20701f&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_c1cp20701f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon