The Effect of Sulfated Zirconia and Zirconium Phosphate Nanocomposite Membranes on Fuel-Cell Efficiency

To investigate the effect of acidic nanoparticles on proton conductivity, permeability, and fuel-cell performance, a commercial Nafion® 117 membrane was impregnated with zirconium phosphates (ZrP) and sulfated zirconium (S-ZrO2) nanoparticles. As they are more stable than other solid superacids, sul...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 14; no. 2; p. 263
Main Authors Sigwadi, Rudzani, Mokrani, Touhami, Msomi, Phumlani, Nemavhola, Fulufhelo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.01.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To investigate the effect of acidic nanoparticles on proton conductivity, permeability, and fuel-cell performance, a commercial Nafion® 117 membrane was impregnated with zirconium phosphates (ZrP) and sulfated zirconium (S-ZrO2) nanoparticles. As they are more stable than other solid superacids, sulfated metal oxides have been the subject of intensive research. Meanwhile, hydrophilic, proton-conducting inorganic acids such as zirconium phosphate (ZrP) have been used to modify the Nafion® membrane due to their hydrophilic nature, proton-conducting material, very low toxicity, low cost, and stability in a hydrogen/oxygen atmosphere. A tensile test, water uptake, methanol crossover, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to assess the capacity of nanocomposite membranes to function in a fuel cell. The modified Nafion® membrane had a higher water uptake and a lower water content angle than the commercial Nafion® 117 membrane, indicating that it has a greater impact on conductivity. Under strain rates of 40, 30, and 20 mm/min, the nanocomposite membranes demonstrated more stable thermal deterioration and higher mechanical strength, which offers tremendous promise for fuel-cell applications. When compared to 0.113 S/cm and 0.013 S/cm, respectively, of commercial Nafion® 117 and Nafion® ZrP membranes, the modified Nafion® membrane with ammonia sulphate acid had the highest proton conductivity of 7.891 S/cm. When tested using a direct single-cell methanol fuel cell, it also had the highest power density of 183 mW cm−2 which is better than commercial Nafion® 117 and Nafion® ZrP membranes.
AbstractList To investigate the effect of acidic nanoparticles on proton conductivity, permeability, and fuel-cell performance, a commercial Nafion 117 membrane was impregnated with zirconium phosphates (ZrP) and sulfated zirconium (S-ZrO ) nanoparticles. As they are more stable than other solid superacids, sulfated metal oxides have been the subject of intensive research. Meanwhile, hydrophilic, proton-conducting inorganic acids such as zirconium phosphate (ZrP) have been used to modify the Nafion membrane due to their hydrophilic nature, proton-conducting material, very low toxicity, low cost, and stability in a hydrogen/oxygen atmosphere. A tensile test, water uptake, methanol crossover, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to assess the capacity of nanocomposite membranes to function in a fuel cell. The modified Nafion membrane had a higher water uptake and a lower water content angle than the commercial Nafion 117 membrane, indicating that it has a greater impact on conductivity. Under strain rates of 40, 30, and 20 mm/min, the nanocomposite membranes demonstrated more stable thermal deterioration and higher mechanical strength, which offers tremendous promise for fuel-cell applications. When compared to 0.113 S/cm and 0.013 S/cm, respectively, of commercial Nafion 117 and Nafion ZrP membranes, the modified Nafion membrane with ammonia sulphate acid had the highest proton conductivity of 7.891 S/cm. When tested using a direct single-cell methanol fuel cell, it also had the highest power density of 183 mW cm which is better than commercial Nafion 117 and Nafion ZrP membranes.
To investigate the effect of acidic nanoparticles on proton conductivity, permeability, and fuel-cell performance, a commercial Nafion® 117 membrane was impregnated with zirconium phosphates (ZrP) and sulfated zirconium (S-ZrO2) nanoparticles. As they are more stable than other solid superacids, sulfated metal oxides have been the subject of intensive research. Meanwhile, hydrophilic, proton-conducting inorganic acids such as zirconium phosphate (ZrP) have been used to modify the Nafion® membrane due to their hydrophilic nature, proton-conducting material, very low toxicity, low cost, and stability in a hydrogen/oxygen atmosphere. A tensile test, water uptake, methanol crossover, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to assess the capacity of nanocomposite membranes to function in a fuel cell. The modified Nafion® membrane had a higher water uptake and a lower water content angle than the commercial Nafion® 117 membrane, indicating that it has a greater impact on conductivity. Under strain rates of 40, 30, and 20 mm/min, the nanocomposite membranes demonstrated more stable thermal deterioration and higher mechanical strength, which offers tremendous promise for fuel-cell applications. When compared to 0.113 S/cm and 0.013 S/cm, respectively, of commercial Nafion® 117 and Nafion® ZrP membranes, the modified Nafion® membrane with ammonia sulphate acid had the highest proton conductivity of 7.891 S/cm. When tested using a direct single-cell methanol fuel cell, it also had the highest power density of 183 mW cm−2 which is better than commercial Nafion® 117 and Nafion® ZrP membranes.
To investigate the effect of acidic nanoparticles on proton conductivity, permeability, and fuel-cell performance, a commercial Nafion® 117 membrane was impregnated with zirconium phosphates (ZrP) and sulfated zirconium (S-ZrO2) nanoparticles. As they are more stable than other solid superacids, sulfated metal oxides have been the subject of intensive research. Meanwhile, hydrophilic, proton-conducting inorganic acids such as zirconium phosphate (ZrP) have been used to modify the Nafion® membrane due to their hydrophilic nature, proton-conducting material, very low toxicity, low cost, and stability in a hydrogen/oxygen atmosphere. A tensile test, water uptake, methanol crossover, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to assess the capacity of nanocomposite membranes to function in a fuel cell. The modified Nafion® membrane had a higher water uptake and a lower water content angle than the commercial Nafion® 117 membrane, indicating that it has a greater impact on conductivity. Under strain rates of 40, 30, and 20 mm/min, the nanocomposite membranes demonstrated more stable thermal deterioration and higher mechanical strength, which offers tremendous promise for fuel-cell applications. When compared to 0.113 S/cm and 0.013 S/cm, respectively, of commercial Nafion® 117 and Nafion® ZrP membranes, the modified Nafion® membrane with ammonia sulphate acid had the highest proton conductivity of 7.891 S/cm. When tested using a direct single-cell methanol fuel cell, it also had the highest power density of 183 mW cm-2 which is better than commercial Nafion® 117 and Nafion® ZrP membranes.To investigate the effect of acidic nanoparticles on proton conductivity, permeability, and fuel-cell performance, a commercial Nafion® 117 membrane was impregnated with zirconium phosphates (ZrP) and sulfated zirconium (S-ZrO2) nanoparticles. As they are more stable than other solid superacids, sulfated metal oxides have been the subject of intensive research. Meanwhile, hydrophilic, proton-conducting inorganic acids such as zirconium phosphate (ZrP) have been used to modify the Nafion® membrane due to their hydrophilic nature, proton-conducting material, very low toxicity, low cost, and stability in a hydrogen/oxygen atmosphere. A tensile test, water uptake, methanol crossover, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to assess the capacity of nanocomposite membranes to function in a fuel cell. The modified Nafion® membrane had a higher water uptake and a lower water content angle than the commercial Nafion® 117 membrane, indicating that it has a greater impact on conductivity. Under strain rates of 40, 30, and 20 mm/min, the nanocomposite membranes demonstrated more stable thermal deterioration and higher mechanical strength, which offers tremendous promise for fuel-cell applications. When compared to 0.113 S/cm and 0.013 S/cm, respectively, of commercial Nafion® 117 and Nafion® ZrP membranes, the modified Nafion® membrane with ammonia sulphate acid had the highest proton conductivity of 7.891 S/cm. When tested using a direct single-cell methanol fuel cell, it also had the highest power density of 183 mW cm-2 which is better than commercial Nafion® 117 and Nafion® ZrP membranes.
To investigate the effect of acidic nanoparticles on proton conductivity, permeability, and fuel-cell performance, a commercial Nafion ® 117 membrane was impregnated with zirconium phosphates (ZrP) and sulfated zirconium (S-ZrO 2 ) nanoparticles. As they are more stable than other solid superacids, sulfated metal oxides have been the subject of intensive research. Meanwhile, hydrophilic, proton-conducting inorganic acids such as zirconium phosphate (ZrP) have been used to modify the Nafion ® membrane due to their hydrophilic nature, proton-conducting material, very low toxicity, low cost, and stability in a hydrogen/oxygen atmosphere. A tensile test, water uptake, methanol crossover, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to assess the capacity of nanocomposite membranes to function in a fuel cell. The modified Nafion ® membrane had a higher water uptake and a lower water content angle than the commercial Nafion ® 117 membrane, indicating that it has a greater impact on conductivity. Under strain rates of 40, 30, and 20 mm/min, the nanocomposite membranes demonstrated more stable thermal deterioration and higher mechanical strength, which offers tremendous promise for fuel-cell applications. When compared to 0.113 S/cm and 0.013 S/cm, respectively, of commercial Nafion ® 117 and Nafion ® ZrP membranes, the modified Nafion ® membrane with ammonia sulphate acid had the highest proton conductivity of 7.891 S/cm. When tested using a direct single-cell methanol fuel cell, it also had the highest power density of 183 mW cm −2 which is better than commercial Nafion ® 117 and Nafion ® ZrP membranes.
Author Mokrani, Touhami
Sigwadi, Rudzani
Nemavhola, Fulufhelo
Msomi, Phumlani
AuthorAffiliation 1 Department of Chemical Engineering, School of Engineering, University of South Africa, Private Bag X6, Florida 1710, South Africa; tmokrani@unisa.ac.za
3 Department of Mechanical Engineering, School of Engineering, University of South Africa, Private Bag X6, Florida 1710, South Africa; masitfj@unisa.ac.za
2 Department of Applied Chemistry, University of Johannesburg, Johannesburg 2092, South Africa; pmsomi@uj.ac.za
AuthorAffiliation_xml – name: 3 Department of Mechanical Engineering, School of Engineering, University of South Africa, Private Bag X6, Florida 1710, South Africa; masitfj@unisa.ac.za
– name: 2 Department of Applied Chemistry, University of Johannesburg, Johannesburg 2092, South Africa; pmsomi@uj.ac.za
– name: 1 Department of Chemical Engineering, School of Engineering, University of South Africa, Private Bag X6, Florida 1710, South Africa; tmokrani@unisa.ac.za
Author_xml – sequence: 1
  givenname: Rudzani
  orcidid: 0000-0002-3789-0874
  surname: Sigwadi
  fullname: Sigwadi, Rudzani
– sequence: 2
  givenname: Touhami
  surname: Mokrani
  fullname: Mokrani, Touhami
– sequence: 3
  givenname: Phumlani
  orcidid: 0000-0003-4900-9009
  surname: Msomi
  fullname: Msomi, Phumlani
– sequence: 4
  givenname: Fulufhelo
  orcidid: 0000-0002-6250-5157
  surname: Nemavhola
  fullname: Nemavhola, Fulufhelo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35054671$$D View this record in MEDLINE/PubMed
BookMark eNptkUtr3DAUhUVJaR6dZbdB0E02TvWwJXsTKMPkAXkUOt10I2TNVUbBllzJLsy_r4ZMwiRUG-mi7x7O4RyjAx88IPSFknPOG_JtCN2mpyVhhAn-AR0xInlRckEO9t6HaJbSE8mnrISg8hM65BWpSiHpEXpcrgEvrAUz4mDxz6mzeoQV_u2iCd5prP3rMPX4xzqkYZ0JfK99MKEfQnJ5uoO-jdpDwsHjywm6Yg5dtxV2xoE3m8_oo9VdgtnuPkG_LhfL-XVx-3B1M_9-W5iSVmPRGqGJbtpGiro0ps65rGhlu2IgBRdckrY0tmobxqC2trGVpSLn1w2xhoDhJ-jiWXeY2h5WBvwYdaeG6HodNypop97-eLdWj-GvqqVsWEOywNlOIIY_E6RR9S6ZHCanC1NSTDDGZLYnMvr1HfoUpuhzvC1FeU0JpZk63Xf0auWlgwzwZ8DEkFIEq4wb9ejC1qDrFCVqW7Z6U3beKt5tvQj_n_8HVgis_Q
CitedBy_id crossref_primary_10_3390_membranes12050506
crossref_primary_10_1016_j_dental_2024_07_007
crossref_primary_10_3390_membranes13100838
crossref_primary_10_3390_membranes13120887
crossref_primary_10_1016_j_energy_2022_125237
crossref_primary_10_1021_acs_langmuir_3c03966
crossref_primary_10_1016_j_polymer_2024_127241
crossref_primary_10_1007_s11694_024_02788_0
crossref_primary_10_1016_j_ijhydene_2023_12_098
crossref_primary_10_1016_j_psep_2024_07_094
crossref_primary_10_1016_j_ijhydene_2024_04_253
crossref_primary_10_3390_s23031131
crossref_primary_10_1002_app_54006
crossref_primary_10_1016_j_ijhydene_2024_12_513
crossref_primary_10_1016_j_ijhydene_2024_03_128
crossref_primary_10_1007_s41918_023_00189_3
crossref_primary_10_1039_D4NJ05019C
Cites_doi 10.1016/j.memsci.2009.10.002
10.1139/v83-126
10.1021/ma050615m
10.1016/j.memsci.2006.01.028
10.1007/s10965-018-1532-4
10.1016/j.jpowsour.2008.04.033
10.1016/j.micromeso.2008.09.017
10.1016/j.memsci.2014.10.002
10.3390/en10020259
10.1016/j.electacta.2005.05.016
10.1039/a904460d
10.1016/j.jpowsour.2019.04.006
10.1021/cr0207123
10.1016/j.jpowsour.2012.04.094
10.1016/j.nanoen.2017.08.029
10.1016/j.matdes.2018.05.041
10.1016/S0376-7388(00)00632-3
10.1016/j.polymer.2005.03.003
10.3390/polym13152467
10.1016/j.porgcoat.2019.02.024
10.1016/j.jpowsour.2008.09.001
10.1016/j.poly.2009.06.032
10.1016/j.jpowsour.2012.11.076
10.1016/j.ceramint.2006.05.002
10.1038/pj.2015.106
10.1016/j.polymer.2017.07.001
10.1016/j.ijhydene.2010.05.017
10.1016/S0032-3861(98)00055-X
10.1016/j.snb.2016.09.010
10.3390/membranes5040793
10.1002/chin.199847334
10.1016/j.carbpol.2017.09.083
10.1016/j.ijhydene.2008.05.055
10.1016/j.jpowsour.2008.06.093
10.1016/j.ijhydene.2013.08.036
10.1016/j.memsci.2013.04.060
10.1016/j.memsci.2009.06.045
10.1016/j.elecom.2003.08.007
10.1016/j.ijhydene.2012.02.148
10.1016/j.memsci.2014.10.039
10.1016/j.electacta.2009.02.040
10.1016/j.memsci.2013.10.070
10.1039/C3TA14264G
10.1016/0584-8539(74)80093-0
10.1007/s10965-019-1760-2
10.1021/jp047468z
10.1021/ma00230a023
10.1016/j.jpowsour.2006.06.005
10.1021/jp0650331
10.1016/j.memsci.2004.03.009
10.1007/BF01410686
10.1016/j.electacta.2016.06.098
10.1016/j.heliyon.2019.e02240
10.1021/jp0749221
10.1016/j.jpowsour.2009.07.034
10.1007/BF01105251
10.1177/0954008312454152
10.1016/j.memsci.2015.05.049
10.1016/j.jpowsour.2005.12.062
10.1039/c4cc00161c
10.1016/j.progpolymsci.2011.01.003
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/polym14020263
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2073-4360
ExternalDocumentID PMC8779290
35054671
10_3390_polym14020263
Genre Journal Article
GroupedDBID 53G
5VS
8FE
8FG
A8Z
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACGFO
ACIWK
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
ESX
F5P
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
ML~
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RNS
RPM
TR2
TUS
GROUPED_DOAJ
NPM
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c415t-bc6a0a9b97684cc8026f6b7bd2e7636370b4cf5b922e8ff9f5f16402a90fc0ec3
IEDL.DBID BENPR
ISSN 2073-4360
IngestDate Thu Aug 21 18:19:14 EDT 2025
Fri Jul 11 06:19:49 EDT 2025
Sat Aug 23 12:42:09 EDT 2025
Wed Feb 19 02:27:12 EST 2025
Tue Jul 01 02:20:19 EDT 2025
Thu Apr 24 23:10:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords incorporation
fuel-cell efficiency
sulphated zirconium oxide
zirconium phosphates
water contact angle
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-bc6a0a9b97684cc8026f6b7bd2e7636370b4cf5b922e8ff9f5f16402a90fc0ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6250-5157
0000-0002-3789-0874
0000-0003-4900-9009
OpenAccessLink https://www.proquest.com/docview/2621381011?pq-origsite=%requestingapplication%
PMID 35054671
PQID 2621381011
PQPubID 2032345
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8779290
proquest_miscellaneous_2622277686
proquest_journals_2621381011
pubmed_primary_35054671
crossref_citationtrail_10_3390_polym14020263
crossref_primary_10_3390_polym14020263
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220110
PublicationDateYYYYMMDD 2022-01-10
PublicationDate_xml – month: 1
  year: 2022
  text: 20220110
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Polymers
PublicationTitleAlternate Polymers (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Wu (ref_5) 2017; 123
Corti (ref_24) 2006; 161
Vijayakumar (ref_14) 2018; 179
Baglio (ref_27) 2003; 5
Xiao (ref_21) 2018; 155
ref_11
Kreuer (ref_1) 2001; 185
ref_54
Dutta (ref_51) 2015; 48
Hadavand (ref_39) 2019; 131
Farrokhzad (ref_62) 2015; 474
Mauritz (ref_7) 2004; 104
Lu (ref_47) 2012; 214
Xing (ref_49) 2005; 46
Bauer (ref_3) 2014; 50
Devrim (ref_43) 2012; 37
Chien (ref_53) 2013; 38
Sigwadi (ref_9) 2019; 5
Santiago (ref_13) 2009; 54
Sebastian (ref_68) 2015; 5
Chen (ref_17) 2007; 111
Anderson (ref_2) 2005; 109
Li (ref_65) 2013; 2
Ostrowska (ref_29) 1983; 261
ref_22
Jeon (ref_69) 2008; 185
ref_20
ref_64
Ge (ref_6) 2014; 475
Peighambardoust (ref_58) 2010; 35
Omosebi (ref_67) 2013; 228
Yang (ref_23) 2004; 237
Wang (ref_46) 2019; 425
Bose (ref_57) 2011; 36
Mercera (ref_18) 1992; 27
Deimede (ref_12) 2005; 38
Yang (ref_52) 2009; 342
Qin (ref_4) 2017; 40
Smitha (ref_45) 2008; 33
Wei (ref_19) 2012; 25
Safronova (ref_48) 2017; 240
Navarra (ref_16) 2008; 183
Kyu (ref_42) 1983; 61
Starkweather (ref_41) 1982; 15
Horsley (ref_35) 1974; 30
Sarkar (ref_33) 2007; 33
Li (ref_40) 2010; 347
ref_37
Tominaka (ref_36) 2008; 185
Adams (ref_55) 2013; 67–69
Arbizzani (ref_66) 2010; 195
Sigwadi (ref_25) 2019; 26
Jalani (ref_60) 2005; 51
Sacca (ref_61) 2006; 163
Wang (ref_63) 2015; 492
Sigwadi (ref_10) 2017; 12
Zhai (ref_30) 2006; 280
Albu (ref_15) 2016; 211
Navarra (ref_59) 2009; 22
Vaivars (ref_26) 2004; 10
Msomi (ref_56) 2018; 25
Zinadini (ref_38) 2014; 453
Hudiono (ref_50) 2009; 118
Sigwadi (ref_8) 2018; 8
Dadkhah (ref_34) 2009; 28
Laporta (ref_32) 1999; 1
Gliubizzi (ref_31) 2006; 110
Deng (ref_44) 1998; 39
Yang (ref_28) 2013; 443
References_xml – volume: 347
  start-page: 26
  year: 2010
  ident: ref_40
  article-title: Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.10.002
– volume: 61
  start-page: 680
  year: 1983
  ident: ref_42
  article-title: Dynamic mechanical studies of partially ionized and neutralized Nafion polymers
  publication-title: Can. J. Chem.
  doi: 10.1139/v83-126
– volume: 38
  start-page: 9594
  year: 2005
  ident: ref_12
  article-title: Synthesis of Poly(arylene ether) Copolymers Containing Pendant PEO Groups and Evaluation of Their Blends as Proton Conductive Membranes
  publication-title: Macromolecules
  doi: 10.1021/ma050615m
– volume: 280
  start-page: 148
  year: 2006
  ident: ref_30
  article-title: Preparation and characterization of sulfated zirconia (SO42−/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.01.028
– volume: 25
  start-page: 143
  year: 2018
  ident: ref_56
  article-title: Quaternized poly (2.6 dimethyl-1.4 phenylene oxide)/Polysulfone anion exchange membrane reinforced with graphene oxide for methanol alkaline fuel cell application
  publication-title: J. Polym. Res.
  doi: 10.1007/s10965-018-1532-4
– volume: 67–69
  start-page: 71
  year: 2013
  ident: ref_55
  article-title: Application of polysulfone/cyclodextrin mixed-matrix membranes in the removal of natural organic matter from water
  publication-title: Phys. Chem. Earth Parts A/B/C
– volume: 183
  start-page: 109
  year: 2008
  ident: ref_16
  article-title: Properties and fuel cell performance of a Nafion-based, sulfated zirconia-added, composite membrane
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2008.04.033
– volume: 118
  start-page: 427
  year: 2009
  ident: ref_50
  article-title: Porous layered oxide/Nafion® nanocomposite membranes for direct methanol fuel cell applications
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2008.09.017
– volume: 474
  start-page: 167
  year: 2015
  ident: ref_62
  article-title: Novel composite cation exchange films based on sulfonated PVDF for electromembrane separations
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.10.002
– ident: ref_37
  doi: 10.3390/en10020259
– volume: 51
  start-page: 553
  year: 2005
  ident: ref_60
  article-title: Synthesis and characterization of Nafion®-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2005.05.016
– volume: 1
  start-page: 4619
  year: 1999
  ident: ref_32
  article-title: Perfluorosulfonated membrane (Nafion): FT-IR study of the state of water with increasing humidity
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/a904460d
– volume: 425
  start-page: 170
  year: 2019
  ident: ref_46
  article-title: Influence of polymeric binders on mechanical properties and microstructure evolution of silicon composite electrodes during electrochemical cycling
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2019.04.006
– volume: 104
  start-page: 4535
  year: 2004
  ident: ref_7
  article-title: State of Understanding of Nafion
  publication-title: Chem. Rev.
  doi: 10.1021/cr0207123
– volume: 214
  start-page: 130
  year: 2012
  ident: ref_47
  article-title: An experimental investigation of strain rate, temperature and humidity effects on the mechanical behavior of a perfluorosulfonic acid membrane
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2012.04.094
– volume: 8
  start-page: 54
  year: 2018
  ident: ref_8
  article-title: Mechanical Strength of Nafion®/ZrO2 Nano-Composite Membrane
  publication-title: Int. J. Manuf. Mater. Mech. Eng.
– volume: 40
  start-page: 258
  year: 2017
  ident: ref_4
  article-title: A high-performance lithium ion oxygen battery consisting of Li2O2 cathode and lithiated aluminum anode with nafion membrane for reduced O2 crossover
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.029
– volume: 155
  start-page: 19
  year: 2018
  ident: ref_21
  article-title: Zirconium phosphate (ZrP)-based functional materials: Synthesis, properties and applications
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.05.041
– volume: 185
  start-page: 29
  year: 2001
  ident: ref_1
  article-title: On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(00)00632-3
– volume: 46
  start-page: 3257
  year: 2005
  ident: ref_49
  article-title: Synthesis and characterization of poly(aryl ether ketone) copolymers containing (hexafluoroisopropylidene)-diphenol moiety as proton exchange membrane materials
  publication-title: Polymer
  doi: 10.1016/j.polymer.2005.03.003
– ident: ref_22
  doi: 10.3390/polym13152467
– volume: 131
  start-page: 60
  year: 2019
  ident: ref_39
  article-title: The role of nanoclay on surface roughness and characteristics of epoxy polysulfide nanocomposite
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.02.024
– volume: 185
  start-page: 656
  year: 2008
  ident: ref_36
  article-title: Sulfated zirconia nanoparticles as a proton conductor for fuel cell electrodes
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2008.09.001
– volume: 28
  start-page: 3005
  year: 2009
  ident: ref_34
  article-title: Pure cubic ZrO2 nanoparticles by thermolysis of a new precursor
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2009.06.032
– volume: 22
  start-page: 813
  year: 2009
  ident: ref_59
  article-title: Composite Nafion/Sulfated Zirconia Membranes: Effect of the Filler Surface Properties on Proton Transport Characteristics
  publication-title: Chem. Mater.
– volume: 228
  start-page: 151
  year: 2013
  ident: ref_67
  article-title: Electron beam patterned Nafion membranes for DMFC applications
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2012.11.076
– volume: 33
  start-page: 1275
  year: 2007
  ident: ref_33
  article-title: Synthesis and characterization of sol–gel derived ZrO2 doped Al2O3 nanopowder
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2006.05.002
– volume: 48
  start-page: 301
  year: 2015
  ident: ref_51
  article-title: Effect of the presence of partially sulfonated polyaniline on the proton and methanol transport behavior of partially sulfonated PVdF membrane
  publication-title: Polym. J.
  doi: 10.1038/pj.2015.106
– volume: 123
  start-page: 21
  year: 2017
  ident: ref_5
  article-title: Multi-sulfonated polyhedral oligosilsesquioxane (POSS) grafted poly(arylene ether sulfone)s for proton conductive membranes
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.07.001
– volume: 35
  start-page: 9349
  year: 2010
  ident: ref_58
  article-title: Review of the proton exchange membranes for fuel cell applications
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2010.05.017
– ident: ref_20
– volume: 39
  start-page: 5961
  year: 1998
  ident: ref_44
  article-title: TGA–FTi. r. investigation of the thermal degradation of Nafion® and Nafion®/[silicon oxide]-based nanocomposites
  publication-title: Polymer
  doi: 10.1016/S0032-3861(98)00055-X
– volume: 240
  start-page: 1016
  year: 2017
  ident: ref_48
  article-title: Sensitivity of potentiometric sensors based on Nafion®-type membranes and effect of the membranes mechanical, thermal, and hydrothermal treatments on the on their properties
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2016.09.010
– volume: 5
  start-page: 793
  year: 2015
  ident: ref_68
  article-title: Selectivity of Direct Methanol Fuel Cell Membranes
  publication-title: Membranes
  doi: 10.3390/membranes5040793
– ident: ref_54
  doi: 10.1002/chin.199847334
– ident: ref_11
– volume: 179
  start-page: 152
  year: 2018
  ident: ref_14
  article-title: Hybrid composite membranes of chitosan/sulfonated polyaniline/silica as polymer electrolyte membrane for fuel cells
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.09.083
– volume: 33
  start-page: 4138
  year: 2008
  ident: ref_45
  article-title: Proton-conducting composite membranes of chitosan and sulfonated polysulfone for fuel cell application
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2008.05.055
– volume: 185
  start-page: 49
  year: 2008
  ident: ref_69
  article-title: Nafion/sulfated β-cyclodextrin composite membranes for direct methanol fuel cells
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2008.06.093
– volume: 38
  start-page: 13792
  year: 2013
  ident: ref_53
  article-title: Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2013.08.036
– volume: 443
  start-page: 210
  year: 2013
  ident: ref_28
  article-title: Preparation of Nafion/various Pt-containing SiO2 composite membranes sulfonated via different sources of sulfonic group and their application in self-humidifying PEMFC
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.04.060
– volume: 342
  start-page: 221
  year: 2009
  ident: ref_52
  article-title: Composite membrane of sulfonated poly(ether ether ketone) and sulfated poly(vinyl alcohol) for use in direct methanol fuel cells
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.06.045
– volume: 12
  start-page: 1137
  year: 2017
  ident: ref_10
  article-title: Wettability and mechanical strength of modified nafion® nanocomposite membrane for fuel cell
  publication-title: Dig. J. Nanomater. Biostruct.
– volume: 5
  start-page: 862
  year: 2003
  ident: ref_27
  article-title: FTIR spectroscopic investigation of inorganic fillers for composite DMFC membranes
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2003.08.007
– volume: 37
  start-page: 16748
  year: 2012
  ident: ref_43
  article-title: Improvement of PEMFC performance with Nafion/inorganic nanocomposite membrane electrode assembly prepared by ultrasonic coating technique
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2012.02.148
– volume: 475
  start-page: 273
  year: 2014
  ident: ref_6
  article-title: Preparation of proton selective membranes through constructing H+ transfer channels by acid–base pairs
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.10.039
– volume: 54
  start-page: 4111
  year: 2009
  ident: ref_13
  article-title: Nafion–TiO2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.02.040
– volume: 453
  start-page: 292
  year: 2014
  ident: ref_38
  article-title: Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.10.070
– volume: 2
  start-page: 3783
  year: 2013
  ident: ref_65
  article-title: Nafion-functionalized electrospun poly(vinylidene fluoride) (PVDF) nanofibers for high performance proton exchange membranes in fuel cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA14264G
– volume: 10
  start-page: 162
  year: 2004
  ident: ref_26
  article-title: Zirconium phosphate based inorganic direct methanol fuel cell
  publication-title: Mater. Sci.
– volume: 30
  start-page: 535
  year: 1974
  ident: ref_35
  article-title: The infrared and Raman spectra of α-zirconium phosphate
  publication-title: Spectrochim. Acta Part A Mol. Spectrosc.
  doi: 10.1016/0584-8539(74)80093-0
– volume: 26
  start-page: 108
  year: 2019
  ident: ref_25
  article-title: Nafion®/sulfated zirconia oxide-nanocomposite membrane: The effects of ammonia sulfate on fuel permeability
  publication-title: J. Polym. Res.
  doi: 10.1007/s10965-019-1760-2
– volume: 109
  start-page: 1198
  year: 2005
  ident: ref_2
  article-title: Activation Energies for Oxygen Reduction on Platinum Alloys: Theory and Experiment
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047468z
– volume: 15
  start-page: 320
  year: 1982
  ident: ref_41
  article-title: Crystallinity in perfluorosulfonic acid ionomers and related polymers
  publication-title: Macromolecules
  doi: 10.1021/ma00230a023
– volume: 161
  start-page: 799
  year: 2006
  ident: ref_24
  article-title: Low temperature thermal properties of Nafion 117 membranes in water and methanol-water mixtures
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2006.06.005
– volume: 110
  start-page: 24972
  year: 2006
  ident: ref_31
  article-title: Effect of SiO2 on Relaxation Phenomena and Mechanism of Ion Conductivity of [Nafion/(SiO2)x] Composite Membranes
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0650331
– volume: 237
  start-page: 145
  year: 2004
  ident: ref_23
  article-title: A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2004.03.009
– ident: ref_64
– volume: 261
  start-page: 93
  year: 1983
  ident: ref_29
  article-title: Infrared study of hydration and association of functional groups in a perfluorinated Nafion membrane, Part 1
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/BF01410686
– volume: 211
  start-page: 911
  year: 2016
  ident: ref_15
  article-title: Novel Pva Proton Conducting Membranes Doped with Polyaniline Generated By In-Situ Polymerization
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.06.098
– volume: 5
  start-page: e02240
  year: 2019
  ident: ref_9
  article-title: The proton conductivity and mechanical properties of Nafion®/ZrP nanocomposite membrane
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2019.e02240
– volume: 111
  start-page: 18731
  year: 2007
  ident: ref_17
  article-title: Direct Synthesis of Mesoporous Sulfated Silica-Zirconia Catalysts with High Catalytic Activity for Biodiesel via Esterification
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0749221
– volume: 195
  start-page: 7751
  year: 2010
  ident: ref_66
  article-title: Methanol permeability and performance of Nafion–zirconium phosphate composite membranes in active and passive direct methanol fuel cells
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2009.07.034
– volume: 27
  start-page: 4890
  year: 1992
  ident: ref_18
  article-title: Influence of ethanol washing of the hydrous precursor on the textural and structural properties of zirconia
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF01105251
– volume: 25
  start-page: 25
  year: 2012
  ident: ref_19
  article-title: Electrospun poly(vinyl alcohol)/α-zirconium phosphate nanocomposite fibers
  publication-title: High Perform. Polym.
  doi: 10.1177/0954008312454152
– volume: 492
  start-page: 58
  year: 2015
  ident: ref_63
  article-title: Orderly sandwich-shaped graphene oxide/Nafion composite membranes for direct methanol fuel cells
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.05.049
– volume: 163
  start-page: 47
  year: 2006
  ident: ref_61
  article-title: ZrO2–Nafion composite membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2005.12.062
– volume: 50
  start-page: 3208
  year: 2014
  ident: ref_3
  article-title: Shuttle suppression in room temperature sodium–sulfur batteries using ion selective polymer membranes
  publication-title: Chem. Commun.
  doi: 10.1039/c4cc00161c
– volume: 36
  start-page: 813
  year: 2011
  ident: ref_57
  article-title: Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2011.01.003
SSID ssj0000456617
Score 2.380895
Snippet To investigate the effect of acidic nanoparticles on proton conductivity, permeability, and fuel-cell performance, a commercial Nafion® 117 membrane was...
To investigate the effect of acidic nanoparticles on proton conductivity, permeability, and fuel-cell performance, a commercial Nafion 117 membrane was...
To investigate the effect of acidic nanoparticles on proton conductivity, permeability, and fuel-cell performance, a commercial Nafion ® 117 membrane was...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 263
SubjectTerms Ammonia
Conductivity
Contact angle
Fourier transforms
Fuel cells
Gravimetric analysis
Hot pressing
Hydrophilicity
Infrared analysis
Inorganic acids
Membranes
Metal oxides
Methanol
Moisture content
Nanocomposites
Nanoparticles
Permeability
Phosphates
Polymers
Protons
Spectrum analysis
Tensile tests
Thermal analysis
Toxicity
Zirconium
Zirconium dioxide
Title The Effect of Sulfated Zirconia and Zirconium Phosphate Nanocomposite Membranes on Fuel-Cell Efficiency
URI https://www.ncbi.nlm.nih.gov/pubmed/35054671
https://www.proquest.com/docview/2621381011
https://www.proquest.com/docview/2622277686
https://pubmed.ncbi.nlm.nih.gov/PMC8779290
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8N-sBe0BhsKyvIk6Y9LcJxmg8_TVtFQZNAiA2p2ktkO_ZaKU0KbR7477lL0oyC2KPly4fv7Lv72ec7gM--5RxXDcISJwmguNCTKtOeDrNE-FpwPaTbyBeX0fnN8OcknLQbbss2rHKtE2tFnZWG9shPRCT8OhuV_21x61HVKDpdbUtobEEPVXCC4Kv34_Ty6rrbZSGHBW10k1wzQHx_sijz-7lPqElEwaYxeuZhPg2UfGR5xm9gt3UZ2fdGxnvwyhZvYWe0rtS2D39R1qxJQ8xKx35VuUMPMmN_ZneIdmeKqaJrVHN2NS2XiylSMFStJcWUU-CWZRd2jtAZVR8rCzaubO6NbJ7Ti2e1Arg_gJvx6e_RudcWUPAM2uWVp02kuJJa0mmbMQkO2UU61pmwqFaiIEZJGBdqKYRNnJMudIieuFCSO8OtCd7BdlEW9gOwZGil8Ie-itBfVC5QdEXXSATXJtPSmD58XXMyNW12cSpykaeIMojx6Qbj-_ClI180aTVeIhysxZK2q2uZ_psLffjUdSPT6bAD-VRWNY0QMQ486sP7RordlwJ0-9BA4NPxhnw7Asq5vdlTzKZ17u0kjtGh5If__62P8FrQNQlO4YID2F7dVfYInZeVPoatZHx23M5TbJ1N_AcCE_Sw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N8TBeEN8UBhgJeCKa43z6ASFUKB1bJyQ2aeIl2I5NK6VJWRuh_lP8jdwlTaAgeNtj5GuSnu_Ov198vgN45lvO0WuQljhJBMVFnlS59nSUp8LXguuQTiNPTuLxWfjhPDrfgR_dWRhKq-xiYhOo88rQN_IDEQu_qUblv15886hrFO2udi00WrM4suvvSNmWrw7f4vw-F2L07nQ49jZdBTyDi9XK0yZWXEktaQvKmBRJiIt1onNh0dfiIMHXMy7SUgibOidd5JBScKEkd4ZbE-B9r8DVMAgkeVQ6et9_0yF4hIigLeWJ4_xgURXruU8cTcTB9tL3F579My3zt3VudAOubwAqe9Na1E3YseUt2Bt2feFuw1e0LNYWPWaVY5_qwiFezdnn2QVy65liquwv6jn7OK2WiylKMAzkFWWwU5qYZRM7R6KOgZZVJRvVtvCGtijoxrMm3KzvwNmlKPYu7JZVae8DS0MrhR_6KkZ0qlyg6ECwkUjlTa6lMQN42WkyM5ta5tRSo8iQ05Disy3FD-BFL75oi3j8S3C_m5Zs48vL7JflDeBpP4xKp60V1FNVNzJCJPjH4wHca2exf1KAIBOXI_x1sjW_vQBV-N4eKWfTptJ3miQIX_mD_7_WE9gbn06Os-PDk6OHcE3QAQ1OiYr7sLu6qO0jhE0r_bixVQZfLts5fgJWNS8A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiDeBAosEnLCyXsePPSAEaaOW0igCKlW9GO96l0Ry7NDEQvlr_Dpm_IKA4Naj5fFrdmb2-7yzMwDPXcM5eg3SEiuJoFjfkUmqHOWnkXCV4GpIu5FPJsHh6fD9mX-2Az_avTCUVtnGxCpQp4Wmf-QDEQi3qkblDmyTFjHdH79ZfnOogxSttLbtNGoTOTab70jfVq-P9nGsXwgxPvg8OnSaDgOOxolr7SgdJDyRStJylNYREhIbqFClwqDfBV6Ir6qtr6QQJrJWWt8iveAikdxqbrSH970CuyGyIt6D3XcHk-nH7g8PgSXEB3VhT8-TfLAsss3CJcYmAm97IvwL3f6ZpPnbrDe-CTcauMre1vZ1C3ZMfhuujdoucXfgK9oZq0sgs8KyT2VmEb2m7Hx-gUx7nrAk7w7KBZvOitVyhhIMw3pB-eyUNGbYiVkgbcewy4qcjUuTOSOTZXTjeRV8Nnfh9FJUew96eZGbB8CioZHCHbpJgFg1sV5C24O1RGKvUyW17sOrVpOxbiqbU4ONLEaGQ4qPtxTfh5ed-LIu6fEvwb12WOLGs1fxLzvsw7PuNCqdFlpQT0VZyQgR4ocHfbhfj2L3JA8hJ05OeHW4Nb6dANX73j6Tz2dV3e8oDBHM8of_f62ncBUdI_5wNDl-BNcF7dbglLW4B731RWkeI4ZaqyeNsTL4ctn-8RMkIzSS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Effect+of+Sulfated+Zirconia+and+Zirconium+Phosphate+Nanocomposite+Membranes+on+Fuel-Cell+Efficiency&rft.jtitle=Polymers&rft.au=Sigwadi%2C+Rudzani&rft.au=Mokrani%2C+Touhami&rft.au=Msomi%2C+Phumlani&rft.au=Nemavhola%2C+Fulufhelo&rft.date=2022-01-10&rft.pub=MDPI&rft.eissn=2073-4360&rft.volume=14&rft.issue=2&rft_id=info:doi/10.3390%2Fpolym14020263&rft_id=info%3Apmid%2F35054671&rft.externalDocID=PMC8779290
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon