The Effect of Sulfated Zirconia and Zirconium Phosphate Nanocomposite Membranes on Fuel-Cell Efficiency
To investigate the effect of acidic nanoparticles on proton conductivity, permeability, and fuel-cell performance, a commercial Nafion® 117 membrane was impregnated with zirconium phosphates (ZrP) and sulfated zirconium (S-ZrO2) nanoparticles. As they are more stable than other solid superacids, sul...
Saved in:
Published in | Polymers Vol. 14; no. 2; p. 263 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
10.01.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To investigate the effect of acidic nanoparticles on proton conductivity, permeability, and fuel-cell performance, a commercial Nafion® 117 membrane was impregnated with zirconium phosphates (ZrP) and sulfated zirconium (S-ZrO2) nanoparticles. As they are more stable than other solid superacids, sulfated metal oxides have been the subject of intensive research. Meanwhile, hydrophilic, proton-conducting inorganic acids such as zirconium phosphate (ZrP) have been used to modify the Nafion® membrane due to their hydrophilic nature, proton-conducting material, very low toxicity, low cost, and stability in a hydrogen/oxygen atmosphere. A tensile test, water uptake, methanol crossover, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to assess the capacity of nanocomposite membranes to function in a fuel cell. The modified Nafion® membrane had a higher water uptake and a lower water content angle than the commercial Nafion® 117 membrane, indicating that it has a greater impact on conductivity. Under strain rates of 40, 30, and 20 mm/min, the nanocomposite membranes demonstrated more stable thermal deterioration and higher mechanical strength, which offers tremendous promise for fuel-cell applications. When compared to 0.113 S/cm and 0.013 S/cm, respectively, of commercial Nafion® 117 and Nafion® ZrP membranes, the modified Nafion® membrane with ammonia sulphate acid had the highest proton conductivity of 7.891 S/cm. When tested using a direct single-cell methanol fuel cell, it also had the highest power density of 183 mW cm−2 which is better than commercial Nafion® 117 and Nafion® ZrP membranes. |
---|---|
AbstractList | To investigate the effect of acidic nanoparticles on proton conductivity, permeability, and fuel-cell performance, a commercial Nafion
117 membrane was impregnated with zirconium phosphates (ZrP) and sulfated zirconium (S-ZrO
) nanoparticles. As they are more stable than other solid superacids, sulfated metal oxides have been the subject of intensive research. Meanwhile, hydrophilic, proton-conducting inorganic acids such as zirconium phosphate (ZrP) have been used to modify the Nafion
membrane due to their hydrophilic nature, proton-conducting material, very low toxicity, low cost, and stability in a hydrogen/oxygen atmosphere. A tensile test, water uptake, methanol crossover, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to assess the capacity of nanocomposite membranes to function in a fuel cell. The modified Nafion
membrane had a higher water uptake and a lower water content angle than the commercial Nafion
117 membrane, indicating that it has a greater impact on conductivity. Under strain rates of 40, 30, and 20 mm/min, the nanocomposite membranes demonstrated more stable thermal deterioration and higher mechanical strength, which offers tremendous promise for fuel-cell applications. When compared to 0.113 S/cm and 0.013 S/cm, respectively, of commercial Nafion
117 and Nafion
ZrP membranes, the modified Nafion
membrane with ammonia sulphate acid had the highest proton conductivity of 7.891 S/cm. When tested using a direct single-cell methanol fuel cell, it also had the highest power density of 183 mW cm
which is better than commercial Nafion
117 and Nafion
ZrP membranes. To investigate the effect of acidic nanoparticles on proton conductivity, permeability, and fuel-cell performance, a commercial Nafion® 117 membrane was impregnated with zirconium phosphates (ZrP) and sulfated zirconium (S-ZrO2) nanoparticles. As they are more stable than other solid superacids, sulfated metal oxides have been the subject of intensive research. Meanwhile, hydrophilic, proton-conducting inorganic acids such as zirconium phosphate (ZrP) have been used to modify the Nafion® membrane due to their hydrophilic nature, proton-conducting material, very low toxicity, low cost, and stability in a hydrogen/oxygen atmosphere. A tensile test, water uptake, methanol crossover, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to assess the capacity of nanocomposite membranes to function in a fuel cell. The modified Nafion® membrane had a higher water uptake and a lower water content angle than the commercial Nafion® 117 membrane, indicating that it has a greater impact on conductivity. Under strain rates of 40, 30, and 20 mm/min, the nanocomposite membranes demonstrated more stable thermal deterioration and higher mechanical strength, which offers tremendous promise for fuel-cell applications. When compared to 0.113 S/cm and 0.013 S/cm, respectively, of commercial Nafion® 117 and Nafion® ZrP membranes, the modified Nafion® membrane with ammonia sulphate acid had the highest proton conductivity of 7.891 S/cm. When tested using a direct single-cell methanol fuel cell, it also had the highest power density of 183 mW cm−2 which is better than commercial Nafion® 117 and Nafion® ZrP membranes. To investigate the effect of acidic nanoparticles on proton conductivity, permeability, and fuel-cell performance, a commercial Nafion® 117 membrane was impregnated with zirconium phosphates (ZrP) and sulfated zirconium (S-ZrO2) nanoparticles. As they are more stable than other solid superacids, sulfated metal oxides have been the subject of intensive research. Meanwhile, hydrophilic, proton-conducting inorganic acids such as zirconium phosphate (ZrP) have been used to modify the Nafion® membrane due to their hydrophilic nature, proton-conducting material, very low toxicity, low cost, and stability in a hydrogen/oxygen atmosphere. A tensile test, water uptake, methanol crossover, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to assess the capacity of nanocomposite membranes to function in a fuel cell. The modified Nafion® membrane had a higher water uptake and a lower water content angle than the commercial Nafion® 117 membrane, indicating that it has a greater impact on conductivity. Under strain rates of 40, 30, and 20 mm/min, the nanocomposite membranes demonstrated more stable thermal deterioration and higher mechanical strength, which offers tremendous promise for fuel-cell applications. When compared to 0.113 S/cm and 0.013 S/cm, respectively, of commercial Nafion® 117 and Nafion® ZrP membranes, the modified Nafion® membrane with ammonia sulphate acid had the highest proton conductivity of 7.891 S/cm. When tested using a direct single-cell methanol fuel cell, it also had the highest power density of 183 mW cm-2 which is better than commercial Nafion® 117 and Nafion® ZrP membranes.To investigate the effect of acidic nanoparticles on proton conductivity, permeability, and fuel-cell performance, a commercial Nafion® 117 membrane was impregnated with zirconium phosphates (ZrP) and sulfated zirconium (S-ZrO2) nanoparticles. As they are more stable than other solid superacids, sulfated metal oxides have been the subject of intensive research. Meanwhile, hydrophilic, proton-conducting inorganic acids such as zirconium phosphate (ZrP) have been used to modify the Nafion® membrane due to their hydrophilic nature, proton-conducting material, very low toxicity, low cost, and stability in a hydrogen/oxygen atmosphere. A tensile test, water uptake, methanol crossover, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to assess the capacity of nanocomposite membranes to function in a fuel cell. The modified Nafion® membrane had a higher water uptake and a lower water content angle than the commercial Nafion® 117 membrane, indicating that it has a greater impact on conductivity. Under strain rates of 40, 30, and 20 mm/min, the nanocomposite membranes demonstrated more stable thermal deterioration and higher mechanical strength, which offers tremendous promise for fuel-cell applications. When compared to 0.113 S/cm and 0.013 S/cm, respectively, of commercial Nafion® 117 and Nafion® ZrP membranes, the modified Nafion® membrane with ammonia sulphate acid had the highest proton conductivity of 7.891 S/cm. When tested using a direct single-cell methanol fuel cell, it also had the highest power density of 183 mW cm-2 which is better than commercial Nafion® 117 and Nafion® ZrP membranes. To investigate the effect of acidic nanoparticles on proton conductivity, permeability, and fuel-cell performance, a commercial Nafion ® 117 membrane was impregnated with zirconium phosphates (ZrP) and sulfated zirconium (S-ZrO 2 ) nanoparticles. As they are more stable than other solid superacids, sulfated metal oxides have been the subject of intensive research. Meanwhile, hydrophilic, proton-conducting inorganic acids such as zirconium phosphate (ZrP) have been used to modify the Nafion ® membrane due to their hydrophilic nature, proton-conducting material, very low toxicity, low cost, and stability in a hydrogen/oxygen atmosphere. A tensile test, water uptake, methanol crossover, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to assess the capacity of nanocomposite membranes to function in a fuel cell. The modified Nafion ® membrane had a higher water uptake and a lower water content angle than the commercial Nafion ® 117 membrane, indicating that it has a greater impact on conductivity. Under strain rates of 40, 30, and 20 mm/min, the nanocomposite membranes demonstrated more stable thermal deterioration and higher mechanical strength, which offers tremendous promise for fuel-cell applications. When compared to 0.113 S/cm and 0.013 S/cm, respectively, of commercial Nafion ® 117 and Nafion ® ZrP membranes, the modified Nafion ® membrane with ammonia sulphate acid had the highest proton conductivity of 7.891 S/cm. When tested using a direct single-cell methanol fuel cell, it also had the highest power density of 183 mW cm −2 which is better than commercial Nafion ® 117 and Nafion ® ZrP membranes. |
Author | Mokrani, Touhami Sigwadi, Rudzani Nemavhola, Fulufhelo Msomi, Phumlani |
AuthorAffiliation | 1 Department of Chemical Engineering, School of Engineering, University of South Africa, Private Bag X6, Florida 1710, South Africa; tmokrani@unisa.ac.za 3 Department of Mechanical Engineering, School of Engineering, University of South Africa, Private Bag X6, Florida 1710, South Africa; masitfj@unisa.ac.za 2 Department of Applied Chemistry, University of Johannesburg, Johannesburg 2092, South Africa; pmsomi@uj.ac.za |
AuthorAffiliation_xml | – name: 3 Department of Mechanical Engineering, School of Engineering, University of South Africa, Private Bag X6, Florida 1710, South Africa; masitfj@unisa.ac.za – name: 2 Department of Applied Chemistry, University of Johannesburg, Johannesburg 2092, South Africa; pmsomi@uj.ac.za – name: 1 Department of Chemical Engineering, School of Engineering, University of South Africa, Private Bag X6, Florida 1710, South Africa; tmokrani@unisa.ac.za |
Author_xml | – sequence: 1 givenname: Rudzani orcidid: 0000-0002-3789-0874 surname: Sigwadi fullname: Sigwadi, Rudzani – sequence: 2 givenname: Touhami surname: Mokrani fullname: Mokrani, Touhami – sequence: 3 givenname: Phumlani orcidid: 0000-0003-4900-9009 surname: Msomi fullname: Msomi, Phumlani – sequence: 4 givenname: Fulufhelo orcidid: 0000-0002-6250-5157 surname: Nemavhola fullname: Nemavhola, Fulufhelo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35054671$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtr3DAUhUVJaR6dZbdB0E02TvWwJXsTKMPkAXkUOt10I2TNVUbBllzJLsy_r4ZMwiRUG-mi7x7O4RyjAx88IPSFknPOG_JtCN2mpyVhhAn-AR0xInlRckEO9t6HaJbSE8mnrISg8hM65BWpSiHpEXpcrgEvrAUz4mDxz6mzeoQV_u2iCd5prP3rMPX4xzqkYZ0JfK99MKEfQnJ5uoO-jdpDwsHjywm6Yg5dtxV2xoE3m8_oo9VdgtnuPkG_LhfL-XVx-3B1M_9-W5iSVmPRGqGJbtpGiro0ps65rGhlu2IgBRdckrY0tmobxqC2trGVpSLn1w2xhoDhJ-jiWXeY2h5WBvwYdaeG6HodNypop97-eLdWj-GvqqVsWEOywNlOIIY_E6RR9S6ZHCanC1NSTDDGZLYnMvr1HfoUpuhzvC1FeU0JpZk63Xf0auWlgwzwZ8DEkFIEq4wb9ejC1qDrFCVqW7Z6U3beKt5tvQj_n_8HVgis_Q |
CitedBy_id | crossref_primary_10_3390_membranes12050506 crossref_primary_10_1016_j_dental_2024_07_007 crossref_primary_10_3390_membranes13100838 crossref_primary_10_3390_membranes13120887 crossref_primary_10_1016_j_energy_2022_125237 crossref_primary_10_1021_acs_langmuir_3c03966 crossref_primary_10_1016_j_polymer_2024_127241 crossref_primary_10_1007_s11694_024_02788_0 crossref_primary_10_1016_j_ijhydene_2023_12_098 crossref_primary_10_1016_j_psep_2024_07_094 crossref_primary_10_1016_j_ijhydene_2024_04_253 crossref_primary_10_3390_s23031131 crossref_primary_10_1002_app_54006 crossref_primary_10_1016_j_ijhydene_2024_12_513 crossref_primary_10_1016_j_ijhydene_2024_03_128 crossref_primary_10_1007_s41918_023_00189_3 crossref_primary_10_1039_D4NJ05019C |
Cites_doi | 10.1016/j.memsci.2009.10.002 10.1139/v83-126 10.1021/ma050615m 10.1016/j.memsci.2006.01.028 10.1007/s10965-018-1532-4 10.1016/j.jpowsour.2008.04.033 10.1016/j.micromeso.2008.09.017 10.1016/j.memsci.2014.10.002 10.3390/en10020259 10.1016/j.electacta.2005.05.016 10.1039/a904460d 10.1016/j.jpowsour.2019.04.006 10.1021/cr0207123 10.1016/j.jpowsour.2012.04.094 10.1016/j.nanoen.2017.08.029 10.1016/j.matdes.2018.05.041 10.1016/S0376-7388(00)00632-3 10.1016/j.polymer.2005.03.003 10.3390/polym13152467 10.1016/j.porgcoat.2019.02.024 10.1016/j.jpowsour.2008.09.001 10.1016/j.poly.2009.06.032 10.1016/j.jpowsour.2012.11.076 10.1016/j.ceramint.2006.05.002 10.1038/pj.2015.106 10.1016/j.polymer.2017.07.001 10.1016/j.ijhydene.2010.05.017 10.1016/S0032-3861(98)00055-X 10.1016/j.snb.2016.09.010 10.3390/membranes5040793 10.1002/chin.199847334 10.1016/j.carbpol.2017.09.083 10.1016/j.ijhydene.2008.05.055 10.1016/j.jpowsour.2008.06.093 10.1016/j.ijhydene.2013.08.036 10.1016/j.memsci.2013.04.060 10.1016/j.memsci.2009.06.045 10.1016/j.elecom.2003.08.007 10.1016/j.ijhydene.2012.02.148 10.1016/j.memsci.2014.10.039 10.1016/j.electacta.2009.02.040 10.1016/j.memsci.2013.10.070 10.1039/C3TA14264G 10.1016/0584-8539(74)80093-0 10.1007/s10965-019-1760-2 10.1021/jp047468z 10.1021/ma00230a023 10.1016/j.jpowsour.2006.06.005 10.1021/jp0650331 10.1016/j.memsci.2004.03.009 10.1007/BF01410686 10.1016/j.electacta.2016.06.098 10.1016/j.heliyon.2019.e02240 10.1021/jp0749221 10.1016/j.jpowsour.2009.07.034 10.1007/BF01105251 10.1177/0954008312454152 10.1016/j.memsci.2015.05.049 10.1016/j.jpowsour.2005.12.062 10.1039/c4cc00161c 10.1016/j.progpolymsci.2011.01.003 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/polym14020263 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2073-4360 |
ExternalDocumentID | PMC8779290 35054671 10_3390_polym14020263 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 8FE 8FG A8Z AADQD AAFWJ AAYXX ABDBF ABJCF ACGFO ACIWK ACUHS ADBBV ADMLS AENEX AFKRA AFZYC AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I ESX F5P GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 ML~ MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RNS RPM TR2 TUS GROUPED_DOAJ NPM 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c415t-bc6a0a9b97684cc8026f6b7bd2e7636370b4cf5b922e8ff9f5f16402a90fc0ec3 |
IEDL.DBID | BENPR |
ISSN | 2073-4360 |
IngestDate | Thu Aug 21 18:19:14 EDT 2025 Fri Jul 11 06:19:49 EDT 2025 Sat Aug 23 12:42:09 EDT 2025 Wed Feb 19 02:27:12 EST 2025 Tue Jul 01 02:20:19 EDT 2025 Thu Apr 24 23:10:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | incorporation fuel-cell efficiency sulphated zirconium oxide zirconium phosphates water contact angle |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-bc6a0a9b97684cc8026f6b7bd2e7636370b4cf5b922e8ff9f5f16402a90fc0ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6250-5157 0000-0002-3789-0874 0000-0003-4900-9009 |
OpenAccessLink | https://www.proquest.com/docview/2621381011?pq-origsite=%requestingapplication% |
PMID | 35054671 |
PQID | 2621381011 |
PQPubID | 2032345 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8779290 proquest_miscellaneous_2622277686 proquest_journals_2621381011 pubmed_primary_35054671 crossref_citationtrail_10_3390_polym14020263 crossref_primary_10_3390_polym14020263 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220110 |
PublicationDateYYYYMMDD | 2022-01-10 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220110 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Polymers |
PublicationTitleAlternate | Polymers (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Wu (ref_5) 2017; 123 Corti (ref_24) 2006; 161 Vijayakumar (ref_14) 2018; 179 Baglio (ref_27) 2003; 5 Xiao (ref_21) 2018; 155 ref_11 Kreuer (ref_1) 2001; 185 ref_54 Dutta (ref_51) 2015; 48 Hadavand (ref_39) 2019; 131 Farrokhzad (ref_62) 2015; 474 Mauritz (ref_7) 2004; 104 Lu (ref_47) 2012; 214 Xing (ref_49) 2005; 46 Bauer (ref_3) 2014; 50 Devrim (ref_43) 2012; 37 Chien (ref_53) 2013; 38 Sigwadi (ref_9) 2019; 5 Santiago (ref_13) 2009; 54 Sebastian (ref_68) 2015; 5 Chen (ref_17) 2007; 111 Anderson (ref_2) 2005; 109 Li (ref_65) 2013; 2 Ostrowska (ref_29) 1983; 261 ref_22 Jeon (ref_69) 2008; 185 ref_20 ref_64 Ge (ref_6) 2014; 475 Peighambardoust (ref_58) 2010; 35 Omosebi (ref_67) 2013; 228 Yang (ref_23) 2004; 237 Wang (ref_46) 2019; 425 Bose (ref_57) 2011; 36 Mercera (ref_18) 1992; 27 Deimede (ref_12) 2005; 38 Yang (ref_52) 2009; 342 Qin (ref_4) 2017; 40 Smitha (ref_45) 2008; 33 Wei (ref_19) 2012; 25 Safronova (ref_48) 2017; 240 Navarra (ref_16) 2008; 183 Kyu (ref_42) 1983; 61 Starkweather (ref_41) 1982; 15 Horsley (ref_35) 1974; 30 Sarkar (ref_33) 2007; 33 Li (ref_40) 2010; 347 ref_37 Tominaka (ref_36) 2008; 185 Adams (ref_55) 2013; 67–69 Arbizzani (ref_66) 2010; 195 Sigwadi (ref_25) 2019; 26 Jalani (ref_60) 2005; 51 Sacca (ref_61) 2006; 163 Wang (ref_63) 2015; 492 Sigwadi (ref_10) 2017; 12 Zhai (ref_30) 2006; 280 Albu (ref_15) 2016; 211 Navarra (ref_59) 2009; 22 Vaivars (ref_26) 2004; 10 Msomi (ref_56) 2018; 25 Zinadini (ref_38) 2014; 453 Hudiono (ref_50) 2009; 118 Sigwadi (ref_8) 2018; 8 Dadkhah (ref_34) 2009; 28 Laporta (ref_32) 1999; 1 Gliubizzi (ref_31) 2006; 110 Deng (ref_44) 1998; 39 Yang (ref_28) 2013; 443 |
References_xml | – volume: 347 start-page: 26 year: 2010 ident: ref_40 article-title: Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.10.002 – volume: 61 start-page: 680 year: 1983 ident: ref_42 article-title: Dynamic mechanical studies of partially ionized and neutralized Nafion polymers publication-title: Can. J. Chem. doi: 10.1139/v83-126 – volume: 38 start-page: 9594 year: 2005 ident: ref_12 article-title: Synthesis of Poly(arylene ether) Copolymers Containing Pendant PEO Groups and Evaluation of Their Blends as Proton Conductive Membranes publication-title: Macromolecules doi: 10.1021/ma050615m – volume: 280 start-page: 148 year: 2006 ident: ref_30 article-title: Preparation and characterization of sulfated zirconia (SO42−/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.01.028 – volume: 25 start-page: 143 year: 2018 ident: ref_56 article-title: Quaternized poly (2.6 dimethyl-1.4 phenylene oxide)/Polysulfone anion exchange membrane reinforced with graphene oxide for methanol alkaline fuel cell application publication-title: J. Polym. Res. doi: 10.1007/s10965-018-1532-4 – volume: 67–69 start-page: 71 year: 2013 ident: ref_55 article-title: Application of polysulfone/cyclodextrin mixed-matrix membranes in the removal of natural organic matter from water publication-title: Phys. Chem. Earth Parts A/B/C – volume: 183 start-page: 109 year: 2008 ident: ref_16 article-title: Properties and fuel cell performance of a Nafion-based, sulfated zirconia-added, composite membrane publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2008.04.033 – volume: 118 start-page: 427 year: 2009 ident: ref_50 article-title: Porous layered oxide/Nafion® nanocomposite membranes for direct methanol fuel cell applications publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2008.09.017 – volume: 474 start-page: 167 year: 2015 ident: ref_62 article-title: Novel composite cation exchange films based on sulfonated PVDF for electromembrane separations publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.10.002 – ident: ref_37 doi: 10.3390/en10020259 – volume: 51 start-page: 553 year: 2005 ident: ref_60 article-title: Synthesis and characterization of Nafion®-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2005.05.016 – volume: 1 start-page: 4619 year: 1999 ident: ref_32 article-title: Perfluorosulfonated membrane (Nafion): FT-IR study of the state of water with increasing humidity publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/a904460d – volume: 425 start-page: 170 year: 2019 ident: ref_46 article-title: Influence of polymeric binders on mechanical properties and microstructure evolution of silicon composite electrodes during electrochemical cycling publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2019.04.006 – volume: 104 start-page: 4535 year: 2004 ident: ref_7 article-title: State of Understanding of Nafion publication-title: Chem. Rev. doi: 10.1021/cr0207123 – volume: 214 start-page: 130 year: 2012 ident: ref_47 article-title: An experimental investigation of strain rate, temperature and humidity effects on the mechanical behavior of a perfluorosulfonic acid membrane publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2012.04.094 – volume: 8 start-page: 54 year: 2018 ident: ref_8 article-title: Mechanical Strength of Nafion®/ZrO2 Nano-Composite Membrane publication-title: Int. J. Manuf. Mater. Mech. Eng. – volume: 40 start-page: 258 year: 2017 ident: ref_4 article-title: A high-performance lithium ion oxygen battery consisting of Li2O2 cathode and lithiated aluminum anode with nafion membrane for reduced O2 crossover publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.029 – volume: 155 start-page: 19 year: 2018 ident: ref_21 article-title: Zirconium phosphate (ZrP)-based functional materials: Synthesis, properties and applications publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.05.041 – volume: 185 start-page: 29 year: 2001 ident: ref_1 article-title: On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(00)00632-3 – volume: 46 start-page: 3257 year: 2005 ident: ref_49 article-title: Synthesis and characterization of poly(aryl ether ketone) copolymers containing (hexafluoroisopropylidene)-diphenol moiety as proton exchange membrane materials publication-title: Polymer doi: 10.1016/j.polymer.2005.03.003 – ident: ref_22 doi: 10.3390/polym13152467 – volume: 131 start-page: 60 year: 2019 ident: ref_39 article-title: The role of nanoclay on surface roughness and characteristics of epoxy polysulfide nanocomposite publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.02.024 – volume: 185 start-page: 656 year: 2008 ident: ref_36 article-title: Sulfated zirconia nanoparticles as a proton conductor for fuel cell electrodes publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2008.09.001 – volume: 28 start-page: 3005 year: 2009 ident: ref_34 article-title: Pure cubic ZrO2 nanoparticles by thermolysis of a new precursor publication-title: Polyhedron doi: 10.1016/j.poly.2009.06.032 – volume: 22 start-page: 813 year: 2009 ident: ref_59 article-title: Composite Nafion/Sulfated Zirconia Membranes: Effect of the Filler Surface Properties on Proton Transport Characteristics publication-title: Chem. Mater. – volume: 228 start-page: 151 year: 2013 ident: ref_67 article-title: Electron beam patterned Nafion membranes for DMFC applications publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2012.11.076 – volume: 33 start-page: 1275 year: 2007 ident: ref_33 article-title: Synthesis and characterization of sol–gel derived ZrO2 doped Al2O3 nanopowder publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2006.05.002 – volume: 48 start-page: 301 year: 2015 ident: ref_51 article-title: Effect of the presence of partially sulfonated polyaniline on the proton and methanol transport behavior of partially sulfonated PVdF membrane publication-title: Polym. J. doi: 10.1038/pj.2015.106 – volume: 123 start-page: 21 year: 2017 ident: ref_5 article-title: Multi-sulfonated polyhedral oligosilsesquioxane (POSS) grafted poly(arylene ether sulfone)s for proton conductive membranes publication-title: Polymer doi: 10.1016/j.polymer.2017.07.001 – volume: 35 start-page: 9349 year: 2010 ident: ref_58 article-title: Review of the proton exchange membranes for fuel cell applications publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2010.05.017 – ident: ref_20 – volume: 39 start-page: 5961 year: 1998 ident: ref_44 article-title: TGA–FTi. r. investigation of the thermal degradation of Nafion® and Nafion®/[silicon oxide]-based nanocomposites publication-title: Polymer doi: 10.1016/S0032-3861(98)00055-X – volume: 240 start-page: 1016 year: 2017 ident: ref_48 article-title: Sensitivity of potentiometric sensors based on Nafion®-type membranes and effect of the membranes mechanical, thermal, and hydrothermal treatments on the on their properties publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.09.010 – volume: 5 start-page: 793 year: 2015 ident: ref_68 article-title: Selectivity of Direct Methanol Fuel Cell Membranes publication-title: Membranes doi: 10.3390/membranes5040793 – ident: ref_54 doi: 10.1002/chin.199847334 – ident: ref_11 – volume: 179 start-page: 152 year: 2018 ident: ref_14 article-title: Hybrid composite membranes of chitosan/sulfonated polyaniline/silica as polymer electrolyte membrane for fuel cells publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.09.083 – volume: 33 start-page: 4138 year: 2008 ident: ref_45 article-title: Proton-conducting composite membranes of chitosan and sulfonated polysulfone for fuel cell application publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2008.05.055 – volume: 185 start-page: 49 year: 2008 ident: ref_69 article-title: Nafion/sulfated β-cyclodextrin composite membranes for direct methanol fuel cells publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2008.06.093 – volume: 38 start-page: 13792 year: 2013 ident: ref_53 article-title: Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2013.08.036 – volume: 443 start-page: 210 year: 2013 ident: ref_28 article-title: Preparation of Nafion/various Pt-containing SiO2 composite membranes sulfonated via different sources of sulfonic group and their application in self-humidifying PEMFC publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.04.060 – volume: 342 start-page: 221 year: 2009 ident: ref_52 article-title: Composite membrane of sulfonated poly(ether ether ketone) and sulfated poly(vinyl alcohol) for use in direct methanol fuel cells publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.06.045 – volume: 12 start-page: 1137 year: 2017 ident: ref_10 article-title: Wettability and mechanical strength of modified nafion® nanocomposite membrane for fuel cell publication-title: Dig. J. Nanomater. Biostruct. – volume: 5 start-page: 862 year: 2003 ident: ref_27 article-title: FTIR spectroscopic investigation of inorganic fillers for composite DMFC membranes publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2003.08.007 – volume: 37 start-page: 16748 year: 2012 ident: ref_43 article-title: Improvement of PEMFC performance with Nafion/inorganic nanocomposite membrane electrode assembly prepared by ultrasonic coating technique publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2012.02.148 – volume: 475 start-page: 273 year: 2014 ident: ref_6 article-title: Preparation of proton selective membranes through constructing H+ transfer channels by acid–base pairs publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.10.039 – volume: 54 start-page: 4111 year: 2009 ident: ref_13 article-title: Nafion–TiO2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.02.040 – volume: 453 start-page: 292 year: 2014 ident: ref_38 article-title: Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.10.070 – volume: 2 start-page: 3783 year: 2013 ident: ref_65 article-title: Nafion-functionalized electrospun poly(vinylidene fluoride) (PVDF) nanofibers for high performance proton exchange membranes in fuel cells publication-title: J. Mater. Chem. A doi: 10.1039/C3TA14264G – volume: 10 start-page: 162 year: 2004 ident: ref_26 article-title: Zirconium phosphate based inorganic direct methanol fuel cell publication-title: Mater. Sci. – volume: 30 start-page: 535 year: 1974 ident: ref_35 article-title: The infrared and Raman spectra of α-zirconium phosphate publication-title: Spectrochim. Acta Part A Mol. Spectrosc. doi: 10.1016/0584-8539(74)80093-0 – volume: 26 start-page: 108 year: 2019 ident: ref_25 article-title: Nafion®/sulfated zirconia oxide-nanocomposite membrane: The effects of ammonia sulfate on fuel permeability publication-title: J. Polym. Res. doi: 10.1007/s10965-019-1760-2 – volume: 109 start-page: 1198 year: 2005 ident: ref_2 article-title: Activation Energies for Oxygen Reduction on Platinum Alloys: Theory and Experiment publication-title: J. Phys. Chem. B doi: 10.1021/jp047468z – volume: 15 start-page: 320 year: 1982 ident: ref_41 article-title: Crystallinity in perfluorosulfonic acid ionomers and related polymers publication-title: Macromolecules doi: 10.1021/ma00230a023 – volume: 161 start-page: 799 year: 2006 ident: ref_24 article-title: Low temperature thermal properties of Nafion 117 membranes in water and methanol-water mixtures publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2006.06.005 – volume: 110 start-page: 24972 year: 2006 ident: ref_31 article-title: Effect of SiO2 on Relaxation Phenomena and Mechanism of Ion Conductivity of [Nafion/(SiO2)x] Composite Membranes publication-title: J. Phys. Chem. B doi: 10.1021/jp0650331 – volume: 237 start-page: 145 year: 2004 ident: ref_23 article-title: A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2004.03.009 – ident: ref_64 – volume: 261 start-page: 93 year: 1983 ident: ref_29 article-title: Infrared study of hydration and association of functional groups in a perfluorinated Nafion membrane, Part 1 publication-title: Colloid Polym. Sci. doi: 10.1007/BF01410686 – volume: 211 start-page: 911 year: 2016 ident: ref_15 article-title: Novel Pva Proton Conducting Membranes Doped with Polyaniline Generated By In-Situ Polymerization publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.06.098 – volume: 5 start-page: e02240 year: 2019 ident: ref_9 article-title: The proton conductivity and mechanical properties of Nafion®/ZrP nanocomposite membrane publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e02240 – volume: 111 start-page: 18731 year: 2007 ident: ref_17 article-title: Direct Synthesis of Mesoporous Sulfated Silica-Zirconia Catalysts with High Catalytic Activity for Biodiesel via Esterification publication-title: J. Phys. Chem. C doi: 10.1021/jp0749221 – volume: 195 start-page: 7751 year: 2010 ident: ref_66 article-title: Methanol permeability and performance of Nafion–zirconium phosphate composite membranes in active and passive direct methanol fuel cells publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2009.07.034 – volume: 27 start-page: 4890 year: 1992 ident: ref_18 article-title: Influence of ethanol washing of the hydrous precursor on the textural and structural properties of zirconia publication-title: J. Mater. Sci. doi: 10.1007/BF01105251 – volume: 25 start-page: 25 year: 2012 ident: ref_19 article-title: Electrospun poly(vinyl alcohol)/α-zirconium phosphate nanocomposite fibers publication-title: High Perform. Polym. doi: 10.1177/0954008312454152 – volume: 492 start-page: 58 year: 2015 ident: ref_63 article-title: Orderly sandwich-shaped graphene oxide/Nafion composite membranes for direct methanol fuel cells publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.05.049 – volume: 163 start-page: 47 year: 2006 ident: ref_61 article-title: ZrO2–Nafion composite membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature publication-title: J. Power Sour. doi: 10.1016/j.jpowsour.2005.12.062 – volume: 50 start-page: 3208 year: 2014 ident: ref_3 article-title: Shuttle suppression in room temperature sodium–sulfur batteries using ion selective polymer membranes publication-title: Chem. Commun. doi: 10.1039/c4cc00161c – volume: 36 start-page: 813 year: 2011 ident: ref_57 article-title: Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2011.01.003 |
SSID | ssj0000456617 |
Score | 2.380895 |
Snippet | To investigate the effect of acidic nanoparticles on proton conductivity, permeability, and fuel-cell performance, a commercial Nafion® 117 membrane was... To investigate the effect of acidic nanoparticles on proton conductivity, permeability, and fuel-cell performance, a commercial Nafion 117 membrane was... To investigate the effect of acidic nanoparticles on proton conductivity, permeability, and fuel-cell performance, a commercial Nafion ® 117 membrane was... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 263 |
SubjectTerms | Ammonia Conductivity Contact angle Fourier transforms Fuel cells Gravimetric analysis Hot pressing Hydrophilicity Infrared analysis Inorganic acids Membranes Metal oxides Methanol Moisture content Nanocomposites Nanoparticles Permeability Phosphates Polymers Protons Spectrum analysis Tensile tests Thermal analysis Toxicity Zirconium Zirconium dioxide |
Title | The Effect of Sulfated Zirconia and Zirconium Phosphate Nanocomposite Membranes on Fuel-Cell Efficiency |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35054671 https://www.proquest.com/docview/2621381011 https://www.proquest.com/docview/2622277686 https://pubmed.ncbi.nlm.nih.gov/PMC8779290 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8N-sBe0BhsKyvIk6Y9LcJxmg8_TVtFQZNAiA2p2ktkO_ZaKU0KbR7477lL0oyC2KPly4fv7Lv72ec7gM--5RxXDcISJwmguNCTKtOeDrNE-FpwPaTbyBeX0fnN8OcknLQbbss2rHKtE2tFnZWG9shPRCT8OhuV_21x61HVKDpdbUtobEEPVXCC4Kv34_Ty6rrbZSGHBW10k1wzQHx_sijz-7lPqElEwaYxeuZhPg2UfGR5xm9gt3UZ2fdGxnvwyhZvYWe0rtS2D39R1qxJQ8xKx35VuUMPMmN_ZneIdmeKqaJrVHN2NS2XiylSMFStJcWUU-CWZRd2jtAZVR8rCzaubO6NbJ7Ti2e1Arg_gJvx6e_RudcWUPAM2uWVp02kuJJa0mmbMQkO2UU61pmwqFaiIEZJGBdqKYRNnJMudIieuFCSO8OtCd7BdlEW9gOwZGil8Ie-itBfVC5QdEXXSATXJtPSmD58XXMyNW12cSpykaeIMojx6Qbj-_ClI180aTVeIhysxZK2q2uZ_psLffjUdSPT6bAD-VRWNY0QMQ486sP7RordlwJ0-9BA4NPxhnw7Asq5vdlTzKZ17u0kjtGh5If__62P8FrQNQlO4YID2F7dVfYInZeVPoatZHx23M5TbJ1N_AcCE_Sw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N8TBeEN8UBhgJeCKa43z6ASFUKB1bJyQ2aeIl2I5NK6VJWRuh_lP8jdwlTaAgeNtj5GuSnu_Ov198vgN45lvO0WuQljhJBMVFnlS59nSUp8LXguuQTiNPTuLxWfjhPDrfgR_dWRhKq-xiYhOo88rQN_IDEQu_qUblv15886hrFO2udi00WrM4suvvSNmWrw7f4vw-F2L07nQ49jZdBTyDi9XK0yZWXEktaQvKmBRJiIt1onNh0dfiIMHXMy7SUgibOidd5JBScKEkd4ZbE-B9r8DVMAgkeVQ6et9_0yF4hIigLeWJ4_xgURXruU8cTcTB9tL3F579My3zt3VudAOubwAqe9Na1E3YseUt2Bt2feFuw1e0LNYWPWaVY5_qwiFezdnn2QVy65liquwv6jn7OK2WiylKMAzkFWWwU5qYZRM7R6KOgZZVJRvVtvCGtijoxrMm3KzvwNmlKPYu7JZVae8DS0MrhR_6KkZ0qlyg6ECwkUjlTa6lMQN42WkyM5ta5tRSo8iQ05Disy3FD-BFL75oi3j8S3C_m5Zs48vL7JflDeBpP4xKp60V1FNVNzJCJPjH4wHca2exf1KAIBOXI_x1sjW_vQBV-N4eKWfTptJ3miQIX_mD_7_WE9gbn06Os-PDk6OHcE3QAQ1OiYr7sLu6qO0jhE0r_bixVQZfLts5fgJWNS8A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiDeBAosEnLCyXsePPSAEaaOW0igCKlW9GO96l0Ry7NDEQvlr_Dpm_IKA4Naj5fFrdmb2-7yzMwDPXcM5eg3SEiuJoFjfkUmqHOWnkXCV4GpIu5FPJsHh6fD9mX-2Az_avTCUVtnGxCpQp4Wmf-QDEQi3qkblDmyTFjHdH79ZfnOogxSttLbtNGoTOTab70jfVq-P9nGsXwgxPvg8OnSaDgOOxolr7SgdJDyRStJylNYREhIbqFClwqDfBV6Ir6qtr6QQJrJWWt8iveAikdxqbrSH970CuyGyIt6D3XcHk-nH7g8PgSXEB3VhT8-TfLAsss3CJcYmAm97IvwL3f6ZpPnbrDe-CTcauMre1vZ1C3ZMfhuujdoucXfgK9oZq0sgs8KyT2VmEb2m7Hx-gUx7nrAk7w7KBZvOitVyhhIMw3pB-eyUNGbYiVkgbcewy4qcjUuTOSOTZXTjeRV8Nnfh9FJUew96eZGbB8CioZHCHbpJgFg1sV5C24O1RGKvUyW17sOrVpOxbiqbU4ONLEaGQ4qPtxTfh5ed-LIu6fEvwb12WOLGs1fxLzvsw7PuNCqdFlpQT0VZyQgR4ocHfbhfj2L3JA8hJ05OeHW4Nb6dANX73j6Tz2dV3e8oDBHM8of_f62ncBUdI_5wNDl-BNcF7dbglLW4B731RWkeI4ZaqyeNsTL4ctn-8RMkIzSS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Effect+of+Sulfated+Zirconia+and+Zirconium+Phosphate+Nanocomposite+Membranes+on+Fuel-Cell+Efficiency&rft.jtitle=Polymers&rft.au=Sigwadi%2C+Rudzani&rft.au=Mokrani%2C+Touhami&rft.au=Msomi%2C+Phumlani&rft.au=Nemavhola%2C+Fulufhelo&rft.date=2022-01-10&rft.pub=MDPI&rft.eissn=2073-4360&rft.volume=14&rft.issue=2&rft_id=info:doi/10.3390%2Fpolym14020263&rft_id=info%3Apmid%2F35054671&rft.externalDocID=PMC8779290 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon |