LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks

Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense black-box hidden representation of their sequential input. Researchers interested in better understanding these models have studied the change...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 24; no. 1; pp. 667 - 676
Main Authors Strobelt, Hendrik, Gehrmann, Sebastian, Pfister, Hanspeter, Rush, Alexander M.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense black-box hidden representation of their sequential input. Researchers interested in better understanding these models have studied the changes in hidden state representations over time and noticed some interpretable patterns but also significant noise. In this work, we present LSTMVis, a visual analysis tool for recurrent neural networks with a focus on understanding these hidden state dynamics. The tool allows users to select a hypothesis input range to focus on local state changes, to match these states changes to similar patterns in a large data set, and to align these results with structural annotations from their domain. We show several use cases of the tool for analyzing specific hidden state properties on dataset containing nesting, phrase structure, and chord progressions, and demonstrate how the tool can be used to isolate patterns for further statistical analysis. We characterize the domain, the different stakeholders, and their goals and tasks. Long-term usage data after putting the tool online revealed great interest in the machine learning community.
AbstractList Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense black-box hidden representation of their sequential input. Researchers interested in better understanding these models have studied the changes in hidden state representations over time and noticed some interpretable patterns but also significant noise. In this work, we present LSTMVis, a visual analysis tool for recurrent neural networks with a focus on understanding these hidden state dynamics. The tool allows users to select a hypothesis input range to focus on local state changes, to match these states changes to similar patterns in a large data set, and to align these results with structural annotations from their domain. We show several use cases of the tool for analyzing specific hidden state properties on dataset containing nesting, phrase structure, and chord progressions, and demonstrate how the tool can be used to isolate patterns for further statistical analysis. We characterize the domain, the different stakeholders, and their goals and tasks. Long-term usage data after putting the tool online revealed great interest in the machine learning community.
Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense black-box hidden representation of their sequential input. Researchers interested in better understanding these models have studied the changes in hidden state representations over time and noticed some interpretable patterns but also significant noise. In this work, we present LSTMVis, a visual analysis tool for recurrent neural networks with a focus on understanding these hidden state dynamics. The tool allows users to select a hypothesis input range to focus on local state changes, to match these states changes to similar patterns in a large data set, and to align these results with structural annotations from their domain. We show several use cases of the tool for analyzing specific hidden state properties on dataset containing nesting, phrase structure, and chord progressions, and demonstrate how the tool can be used to isolate patterns for further statistical analysis. We characterize the domain, the different stakeholders, and their goals and tasks. Long-term usage data after putting the tool online revealed great interest in the machine learning community.Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense black-box hidden representation of their sequential input. Researchers interested in better understanding these models have studied the changes in hidden state representations over time and noticed some interpretable patterns but also significant noise. In this work, we present LSTMVis, a visual analysis tool for recurrent neural networks with a focus on understanding these hidden state dynamics. The tool allows users to select a hypothesis input range to focus on local state changes, to match these states changes to similar patterns in a large data set, and to align these results with structural annotations from their domain. We show several use cases of the tool for analyzing specific hidden state properties on dataset containing nesting, phrase structure, and chord progressions, and demonstrate how the tool can be used to isolate patterns for further statistical analysis. We characterize the domain, the different stakeholders, and their goals and tasks. Long-term usage data after putting the tool online revealed great interest in the machine learning community.
Author Gehrmann, Sebastian
Pfister, Hanspeter
Strobelt, Hendrik
Rush, Alexander M.
Author_xml – sequence: 1
  givenname: Hendrik
  surname: Strobelt
  fullname: Strobelt, Hendrik
  email: hendrik@strobelt.com
– sequence: 2
  givenname: Sebastian
  surname: Gehrmann
  fullname: Gehrmann, Sebastian
  email: gehrmann@seas.harvard.edu
– sequence: 3
  givenname: Hanspeter
  surname: Pfister
  fullname: Pfister, Hanspeter
  email: pfister@seas.harvard.edu
– sequence: 4
  givenname: Alexander M.
  surname: Rush
  fullname: Rush, Alexander M.
  email: rush@seas.harvard.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28866526$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URH_gARASssSGTYbrGyex2Y0GaJGGItGhEqvISa4ll4zd2onQvD0ezdBFF6xsy9_nn3PO2YkPnhh7LWAhBOgPm9vV5QJBNAtspBSVesbOhJaigArqkzyHpimwxvqUnad0ByCkVPoFO0Wl6rrC-oz9Wt9svt269JEv-SaEkdsQeV7PZuRLb8ZdcokHy6_cMJDnN5OZiH_aebN1feLO8x_UzzGSn_g1zTFb1zT9CfF3esmeWzMmenUcL9jPL583q6ti_f3y62q5Lvr84qnouqoksGiVlairTjRVh6ZuBtvVqFCTNsKCtrZBazUphQZQAkgjegQYygv2_nDufQwPM6Wp3brU0zgaT2FOrdBlJQE1QEbfPUHvwhzzL_dUTrAsUWCm3h6pudvS0N5HtzVx1_4LLQPiAPQxpBTJPiIC2n0x7b6Ydl9MeywmO80Tp3c5Sxf8FI0b_2u-OZiOiB5vUhnJm-VfNmKYNA
CODEN ITVGEA
CitedBy_id crossref_primary_10_1109_TVCG_2023_3327153
crossref_primary_10_1109_TVCG_2021_3100413
crossref_primary_10_1109_ACCESS_2018_2875677
crossref_primary_10_1109_TVCG_2019_2934547
crossref_primary_10_1109_ACCESS_2021_3137630
crossref_primary_10_1371_journal_pone_0192360
crossref_primary_10_1109_TVCG_2020_3030449
crossref_primary_10_1016_j_cag_2018_09_018
crossref_primary_10_1007_s12650_022_00899_8
crossref_primary_10_1109_TVCG_2019_2934267
crossref_primary_10_1016_j_neucom_2024_127730
crossref_primary_10_1016_j_glt_2018_11_001
crossref_primary_10_1109_TVCG_2018_2865027
crossref_primary_10_1109_TVCG_2019_2934261
crossref_primary_10_1109_TVCG_2021_3076749
crossref_primary_10_1109_ACCESS_2023_3320738
crossref_primary_10_1016_j_cag_2019_07_001
crossref_primary_10_1016_j_visinf_2020_04_006
crossref_primary_10_1038_s42256_020_00237_3
crossref_primary_10_3390_rs14184629
crossref_primary_10_1109_ACCESS_2019_2961295
crossref_primary_10_34133_research_0011
crossref_primary_10_1109_TVCG_2023_3326577
crossref_primary_10_1109_TVCG_2023_3327389
crossref_primary_10_1016_j_eswa_2022_117721
crossref_primary_10_3390_make3030032
crossref_primary_10_1007_s11042_020_09885_4
crossref_primary_10_1109_TVCG_2018_2864500
crossref_primary_10_1109_TSTE_2019_2897136
crossref_primary_10_1109_TVCG_2022_3148107
crossref_primary_10_1145_3344258
crossref_primary_10_3390_polym16182607
crossref_primary_10_1109_TVCG_2018_2864504
crossref_primary_10_1111_coin_12289
crossref_primary_10_1016_j_inffus_2023_101805
crossref_primary_10_1177_14738716231212568
crossref_primary_10_1145_3426866
crossref_primary_10_3390_app9152951
crossref_primary_10_1111_cgf_14034
crossref_primary_10_1109_TVCG_2020_3030342
crossref_primary_10_1007_s12650_024_00985_z
crossref_primary_10_1080_07038992_2021_2010523
crossref_primary_10_1016_j_cag_2024_104058
crossref_primary_10_1177_1088467X251319188
crossref_primary_10_1109_TVCG_2018_2864838
crossref_primary_10_1109_TVCG_2020_3028976
crossref_primary_10_1109_TVCG_2022_3209479
crossref_primary_10_1016_j_jhydrol_2021_126888
crossref_primary_10_1126_sciadv_abb3989
crossref_primary_10_1186_s42492_021_00090_0
crossref_primary_10_1145_3387166
crossref_primary_10_1109_TVCG_2022_3184186
crossref_primary_10_1162_coli_a_00511
crossref_primary_10_1002_ijfe_3116
crossref_primary_10_3390_app11135853
crossref_primary_10_1109_TVCG_2023_3339585
crossref_primary_10_32604_ee_2024_046374
crossref_primary_10_1109_TVCG_2022_3209404
crossref_primary_10_1007_s12650_021_00799_3
crossref_primary_10_1109_TVCG_2023_3263739
crossref_primary_10_1109_TVCG_2023_3236380
crossref_primary_10_1109_TVCG_2018_2843369
crossref_primary_10_1088_1742_6596_1650_3_032207
crossref_primary_10_1016_j_visinf_2018_09_001
crossref_primary_10_1111_cgf_13681
crossref_primary_10_1109_TVCG_2019_2934629
crossref_primary_10_1111_cgf_13962
crossref_primary_10_1111_exsy_13211
crossref_primary_10_1145_3672276
crossref_primary_10_1007_s42524_021_0169_x
crossref_primary_10_1007_s12650_018_0515_1
crossref_primary_10_1109_TVCG_2018_2864812
crossref_primary_10_1109_TVCG_2018_2864499
crossref_primary_10_1109_TVCG_2024_3357065
crossref_primary_10_1162_tacl_a_00254
crossref_primary_10_1016_j_csl_2019_101034
crossref_primary_10_1109_TVCG_2024_3456398
crossref_primary_10_1038_s41467_020_19105_0
crossref_primary_10_1109_TVCG_2019_2921323
crossref_primary_10_1109_TVCG_2018_2865230
crossref_primary_10_1177_14738716211021591
crossref_primary_10_1109_TVCG_2021_3114853
crossref_primary_10_1109_TVCG_2021_3114855
crossref_primary_10_1109_TVCG_2024_3456150
crossref_primary_10_1016_j_visinf_2021_03_003
crossref_primary_10_1111_cgf_13972
crossref_primary_10_1016_j_cag_2021_12_003
crossref_primary_10_1016_j_energy_2024_132823
crossref_primary_10_1109_TVCG_2018_2816223
crossref_primary_10_1109_TCCN_2024_3375521
crossref_primary_10_1109_TVCG_2019_2934595
crossref_primary_10_1109_TVCG_2022_3209462
crossref_primary_10_1007_s10462_021_10088_y
crossref_primary_10_1109_MCG_2018_2878902
crossref_primary_10_1109_TVCG_2022_3209466
crossref_primary_10_1109_TVCG_2020_3030410
crossref_primary_10_1016_j_envsoft_2022_105396
crossref_primary_10_1109_TVCG_2019_2934631
crossref_primary_10_1016_j_comcom_2022_06_036
crossref_primary_10_1016_j_cag_2021_09_002
crossref_primary_10_1016_j_patter_2022_100493
crossref_primary_10_1109_TVCG_2019_2934591
crossref_primary_10_1109_TVCG_2023_3261935
crossref_primary_10_3390_fi12120218
crossref_primary_10_1109_TVCG_2020_3030418
crossref_primary_10_4018_JDM_2020010104
crossref_primary_10_1109_TVCG_2022_3184247
crossref_primary_10_1109_TVCG_2019_2903946
crossref_primary_10_1109_TVCG_2022_3230832
crossref_primary_10_1109_TVCG_2022_3172107
crossref_primary_10_1007_s41095_020_0191_7
crossref_primary_10_1007_s11207_021_01906_1
crossref_primary_10_1016_j_future_2024_107601
crossref_primary_10_1109_TVCG_2018_2865044
crossref_primary_10_1109_TVCG_2021_3114841
crossref_primary_10_1109_TVCG_2020_3030420
crossref_primary_10_1109_TVCG_2021_3114683
crossref_primary_10_3390_app12199423
crossref_primary_10_1111_cgf_13667
crossref_primary_10_1109_TVCG_2020_2969185
crossref_primary_10_1109_TVCG_2021_3114845
crossref_primary_10_1177_14738716211038898
crossref_primary_10_3390_app14020601
crossref_primary_10_1109_MCG_2018_042731661
crossref_primary_10_1145_3576935
crossref_primary_10_1007_s00521_024_09962_x
crossref_primary_10_1145_3439333
crossref_primary_10_1007_s00371_022_02593_0
crossref_primary_10_1145_3551385
crossref_primary_10_1109_TVCG_2019_2947037
crossref_primary_10_1109_JSTARS_2022_3155967
crossref_primary_10_1177_14738716231168671
crossref_primary_10_3390_e26121046
crossref_primary_10_1007_s00371_023_03235_9
crossref_primary_10_1109_TVCG_2023_3326591
crossref_primary_10_1007_s12650_018_0531_1
crossref_primary_10_1063_5_0055371
crossref_primary_10_1007_s11629_021_6824_1
crossref_primary_10_1109_TVCG_2021_3114793
crossref_primary_10_1109_TVCG_2021_3114794
crossref_primary_10_1007_s10994_023_06479_7
crossref_primary_10_3390_s21010176
crossref_primary_10_1109_TVCG_2020_3028888
crossref_primary_10_1109_MCG_2023_3345742
crossref_primary_10_1016_j_neucom_2025_129641
crossref_primary_10_3390_drones7050327
crossref_primary_10_1029_2021WR030185
Cites_doi 10.1162/neco.1997.9.8.1735
10.1109/VISUAL.2005.1532820
10.1093/nar/gkw226
10.1109/TVCG.2016.2598831
10.21236/ADA273556
10.1109/TVCG.2016.2598838
10.1145/2858036.2858529
10.18653/v1/N16-1082
10.1038/nmeth.3547
10.1016/j.dss.2017.04.003
10.1109/72.963769
10.1145/1168149.1168158
10.1016/0364-0213(90)90002-E
10.1145/1753326.1753529
10.3115/1119176.1119195
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2017.2744158
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 676
ExternalDocumentID 28866526
10_1109_TVCG_2017_2744158
8017583
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: DARPA
  grantid: FA8750-12-C-0300
  funderid: 10.13039/100000185
– fundername: Oracle Research
– fundername: Air Force Research Laboratory
  funderid: 10.13039/100006602
– fundername: NIH
  grantid: U01CA198935
  funderid: 10.13039/100000002
– fundername: NCI NIH HHS
  grantid: U01 CA198935
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c415t-bb53e0f2f8f4295b175b2a67dfb62829e9a1f09ff72ff9e882a024004a1c200d3
IEDL.DBID RIE
ISSN 1077-2626
1941-0506
IngestDate Thu Jul 10 18:22:02 EDT 2025
Sun Jun 29 13:15:09 EDT 2025
Thu Apr 03 06:57:02 EDT 2025
Thu Apr 24 23:00:15 EDT 2025
Tue Jul 01 03:58:51 EDT 2025
Wed Aug 27 02:47:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-bb53e0f2f8f4295b175b2a67dfb62829e9a1f09ff72ff9e882a024004a1c200d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28866526
PQID 1974433212
PQPubID 75741
PageCount 10
ParticipantIDs proquest_journals_1974433212
ieee_primary_8017583
proquest_miscellaneous_1935402900
crossref_primary_10_1109_TVCG_2017_2744158
crossref_citationtrail_10_1109_TVCG_2017_2744158
pubmed_primary_28866526
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Jan.
2018-1-00
2018-01-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-Jan.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
zaremba (ref33) 2014
ref15
karpathy (ref16) 2015
ref30
ref11
wiles (ref31) 1998; 10
boulanger-lewandowski (ref4) 2012
sutskever (ref28) 2014
mikolov (ref22) 2010; 2
ref17
ref18
kalchbrenner (ref14) 2013; 3
abadi (ref1) 2016
xu (ref32) 2015
kádár (ref13) 2016
amodei (ref2) 2015
liu (ref19) 2016
ref24
ref26
ref25
ref20
mikolov (ref23) 2013
ref21
simonyan (ref27) 2013
dai (ref6) 2015
ref29
ching (ref5) 2017
kádár (ref12) 2015
ref8
ref7
hermann (ref10) 2015
ref9
bahdanau (ref3) 2014
zeiler (ref34) 2014
References_xml – ident: ref11
  doi: 10.1162/neco.1997.9.8.1735
– year: 2012
  ident: ref4
  article-title: Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription
  publication-title: Proceedings of the 29th International Conference on Machine Learning 2012
– ident: ref30
  doi: 10.1109/VISUAL.2005.1532820
– start-page: 2048
  year: 2015
  ident: ref32
  article-title: Show, Show, attend and tell: Neural image caption generation with visual attention
  publication-title: Proceedings of the 32nd International Conference on Machine Learning ICML 2015 Lille France 6-11 July 2015 vol 37 of JMLR Proceedings
– year: 2014
  ident: ref3
  publication-title: Neural machine translation by jointly learning to align and translate
– year: 2015
  ident: ref2
  publication-title: Deep speech 2 End-to-end speech recognition in english and mandarin
– ident: ref24
  doi: 10.1093/nar/gkw226
– ident: ref20
  doi: 10.1109/TVCG.2016.2598831
– ident: ref21
  doi: 10.21236/ADA273556
– year: 2015
  ident: ref12
  publication-title: Lingusitic analysis of multi-modal recurrent neural networks
– year: 2015
  ident: ref16
  publication-title: Visualizing and understanding recurrent networks
– ident: ref25
  doi: 10.1109/TVCG.2016.2598838
– start-page: 1693
  year: 2015
  ident: ref10
  article-title: Teaching machines to read and comprehend
  publication-title: Advances in Neural Information Processing Systems 28 Annual Conference on Neural Information Processing Systems 2015
– ident: ref17
  doi: 10.1145/2858036.2858529
– year: 2016
  ident: ref1
  publication-title: Tensorflow Large-scale machine learning on heterogeneous distributed systems
– start-page: 818
  year: 2014
  ident: ref34
  article-title: Visualizing and understanding convolutional networks
  publication-title: European Conference on Computer Vision
– volume: 2
  start-page: 3
  year: 2010
  ident: ref22
  article-title: Recurrent neural network based language model
  publication-title: InterSpeech
– ident: ref18
  doi: 10.18653/v1/N16-1082
– ident: ref35
  doi: 10.1038/nmeth.3547
– ident: ref8
  doi: 10.1016/j.dss.2017.04.003
– ident: ref9
  doi: 10.1109/72.963769
– start-page: 3079
  year: 2015
  ident: ref6
  article-title: Semi-supervised sequence learning
  publication-title: Advances in neural information processing systems
– year: 2017
  ident: ref5
  article-title: Opportunities and obstacles for deep learning in biology and medicine
  publication-title: BioRxiv
– ident: ref26
  doi: 10.1145/1168149.1168158
– year: 2016
  ident: ref13
  publication-title: Representation of linguistic form and function in recurrent neural networks
– year: 2016
  ident: ref19
  article-title: Modeling language vagueness in privacy policies using deep neural networks
  publication-title: 2016 AAAI Fall Symposium Series
– start-page: 3104
  year: 2014
  ident: ref28
  article-title: Sequence to sequence learning with neural networks
  publication-title: Advances in neural information processing systems
– ident: ref7
  doi: 10.1016/0364-0213(90)90002-E
– ident: ref15
  doi: 10.1145/1753326.1753529
– ident: ref29
  doi: 10.3115/1119176.1119195
– volume: 10
  start-page: 87
  year: 1998
  ident: ref31
  article-title: Recurrent neural networks can learn to implement symbol-sensitive counting
  publication-title: Advances in Neural Information Processing Systems 10 Proceedings of the 1997 Conference
– year: 2014
  ident: ref33
  publication-title: Recurrent Neural Network Regularization
– volume: 3
  start-page: 413
  year: 2013
  ident: ref14
  article-title: Recurrent continuous translation models
  publication-title: EMNLP
– year: 2013
  ident: ref27
  publication-title: Deep Inside Convolutional Networks Visualising Image Classification Models and Saliency Maps
– start-page: 3111
  year: 2013
  ident: ref23
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: Advances in neural information processing systems
SSID ssj0014489
Score 2.636803
Snippet Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 667
SubjectTerms Annotations
Computational modeling
Data models
LSTM
Machine Learning
Nesting
Neural networks
Pattern matching
Progressions
Recurrent neural networks
Representations
Statistical analysis
Visualization
Title LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks
URI https://ieeexplore.ieee.org/document/8017583
https://www.ncbi.nlm.nih.gov/pubmed/28866526
https://www.proquest.com/docview/1974433212
https://www.proquest.com/docview/1935402900
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0BJziwL2GTkTghUhw3K7cKKBWiHKCtyimKE1tCoATR5sLXMxOnUYUAcUsUO3Y8dvxm8RuAU4VqlciUsFWYBrbr-5Edumnb1l4WOC4RT2Z0Grn_4PeG7t3YGy_AeXMWRilVBZ-pFl1WvvysSEsylV3g3xThbXsRFrEFc1ar8RigmhGZ-MLAFojSaw-mw6OLwejqloK4ghbR4Tke5egTIRG9EaXC3HZU5Vf5HWpWW053DfqzzppIk9dWOZWt9PMbj-N_v2YdVmvsyTpmsmzAgso3YWWOkXALnu-fBv3Ry-SSddigKN4YYlqG9yXVq_lLWKFZj5hHclZBVXZtstpP2EvOHsl-T4xPjGg_sNaDiTOfbMOwezO46tl19gU7xTGa2lJ6bcW10KHGPcuT2FkpEj_ItPTJ_aqixNGcTL5C60ihyBPiS-Nu4qS49LL2DizlRa72gPm-TpPM81RF_-dyKcMoExKxhfRUKLUFfCaEOK2pySlDxltcqSg8ikmEMYkwrkVowVlT5d3wcvxVeIuGvylYj7wFhzNJx_XKncQOKljE6eYIC06ax7jmyJGS5KooqQxZy0TEuQW7ZoY0755NrP2f2zyAZexZaIw4h7A0_SjVEcKaqTyu5vMX6XTu-g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROLQceBYIrxqpp6pZHG-cBzfEo0u7uwcaEJyiOLElBEoQu7nw65mJsxFCFPWWKHbW8YzX3zz8DcB3jWaVKLRwdZSHrh8EsRv5ed81sgg9n4gnCzqNPBoHgyv_9428mYOf3VkYrXWTfKZ7dNnE8osqr8lVdoj_pghv-59gAfd96dnTWl3MAA2N2GYYhq5AnN7GMD0eHybXJ78ojSvsESGeJ6lKn4iI6o1IFV5tSE2FlX-DzWbTOV-G0Wy4NtfkvldPVS9_fsPk-L_fswJLLfpkx1ZdVmFOl2uw-IqTcB1uh3-T0fXd5Igds6SqHhiiWob3NfVrGUxYZdiAuEdK1oBVdmrr2k_YXckuyYNPnE-MiD-w19hmmk--wtX5WXIycNv6C26OczR1lZJ9zY0wkcFdSyocrBJZEBZGBRSA1XHmGU5OX2FMrFHoGTGmcT_zclx8RX8D5suq1FvAgsDkWSGlbggAfa5UFBdCIbpQUkfKOMBnQkjzlpycamQ8pI2RwuOURJiSCNNWhA786Lo8WmaOjxqv0_R3DduZd2B3Jum0XbuT1EMTi1jdPOHAQfcYVx2FUrJSVzW1IX-ZiDl3YNNqSPfumWJtv_-b3-DzIBkN0-HF-M8OfMFRRtalswvz06da7yHImar9RrdfAIn58kM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LSTMVis%3A+A+Tool+for+Visual+Analysis+of+Hidden+State+Dynamics+in+Recurrent+Neural+Networks&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Strobelt%2C+Hendrik&rft.au=Gehrmann%2C+Sebastian&rft.au=Pfister%2C+Hanspeter&rft.au=Rush%2C+Alexander+M&rft.date=2018-01-01&rft.issn=1941-0506&rft.eissn=1941-0506&rft.volume=24&rft.issue=1&rft.spage=667&rft_id=info:doi/10.1109%2FTVCG.2017.2744158&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon