LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks
Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense black-box hidden representation of their sequential input. Researchers interested in better understanding these models have studied the change...
Saved in:
Published in | IEEE transactions on visualization and computer graphics Vol. 24; no. 1; pp. 667 - 676 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense black-box hidden representation of their sequential input. Researchers interested in better understanding these models have studied the changes in hidden state representations over time and noticed some interpretable patterns but also significant noise. In this work, we present LSTMVis, a visual analysis tool for recurrent neural networks with a focus on understanding these hidden state dynamics. The tool allows users to select a hypothesis input range to focus on local state changes, to match these states changes to similar patterns in a large data set, and to align these results with structural annotations from their domain. We show several use cases of the tool for analyzing specific hidden state properties on dataset containing nesting, phrase structure, and chord progressions, and demonstrate how the tool can be used to isolate patterns for further statistical analysis. We characterize the domain, the different stakeholders, and their goals and tasks. Long-term usage data after putting the tool online revealed great interest in the machine learning community. |
---|---|
AbstractList | Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense black-box hidden representation of their sequential input. Researchers interested in better understanding these models have studied the changes in hidden state representations over time and noticed some interpretable patterns but also significant noise. In this work, we present LSTMVis, a visual analysis tool for recurrent neural networks with a focus on understanding these hidden state dynamics. The tool allows users to select a hypothesis input range to focus on local state changes, to match these states changes to similar patterns in a large data set, and to align these results with structural annotations from their domain. We show several use cases of the tool for analyzing specific hidden state properties on dataset containing nesting, phrase structure, and chord progressions, and demonstrate how the tool can be used to isolate patterns for further statistical analysis. We characterize the domain, the different stakeholders, and their goals and tasks. Long-term usage data after putting the tool online revealed great interest in the machine learning community. Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense black-box hidden representation of their sequential input. Researchers interested in better understanding these models have studied the changes in hidden state representations over time and noticed some interpretable patterns but also significant noise. In this work, we present LSTMVis, a visual analysis tool for recurrent neural networks with a focus on understanding these hidden state dynamics. The tool allows users to select a hypothesis input range to focus on local state changes, to match these states changes to similar patterns in a large data set, and to align these results with structural annotations from their domain. We show several use cases of the tool for analyzing specific hidden state properties on dataset containing nesting, phrase structure, and chord progressions, and demonstrate how the tool can be used to isolate patterns for further statistical analysis. We characterize the domain, the different stakeholders, and their goals and tasks. Long-term usage data after putting the tool online revealed great interest in the machine learning community.Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense black-box hidden representation of their sequential input. Researchers interested in better understanding these models have studied the changes in hidden state representations over time and noticed some interpretable patterns but also significant noise. In this work, we present LSTMVis, a visual analysis tool for recurrent neural networks with a focus on understanding these hidden state dynamics. The tool allows users to select a hypothesis input range to focus on local state changes, to match these states changes to similar patterns in a large data set, and to align these results with structural annotations from their domain. We show several use cases of the tool for analyzing specific hidden state properties on dataset containing nesting, phrase structure, and chord progressions, and demonstrate how the tool can be used to isolate patterns for further statistical analysis. We characterize the domain, the different stakeholders, and their goals and tasks. Long-term usage data after putting the tool online revealed great interest in the machine learning community. |
Author | Gehrmann, Sebastian Pfister, Hanspeter Strobelt, Hendrik Rush, Alexander M. |
Author_xml | – sequence: 1 givenname: Hendrik surname: Strobelt fullname: Strobelt, Hendrik email: hendrik@strobelt.com – sequence: 2 givenname: Sebastian surname: Gehrmann fullname: Gehrmann, Sebastian email: gehrmann@seas.harvard.edu – sequence: 3 givenname: Hanspeter surname: Pfister fullname: Pfister, Hanspeter email: pfister@seas.harvard.edu – sequence: 4 givenname: Alexander M. surname: Rush fullname: Rush, Alexander M. email: rush@seas.harvard.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28866526$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhS1URH_gARASssSGTYbrGyex2Y0GaJGGItGhEqvISa4ll4zd2onQvD0ezdBFF6xsy9_nn3PO2YkPnhh7LWAhBOgPm9vV5QJBNAtspBSVesbOhJaigArqkzyHpimwxvqUnad0ByCkVPoFO0Wl6rrC-oz9Wt9svt269JEv-SaEkdsQeV7PZuRLb8ZdcokHy6_cMJDnN5OZiH_aebN1feLO8x_UzzGSn_g1zTFb1zT9CfF3esmeWzMmenUcL9jPL583q6ti_f3y62q5Lvr84qnouqoksGiVlairTjRVh6ZuBtvVqFCTNsKCtrZBazUphQZQAkgjegQYygv2_nDufQwPM6Wp3brU0zgaT2FOrdBlJQE1QEbfPUHvwhzzL_dUTrAsUWCm3h6pudvS0N5HtzVx1_4LLQPiAPQxpBTJPiIC2n0x7b6Ydl9MeywmO80Tp3c5Sxf8FI0b_2u-OZiOiB5vUhnJm-VfNmKYNA |
CODEN | ITVGEA |
CitedBy_id | crossref_primary_10_1109_TVCG_2023_3327153 crossref_primary_10_1109_TVCG_2021_3100413 crossref_primary_10_1109_ACCESS_2018_2875677 crossref_primary_10_1109_TVCG_2019_2934547 crossref_primary_10_1109_ACCESS_2021_3137630 crossref_primary_10_1371_journal_pone_0192360 crossref_primary_10_1109_TVCG_2020_3030449 crossref_primary_10_1016_j_cag_2018_09_018 crossref_primary_10_1007_s12650_022_00899_8 crossref_primary_10_1109_TVCG_2019_2934267 crossref_primary_10_1016_j_neucom_2024_127730 crossref_primary_10_1016_j_glt_2018_11_001 crossref_primary_10_1109_TVCG_2018_2865027 crossref_primary_10_1109_TVCG_2019_2934261 crossref_primary_10_1109_TVCG_2021_3076749 crossref_primary_10_1109_ACCESS_2023_3320738 crossref_primary_10_1016_j_cag_2019_07_001 crossref_primary_10_1016_j_visinf_2020_04_006 crossref_primary_10_1038_s42256_020_00237_3 crossref_primary_10_3390_rs14184629 crossref_primary_10_1109_ACCESS_2019_2961295 crossref_primary_10_34133_research_0011 crossref_primary_10_1109_TVCG_2023_3326577 crossref_primary_10_1109_TVCG_2023_3327389 crossref_primary_10_1016_j_eswa_2022_117721 crossref_primary_10_3390_make3030032 crossref_primary_10_1007_s11042_020_09885_4 crossref_primary_10_1109_TVCG_2018_2864500 crossref_primary_10_1109_TSTE_2019_2897136 crossref_primary_10_1109_TVCG_2022_3148107 crossref_primary_10_1145_3344258 crossref_primary_10_3390_polym16182607 crossref_primary_10_1109_TVCG_2018_2864504 crossref_primary_10_1111_coin_12289 crossref_primary_10_1016_j_inffus_2023_101805 crossref_primary_10_1177_14738716231212568 crossref_primary_10_1145_3426866 crossref_primary_10_3390_app9152951 crossref_primary_10_1111_cgf_14034 crossref_primary_10_1109_TVCG_2020_3030342 crossref_primary_10_1007_s12650_024_00985_z crossref_primary_10_1080_07038992_2021_2010523 crossref_primary_10_1016_j_cag_2024_104058 crossref_primary_10_1177_1088467X251319188 crossref_primary_10_1109_TVCG_2018_2864838 crossref_primary_10_1109_TVCG_2020_3028976 crossref_primary_10_1109_TVCG_2022_3209479 crossref_primary_10_1016_j_jhydrol_2021_126888 crossref_primary_10_1126_sciadv_abb3989 crossref_primary_10_1186_s42492_021_00090_0 crossref_primary_10_1145_3387166 crossref_primary_10_1109_TVCG_2022_3184186 crossref_primary_10_1162_coli_a_00511 crossref_primary_10_1002_ijfe_3116 crossref_primary_10_3390_app11135853 crossref_primary_10_1109_TVCG_2023_3339585 crossref_primary_10_32604_ee_2024_046374 crossref_primary_10_1109_TVCG_2022_3209404 crossref_primary_10_1007_s12650_021_00799_3 crossref_primary_10_1109_TVCG_2023_3263739 crossref_primary_10_1109_TVCG_2023_3236380 crossref_primary_10_1109_TVCG_2018_2843369 crossref_primary_10_1088_1742_6596_1650_3_032207 crossref_primary_10_1016_j_visinf_2018_09_001 crossref_primary_10_1111_cgf_13681 crossref_primary_10_1109_TVCG_2019_2934629 crossref_primary_10_1111_cgf_13962 crossref_primary_10_1111_exsy_13211 crossref_primary_10_1145_3672276 crossref_primary_10_1007_s42524_021_0169_x crossref_primary_10_1007_s12650_018_0515_1 crossref_primary_10_1109_TVCG_2018_2864812 crossref_primary_10_1109_TVCG_2018_2864499 crossref_primary_10_1109_TVCG_2024_3357065 crossref_primary_10_1162_tacl_a_00254 crossref_primary_10_1016_j_csl_2019_101034 crossref_primary_10_1109_TVCG_2024_3456398 crossref_primary_10_1038_s41467_020_19105_0 crossref_primary_10_1109_TVCG_2019_2921323 crossref_primary_10_1109_TVCG_2018_2865230 crossref_primary_10_1177_14738716211021591 crossref_primary_10_1109_TVCG_2021_3114853 crossref_primary_10_1109_TVCG_2021_3114855 crossref_primary_10_1109_TVCG_2024_3456150 crossref_primary_10_1016_j_visinf_2021_03_003 crossref_primary_10_1111_cgf_13972 crossref_primary_10_1016_j_cag_2021_12_003 crossref_primary_10_1016_j_energy_2024_132823 crossref_primary_10_1109_TVCG_2018_2816223 crossref_primary_10_1109_TCCN_2024_3375521 crossref_primary_10_1109_TVCG_2019_2934595 crossref_primary_10_1109_TVCG_2022_3209462 crossref_primary_10_1007_s10462_021_10088_y crossref_primary_10_1109_MCG_2018_2878902 crossref_primary_10_1109_TVCG_2022_3209466 crossref_primary_10_1109_TVCG_2020_3030410 crossref_primary_10_1016_j_envsoft_2022_105396 crossref_primary_10_1109_TVCG_2019_2934631 crossref_primary_10_1016_j_comcom_2022_06_036 crossref_primary_10_1016_j_cag_2021_09_002 crossref_primary_10_1016_j_patter_2022_100493 crossref_primary_10_1109_TVCG_2019_2934591 crossref_primary_10_1109_TVCG_2023_3261935 crossref_primary_10_3390_fi12120218 crossref_primary_10_1109_TVCG_2020_3030418 crossref_primary_10_4018_JDM_2020010104 crossref_primary_10_1109_TVCG_2022_3184247 crossref_primary_10_1109_TVCG_2019_2903946 crossref_primary_10_1109_TVCG_2022_3230832 crossref_primary_10_1109_TVCG_2022_3172107 crossref_primary_10_1007_s41095_020_0191_7 crossref_primary_10_1007_s11207_021_01906_1 crossref_primary_10_1016_j_future_2024_107601 crossref_primary_10_1109_TVCG_2018_2865044 crossref_primary_10_1109_TVCG_2021_3114841 crossref_primary_10_1109_TVCG_2020_3030420 crossref_primary_10_1109_TVCG_2021_3114683 crossref_primary_10_3390_app12199423 crossref_primary_10_1111_cgf_13667 crossref_primary_10_1109_TVCG_2020_2969185 crossref_primary_10_1109_TVCG_2021_3114845 crossref_primary_10_1177_14738716211038898 crossref_primary_10_3390_app14020601 crossref_primary_10_1109_MCG_2018_042731661 crossref_primary_10_1145_3576935 crossref_primary_10_1007_s00521_024_09962_x crossref_primary_10_1145_3439333 crossref_primary_10_1007_s00371_022_02593_0 crossref_primary_10_1145_3551385 crossref_primary_10_1109_TVCG_2019_2947037 crossref_primary_10_1109_JSTARS_2022_3155967 crossref_primary_10_1177_14738716231168671 crossref_primary_10_3390_e26121046 crossref_primary_10_1007_s00371_023_03235_9 crossref_primary_10_1109_TVCG_2023_3326591 crossref_primary_10_1007_s12650_018_0531_1 crossref_primary_10_1063_5_0055371 crossref_primary_10_1007_s11629_021_6824_1 crossref_primary_10_1109_TVCG_2021_3114793 crossref_primary_10_1109_TVCG_2021_3114794 crossref_primary_10_1007_s10994_023_06479_7 crossref_primary_10_3390_s21010176 crossref_primary_10_1109_TVCG_2020_3028888 crossref_primary_10_1109_MCG_2023_3345742 crossref_primary_10_1016_j_neucom_2025_129641 crossref_primary_10_3390_drones7050327 crossref_primary_10_1029_2021WR030185 |
Cites_doi | 10.1162/neco.1997.9.8.1735 10.1109/VISUAL.2005.1532820 10.1093/nar/gkw226 10.1109/TVCG.2016.2598831 10.21236/ADA273556 10.1109/TVCG.2016.2598838 10.1145/2858036.2858529 10.18653/v1/N16-1082 10.1038/nmeth.3547 10.1016/j.dss.2017.04.003 10.1109/72.963769 10.1145/1168149.1168158 10.1016/0364-0213(90)90002-E 10.1145/1753326.1753529 10.3115/1119176.1119195 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TVCG.2017.2744158 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0506 |
EndPage | 676 |
ExternalDocumentID | 28866526 10_1109_TVCG_2017_2744158 8017583 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: DARPA grantid: FA8750-12-C-0300 funderid: 10.13039/100000185 – fundername: Oracle Research – fundername: Air Force Research Laboratory funderid: 10.13039/100006602 – fundername: NIH grantid: U01CA198935 funderid: 10.13039/100000002 – fundername: NCI NIH HHS grantid: U01 CA198935 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYOK AAYXX CITATION RIG NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c415t-bb53e0f2f8f4295b175b2a67dfb62829e9a1f09ff72ff9e882a024004a1c200d3 |
IEDL.DBID | RIE |
ISSN | 1077-2626 1941-0506 |
IngestDate | Thu Jul 10 18:22:02 EDT 2025 Sun Jun 29 13:15:09 EDT 2025 Thu Apr 03 06:57:02 EDT 2025 Thu Apr 24 23:00:15 EDT 2025 Tue Jul 01 03:58:51 EDT 2025 Wed Aug 27 02:47:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-bb53e0f2f8f4295b175b2a67dfb62829e9a1f09ff72ff9e882a024004a1c200d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28866526 |
PQID | 1974433212 |
PQPubID | 75741 |
PageCount | 10 |
ParticipantIDs | proquest_journals_1974433212 ieee_primary_8017583 proquest_miscellaneous_1935402900 crossref_primary_10_1109_TVCG_2017_2744158 crossref_citationtrail_10_1109_TVCG_2017_2744158 pubmed_primary_28866526 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Jan. 2018-1-00 2018-01-00 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-Jan. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on visualization and computer graphics |
PublicationTitleAbbrev | TVCG |
PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 zaremba (ref33) 2014 ref15 karpathy (ref16) 2015 ref30 ref11 wiles (ref31) 1998; 10 boulanger-lewandowski (ref4) 2012 sutskever (ref28) 2014 mikolov (ref22) 2010; 2 ref17 ref18 kalchbrenner (ref14) 2013; 3 abadi (ref1) 2016 xu (ref32) 2015 kádár (ref13) 2016 amodei (ref2) 2015 liu (ref19) 2016 ref24 ref26 ref25 ref20 mikolov (ref23) 2013 ref21 simonyan (ref27) 2013 dai (ref6) 2015 ref29 ching (ref5) 2017 kádár (ref12) 2015 ref8 ref7 hermann (ref10) 2015 ref9 bahdanau (ref3) 2014 zeiler (ref34) 2014 |
References_xml | – ident: ref11 doi: 10.1162/neco.1997.9.8.1735 – year: 2012 ident: ref4 article-title: Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription publication-title: Proceedings of the 29th International Conference on Machine Learning 2012 – ident: ref30 doi: 10.1109/VISUAL.2005.1532820 – start-page: 2048 year: 2015 ident: ref32 article-title: Show, Show, attend and tell: Neural image caption generation with visual attention publication-title: Proceedings of the 32nd International Conference on Machine Learning ICML 2015 Lille France 6-11 July 2015 vol 37 of JMLR Proceedings – year: 2014 ident: ref3 publication-title: Neural machine translation by jointly learning to align and translate – year: 2015 ident: ref2 publication-title: Deep speech 2 End-to-end speech recognition in english and mandarin – ident: ref24 doi: 10.1093/nar/gkw226 – ident: ref20 doi: 10.1109/TVCG.2016.2598831 – ident: ref21 doi: 10.21236/ADA273556 – year: 2015 ident: ref12 publication-title: Lingusitic analysis of multi-modal recurrent neural networks – year: 2015 ident: ref16 publication-title: Visualizing and understanding recurrent networks – ident: ref25 doi: 10.1109/TVCG.2016.2598838 – start-page: 1693 year: 2015 ident: ref10 article-title: Teaching machines to read and comprehend publication-title: Advances in Neural Information Processing Systems 28 Annual Conference on Neural Information Processing Systems 2015 – ident: ref17 doi: 10.1145/2858036.2858529 – year: 2016 ident: ref1 publication-title: Tensorflow Large-scale machine learning on heterogeneous distributed systems – start-page: 818 year: 2014 ident: ref34 article-title: Visualizing and understanding convolutional networks publication-title: European Conference on Computer Vision – volume: 2 start-page: 3 year: 2010 ident: ref22 article-title: Recurrent neural network based language model publication-title: InterSpeech – ident: ref18 doi: 10.18653/v1/N16-1082 – ident: ref35 doi: 10.1038/nmeth.3547 – ident: ref8 doi: 10.1016/j.dss.2017.04.003 – ident: ref9 doi: 10.1109/72.963769 – start-page: 3079 year: 2015 ident: ref6 article-title: Semi-supervised sequence learning publication-title: Advances in neural information processing systems – year: 2017 ident: ref5 article-title: Opportunities and obstacles for deep learning in biology and medicine publication-title: BioRxiv – ident: ref26 doi: 10.1145/1168149.1168158 – year: 2016 ident: ref13 publication-title: Representation of linguistic form and function in recurrent neural networks – year: 2016 ident: ref19 article-title: Modeling language vagueness in privacy policies using deep neural networks publication-title: 2016 AAAI Fall Symposium Series – start-page: 3104 year: 2014 ident: ref28 article-title: Sequence to sequence learning with neural networks publication-title: Advances in neural information processing systems – ident: ref7 doi: 10.1016/0364-0213(90)90002-E – ident: ref15 doi: 10.1145/1753326.1753529 – ident: ref29 doi: 10.3115/1119176.1119195 – volume: 10 start-page: 87 year: 1998 ident: ref31 article-title: Recurrent neural networks can learn to implement symbol-sensitive counting publication-title: Advances in Neural Information Processing Systems 10 Proceedings of the 1997 Conference – year: 2014 ident: ref33 publication-title: Recurrent Neural Network Regularization – volume: 3 start-page: 413 year: 2013 ident: ref14 article-title: Recurrent continuous translation models publication-title: EMNLP – year: 2013 ident: ref27 publication-title: Deep Inside Convolutional Networks Visualising Image Classification Models and Saliency Maps – start-page: 3111 year: 2013 ident: ref23 article-title: Distributed representations of words and phrases and their compositionality publication-title: Advances in neural information processing systems |
SSID | ssj0014489 |
Score | 2.636803 |
Snippet | Recurrent neural networks, and in particular long short-term memory (LSTM) networks, are a remarkably effective tool for sequence modeling that learn a dense... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 667 |
SubjectTerms | Annotations Computational modeling Data models LSTM Machine Learning Nesting Neural networks Pattern matching Progressions Recurrent neural networks Representations Statistical analysis Visualization |
Title | LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks |
URI | https://ieeexplore.ieee.org/document/8017583 https://www.ncbi.nlm.nih.gov/pubmed/28866526 https://www.proquest.com/docview/1974433212 https://www.proquest.com/docview/1935402900 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0BJziwL2GTkTghUhw3K7cKKBWiHKCtyimKE1tCoATR5sLXMxOnUYUAcUsUO3Y8dvxm8RuAU4VqlciUsFWYBrbr-5Edumnb1l4WOC4RT2Z0Grn_4PeG7t3YGy_AeXMWRilVBZ-pFl1WvvysSEsylV3g3xThbXsRFrEFc1ar8RigmhGZ-MLAFojSaw-mw6OLwejqloK4ghbR4Tke5egTIRG9EaXC3HZU5Vf5HWpWW053DfqzzppIk9dWOZWt9PMbj-N_v2YdVmvsyTpmsmzAgso3YWWOkXALnu-fBv3Ry-SSddigKN4YYlqG9yXVq_lLWKFZj5hHclZBVXZtstpP2EvOHsl-T4xPjGg_sNaDiTOfbMOwezO46tl19gU7xTGa2lJ6bcW10KHGPcuT2FkpEj_ItPTJ_aqixNGcTL5C60ihyBPiS-Nu4qS49LL2DizlRa72gPm-TpPM81RF_-dyKcMoExKxhfRUKLUFfCaEOK2pySlDxltcqSg8ikmEMYkwrkVowVlT5d3wcvxVeIuGvylYj7wFhzNJx_XKncQOKljE6eYIC06ax7jmyJGS5KooqQxZy0TEuQW7ZoY0755NrP2f2zyAZexZaIw4h7A0_SjVEcKaqTyu5vMX6XTu-g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROLQceBYIrxqpp6pZHG-cBzfEo0u7uwcaEJyiOLElBEoQu7nw65mJsxFCFPWWKHbW8YzX3zz8DcB3jWaVKLRwdZSHrh8EsRv5ed81sgg9n4gnCzqNPBoHgyv_9428mYOf3VkYrXWTfKZ7dNnE8osqr8lVdoj_pghv-59gAfd96dnTWl3MAA2N2GYYhq5AnN7GMD0eHybXJ78ojSvsESGeJ6lKn4iI6o1IFV5tSE2FlX-DzWbTOV-G0Wy4NtfkvldPVS9_fsPk-L_fswJLLfpkx1ZdVmFOl2uw-IqTcB1uh3-T0fXd5Igds6SqHhiiWob3NfVrGUxYZdiAuEdK1oBVdmrr2k_YXckuyYNPnE-MiD-w19hmmk--wtX5WXIycNv6C26OczR1lZJ9zY0wkcFdSyocrBJZEBZGBRSA1XHmGU5OX2FMrFHoGTGmcT_zclx8RX8D5suq1FvAgsDkWSGlbggAfa5UFBdCIbpQUkfKOMBnQkjzlpycamQ8pI2RwuOURJiSCNNWhA786Lo8WmaOjxqv0_R3DduZd2B3Jum0XbuT1EMTi1jdPOHAQfcYVx2FUrJSVzW1IX-ZiDl3YNNqSPfumWJtv_-b3-DzIBkN0-HF-M8OfMFRRtalswvz06da7yHImar9RrdfAIn58kM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LSTMVis%3A+A+Tool+for+Visual+Analysis+of+Hidden+State+Dynamics+in+Recurrent+Neural+Networks&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Strobelt%2C+Hendrik&rft.au=Gehrmann%2C+Sebastian&rft.au=Pfister%2C+Hanspeter&rft.au=Rush%2C+Alexander+M&rft.date=2018-01-01&rft.issn=1941-0506&rft.eissn=1941-0506&rft.volume=24&rft.issue=1&rft.spage=667&rft_id=info:doi/10.1109%2FTVCG.2017.2744158&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |