Prediction model of end-point phosphorus content in BOF steelmaking process based on PCA and BP neural network

•A combined principal component analysis (PCA) and BP neural network model is established to predict BOF end-point phosphorus content.•A multiple linear regression model and BP neural network model for prediction of BOF end-point phosphorus content are also established.•PCA could reduce dimensionali...

Full description

Saved in:
Bibliographic Details
Published inJournal of process control Vol. 66; pp. 51 - 58
Main Authors He, Fei, Zhang, Lingying
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A combined principal component analysis (PCA) and BP neural network model is established to predict BOF end-point phosphorus content.•A multiple linear regression model and BP neural network model for prediction of BOF end-point phosphorus content are also established.•PCA could reduce dimensionality of the factors influencing of BOF end-point phosphorus content and eliminate correlations among the factors.•PCA not only simplifies the structure of BP neural network, but also improve the network generalization ability.•Online prediction system for BOF end-point phosphorus content is developed and has very high prediction accuracy in industrial application. A prediction model based on the principal component analysis (PCA) and back propagation (BP) neural network is proposed for BOF end-point phosphorus content, based on the characters of BOF metallurgical process and production data. PCA is used to reduce dimensionality of the factors influencing end-point phosphorus content, and eliminate the correlations among the factors, and then the obtained principal components are used as BP neural network input vectors. The combined PCA-BP neural network model is trained and tested by history data, and is further compared with multiple linear regression (MLR) model and BP neural network model. The results of the comparison show that the PCA-BP neural network model has the highest prediction accuracy and PCA improved the generalization capability. Finally, online prediction system of BOF end-point phosphorus content based on PCA and BP neural network is developed and applied in actual productive process. Field application results indicate that the hit rate of end-point phosphorus content is 96.67%, 93.33% and 86.67% respectively when prediction errors are within ±0.007%, ±0.005% and ±0.004%. The combined PCA-BP neural network model has achieved the effective prediction for end-point phosphorus content, and provided a good reference for end-point control and judgment of quick direct tapping of BOF.
AbstractList •A combined principal component analysis (PCA) and BP neural network model is established to predict BOF end-point phosphorus content.•A multiple linear regression model and BP neural network model for prediction of BOF end-point phosphorus content are also established.•PCA could reduce dimensionality of the factors influencing of BOF end-point phosphorus content and eliminate correlations among the factors.•PCA not only simplifies the structure of BP neural network, but also improve the network generalization ability.•Online prediction system for BOF end-point phosphorus content is developed and has very high prediction accuracy in industrial application. A prediction model based on the principal component analysis (PCA) and back propagation (BP) neural network is proposed for BOF end-point phosphorus content, based on the characters of BOF metallurgical process and production data. PCA is used to reduce dimensionality of the factors influencing end-point phosphorus content, and eliminate the correlations among the factors, and then the obtained principal components are used as BP neural network input vectors. The combined PCA-BP neural network model is trained and tested by history data, and is further compared with multiple linear regression (MLR) model and BP neural network model. The results of the comparison show that the PCA-BP neural network model has the highest prediction accuracy and PCA improved the generalization capability. Finally, online prediction system of BOF end-point phosphorus content based on PCA and BP neural network is developed and applied in actual productive process. Field application results indicate that the hit rate of end-point phosphorus content is 96.67%, 93.33% and 86.67% respectively when prediction errors are within ±0.007%, ±0.005% and ±0.004%. The combined PCA-BP neural network model has achieved the effective prediction for end-point phosphorus content, and provided a good reference for end-point control and judgment of quick direct tapping of BOF.
Author He, Fei
Zhang, Lingying
Author_xml – sequence: 1
  givenname: Fei
  orcidid: 0000-0001-5071-9863
  surname: He
  fullname: He, Fei
  email: hf2573546@sina.com
– sequence: 2
  givenname: Lingying
  surname: Zhang
  fullname: Zhang, Lingying
BookMark eNqFkF9LwzAUxYMoOP98BckXaL1pm7YDH9yGU2GwPehzSJNbzeySkUTFb2_K9MUXHy4HLpxzOL8zcmydRUKuGOQMWH29zbd775SzMS-AtTmUOQA_IhPWNmVWNA07JhOY8mnGeFGdkrMQtgBQNkU9IXbjURsVjbN05zQO1PUUrc72zthI968upPPvgY4FmF7G0vl6SUNEHHbyzdgXOtZjCLSTATVNSZvFjEqr6XxDLb57OSSJn86_XZCTXg4BL3_0nDwv754WD9lqff-4mK0yVTEes062WPea97LWAFKWvKsqXamOA_RS1yXTEqFlZcd1J1lf8wahKxRrW1aoNPuc3BxylXcheOyFMlGOK6OXZhAMxMhObMUvOzGyE1CKxC7Z6z_2vTc76b_-N94ejJjGfRj0IiiDViXGHlUU2pn_Ir4BaJ6SRg
CitedBy_id crossref_primary_10_1109_TNNLS_2023_3244945
crossref_primary_10_1007_s00170_022_10472_0
crossref_primary_10_1109_TASE_2019_2935314
crossref_primary_10_1155_2022_7248561
crossref_primary_10_1016_j_jprocont_2021_08_011
crossref_primary_10_1590_1980_5373_mr_2021_0439
crossref_primary_10_1016_j_psep_2021_07_031
crossref_primary_10_1051_metal_2021074
crossref_primary_10_1109_TIM_2020_3037953
crossref_primary_10_3233_JIFS_210007
crossref_primary_10_3390_pr11051461
crossref_primary_10_1177_03019233241292384
crossref_primary_10_3390_en12091738
crossref_primary_10_1016_j_buildenv_2022_109643
crossref_primary_10_1007_s11663_024_03374_x
crossref_primary_10_1002_srin_202200872
crossref_primary_10_1007_s12666_021_02328_0
crossref_primary_10_2298_JMMB230306008K
crossref_primary_10_1002_srin_202400662
crossref_primary_10_1051_metal_2020090
crossref_primary_10_1007_s00477_021_02012_1
crossref_primary_10_1007_s11663_024_03298_6
crossref_primary_10_1002_srin_202200595
crossref_primary_10_1109_ACCESS_2019_2956835
crossref_primary_10_3390_app9235098
crossref_primary_10_1155_2022_5991381
crossref_primary_10_1088_1742_6596_1624_5_052022
crossref_primary_10_1016_j_cam_2019_112457
crossref_primary_10_1177_0959651820965447
crossref_primary_10_1016_j_rcim_2021_102239
crossref_primary_10_1007_s11227_022_04727_6
crossref_primary_10_3390_ijgi9120736
crossref_primary_10_1007_s42243_023_01142_w
crossref_primary_10_1007_s11663_025_03498_8
crossref_primary_10_1063_5_0069380
crossref_primary_10_1016_j_compchemeng_2022_107814
crossref_primary_10_1155_2023_7064236
crossref_primary_10_1007_s11663_024_03204_0
crossref_primary_10_1016_j_ijleo_2018_10_155
crossref_primary_10_1063_5_0145724
crossref_primary_10_1177_03019233241240246
crossref_primary_10_1016_j_chemolab_2022_104679
crossref_primary_10_1016_j_jprocont_2019_06_003
crossref_primary_10_1002_srin_202200342
crossref_primary_10_1007_s10651_023_00559_6
crossref_primary_10_1155_2022_3843726
crossref_primary_10_1515_htmp_2024_0016
crossref_primary_10_1007_s12666_022_02603_8
crossref_primary_10_1155_2022_1816315
crossref_primary_10_1155_2022_3029528
crossref_primary_10_1002_srin_202300822
crossref_primary_10_2478_amns_2023_2_01387
crossref_primary_10_1109_TSMC_2019_2962880
crossref_primary_10_1016_j_jclepro_2022_133922
crossref_primary_10_3390_pr11082233
crossref_primary_10_1007_s13369_020_04741_x
crossref_primary_10_1021_acs_iecr_9b06298
crossref_primary_10_1016_j_apm_2021_01_057
crossref_primary_10_1002_maco_202514840
crossref_primary_10_1109_ACCESS_2020_2971517
crossref_primary_10_1155_2022_8500662
crossref_primary_10_1177_1550147719881348
crossref_primary_10_1007_s00521_019_04379_3
crossref_primary_10_2355_isijinternational_ISIJINT_2022_249
crossref_primary_10_1016_j_ifacol_2021_08_234
crossref_primary_10_1515_htmp_2022_0050
crossref_primary_10_3390_met12010151
crossref_primary_10_1080_00102202_2024_2368276
crossref_primary_10_3390_met9121312
crossref_primary_10_1007_s42243_023_00952_2
crossref_primary_10_1007_s11837_023_05989_y
crossref_primary_10_1007_s12613_023_2732_4
crossref_primary_10_1016_j_ijhydene_2021_08_166
crossref_primary_10_3390_en12071379
crossref_primary_10_1002_srin_202000704
crossref_primary_10_1109_ACCESS_2019_2910191
crossref_primary_10_1002_srin_202200682
crossref_primary_10_3390_met15010062
crossref_primary_10_3390_su14053106
crossref_primary_10_1177_03019233241306282
crossref_primary_10_1016_j_measurement_2020_107693
crossref_primary_10_4271_2021_01_0739
crossref_primary_10_1016_j_cej_2021_131291
crossref_primary_10_1515_htmp_2024_0030
crossref_primary_10_1002_mgea_6
crossref_primary_10_1177_03019233241301144
crossref_primary_10_1063_5_0058461
crossref_primary_10_3233_JIFS_189361
crossref_primary_10_1007_s12046_023_02163_7
crossref_primary_10_1088_1742_6596_1852_2_022082
crossref_primary_10_1109_ACCESS_2022_3171811
crossref_primary_10_1007_s11663_021_02363_8
crossref_primary_10_3390_pr12091807
crossref_primary_10_3390_coatings10090859
crossref_primary_10_1002_srin_202000719
crossref_primary_10_1002_xrs_2996
crossref_primary_10_2355_isijinternational_ISIJINT_2021_517
crossref_primary_10_3390_su14116612
crossref_primary_10_1515_htmp_2022_0035
crossref_primary_10_1016_j_compchemeng_2021_107311
crossref_primary_10_1007_s11663_021_02094_w
crossref_primary_10_1007_s00521_019_04489_y
crossref_primary_10_20965_jaciii_2018_p1099
crossref_primary_10_3390_met13040782
crossref_primary_10_1186_s13634_024_01119_1
crossref_primary_10_1016_j_conengprac_2021_104793
crossref_primary_10_1007_s12613_024_2826_7
crossref_primary_10_1016_j_procs_2022_10_037
crossref_primary_10_3390_met9090955
crossref_primary_10_3390_su10072474
crossref_primary_10_3390_met11121976
crossref_primary_10_1007_s12666_025_03553_7
crossref_primary_10_1155_2021_3835083
crossref_primary_10_3390_met10010025
crossref_primary_10_1155_2021_1718234
crossref_primary_10_3390_met14070773
crossref_primary_10_1016_j_eti_2021_101410
crossref_primary_10_1007_s11663_020_01853_5
crossref_primary_10_1007_s11663_024_03117_y
crossref_primary_10_1016_j_knosys_2022_108510
crossref_primary_10_3390_app9142835
crossref_primary_10_1080_01605682_2020_1824552
crossref_primary_10_2355_isijinternational_ISIJINT_2020_687
crossref_primary_10_3390_su10114152
crossref_primary_10_1002_srin_202300351
crossref_primary_10_1155_2018_4748526
crossref_primary_10_1155_2021_5594102
crossref_primary_10_1007_s00500_020_04823_w
crossref_primary_10_1051_shsconf_202316303006
crossref_primary_10_3233_JIFS_189389
crossref_primary_10_1007_s11663_019_01677_y
crossref_primary_10_1021_acs_iecr_8b04821
crossref_primary_10_1177_03019233241303546
crossref_primary_10_1002_rob_22144
crossref_primary_10_1007_s40831_024_00798_2
crossref_primary_10_1051_metal_2022091
crossref_primary_10_3390_coatings12101508
crossref_primary_10_3390_met12091519
crossref_primary_10_1109_ACCESS_2024_3365496
crossref_primary_10_1007_s12613_023_2646_1
crossref_primary_10_1016_j_cam_2019_112630
crossref_primary_10_1142_S0218348X22400710
crossref_primary_10_3390_met12020268
crossref_primary_10_2355_isijinternational_ISIJINT_2020_615
crossref_primary_10_1002_srin_202400151
crossref_primary_10_1088_1361_665X_ab6ba5
crossref_primary_10_1142_S0218001420540166
Cites_doi 10.1002/srin.201600193
10.1016/S1006-706X(12)60040-5
10.1016/S0959-1524(01)00027-0
10.1016/S1006-706X(14)60028-5
10.1002/srin.201300194
10.1002/wics.101
10.1016/j.engappai.2005.06.002
10.1016/j.ijleo.2014.05.004
10.2355/isijinternational.52.1585
10.1016/j.jprocont.2014.11.002
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jprocont.2018.03.005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-2771
EndPage 58
ExternalDocumentID 10_1016_j_jprocont_2018_03_005
S0959152418300477
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX7
LY7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
UNMZH
WUQ
XFK
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c415t-ba8e6fd5fa6d00aa35b44d4cb500fad631dae0813b5dba1f657e0b2c18812c873
IEDL.DBID .~1
ISSN 0959-1524
IngestDate Tue Jul 01 03:17:12 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Fri Feb 23 02:16:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords BOF
Back propagation neural network
Multiple linear regression
End-point phosphorus content
Prediction model
Principal component analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-ba8e6fd5fa6d00aa35b44d4cb500fad631dae0813b5dba1f657e0b2c18812c873
ORCID 0000-0001-5071-9863
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_jprocont_2018_03_005
crossref_primary_10_1016_j_jprocont_2018_03_005
elsevier_sciencedirect_doi_10_1016_j_jprocont_2018_03_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of process control
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Xie, Wang (bib0025) 2014; 85
Liu, Liu, He (bib0030) 2008; 43
Liu, Wang, Xiong (bib0050) 2014; 125
Ferreira (bib0035) 2014; 3
Klanke, Löpke, Uebber (bib0055) 2017
Wang, Xu, Ai (bib0045) 2012; 19
Demuth, Beale, Jess (bib0075) 2014
Tomiyama, Uchida, Mizuno (bib0005) 2015; 25
Schlautmann, Khadhraoui, Hack (bib0020) 2017
Pan, Wen, Zhou (bib0015) 2016; 32
Abdi, Williams (bib0065) 2010; 2
Chen, Liao (bib0060) 2002; 12
Wang, Chang, Ju (bib0085) 2012
Pal, Halder (bib0010) 2016; 83
Nie, Chen (bib0070) 2011; 37
Frattini Filetia, Pacianotto, Pitasse Cunha (bib0080) 2006; 19
Li, Zhao, Xie (bib0040) 2011; 46
He, He, Xu (bib0090) 2014; 21
Ferreira (10.1016/j.jprocont.2018.03.005_bib0035) 2014; 3
Tomiyama (10.1016/j.jprocont.2018.03.005_bib0005) 2015; 25
Nie (10.1016/j.jprocont.2018.03.005_bib0070) 2011; 37
Demuth (10.1016/j.jprocont.2018.03.005_bib0075) 2014
Wang (10.1016/j.jprocont.2018.03.005_bib0085) 2012
Klanke (10.1016/j.jprocont.2018.03.005_bib0055) 2017
Abdi (10.1016/j.jprocont.2018.03.005_bib0065) 2010; 2
Pal (10.1016/j.jprocont.2018.03.005_bib0010) 2016; 83
Chen (10.1016/j.jprocont.2018.03.005_bib0060) 2002; 12
He (10.1016/j.jprocont.2018.03.005_bib0090) 2014; 21
Schlautmann (10.1016/j.jprocont.2018.03.005_bib0020) 2017
Wang (10.1016/j.jprocont.2018.03.005_bib0025) 2014; 85
Liu (10.1016/j.jprocont.2018.03.005_bib0030) 2008; 43
Wang (10.1016/j.jprocont.2018.03.005_bib0045) 2012; 19
Frattini Filetia (10.1016/j.jprocont.2018.03.005_bib0080) 2006; 19
Li (10.1016/j.jprocont.2018.03.005_bib0040) 2011; 46
Pan (10.1016/j.jprocont.2018.03.005_bib0015) 2016; 32
Liu (10.1016/j.jprocont.2018.03.005_bib0050) 2014; 125
References_xml – volume: 12
  start-page: 277
  year: 2002
  end-page: 289
  ident: bib0060
  article-title: Dynamic process fault monitoring based on neural network and PCA
  publication-title: J. Process Control
– volume: 21
  start-page: 182
  year: 2014
  end-page: 191
  ident: bib0090
  article-title: Hybrid model of molten steel temperature prediction based on ladle heat status and artificial neural network
  publication-title: J. Iron Steel Res. Int.
– volume: 85
  start-page: 599
  year: 2014
  end-page: 606
  ident: bib0025
  article-title: The control and prediction of end-point phosphorus content during BOF steelmaking process
  publication-title: Steel Res. Int.
– start-page: 1585
  year: 2012
  end-page: 1590
  ident: bib0085
  article-title: Prediction model of end-point manganese content for BOF steelmaking process
  publication-title: ISIJ Int.
– volume: 83
  year: 2016
  ident: bib0010
  article-title: Optimization of phosphorous in steel produced by basic oxygen steel making process using multi-objective evolutionary and genetic algorithms
  publication-title: Steel Res. Int.
– volume: 37
  start-page: 364
  year: 2011
  end-page: 367
  ident: bib0070
  article-title: Prediction of tool VB value based on PCA and BP neural network
  publication-title: J. Beijing Univ. Aeronaut. Astronaut.
– volume: 43
  start-page: 32
  year: 2008
  end-page: 36
  ident: bib0030
  article-title: End-point phosphorus and manganese content control model based on sublance technique and optimization of dephosphorization process
  publication-title: Iron Steel
– year: 2014
  ident: bib0075
  article-title: Neural Network Design
– volume: 32
  start-page: 15
  year: 2016
  end-page: 19
  ident: bib0015
  article-title: Study on final slag composition control for highly efficient dephosphorization of 80 t converter in CISC
  publication-title: Steelmaking
– year: 2017
  ident: bib0020
  article-title: Dynamic on-line monitoring and end point control of dephosphorisation in the BOF converter
  publication-title: European Steel Technology and Application Days
– volume: 2
  start-page: 433
  year: 2010
  end-page: 459
  ident: bib0065
  article-title: Principal component analysis
  publication-title: Wiley Interdiscip. Rev.: Comput. Stat.
– volume: 125
  start-page: 5241
  year: 2014
  end-page: 5248
  ident: bib0050
  article-title: Basic oxygen furnace steelmaking end-point prediction based on computer vision and general regression neural network
  publication-title: Optik – Int. J. Light Electron Optics
– volume: 3
  start-page: 17
  year: 2014
  end-page: 31
  ident: bib0035
  article-title: Predictions at the blow end of the LD-KGC converter by a semi-dynamic control model
  publication-title: Int. J. Recent Adv. Mech. Eng.
– volume: 46
  start-page: 23
  year: 2011
  end-page: 25
  ident: bib0040
  article-title: Prediction of end-point phosphorus content for BOF based on LM BP neural network
  publication-title: Iron Steel
– volume: 25
  start-page: 35
  year: 2015
  end-page: 40
  ident: bib0005
  article-title: A novel control algorithm for dephosphorization in an LD converter
  publication-title: J. Process Control
– start-page: 1307
  year: 2017
  end-page: 1313
  ident: bib0055
  article-title: Advanced data-driven prediction models for BOF endpoint detection
  publication-title: Association for Iron & Steel Technology 2017 Proceedings
– volume: 19
  start-page: 9
  year: 2006
  end-page: 17
  ident: bib0080
  article-title: Neural modeling helps the BOS process to achieve aimed end-point
  publication-title: Eng. Appl. Artif. Intell.
– volume: 19
  start-page: 11
  year: 2012
  end-page: 16
  ident: bib0045
  article-title: Prediction of endpoint phosphorus content of molten steel in BOF using weighted K-means and GMDH neural network
  publication-title: J. Iron Steel Res. Int.
– volume: 83
  issue: 3
  year: 2016
  ident: 10.1016/j.jprocont.2018.03.005_bib0010
  article-title: Optimization of phosphorous in steel produced by basic oxygen steel making process using multi-objective evolutionary and genetic algorithms
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.201600193
– volume: 19
  start-page: 11
  issue: 1
  year: 2012
  ident: 10.1016/j.jprocont.2018.03.005_bib0045
  article-title: Prediction of endpoint phosphorus content of molten steel in BOF using weighted K-means and GMDH neural network
  publication-title: J. Iron Steel Res. Int.
  doi: 10.1016/S1006-706X(12)60040-5
– volume: 12
  start-page: 277
  issue: 2
  year: 2002
  ident: 10.1016/j.jprocont.2018.03.005_bib0060
  article-title: Dynamic process fault monitoring based on neural network and PCA
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(01)00027-0
– volume: 3
  start-page: 17
  issue: 1
  year: 2014
  ident: 10.1016/j.jprocont.2018.03.005_bib0035
  article-title: Predictions at the blow end of the LD-KGC converter by a semi-dynamic control model
  publication-title: Int. J. Recent Adv. Mech. Eng.
– year: 2014
  ident: 10.1016/j.jprocont.2018.03.005_bib0075
– volume: 21
  start-page: 182
  issue: 2
  year: 2014
  ident: 10.1016/j.jprocont.2018.03.005_bib0090
  article-title: Hybrid model of molten steel temperature prediction based on ladle heat status and artificial neural network
  publication-title: J. Iron Steel Res. Int.
  doi: 10.1016/S1006-706X(14)60028-5
– volume: 85
  start-page: 599
  issue: 4
  year: 2014
  ident: 10.1016/j.jprocont.2018.03.005_bib0025
  article-title: The control and prediction of end-point phosphorus content during BOF steelmaking process
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.201300194
– volume: 43
  start-page: 32
  issue: 7
  year: 2008
  ident: 10.1016/j.jprocont.2018.03.005_bib0030
  article-title: End-point phosphorus and manganese content control model based on sublance technique and optimization of dephosphorization process
  publication-title: Iron Steel
– volume: 2
  start-page: 433
  issue: 4
  year: 2010
  ident: 10.1016/j.jprocont.2018.03.005_bib0065
  article-title: Principal component analysis
  publication-title: Wiley Interdiscip. Rev.: Comput. Stat.
  doi: 10.1002/wics.101
– volume: 19
  start-page: 9
  issue: 1
  year: 2006
  ident: 10.1016/j.jprocont.2018.03.005_bib0080
  article-title: Neural modeling helps the BOS process to achieve aimed end-point
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2005.06.002
– volume: 125
  start-page: 5241
  issue: 18
  year: 2014
  ident: 10.1016/j.jprocont.2018.03.005_bib0050
  article-title: Basic oxygen furnace steelmaking end-point prediction based on computer vision and general regression neural network
  publication-title: Optik – Int. J. Light Electron Optics
  doi: 10.1016/j.ijleo.2014.05.004
– volume: 46
  start-page: 23
  issue: 4
  year: 2011
  ident: 10.1016/j.jprocont.2018.03.005_bib0040
  article-title: Prediction of end-point phosphorus content for BOF based on LM BP neural network
  publication-title: Iron Steel
– volume: 37
  start-page: 364
  issue: 3
  year: 2011
  ident: 10.1016/j.jprocont.2018.03.005_bib0070
  article-title: Prediction of tool VB value based on PCA and BP neural network
  publication-title: J. Beijing Univ. Aeronaut. Astronaut.
– start-page: 1585
  year: 2012
  ident: 10.1016/j.jprocont.2018.03.005_bib0085
  article-title: Prediction model of end-point manganese content for BOF steelmaking process
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.52.1585
– volume: 25
  start-page: 35
  issue: 25
  year: 2015
  ident: 10.1016/j.jprocont.2018.03.005_bib0005
  article-title: A novel control algorithm for dephosphorization in an LD converter
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2014.11.002
– year: 2017
  ident: 10.1016/j.jprocont.2018.03.005_bib0020
  article-title: Dynamic on-line monitoring and end point control of dephosphorisation in the BOF converter
– volume: 32
  start-page: 15
  issue: 1
  year: 2016
  ident: 10.1016/j.jprocont.2018.03.005_bib0015
  article-title: Study on final slag composition control for highly efficient dephosphorization of 80 t converter in CISC
  publication-title: Steelmaking
– start-page: 1307
  year: 2017
  ident: 10.1016/j.jprocont.2018.03.005_bib0055
  article-title: Advanced data-driven prediction models for BOF endpoint detection
SSID ssj0003726
Score 2.5750654
Snippet •A combined principal component analysis (PCA) and BP neural network model is established to predict BOF end-point phosphorus content.•A multiple linear...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 51
SubjectTerms Back propagation neural network
BOF
End-point phosphorus content
Multiple linear regression
Prediction model
Principal component analysis
Title Prediction model of end-point phosphorus content in BOF steelmaking process based on PCA and BP neural network
URI https://dx.doi.org/10.1016/j.jprocont.2018.03.005
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-NADB4huMCBZQuIt3zgGprHTJIeS0XV3ZW6lQCJWzRP0QomUSnX_e3YeSxFQuLAIYdEcTQaO_48M_Znxi4TR4G5RuO1cRJwodNggOuIgEuu0R3KzJqa7XOaTu757wfxsMFGXS0MpVW2vr_x6bW3bp_029nsV_N5_5Z2sBB9OBolcR5SRTnnGVn51b_3NI8kq1uu1dtd9PZalfDiakEoUXrKqYzyhuxUfA5Qa6Az3mO7bbQIw2ZAP9mG9T32o-vEAO2P2WM7a7SC-8zPlnT8QlMOdacbKB1Yb4KqnPsVVI_lC17L1xegUSHqwNzD9d8xoMbt03PdnwqqpoIACOYM4JdmoyFIb-B6BkSCicPyTQr5Absf39yNJkHbVyHQCNerQMncps4IJ1MThlImQnFuuFYiDJ00aRIZaTFUSJQwSkYuFZkNVayjHKMBnWfJIdv0pbdHDGIulNSxy1ymeaqcGuCazoR64OI8knF4zEQ3mYVuScep98VT0WWXLYpOCQUpoQiTApVwzPr_5aqGduNLiUGnq-KDARWIDV_InnxD9pRt012TPXbGNlfLV3uOccpKXdSGeMG2hr_-TKZvcazqLA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7RcKA90EJbFehjDr268WPXdo4hahQKDZEKErfVPkUiurZC-P_M-oGCVIlDD77YGmu0M55vdj3zDcD3zIXEXJPz2jSLGNd5NKJ9RMQk0xQOZWFNw_Y5z2fX7NcNv9mBSd8LE8oqu9jfxvQmWnd3ht1qDuvlcvgnnGAR-jByysB5WLyC3cBOxQewOz47n82fAnJWNFPXmhOvILDVKLz6sQpAUflQVpmULd8p_zdGbeHO9B3sdwkjjludDmDH-kN42w9jwO7bPIQ3W8yC78Ev1uEPTFh1bIbdYOXQehPV1dJvsL6t7ulaP9xj0IqAB5ceTy-nSEa3d3-bEVVYt00EGJDOIL1pMRmj9AZPFxh4MEkt31aRf4Dr6c-rySzqRitEmhB7EylZ2twZ7mRu4ljKjCvGDNOKx7GTJs8SIy1lC5niRsnE5bywsUp1UlJCoMsi-wgDX3n7CTBlXEmdusIVmuXKqRFt60ysRy4tE5nGR8D7xRS64x0P4y_uRF9gthK9EUQwgogzQUY4guGTXN0yb7woMeptJZ75kCB4eEH2-D9kv8He7Or3hbg4m5-fwOvwpC0m-wyDzfrBfqG0ZaO-dm75CHTq7N0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+model+of+end-point+phosphorus+content+in+BOF+steelmaking+process+based+on+PCA+and+BP+neural+network&rft.jtitle=Journal+of+process+control&rft.au=He%2C+Fei&rft.au=Zhang%2C+Lingying&rft.date=2018-06-01&rft.issn=0959-1524&rft.volume=66&rft.spage=51&rft.epage=58&rft_id=info:doi/10.1016%2Fj.jprocont.2018.03.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jprocont_2018_03_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-1524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-1524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-1524&client=summon