Prediction model of end-point phosphorus content in BOF steelmaking process based on PCA and BP neural network
•A combined principal component analysis (PCA) and BP neural network model is established to predict BOF end-point phosphorus content.•A multiple linear regression model and BP neural network model for prediction of BOF end-point phosphorus content are also established.•PCA could reduce dimensionali...
Saved in:
Published in | Journal of process control Vol. 66; pp. 51 - 58 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A combined principal component analysis (PCA) and BP neural network model is established to predict BOF end-point phosphorus content.•A multiple linear regression model and BP neural network model for prediction of BOF end-point phosphorus content are also established.•PCA could reduce dimensionality of the factors influencing of BOF end-point phosphorus content and eliminate correlations among the factors.•PCA not only simplifies the structure of BP neural network, but also improve the network generalization ability.•Online prediction system for BOF end-point phosphorus content is developed and has very high prediction accuracy in industrial application.
A prediction model based on the principal component analysis (PCA) and back propagation (BP) neural network is proposed for BOF end-point phosphorus content, based on the characters of BOF metallurgical process and production data. PCA is used to reduce dimensionality of the factors influencing end-point phosphorus content, and eliminate the correlations among the factors, and then the obtained principal components are used as BP neural network input vectors. The combined PCA-BP neural network model is trained and tested by history data, and is further compared with multiple linear regression (MLR) model and BP neural network model. The results of the comparison show that the PCA-BP neural network model has the highest prediction accuracy and PCA improved the generalization capability. Finally, online prediction system of BOF end-point phosphorus content based on PCA and BP neural network is developed and applied in actual productive process. Field application results indicate that the hit rate of end-point phosphorus content is 96.67%, 93.33% and 86.67% respectively when prediction errors are within ±0.007%, ±0.005% and ±0.004%. The combined PCA-BP neural network model has achieved the effective prediction for end-point phosphorus content, and provided a good reference for end-point control and judgment of quick direct tapping of BOF. |
---|---|
AbstractList | •A combined principal component analysis (PCA) and BP neural network model is established to predict BOF end-point phosphorus content.•A multiple linear regression model and BP neural network model for prediction of BOF end-point phosphorus content are also established.•PCA could reduce dimensionality of the factors influencing of BOF end-point phosphorus content and eliminate correlations among the factors.•PCA not only simplifies the structure of BP neural network, but also improve the network generalization ability.•Online prediction system for BOF end-point phosphorus content is developed and has very high prediction accuracy in industrial application.
A prediction model based on the principal component analysis (PCA) and back propagation (BP) neural network is proposed for BOF end-point phosphorus content, based on the characters of BOF metallurgical process and production data. PCA is used to reduce dimensionality of the factors influencing end-point phosphorus content, and eliminate the correlations among the factors, and then the obtained principal components are used as BP neural network input vectors. The combined PCA-BP neural network model is trained and tested by history data, and is further compared with multiple linear regression (MLR) model and BP neural network model. The results of the comparison show that the PCA-BP neural network model has the highest prediction accuracy and PCA improved the generalization capability. Finally, online prediction system of BOF end-point phosphorus content based on PCA and BP neural network is developed and applied in actual productive process. Field application results indicate that the hit rate of end-point phosphorus content is 96.67%, 93.33% and 86.67% respectively when prediction errors are within ±0.007%, ±0.005% and ±0.004%. The combined PCA-BP neural network model has achieved the effective prediction for end-point phosphorus content, and provided a good reference for end-point control and judgment of quick direct tapping of BOF. |
Author | He, Fei Zhang, Lingying |
Author_xml | – sequence: 1 givenname: Fei orcidid: 0000-0001-5071-9863 surname: He fullname: He, Fei email: hf2573546@sina.com – sequence: 2 givenname: Lingying surname: Zhang fullname: Zhang, Lingying |
BookMark | eNqFkF9LwzAUxYMoOP98BckXaL1pm7YDH9yGU2GwPehzSJNbzeySkUTFb2_K9MUXHy4HLpxzOL8zcmydRUKuGOQMWH29zbd775SzMS-AtTmUOQA_IhPWNmVWNA07JhOY8mnGeFGdkrMQtgBQNkU9IXbjURsVjbN05zQO1PUUrc72zthI968upPPvgY4FmF7G0vl6SUNEHHbyzdgXOtZjCLSTATVNSZvFjEqr6XxDLb57OSSJn86_XZCTXg4BL3_0nDwv754WD9lqff-4mK0yVTEes062WPea97LWAFKWvKsqXamOA_RS1yXTEqFlZcd1J1lf8wahKxRrW1aoNPuc3BxylXcheOyFMlGOK6OXZhAMxMhObMUvOzGyE1CKxC7Z6z_2vTc76b_-N94ejJjGfRj0IiiDViXGHlUU2pn_Ir4BaJ6SRg |
CitedBy_id | crossref_primary_10_1109_TNNLS_2023_3244945 crossref_primary_10_1007_s00170_022_10472_0 crossref_primary_10_1109_TASE_2019_2935314 crossref_primary_10_1155_2022_7248561 crossref_primary_10_1016_j_jprocont_2021_08_011 crossref_primary_10_1590_1980_5373_mr_2021_0439 crossref_primary_10_1016_j_psep_2021_07_031 crossref_primary_10_1051_metal_2021074 crossref_primary_10_1109_TIM_2020_3037953 crossref_primary_10_3233_JIFS_210007 crossref_primary_10_3390_pr11051461 crossref_primary_10_1177_03019233241292384 crossref_primary_10_3390_en12091738 crossref_primary_10_1016_j_buildenv_2022_109643 crossref_primary_10_1007_s11663_024_03374_x crossref_primary_10_1002_srin_202200872 crossref_primary_10_1007_s12666_021_02328_0 crossref_primary_10_2298_JMMB230306008K crossref_primary_10_1002_srin_202400662 crossref_primary_10_1051_metal_2020090 crossref_primary_10_1007_s00477_021_02012_1 crossref_primary_10_1007_s11663_024_03298_6 crossref_primary_10_1002_srin_202200595 crossref_primary_10_1109_ACCESS_2019_2956835 crossref_primary_10_3390_app9235098 crossref_primary_10_1155_2022_5991381 crossref_primary_10_1088_1742_6596_1624_5_052022 crossref_primary_10_1016_j_cam_2019_112457 crossref_primary_10_1177_0959651820965447 crossref_primary_10_1016_j_rcim_2021_102239 crossref_primary_10_1007_s11227_022_04727_6 crossref_primary_10_3390_ijgi9120736 crossref_primary_10_1007_s42243_023_01142_w crossref_primary_10_1007_s11663_025_03498_8 crossref_primary_10_1063_5_0069380 crossref_primary_10_1016_j_compchemeng_2022_107814 crossref_primary_10_1155_2023_7064236 crossref_primary_10_1007_s11663_024_03204_0 crossref_primary_10_1016_j_ijleo_2018_10_155 crossref_primary_10_1063_5_0145724 crossref_primary_10_1177_03019233241240246 crossref_primary_10_1016_j_chemolab_2022_104679 crossref_primary_10_1016_j_jprocont_2019_06_003 crossref_primary_10_1002_srin_202200342 crossref_primary_10_1007_s10651_023_00559_6 crossref_primary_10_1155_2022_3843726 crossref_primary_10_1515_htmp_2024_0016 crossref_primary_10_1007_s12666_022_02603_8 crossref_primary_10_1155_2022_1816315 crossref_primary_10_1155_2022_3029528 crossref_primary_10_1002_srin_202300822 crossref_primary_10_2478_amns_2023_2_01387 crossref_primary_10_1109_TSMC_2019_2962880 crossref_primary_10_1016_j_jclepro_2022_133922 crossref_primary_10_3390_pr11082233 crossref_primary_10_1007_s13369_020_04741_x crossref_primary_10_1021_acs_iecr_9b06298 crossref_primary_10_1016_j_apm_2021_01_057 crossref_primary_10_1002_maco_202514840 crossref_primary_10_1109_ACCESS_2020_2971517 crossref_primary_10_1155_2022_8500662 crossref_primary_10_1177_1550147719881348 crossref_primary_10_1007_s00521_019_04379_3 crossref_primary_10_2355_isijinternational_ISIJINT_2022_249 crossref_primary_10_1016_j_ifacol_2021_08_234 crossref_primary_10_1515_htmp_2022_0050 crossref_primary_10_3390_met12010151 crossref_primary_10_1080_00102202_2024_2368276 crossref_primary_10_3390_met9121312 crossref_primary_10_1007_s42243_023_00952_2 crossref_primary_10_1007_s11837_023_05989_y crossref_primary_10_1007_s12613_023_2732_4 crossref_primary_10_1016_j_ijhydene_2021_08_166 crossref_primary_10_3390_en12071379 crossref_primary_10_1002_srin_202000704 crossref_primary_10_1109_ACCESS_2019_2910191 crossref_primary_10_1002_srin_202200682 crossref_primary_10_3390_met15010062 crossref_primary_10_3390_su14053106 crossref_primary_10_1177_03019233241306282 crossref_primary_10_1016_j_measurement_2020_107693 crossref_primary_10_4271_2021_01_0739 crossref_primary_10_1016_j_cej_2021_131291 crossref_primary_10_1515_htmp_2024_0030 crossref_primary_10_1002_mgea_6 crossref_primary_10_1177_03019233241301144 crossref_primary_10_1063_5_0058461 crossref_primary_10_3233_JIFS_189361 crossref_primary_10_1007_s12046_023_02163_7 crossref_primary_10_1088_1742_6596_1852_2_022082 crossref_primary_10_1109_ACCESS_2022_3171811 crossref_primary_10_1007_s11663_021_02363_8 crossref_primary_10_3390_pr12091807 crossref_primary_10_3390_coatings10090859 crossref_primary_10_1002_srin_202000719 crossref_primary_10_1002_xrs_2996 crossref_primary_10_2355_isijinternational_ISIJINT_2021_517 crossref_primary_10_3390_su14116612 crossref_primary_10_1515_htmp_2022_0035 crossref_primary_10_1016_j_compchemeng_2021_107311 crossref_primary_10_1007_s11663_021_02094_w crossref_primary_10_1007_s00521_019_04489_y crossref_primary_10_20965_jaciii_2018_p1099 crossref_primary_10_3390_met13040782 crossref_primary_10_1186_s13634_024_01119_1 crossref_primary_10_1016_j_conengprac_2021_104793 crossref_primary_10_1007_s12613_024_2826_7 crossref_primary_10_1016_j_procs_2022_10_037 crossref_primary_10_3390_met9090955 crossref_primary_10_3390_su10072474 crossref_primary_10_3390_met11121976 crossref_primary_10_1007_s12666_025_03553_7 crossref_primary_10_1155_2021_3835083 crossref_primary_10_3390_met10010025 crossref_primary_10_1155_2021_1718234 crossref_primary_10_3390_met14070773 crossref_primary_10_1016_j_eti_2021_101410 crossref_primary_10_1007_s11663_020_01853_5 crossref_primary_10_1007_s11663_024_03117_y crossref_primary_10_1016_j_knosys_2022_108510 crossref_primary_10_3390_app9142835 crossref_primary_10_1080_01605682_2020_1824552 crossref_primary_10_2355_isijinternational_ISIJINT_2020_687 crossref_primary_10_3390_su10114152 crossref_primary_10_1002_srin_202300351 crossref_primary_10_1155_2018_4748526 crossref_primary_10_1155_2021_5594102 crossref_primary_10_1007_s00500_020_04823_w crossref_primary_10_1051_shsconf_202316303006 crossref_primary_10_3233_JIFS_189389 crossref_primary_10_1007_s11663_019_01677_y crossref_primary_10_1021_acs_iecr_8b04821 crossref_primary_10_1177_03019233241303546 crossref_primary_10_1002_rob_22144 crossref_primary_10_1007_s40831_024_00798_2 crossref_primary_10_1051_metal_2022091 crossref_primary_10_3390_coatings12101508 crossref_primary_10_3390_met12091519 crossref_primary_10_1109_ACCESS_2024_3365496 crossref_primary_10_1007_s12613_023_2646_1 crossref_primary_10_1016_j_cam_2019_112630 crossref_primary_10_1142_S0218348X22400710 crossref_primary_10_3390_met12020268 crossref_primary_10_2355_isijinternational_ISIJINT_2020_615 crossref_primary_10_1002_srin_202400151 crossref_primary_10_1088_1361_665X_ab6ba5 crossref_primary_10_1142_S0218001420540166 |
Cites_doi | 10.1002/srin.201600193 10.1016/S1006-706X(12)60040-5 10.1016/S0959-1524(01)00027-0 10.1016/S1006-706X(14)60028-5 10.1002/srin.201300194 10.1002/wics.101 10.1016/j.engappai.2005.06.002 10.1016/j.ijleo.2014.05.004 10.2355/isijinternational.52.1585 10.1016/j.jprocont.2014.11.002 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jprocont.2018.03.005 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1873-2771 |
EndPage | 58 |
ExternalDocumentID | 10_1016_j_jprocont_2018_03_005 S0959152418300477 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLY HVGLF HZ~ IHE J1W JJJVA KOM LX7 LY7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SDP SES SET SEW SPC SPCBC SSG SST SSZ T5K UNMZH WUQ XFK ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c415t-ba8e6fd5fa6d00aa35b44d4cb500fad631dae0813b5dba1f657e0b2c18812c873 |
IEDL.DBID | .~1 |
ISSN | 0959-1524 |
IngestDate | Tue Jul 01 03:17:12 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Fri Feb 23 02:16:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | BOF Back propagation neural network Multiple linear regression End-point phosphorus content Prediction model Principal component analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-ba8e6fd5fa6d00aa35b44d4cb500fad631dae0813b5dba1f657e0b2c18812c873 |
ORCID | 0000-0001-5071-9863 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jprocont_2018_03_005 crossref_primary_10_1016_j_jprocont_2018_03_005 elsevier_sciencedirect_doi_10_1016_j_jprocont_2018_03_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of process control |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Xie, Wang (bib0025) 2014; 85 Liu, Liu, He (bib0030) 2008; 43 Liu, Wang, Xiong (bib0050) 2014; 125 Ferreira (bib0035) 2014; 3 Klanke, Löpke, Uebber (bib0055) 2017 Wang, Xu, Ai (bib0045) 2012; 19 Demuth, Beale, Jess (bib0075) 2014 Tomiyama, Uchida, Mizuno (bib0005) 2015; 25 Schlautmann, Khadhraoui, Hack (bib0020) 2017 Pan, Wen, Zhou (bib0015) 2016; 32 Abdi, Williams (bib0065) 2010; 2 Chen, Liao (bib0060) 2002; 12 Wang, Chang, Ju (bib0085) 2012 Pal, Halder (bib0010) 2016; 83 Nie, Chen (bib0070) 2011; 37 Frattini Filetia, Pacianotto, Pitasse Cunha (bib0080) 2006; 19 Li, Zhao, Xie (bib0040) 2011; 46 He, He, Xu (bib0090) 2014; 21 Ferreira (10.1016/j.jprocont.2018.03.005_bib0035) 2014; 3 Tomiyama (10.1016/j.jprocont.2018.03.005_bib0005) 2015; 25 Nie (10.1016/j.jprocont.2018.03.005_bib0070) 2011; 37 Demuth (10.1016/j.jprocont.2018.03.005_bib0075) 2014 Wang (10.1016/j.jprocont.2018.03.005_bib0085) 2012 Klanke (10.1016/j.jprocont.2018.03.005_bib0055) 2017 Abdi (10.1016/j.jprocont.2018.03.005_bib0065) 2010; 2 Pal (10.1016/j.jprocont.2018.03.005_bib0010) 2016; 83 Chen (10.1016/j.jprocont.2018.03.005_bib0060) 2002; 12 He (10.1016/j.jprocont.2018.03.005_bib0090) 2014; 21 Schlautmann (10.1016/j.jprocont.2018.03.005_bib0020) 2017 Wang (10.1016/j.jprocont.2018.03.005_bib0025) 2014; 85 Liu (10.1016/j.jprocont.2018.03.005_bib0030) 2008; 43 Wang (10.1016/j.jprocont.2018.03.005_bib0045) 2012; 19 Frattini Filetia (10.1016/j.jprocont.2018.03.005_bib0080) 2006; 19 Li (10.1016/j.jprocont.2018.03.005_bib0040) 2011; 46 Pan (10.1016/j.jprocont.2018.03.005_bib0015) 2016; 32 Liu (10.1016/j.jprocont.2018.03.005_bib0050) 2014; 125 |
References_xml | – volume: 12 start-page: 277 year: 2002 end-page: 289 ident: bib0060 article-title: Dynamic process fault monitoring based on neural network and PCA publication-title: J. Process Control – volume: 21 start-page: 182 year: 2014 end-page: 191 ident: bib0090 article-title: Hybrid model of molten steel temperature prediction based on ladle heat status and artificial neural network publication-title: J. Iron Steel Res. Int. – volume: 85 start-page: 599 year: 2014 end-page: 606 ident: bib0025 article-title: The control and prediction of end-point phosphorus content during BOF steelmaking process publication-title: Steel Res. Int. – start-page: 1585 year: 2012 end-page: 1590 ident: bib0085 article-title: Prediction model of end-point manganese content for BOF steelmaking process publication-title: ISIJ Int. – volume: 83 year: 2016 ident: bib0010 article-title: Optimization of phosphorous in steel produced by basic oxygen steel making process using multi-objective evolutionary and genetic algorithms publication-title: Steel Res. Int. – volume: 37 start-page: 364 year: 2011 end-page: 367 ident: bib0070 article-title: Prediction of tool VB value based on PCA and BP neural network publication-title: J. Beijing Univ. Aeronaut. Astronaut. – volume: 43 start-page: 32 year: 2008 end-page: 36 ident: bib0030 article-title: End-point phosphorus and manganese content control model based on sublance technique and optimization of dephosphorization process publication-title: Iron Steel – year: 2014 ident: bib0075 article-title: Neural Network Design – volume: 32 start-page: 15 year: 2016 end-page: 19 ident: bib0015 article-title: Study on final slag composition control for highly efficient dephosphorization of 80 t converter in CISC publication-title: Steelmaking – year: 2017 ident: bib0020 article-title: Dynamic on-line monitoring and end point control of dephosphorisation in the BOF converter publication-title: European Steel Technology and Application Days – volume: 2 start-page: 433 year: 2010 end-page: 459 ident: bib0065 article-title: Principal component analysis publication-title: Wiley Interdiscip. Rev.: Comput. Stat. – volume: 125 start-page: 5241 year: 2014 end-page: 5248 ident: bib0050 article-title: Basic oxygen furnace steelmaking end-point prediction based on computer vision and general regression neural network publication-title: Optik – Int. J. Light Electron Optics – volume: 3 start-page: 17 year: 2014 end-page: 31 ident: bib0035 article-title: Predictions at the blow end of the LD-KGC converter by a semi-dynamic control model publication-title: Int. J. Recent Adv. Mech. Eng. – volume: 46 start-page: 23 year: 2011 end-page: 25 ident: bib0040 article-title: Prediction of end-point phosphorus content for BOF based on LM BP neural network publication-title: Iron Steel – volume: 25 start-page: 35 year: 2015 end-page: 40 ident: bib0005 article-title: A novel control algorithm for dephosphorization in an LD converter publication-title: J. Process Control – start-page: 1307 year: 2017 end-page: 1313 ident: bib0055 article-title: Advanced data-driven prediction models for BOF endpoint detection publication-title: Association for Iron & Steel Technology 2017 Proceedings – volume: 19 start-page: 9 year: 2006 end-page: 17 ident: bib0080 article-title: Neural modeling helps the BOS process to achieve aimed end-point publication-title: Eng. Appl. Artif. Intell. – volume: 19 start-page: 11 year: 2012 end-page: 16 ident: bib0045 article-title: Prediction of endpoint phosphorus content of molten steel in BOF using weighted K-means and GMDH neural network publication-title: J. Iron Steel Res. Int. – volume: 83 issue: 3 year: 2016 ident: 10.1016/j.jprocont.2018.03.005_bib0010 article-title: Optimization of phosphorous in steel produced by basic oxygen steel making process using multi-objective evolutionary and genetic algorithms publication-title: Steel Res. Int. doi: 10.1002/srin.201600193 – volume: 19 start-page: 11 issue: 1 year: 2012 ident: 10.1016/j.jprocont.2018.03.005_bib0045 article-title: Prediction of endpoint phosphorus content of molten steel in BOF using weighted K-means and GMDH neural network publication-title: J. Iron Steel Res. Int. doi: 10.1016/S1006-706X(12)60040-5 – volume: 12 start-page: 277 issue: 2 year: 2002 ident: 10.1016/j.jprocont.2018.03.005_bib0060 article-title: Dynamic process fault monitoring based on neural network and PCA publication-title: J. Process Control doi: 10.1016/S0959-1524(01)00027-0 – volume: 3 start-page: 17 issue: 1 year: 2014 ident: 10.1016/j.jprocont.2018.03.005_bib0035 article-title: Predictions at the blow end of the LD-KGC converter by a semi-dynamic control model publication-title: Int. J. Recent Adv. Mech. Eng. – year: 2014 ident: 10.1016/j.jprocont.2018.03.005_bib0075 – volume: 21 start-page: 182 issue: 2 year: 2014 ident: 10.1016/j.jprocont.2018.03.005_bib0090 article-title: Hybrid model of molten steel temperature prediction based on ladle heat status and artificial neural network publication-title: J. Iron Steel Res. Int. doi: 10.1016/S1006-706X(14)60028-5 – volume: 85 start-page: 599 issue: 4 year: 2014 ident: 10.1016/j.jprocont.2018.03.005_bib0025 article-title: The control and prediction of end-point phosphorus content during BOF steelmaking process publication-title: Steel Res. Int. doi: 10.1002/srin.201300194 – volume: 43 start-page: 32 issue: 7 year: 2008 ident: 10.1016/j.jprocont.2018.03.005_bib0030 article-title: End-point phosphorus and manganese content control model based on sublance technique and optimization of dephosphorization process publication-title: Iron Steel – volume: 2 start-page: 433 issue: 4 year: 2010 ident: 10.1016/j.jprocont.2018.03.005_bib0065 article-title: Principal component analysis publication-title: Wiley Interdiscip. Rev.: Comput. Stat. doi: 10.1002/wics.101 – volume: 19 start-page: 9 issue: 1 year: 2006 ident: 10.1016/j.jprocont.2018.03.005_bib0080 article-title: Neural modeling helps the BOS process to achieve aimed end-point publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2005.06.002 – volume: 125 start-page: 5241 issue: 18 year: 2014 ident: 10.1016/j.jprocont.2018.03.005_bib0050 article-title: Basic oxygen furnace steelmaking end-point prediction based on computer vision and general regression neural network publication-title: Optik – Int. J. Light Electron Optics doi: 10.1016/j.ijleo.2014.05.004 – volume: 46 start-page: 23 issue: 4 year: 2011 ident: 10.1016/j.jprocont.2018.03.005_bib0040 article-title: Prediction of end-point phosphorus content for BOF based on LM BP neural network publication-title: Iron Steel – volume: 37 start-page: 364 issue: 3 year: 2011 ident: 10.1016/j.jprocont.2018.03.005_bib0070 article-title: Prediction of tool VB value based on PCA and BP neural network publication-title: J. Beijing Univ. Aeronaut. Astronaut. – start-page: 1585 year: 2012 ident: 10.1016/j.jprocont.2018.03.005_bib0085 article-title: Prediction model of end-point manganese content for BOF steelmaking process publication-title: ISIJ Int. doi: 10.2355/isijinternational.52.1585 – volume: 25 start-page: 35 issue: 25 year: 2015 ident: 10.1016/j.jprocont.2018.03.005_bib0005 article-title: A novel control algorithm for dephosphorization in an LD converter publication-title: J. Process Control doi: 10.1016/j.jprocont.2014.11.002 – year: 2017 ident: 10.1016/j.jprocont.2018.03.005_bib0020 article-title: Dynamic on-line monitoring and end point control of dephosphorisation in the BOF converter – volume: 32 start-page: 15 issue: 1 year: 2016 ident: 10.1016/j.jprocont.2018.03.005_bib0015 article-title: Study on final slag composition control for highly efficient dephosphorization of 80 t converter in CISC publication-title: Steelmaking – start-page: 1307 year: 2017 ident: 10.1016/j.jprocont.2018.03.005_bib0055 article-title: Advanced data-driven prediction models for BOF endpoint detection |
SSID | ssj0003726 |
Score | 2.5750654 |
Snippet | •A combined principal component analysis (PCA) and BP neural network model is established to predict BOF end-point phosphorus content.•A multiple linear... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 51 |
SubjectTerms | Back propagation neural network BOF End-point phosphorus content Multiple linear regression Prediction model Principal component analysis |
Title | Prediction model of end-point phosphorus content in BOF steelmaking process based on PCA and BP neural network |
URI | https://dx.doi.org/10.1016/j.jprocont.2018.03.005 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-NADB4huMCBZQuIt3zgGprHTJIeS0XV3ZW6lQCJWzRP0QomUSnX_e3YeSxFQuLAIYdEcTQaO_48M_Znxi4TR4G5RuO1cRJwodNggOuIgEuu0R3KzJqa7XOaTu757wfxsMFGXS0MpVW2vr_x6bW3bp_029nsV_N5_5Z2sBB9OBolcR5SRTnnGVn51b_3NI8kq1uu1dtd9PZalfDiakEoUXrKqYzyhuxUfA5Qa6Az3mO7bbQIw2ZAP9mG9T32o-vEAO2P2WM7a7SC-8zPlnT8QlMOdacbKB1Yb4KqnPsVVI_lC17L1xegUSHqwNzD9d8xoMbt03PdnwqqpoIACOYM4JdmoyFIb-B6BkSCicPyTQr5Absf39yNJkHbVyHQCNerQMncps4IJ1MThlImQnFuuFYiDJ00aRIZaTFUSJQwSkYuFZkNVayjHKMBnWfJIdv0pbdHDGIulNSxy1ymeaqcGuCazoR64OI8knF4zEQ3mYVuScep98VT0WWXLYpOCQUpoQiTApVwzPr_5aqGduNLiUGnq-KDARWIDV_InnxD9pRt012TPXbGNlfLV3uOccpKXdSGeMG2hr_-TKZvcazqLA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7RcKA90EJbFehjDr268WPXdo4hahQKDZEKErfVPkUiurZC-P_M-oGCVIlDD77YGmu0M55vdj3zDcD3zIXEXJPz2jSLGNd5NKJ9RMQk0xQOZWFNw_Y5z2fX7NcNv9mBSd8LE8oqu9jfxvQmWnd3ht1qDuvlcvgnnGAR-jByysB5WLyC3cBOxQewOz47n82fAnJWNFPXmhOvILDVKLz6sQpAUflQVpmULd8p_zdGbeHO9B3sdwkjjludDmDH-kN42w9jwO7bPIQ3W8yC78Ev1uEPTFh1bIbdYOXQehPV1dJvsL6t7ulaP9xj0IqAB5ceTy-nSEa3d3-bEVVYt00EGJDOIL1pMRmj9AZPFxh4MEkt31aRf4Dr6c-rySzqRitEmhB7EylZ2twZ7mRu4ljKjCvGDNOKx7GTJs8SIy1lC5niRsnE5bywsUp1UlJCoMsi-wgDX3n7CTBlXEmdusIVmuXKqRFt60ysRy4tE5nGR8D7xRS64x0P4y_uRF9gthK9EUQwgogzQUY4guGTXN0yb7woMeptJZ75kCB4eEH2-D9kv8He7Or3hbg4m5-fwOvwpC0m-wyDzfrBfqG0ZaO-dm75CHTq7N0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+model+of+end-point+phosphorus+content+in+BOF+steelmaking+process+based+on+PCA+and+BP+neural+network&rft.jtitle=Journal+of+process+control&rft.au=He%2C+Fei&rft.au=Zhang%2C+Lingying&rft.date=2018-06-01&rft.issn=0959-1524&rft.volume=66&rft.spage=51&rft.epage=58&rft_id=info:doi/10.1016%2Fj.jprocont.2018.03.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jprocont_2018_03_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-1524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-1524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-1524&client=summon |