Strain-based room-temperature non-volatile MoTe2 ferroelectric phase change transistor

The primary mechanism of operation of almost all transistors today relies on the electric-field effect in a semiconducting channel to tune its conductivity from the conducting ‘on’ state to a non-conducting ‘off’ state. As transistors continue to scale down to increase computational performance, phy...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 14; no. 7; pp. 668 - 673
Main Authors Hou, Wenhui, Azizimanesh, Ahmad, Sewaket, Arfan, Peña, Tara, Watson, Carla, Liu, Ming, Askari, Hesam, Wu, Stephen M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The primary mechanism of operation of almost all transistors today relies on the electric-field effect in a semiconducting channel to tune its conductivity from the conducting ‘on’ state to a non-conducting ‘off’ state. As transistors continue to scale down to increase computational performance, physical limitations from nanoscale field-effect operation begin to cause undesirable current leakage, which is detrimental to the continued advancement of computing 1 , 2 . Using a fundamentally different mechanism of operation, we show that through nanoscale strain engineering with thin films and ferroelectrics the transition metal dichalcogenide MoTe 2 can be reversibly switched with electric-field-induced strain between the 1T′-MoTe 2 (semimetallic) phase to a semiconducting MoTe 2 phase in a field-effect transistor geometry. This alternative mechanism for transistor switching sidesteps all the static and dynamic power consumption problems in conventional field-effect transistors 3 , 4 . Using strain, we achieve large non-volatile changes in channel conductivity ( G on / G off  ≈ 10 7 versus G on / G off  ≈ 0.04 in the control device) at room temperature. Ferroelectric devices offer the potential to reach sub-nanosecond non-volatile strain switching at the attojoule/bit level 5 – 7 , with immediate applications in ultrafast low-power non-volatile logic and memory 8 while also transforming the landscape of computational architectures because conventional power, speed and volatility considerations for microelectronics may no longer exist. Strain-induced phase change in MoTe 2 enables reversible channel conductivity switching in a field-effect transistor geometry.
AbstractList The primary mechanism of operation of almost all transistors today relies on the electric-field effect in a semiconducting channel to tune its conductivity from the conducting ‘on’ state to a non-conducting ‘off’ state. As transistors continue to scale down to increase computational performance, physical limitations from nanoscale field-effect operation begin to cause undesirable current leakage, which is detrimental to the continued advancement of computing1,2. Using a fundamentally different mechanism of operation, we show that through nanoscale strain engineering with thin films and ferroelectrics the transition metal dichalcogenide MoTe2 can be reversibly switched with electric-field-induced strain between the 1T′-MoTe2 (semimetallic) phase to a semiconducting MoTe2 phase in a field-effect transistor geometry. This alternative mechanism for transistor switching sidesteps all the static and dynamic power consumption problems in conventional field-effect transistors3,4. Using strain, we achieve large non-volatile changes in channel conductivity (Gon/Goff ≈ 107 versus Gon/Goff ≈ 0.04 in the control device) at room temperature. Ferroelectric devices offer the potential to reach sub-nanosecond non-volatile strain switching at the attojoule/bit level5–7, with immediate applications in ultrafast low-power non-volatile logic and memory8 while also transforming the landscape of computational architectures because conventional power, speed and volatility considerations for microelectronics may no longer exist.Strain-induced phase change in MoTe2 enables reversible channel conductivity switching in a field-effect transistor geometry.
The primary mechanism of operation of almost all transistors today relies on the electric-field effect in a semiconducting channel to tune its conductivity from the conducting ‘on’ state to a non-conducting ‘off’ state. As transistors continue to scale down to increase computational performance, physical limitations from nanoscale field-effect operation begin to cause undesirable current leakage, which is detrimental to the continued advancement of computing 1 , 2 . Using a fundamentally different mechanism of operation, we show that through nanoscale strain engineering with thin films and ferroelectrics the transition metal dichalcogenide MoTe 2 can be reversibly switched with electric-field-induced strain between the 1T′-MoTe 2 (semimetallic) phase to a semiconducting MoTe 2 phase in a field-effect transistor geometry. This alternative mechanism for transistor switching sidesteps all the static and dynamic power consumption problems in conventional field-effect transistors 3 , 4 . Using strain, we achieve large non-volatile changes in channel conductivity ( G on / G off  ≈ 10 7 versus G on / G off  ≈ 0.04 in the control device) at room temperature. Ferroelectric devices offer the potential to reach sub-nanosecond non-volatile strain switching at the attojoule/bit level 5 – 7 , with immediate applications in ultrafast low-power non-volatile logic and memory 8 while also transforming the landscape of computational architectures because conventional power, speed and volatility considerations for microelectronics may no longer exist. Strain-induced phase change in MoTe 2 enables reversible channel conductivity switching in a field-effect transistor geometry.
The primary mechanism of operation of almost all transistors today relies on the electric-field effect in a semiconducting channel to tune its conductivity from the conducting 'on' state to a non-conducting 'off' state. As transistors continue to scale down to increase computational performance, physical limitations from nanoscale field-effect operation begin to cause undesirable current leakage, which is detrimental to the continued advancement of computing1,2. Using a fundamentally different mechanism of operation, we show that through nanoscale strain engineering with thin films and ferroelectrics the transition metal dichalcogenide MoTe2 can be reversibly switched with electric-field-induced strain between the 1T'-MoTe2 (semimetallic) phase to a semiconducting MoTe2 phase in a field-effect transistor geometry. This alternative mechanism for transistor switching sidesteps all the static and dynamic power consumption problems in conventional field-effect transistors3,4. Using strain, we achieve large non-volatile changes in channel conductivity (Gon/Goff ≈ 107 versus Gon/Goff ≈ 0.04 in the control device) at room temperature. Ferroelectric devices offer the potential to reach sub-nanosecond non-volatile strain switching at the attojoule/bit level5-7, with immediate applications in ultrafast low-power non-volatile logic and memory8 while also transforming the landscape of computational architectures because conventional power, speed and volatility considerations for microelectronics may no longer exist.The primary mechanism of operation of almost all transistors today relies on the electric-field effect in a semiconducting channel to tune its conductivity from the conducting 'on' state to a non-conducting 'off' state. As transistors continue to scale down to increase computational performance, physical limitations from nanoscale field-effect operation begin to cause undesirable current leakage, which is detrimental to the continued advancement of computing1,2. Using a fundamentally different mechanism of operation, we show that through nanoscale strain engineering with thin films and ferroelectrics the transition metal dichalcogenide MoTe2 can be reversibly switched with electric-field-induced strain between the 1T'-MoTe2 (semimetallic) phase to a semiconducting MoTe2 phase in a field-effect transistor geometry. This alternative mechanism for transistor switching sidesteps all the static and dynamic power consumption problems in conventional field-effect transistors3,4. Using strain, we achieve large non-volatile changes in channel conductivity (Gon/Goff ≈ 107 versus Gon/Goff ≈ 0.04 in the control device) at room temperature. Ferroelectric devices offer the potential to reach sub-nanosecond non-volatile strain switching at the attojoule/bit level5-7, with immediate applications in ultrafast low-power non-volatile logic and memory8 while also transforming the landscape of computational architectures because conventional power, speed and volatility considerations for microelectronics may no longer exist.
Author Wu, Stephen M.
Watson, Carla
Liu, Ming
Sewaket, Arfan
Hou, Wenhui
Azizimanesh, Ahmad
Askari, Hesam
Peña, Tara
Author_xml – sequence: 1
  givenname: Wenhui
  orcidid: 0000-0002-8249-8185
  surname: Hou
  fullname: Hou, Wenhui
  organization: Department of Electrical and Computer Engineering, University of Rochester
– sequence: 2
  givenname: Ahmad
  surname: Azizimanesh
  fullname: Azizimanesh, Ahmad
  organization: Department of Electrical and Computer Engineering, University of Rochester
– sequence: 3
  givenname: Arfan
  surname: Sewaket
  fullname: Sewaket, Arfan
  organization: Department of Electrical and Computer Engineering, University of Rochester
– sequence: 4
  givenname: Tara
  surname: Peña
  fullname: Peña, Tara
  organization: Department of Electrical and Computer Engineering, University of Rochester
– sequence: 5
  givenname: Carla
  orcidid: 0000-0001-8791-2384
  surname: Watson
  fullname: Watson, Carla
  organization: Department of Physics and Astronomy, University of Rochester
– sequence: 6
  givenname: Ming
  surname: Liu
  fullname: Liu, Ming
  organization: Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi’an Jiaotong University
– sequence: 7
  givenname: Hesam
  surname: Askari
  fullname: Askari, Hesam
  organization: Department of Mechanical Engineering, University of Rochester
– sequence: 8
  givenname: Stephen M.
  orcidid: 0000-0001-6079-3354
  surname: Wu
  fullname: Wu, Stephen M.
  email: stephen.wu@rochester.edu
  organization: Department of Electrical and Computer Engineering, University of Rochester, Department of Physics and Astronomy, University of Rochester
BookMark eNp9kMtKAzEUhoNUsK0-gLsBN26iuUzmspTiDSourG5DJnPGTplJxiQVfHtTRxQKujpZ_N85f74ZmhhrAKFTSi4o4cWlT6nIBCa0xCTNMswO0JTmaYE5L8Xk513kR2jm_YYQwUqWTtHLU3CqNbhSHurEWdvjAP0AToWtgyRewe-2U6HtIHmwK2BJA85Z6EAH1-pkWEcw0WtlXiGJq4xvfbDuGB02qvNw8j3n6PnmerW4w8vH2_vF1RLr2DfgKs-oZqIWsU2p8roA2vCaaA2UpoqkZVXwSmRMcNBFCtAUClRWkQwYa3TN-Rydj3sHZ9-24IPsW6-h65QBu_WSMUFzwlIhYvRsL7qxW2diu68UyWnJSEzlY0o7672DRuo2xO9bs_PUSUrkzrccfcvoW-58SxZJukcOru2V-_iXYSPjYzYadL-d_oY-AYg8lQw
CitedBy_id crossref_primary_10_1002_advs_202205680
crossref_primary_10_1002_sstr_202400027
crossref_primary_10_1021_acsnano_9b07095
crossref_primary_10_1016_j_mattod_2020_12_019
crossref_primary_10_1016_j_actamat_2020_116516
crossref_primary_10_1103_PhysRevB_102_024416
crossref_primary_10_1016_j_physb_2024_415932
crossref_primary_10_7567_1882_0786_ab4002
crossref_primary_10_1002_advs_202303437
crossref_primary_10_1002_smll_202005573
crossref_primary_10_1088_1361_6528_acddea
crossref_primary_10_1021_acsnano_1c01816
crossref_primary_10_1039_D3CP04656G
crossref_primary_10_1002_adfm_202004733
crossref_primary_10_1016_j_physleta_2025_130446
crossref_primary_10_1021_acs_chemrev_2c00048
crossref_primary_10_1016_j_isci_2024_109378
crossref_primary_10_1103_PhysRevApplied_13_044006
crossref_primary_10_1088_1361_648X_ac94af
crossref_primary_10_1021_acsami_3c06316
crossref_primary_10_1038_s41467_024_51165_4
crossref_primary_10_1021_acsnano_3c04701
crossref_primary_10_1038_s41467_024_52062_6
crossref_primary_10_1038_s41467_024_46087_0
crossref_primary_10_1038_s41578_022_00451_y
crossref_primary_10_1002_adfm_202010901
crossref_primary_10_1016_j_mssp_2024_108442
crossref_primary_10_1515_nanoph_2022_0246
crossref_primary_10_1088_2053_1583_ac08f2
crossref_primary_10_1007_s13204_021_01702_0
crossref_primary_10_1088_1674_1056_ac11d2
crossref_primary_10_1103_PhysRevLett_128_015702
crossref_primary_10_1109_LED_2024_3410095
crossref_primary_10_1016_j_mssp_2024_109095
crossref_primary_10_1007_s11467_023_1286_2
crossref_primary_10_1021_acsnano_0c02649
crossref_primary_10_1021_acsnano_3c10665
crossref_primary_10_1002_smll_202105599
crossref_primary_10_1002_aelm_202400603
crossref_primary_10_1063_5_0087432
crossref_primary_10_1038_s41535_021_00382_x
crossref_primary_10_1021_acs_inorgchem_4c04505
crossref_primary_10_1021_acsami_4c03546
crossref_primary_10_1021_acsanm_1c01361
crossref_primary_10_1088_1361_6463_ad865f
crossref_primary_10_1021_acsanm_4c04016
crossref_primary_10_3390_nano11112805
crossref_primary_10_3390_nano12010110
crossref_primary_10_1515_nanoph_2023_0725
crossref_primary_10_1038_s41928_023_01071_2
crossref_primary_10_1021_acs_nanolett_2c02194
crossref_primary_10_1021_acs_nanolett_3c00818
crossref_primary_10_1063_5_0049446
crossref_primary_10_1002_aelm_202101099
crossref_primary_10_2139_ssrn_4195343
crossref_primary_10_3390_nano11102688
crossref_primary_10_1002_adom_202302900
crossref_primary_10_7498_aps_73_20240353
crossref_primary_10_1038_s41563_025_02170_5
crossref_primary_10_1002_smll_202301097
crossref_primary_10_1021_acsnanoscienceau_2c00017
crossref_primary_10_1002_smsc_202000053
crossref_primary_10_1063_5_0019555
crossref_primary_10_1039_D2TC01281B
crossref_primary_10_1103_PhysRevResearch_2_022059
crossref_primary_10_1002_inf2_12407
crossref_primary_10_1021_acsami_0c16802
crossref_primary_10_1088_1361_6528_abbfd6
crossref_primary_10_1063_5_0149661
crossref_primary_10_1016_j_cclet_2021_07_001
crossref_primary_10_1063_5_0097844
crossref_primary_10_1088_1674_1056_acbaf0
crossref_primary_10_1021_acs_nanolett_2c04519
crossref_primary_10_1088_1674_1056_ad9e9e
crossref_primary_10_1021_acs_jpcc_2c01382
crossref_primary_10_1103_PhysRevB_107_184424
crossref_primary_10_1002_aelm_202300211
crossref_primary_10_1021_acs_nanolett_3c03494
crossref_primary_10_1039_D3NR03166G
crossref_primary_10_1002_smll_202204380
crossref_primary_10_1021_acsami_4c01503
crossref_primary_10_1021_acsaelm_0c00085
crossref_primary_10_1002_adma_202106371
crossref_primary_10_1002_adma_202004469
crossref_primary_10_1063_5_0165837
crossref_primary_10_1002_adma_202002968
crossref_primary_10_1002_smll_202402561
crossref_primary_10_1021_acs_nanolett_3c03706
crossref_primary_10_1016_j_ceh_2022_02_001
crossref_primary_10_1016_j_apsusc_2021_149024
crossref_primary_10_1186_s11671_024_04068_8
crossref_primary_10_1103_PhysRevB_107_035112
crossref_primary_10_1002_adma_202400332
crossref_primary_10_1002_advs_202002488
crossref_primary_10_1063_5_0096686
crossref_primary_10_1021_acsnano_9b07687
crossref_primary_10_1016_j_apsusc_2023_156988
crossref_primary_10_1088_1361_648X_ac145c
crossref_primary_10_1016_j_mtla_2022_101493
crossref_primary_10_1016_j_mattod_2021_08_008
crossref_primary_10_1038_s41467_019_13747_5
crossref_primary_10_1002_smsc_202300093
crossref_primary_10_1021_acs_chemrev_3c00510
crossref_primary_10_1038_s41467_023_41291_w
crossref_primary_10_1038_s42254_024_00781_6
crossref_primary_10_1088_0256_307X_38_1_017301
crossref_primary_10_1209_0295_5075_ac63dd
crossref_primary_10_1063_5_0177773
crossref_primary_10_1557_jmr_2020_34
crossref_primary_10_1016_j_mattod_2022_06_002
crossref_primary_10_1063_5_0211557
crossref_primary_10_1002_adma_202401838
crossref_primary_10_1103_PhysRevB_102_195431
crossref_primary_10_1021_acs_jpclett_3c02082
crossref_primary_10_1103_PhysRevApplied_17_024013
crossref_primary_10_1115_1_4051306
crossref_primary_10_1002_adom_201900996
crossref_primary_10_1103_PhysRevMaterials_5_084004
crossref_primary_10_1021_acsnano_2c05895
crossref_primary_10_1021_acsami_9b11526
crossref_primary_10_1002_smll_202205327
crossref_primary_10_1039_D1CE00275A
crossref_primary_10_1088_2516_1075_abaaf1
crossref_primary_10_1021_acsnano_4c06330
crossref_primary_10_1016_j_mssp_2021_106079
crossref_primary_10_1021_acsnano_0c08069
crossref_primary_10_1063_5_0065568
crossref_primary_10_1021_acsnano_3c05711
crossref_primary_10_1002_adma_202208825
crossref_primary_10_1038_s41467_024_49451_2
crossref_primary_10_1016_j_apsusc_2022_155238
crossref_primary_10_1021_acsnano_2c06359
crossref_primary_10_1021_acsnano_3c09354
crossref_primary_10_1021_acs_chemrev_3c00132
crossref_primary_10_1002_smll_202304445
crossref_primary_10_1063_5_0096704
crossref_primary_10_1039_D3CP02705H
crossref_primary_10_1021_jacs_1c06250
crossref_primary_10_1103_PhysRevB_109_104106
crossref_primary_10_1002_smll_202203017
crossref_primary_10_1063_5_0032538
crossref_primary_10_1021_acsmaterialslett_3c00654
crossref_primary_10_1088_2053_1583_ad10bb
crossref_primary_10_1016_j_mser_2021_100622
crossref_primary_10_1063_5_0075917
crossref_primary_10_1002_adma_202210854
crossref_primary_10_1016_j_fmre_2021_11_020
crossref_primary_10_1021_acsnano_2c12759
crossref_primary_10_1039_D4NR02638A
crossref_primary_10_1103_PhysRevB_111_094106
crossref_primary_10_1134_S0021364024600605
crossref_primary_10_1038_s41578_021_00304_0
crossref_primary_10_1088_2515_7647_ac9a91
crossref_primary_10_1038_s41565_019_0491_1
Cites_doi 10.1126/science.aab3175
10.1016/j.sse.2016.07.006
10.1063/1.3595670
10.1002/adfm.201705901
10.1038/srep04591
10.1002/adma.201400254
10.1109/5.915374
10.1088/1367-2630/17/3/035008
10.1088/2053-1591/aa9762
10.1109/16.34233
10.1063/1.1819976
10.1038/ncomms11983
10.1039/C7NR07607J
10.1103/PhysRevLett.111.027204
10.1080/00150198808201374
10.1002/adma.201606433
10.1109/JEDS.2018.2825360
10.1088/0953-8984/28/10/103003
10.1038/ncomms5214
10.1021/acs.nanolett.5b03481
10.1038/s41563-018-0234-y
10.1063/1.4962662
10.1149/2.0081505jss
10.1038/s41586-018-0770-2
10.1038/nnano.2008.18
10.1063/1.4901527
10.1143/JJAP.44.7160
10.1038/srep21516
10.1063/1.4927286
10.1016/j.mseb.2014.10.003
10.1016/j.optlaseng.2018.04.026
10.1002/adma.201305845
10.1109/VTSA.2010.5488941
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2019
The Author(s), under exclusive licence to Springer Nature Limited 2019.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2019.
DBID AAYXX
CITATION
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOI 10.1038/s41565-019-0466-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database (ProQuest)
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 673
ExternalDocumentID 10_1038_s41565_019_0466_2
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c415t-b761c25d55299a7d8e1f3d0cce114a049b83b56253ec84eef8aea6b06e22fcd33
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Tue Aug 05 11:18:45 EDT 2025
Fri Jul 25 09:02:18 EDT 2025
Tue Jul 01 01:56:29 EDT 2025
Thu Apr 24 23:10:31 EDT 2025
Fri Feb 21 02:41:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-b761c25d55299a7d8e1f3d0cce114a049b83b56253ec84eef8aea6b06e22fcd33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8791-2384
0000-0001-6079-3354
0000-0002-8249-8185
PQID 2251071920
PQPubID 546299
PageCount 6
ParticipantIDs proquest_miscellaneous_2251702455
proquest_journals_2251071920
crossref_citationtrail_10_1038_s41565_019_0466_2
crossref_primary_10_1038_s41565_019_0466_2
springer_journals_10_1038_s41565_019_0466_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nat. Nanotechnol
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Cho (CR16) 2015; 349
Hong (CR6) 2016; 28
Lee, Fitzgerald, Bulsara, Currie, Lochtefeld (CR9) 2005; 97
Muller, Polakowski, Mueller, Mikolajick (CR5) 2015; 4
Zhirnov, Cavin (CR1) 2008; 3
Manchanda, Sharma, Yu, Sellmyer, Skomski (CR31) 2015; 107
Song (CR21) 2016; 16
Damodaran, Breckenfeld, Chen, Lee, Martin (CR13) 2014; 26
Lin (CR17) 2014; 26
Xiang (CR32) 2016; 6
Arlt, Neumann (CR12) 1988; 87
Wu (CR22) 2011; 109
Pimbley, Meindl (CR4) 1989; 36
Frank (CR3) 2001; 89
Buzzi (CR14) 2013; 111
Genenko, Glaum, Hoffmann (CR11) 2015; 192
Li, Wu, Xu, Liu, Ouyang (CR25) 2017; 4
Wang (CR27) 2018; 28
CR2
Duerloo, Li, Reed, Scuseria, Heinz (CR20) 2014; 5
Zhang (CR29) 2019; 18
Pesic (CR24) 2018; 6
Chen (CR8) 2016; 125
Manipatruni (CR7) 2019; 565
Ge, Wan, Yang, Yao (CR33) 2015; 17
Du, Xue, Xu, Kang, Dou (CR15) 2018; 110
Yang (CR23) 2015; 4
Qu (CR18) 2017; 29
Kumar, Dong, Shenoy (CR28) 2016; 6
Vermeulen, Mulder, Momand, Kooi (CR26) 2018; 10
Kalikka (CR30) 2016; 7
Okino, Sakamoto, Yamamoto (CR10) 2005; 44
Fathipour (CR19) 2014; 105
S Fathipour (466_CR19) 2014; 105
P Manchanda (466_CR31) 2015; 107
ML Lee (466_CR9) 2005; 97
H Okino (466_CR10) 2005; 44
DJ Frank (466_CR3) 2001; 89
R Wang (466_CR27) 2018; 28
Y Ge (466_CR33) 2015; 17
S Song (466_CR21) 2016; 16
M Buzzi (466_CR14) 2013; 111
YA Genenko (466_CR11) 2015; 192
J Kalikka (466_CR30) 2016; 7
M Pesic (466_CR24) 2018; 6
JM Pimbley (466_CR4) 1989; 36
466_CR2
H Kumar (466_CR28) 2016; 6
L Yang (466_CR23) 2015; 4
AR Damodaran (466_CR13) 2014; 26
A Chen (466_CR8) 2016; 125
H Xiang (466_CR32) 2016; 6
Y-F Lin (466_CR17) 2014; 26
D Qu (466_CR18) 2017; 29
X Hong (466_CR6) 2016; 28
PA Vermeulen (466_CR26) 2018; 10
VV Zhirnov (466_CR1) 2008; 3
X Li (466_CR25) 2017; 4
F Zhang (466_CR29) 2019; 18
S Cho (466_CR16) 2015; 349
J Muller (466_CR5) 2015; 4
T Wu (466_CR22) 2011; 109
S Manipatruni (466_CR7) 2019; 565
K-AN Duerloo (466_CR20) 2014; 5
H Du (466_CR15) 2018; 110
G Arlt (466_CR12) 1988; 87
References_xml – volume: 349
  start-page: 625
  year: 2015
  end-page: 628
  ident: CR16
  article-title: Phase patterning for ohmic homojunction contact in MoTe
  publication-title: Science
  doi: 10.1126/science.aab3175
– volume: 125
  start-page: 25
  year: 2016
  end-page: 38
  ident: CR8
  article-title: A review of emerging non-volatile memory (NVM) technologies and applications
  publication-title: Solid State Electron.
  doi: 10.1016/j.sse.2016.07.006
– volume: 109
  start-page: 124101
  year: 2011
  ident: CR22
  article-title: Domain engineered switchable strain states in ferroelectric (011) [Pb(Mg Nb )O ] -[PbTiO ] (PMN-PT,  ≈ 0.32) single crystals
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3595670
– volume: 28
  start-page: 1705901
  year: 2018
  ident: CR27
  article-title: 2D or not 2D: strain tuning in weakly coupled heterostructures
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705901
– ident: CR2
– volume: 4
  year: 2015
  ident: CR23
  article-title: Bipolar loop-like non-volatile strain in the (001)-oriented Pb(Mg Nb )O -PbTiO single crystals
  publication-title: Sci. Rep.
  doi: 10.1038/srep04591
– volume: 26
  start-page: 6341
  year: 2014
  end-page: 6347
  ident: CR13
  article-title: Enhancement of ferroelectric Curie temperature in BaTiO films via strain-induced defect dipole alignment
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400254
– volume: 89
  start-page: 259
  year: 2001
  end-page: 288
  ident: CR3
  article-title: Device scaling limits of Si MOSFETs and their application dependencies
  publication-title: Proc. IEEE
  doi: 10.1109/5.915374
– volume: 17
  start-page: 035008
  year: 2015
  ident: CR33
  article-title: The strain effect on superconductivity in phosphorene: a first-principles prediction
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/3/035008
– volume: 4
  start-page: 115018
  year: 2017
  ident: CR25
  article-title: Compressive strain induced dynamical stability of monolayer 1T-MX (M = Mo, W; X = S, Se)
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aa9762
– volume: 36
  start-page: 1711
  year: 1989
  end-page: 1721
  ident: CR4
  article-title: MOSFET scaling limits determined by subthreshold conduction
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/16.34233
– volume: 97
  start-page: 011101
  year: 2005
  ident: CR9
  article-title: Strained Si, SiGe and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1819976
– volume: 7
  year: 2016
  ident: CR30
  article-title: Strain-engineered diffusive atomic switching in two-dimensional crystals
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11983
– volume: 10
  start-page: 1474
  year: 2018
  end-page: 1480
  ident: CR26
  article-title: Strain engineering of van der Waals heterostructures
  publication-title: Nanoscale
  doi: 10.1039/C7NR07607J
– volume: 111
  start-page: 027204
  year: 2013
  ident: CR14
  article-title: Single domain spin manipulation by electric fields in strain coupled artificial multiferroic nanostructures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.027204
– volume: 87
  start-page: 109
  year: 1988
  end-page: 120
  ident: CR12
  article-title: Internal bias in ferroelectric ceramics: origin and time dependence
  publication-title: Ferroelectrics
  doi: 10.1080/00150198808201374
– volume: 29
  start-page: 1606433
  year: 2017
  ident: CR18
  article-title: Carrier-type modulation and mobility improvement of thin MoTe
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606433
– volume: 6
  start-page: 1019
  year: 2018
  end-page: 1025
  ident: CR24
  article-title: Built-in bias generation in anti-ferroelectric stacks: methods and device applications
  publication-title: IEEE J. Electron. Devices Soc.
  doi: 10.1109/JEDS.2018.2825360
– volume: 28
  start-page: 103003
  year: 2016
  ident: CR6
  article-title: Emerging ferroelectric transistors with nanoscale channel materials: the possibilities, the limitations
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/28/10/103003
– volume: 5
  year: 2014
  ident: CR20
  article-title: Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5214
– volume: 16
  start-page: 188
  year: 2016
  end-page: 193
  ident: CR21
  article-title: Room temperature semiconductor-metal transition of MoTe thin films engineered by strain
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03481
– volume: 18
  start-page: 55
  year: 2019
  end-page: 61
  ident: CR29
  article-title: Electric-field induced structural transition in vertical MoTe - and Mo W Te -based resistive memories
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0234-y
– volume: 6
  start-page: 095005
  year: 2016
  ident: CR32
  article-title: Quantum spin Hall insulator phase in monolayer WTe by uniaxial strain
  publication-title: AIP Adv.
  doi: 10.1063/1.4962662
– volume: 4
  start-page: N30
  year: 2015
  end-page: N35
  ident: CR5
  article-title: Ferroelectric hafnium oxide based materials and devices: assessment of current status and future prospects
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0081505jss
– volume: 565
  start-page: 35
  year: 2019
  end-page: 42
  ident: CR7
  article-title: Scalable energy-efficient magnetoelectric spin–orbit logic
  publication-title: Nature
  doi: 10.1038/s41586-018-0770-2
– volume: 3
  start-page: 77
  year: 2008
  end-page: 78
  ident: CR1
  article-title: Nanoelectronics: negative capacitance to the rescue?
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.18
– volume: 105
  start-page: 192101
  year: 2014
  ident: CR19
  article-title: Exfoliated multilayer MoTe field-effect transistors
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4901527
– volume: 44
  start-page: 7160
  year: 2005
  end-page: 7164
  ident: CR10
  article-title: Cooling-rate-dependence of dielectric constant and domain structures in (1 −  )Pb(Mg Nb )O – PbTiO single crystals
  publication-title: Jpn J. Appl. Phys.
  doi: 10.1143/JJAP.44.7160
– volume: 6
  year: 2016
  ident: CR28
  article-title: Limits of coherency and strain transfer in flexible 2D van der Waals heterostructures: formation of strain solitons and interlayer debonding
  publication-title: Sci. Rep.
  doi: 10.1038/srep21516
– volume: 107
  start-page: 032402
  year: 2015
  ident: CR31
  article-title: Magnetism of Ta dichalcogenide monolayers tuned by strain and hydrogenation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4927286
– volume: 192
  start-page: 52
  year: 2015
  end-page: 82
  ident: CR11
  article-title: Mechanisms of aging and fatigue in ferroelectrics
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2014.10.003
– volume: 110
  start-page: 356
  year: 2018
  end-page: 363
  ident: CR15
  article-title: Improvement of mechanical properties of graphene/substrate interface via regulation of initial strain through cyclic loading
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2018.04.026
– volume: 26
  start-page: 3263
  year: 2014
  end-page: 3269
  ident: CR17
  article-title: Ambipolar MoTe transistors and their applications in logic circuits
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305845
– volume: 125
  start-page: 25
  year: 2016
  ident: 466_CR8
  publication-title: Solid State Electron.
  doi: 10.1016/j.sse.2016.07.006
– volume: 28
  start-page: 103003
  year: 2016
  ident: 466_CR6
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/28/10/103003
– volume: 26
  start-page: 3263
  year: 2014
  ident: 466_CR17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305845
– volume: 6
  start-page: 1019
  year: 2018
  ident: 466_CR24
  publication-title: IEEE J. Electron. Devices Soc.
  doi: 10.1109/JEDS.2018.2825360
– volume: 5
  year: 2014
  ident: 466_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5214
– ident: 466_CR2
  doi: 10.1109/VTSA.2010.5488941
– volume: 89
  start-page: 259
  year: 2001
  ident: 466_CR3
  publication-title: Proc. IEEE
  doi: 10.1109/5.915374
– volume: 26
  start-page: 6341
  year: 2014
  ident: 466_CR13
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400254
– volume: 97
  start-page: 011101
  year: 2005
  ident: 466_CR9
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1819976
– volume: 4
  year: 2015
  ident: 466_CR23
  publication-title: Sci. Rep.
  doi: 10.1038/srep04591
– volume: 107
  start-page: 032402
  year: 2015
  ident: 466_CR31
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4927286
– volume: 6
  start-page: 095005
  year: 2016
  ident: 466_CR32
  publication-title: AIP Adv.
  doi: 10.1063/1.4962662
– volume: 18
  start-page: 55
  year: 2019
  ident: 466_CR29
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0234-y
– volume: 7
  year: 2016
  ident: 466_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11983
– volume: 29
  start-page: 1606433
  year: 2017
  ident: 466_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606433
– volume: 111
  start-page: 027204
  year: 2013
  ident: 466_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.027204
– volume: 16
  start-page: 188
  year: 2016
  ident: 466_CR21
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03481
– volume: 110
  start-page: 356
  year: 2018
  ident: 466_CR15
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2018.04.026
– volume: 44
  start-page: 7160
  year: 2005
  ident: 466_CR10
  publication-title: Jpn J. Appl. Phys.
  doi: 10.1143/JJAP.44.7160
– volume: 17
  start-page: 035008
  year: 2015
  ident: 466_CR33
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/3/035008
– volume: 192
  start-page: 52
  year: 2015
  ident: 466_CR11
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2014.10.003
– volume: 87
  start-page: 109
  year: 1988
  ident: 466_CR12
  publication-title: Ferroelectrics
  doi: 10.1080/00150198808201374
– volume: 36
  start-page: 1711
  year: 1989
  ident: 466_CR4
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/16.34233
– volume: 565
  start-page: 35
  year: 2019
  ident: 466_CR7
  publication-title: Nature
  doi: 10.1038/s41586-018-0770-2
– volume: 4
  start-page: 115018
  year: 2017
  ident: 466_CR25
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aa9762
– volume: 28
  start-page: 1705901
  year: 2018
  ident: 466_CR27
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705901
– volume: 6
  year: 2016
  ident: 466_CR28
  publication-title: Sci. Rep.
  doi: 10.1038/srep21516
– volume: 10
  start-page: 1474
  year: 2018
  ident: 466_CR26
  publication-title: Nanoscale
  doi: 10.1039/C7NR07607J
– volume: 105
  start-page: 192101
  year: 2014
  ident: 466_CR19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4901527
– volume: 3
  start-page: 77
  year: 2008
  ident: 466_CR1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.18
– volume: 349
  start-page: 625
  year: 2015
  ident: 466_CR16
  publication-title: Science
  doi: 10.1126/science.aab3175
– volume: 109
  start-page: 124101
  year: 2011
  ident: 466_CR22
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3595670
– volume: 4
  start-page: N30
  year: 2015
  ident: 466_CR5
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0081505jss
SSID ssj0052924
Score 2.6257946
Snippet The primary mechanism of operation of almost all transistors today relies on the electric-field effect in a semiconducting channel to tune its conductivity...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 668
SubjectTerms 140/133
639/166/987
639/301/119/996
639/766/1130
639/766/119/2795
639/925/927/1007
Chemistry and Materials Science
Computation
Computer applications
Conductivity
Current leakage
Electric fields
Ferroelectric materials
Ferroelectricity
Field effect transistors
Landscape architecture
Letter
Materials Science
Molybdenum compounds
Nanotechnology
Nanotechnology and Microengineering
Phase transitions
Power consumption
Room temperature
Semiconductor devices
Switching
Tellurides
Thin films
Transistors
Transition metal compounds
Volatility
Title Strain-based room-temperature non-volatile MoTe2 ferroelectric phase change transistor
URI https://link.springer.com/article/10.1038/s41565-019-0466-2
https://www.proquest.com/docview/2251071920
https://www.proquest.com/docview/2251702455
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEG8UXvTB-BlRJDPxSdM42u6DJwOGSUwgRsHwtnT9iCYEEMb_790-QE3kZXtYu6131979etc7Qm44AwwA5hD1wZymQjNcB6WiVjSbSlnQKNm5tf7A743E89gbFxtuyyKsslwTs4VazxTukd-D3AFSAXvEfZh_Uawahd7VooTGLqli6jKU6mC8Blwea-VFbQMRUoBiQenV5OH9EoELhq2ha8D3KfutlzbG5h__aKZ2okNyUNiLTjtn8BHZMdNjsv8ji-AJeX_L6jxQVEjaQUuYYsKpIluyA_iewhoEHJgYpz8bGuZYs1jM8gI4n8qZf0BHJz8B7KSou7LUIadkFHWHjz1alEugCgaT0iTwm4p52oNxt2SgQ9O0XLtKGcA8EpBAEvIE8Q43KhTG2FAa6SeubxizSnN-RirwS-Yc452kFSIRHtdaQP9Ee9KzRnKrfDAYWzXilsSKVZFLHIc6iTOfNg_jnL4x0DdG-sasRm7XXeZ5Io1tjeslB-JiTi3jjQTUyPX6McwGdHHIqZmt8jYBepO9GrkrObd5xb8fvNj-wUuyxzJRwTDdOqmki5W5AmMkTRqZxME1jJ4apNqOOp0B3DvdwcvrN-js3p0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5V5QAcqhaKWPrASOUCsrqxvZvlUCEEhPSRXEhQb8brh4oUZdNkI8Sf4jcys4-GIpFbzru2d8fjmW88L4ATKdAGQDjEU4TTXDlBctBYHlSnY21AjVLlrQ2GaX-sLq6T6y343ebCUFhlKxMrQe0KS3fkp8h3aKkgHonfz245dY0i72rbQqNmi0v_6yeabIuz80-4v6-F6H0efezzpqsAt6isSp6j4W5F4pIEJbHpusx3gnSxtR5NA4OAOc9kTmaB9DZT3ofMeJPmceqFCNbRBSiK_AdKoianzPTel1by44R1E92uyjiaft3Wiyqz0wUZShQmR66INOXivh5cgdt__LGVmuvtwk6DT9mHmqH2YMtPn8Djv6oWPoVvX6u-EpwUoGOEvDkVuGqqM7NpMeUo83DHJ54NipEXLPj5vKgb7vywbHaDA1mdccxK0pVVqZJ9GG-EkM9gGz_JP6f4KhOUylUinVM4PneJSYI3MtgUAeq7COKWWNo2tcvpVye68qHLTNf01UhfTfTVIoI3d0NmdeGOdS8ftjugmzO80CuOi-DV3WM8feRSMVNfLOt3uuS9TiJ42-7caor_Lvhi_YIv4WF_NLjSV-fDywN4JCq2oRDhQ9gu50t_hECozI8r7mPwfdPs_gfQIxhq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZSyNBEC4kguw-iMcuG88W9EVpkvT0HD6IeAXPIB6Lb709fbCCZGISEf-av86qOYwK-ubzTE_PVFdXfd9UdRXAaiCQAyAc4hHCaS6tIDuoDfey1TLGo0fJz62ddaLDa3l8E96MwXN1FobSKiubmBtqmxn6R95AvUOmgnik2fBlWsT5fnu7d8-pgxRFWqt2GoWKnLinR6Rvg62jfVzrNSHaB1d7h7zsMMANOq4hT5HEGxHaMESrrGObuJYPbNMYhzRBI3hOkyAlihA4k0jnfKKdjtJm5ITwxtLPUDT_4zGxohqM7x50zi8qP4CPLFrqxjLhSATjKqYaJI0B0SZKmqPARBRx8d4rjqDuh-hs7vTaUzBZolW2U6jXNIy57gz8fFPDcBb-XuZdJji5Q8sIh3Mqd1XWambdrMvRAuL63zl2ll05wbzr97Oi_c6tYb3_OJAV54_ZkDxnXrjkF1x_iyh_Qw1fyf2hbCvtpUxlGFgrcXxqQx16pwNvIoSrm3VoVsJSpqxkTp96p_KIepCoQr4K5atIvkrUYf11SK8o4_HVzQvVCqhyRw_USP_qsPJ6GfciBVh012UPxT0xxbLDOmxUKzd6xKcTzn094TJMoKqr06POyTz8ELnWUL7wAtSG_Qe3iKhomC6V6sfg33dr_AuIhh38
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain-based+room-temperature+non-volatile+MoTe2+ferroelectric+phase+change+transistor&rft.jtitle=Nature+nanotechnology&rft.au=Hou+Wenhui&rft.au=Azizimanesh+Ahmad&rft.au=Sewaket+Arfan&rft.au=Pe%C3%B1a%2C+Tara&rft.date=2019-07-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=14&rft.issue=7&rft.spage=668&rft.epage=673&rft_id=info:doi/10.1038%2Fs41565-019-0466-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon