Strain-based room-temperature non-volatile MoTe2 ferroelectric phase change transistor
The primary mechanism of operation of almost all transistors today relies on the electric-field effect in a semiconducting channel to tune its conductivity from the conducting ‘on’ state to a non-conducting ‘off’ state. As transistors continue to scale down to increase computational performance, phy...
Saved in:
Published in | Nature nanotechnology Vol. 14; no. 7; pp. 668 - 673 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The primary mechanism of operation of almost all transistors today relies on the electric-field effect in a semiconducting channel to tune its conductivity from the conducting ‘on’ state to a non-conducting ‘off’ state. As transistors continue to scale down to increase computational performance, physical limitations from nanoscale field-effect operation begin to cause undesirable current leakage, which is detrimental to the continued advancement of computing
1
,
2
. Using a fundamentally different mechanism of operation, we show that through nanoscale strain engineering with thin films and ferroelectrics the transition metal dichalcogenide MoTe
2
can be reversibly switched with electric-field-induced strain between the 1T′-MoTe
2
(semimetallic) phase to a semiconducting MoTe
2
phase in a field-effect transistor geometry. This alternative mechanism for transistor switching sidesteps all the static and dynamic power consumption problems in conventional field-effect transistors
3
,
4
. Using strain, we achieve large non-volatile changes in channel conductivity (
G
on
/
G
off
≈ 10
7
versus
G
on
/
G
off
≈ 0.04 in the control device) at room temperature. Ferroelectric devices offer the potential to reach sub-nanosecond non-volatile strain switching at the attojoule/bit level
5
–
7
, with immediate applications in ultrafast low-power non-volatile logic and memory
8
while also transforming the landscape of computational architectures because conventional power, speed and volatility considerations for microelectronics may no longer exist.
Strain-induced phase change in MoTe
2
enables reversible channel conductivity switching in a field-effect transistor geometry. |
---|---|
AbstractList | The primary mechanism of operation of almost all transistors today relies on the electric-field effect in a semiconducting channel to tune its conductivity from the conducting ‘on’ state to a non-conducting ‘off’ state. As transistors continue to scale down to increase computational performance, physical limitations from nanoscale field-effect operation begin to cause undesirable current leakage, which is detrimental to the continued advancement of computing1,2. Using a fundamentally different mechanism of operation, we show that through nanoscale strain engineering with thin films and ferroelectrics the transition metal dichalcogenide MoTe2 can be reversibly switched with electric-field-induced strain between the 1T′-MoTe2 (semimetallic) phase to a semiconducting MoTe2 phase in a field-effect transistor geometry. This alternative mechanism for transistor switching sidesteps all the static and dynamic power consumption problems in conventional field-effect transistors3,4. Using strain, we achieve large non-volatile changes in channel conductivity (Gon/Goff ≈ 107 versus Gon/Goff ≈ 0.04 in the control device) at room temperature. Ferroelectric devices offer the potential to reach sub-nanosecond non-volatile strain switching at the attojoule/bit level5–7, with immediate applications in ultrafast low-power non-volatile logic and memory8 while also transforming the landscape of computational architectures because conventional power, speed and volatility considerations for microelectronics may no longer exist.Strain-induced phase change in MoTe2 enables reversible channel conductivity switching in a field-effect transistor geometry. The primary mechanism of operation of almost all transistors today relies on the electric-field effect in a semiconducting channel to tune its conductivity from the conducting ‘on’ state to a non-conducting ‘off’ state. As transistors continue to scale down to increase computational performance, physical limitations from nanoscale field-effect operation begin to cause undesirable current leakage, which is detrimental to the continued advancement of computing 1 , 2 . Using a fundamentally different mechanism of operation, we show that through nanoscale strain engineering with thin films and ferroelectrics the transition metal dichalcogenide MoTe 2 can be reversibly switched with electric-field-induced strain between the 1T′-MoTe 2 (semimetallic) phase to a semiconducting MoTe 2 phase in a field-effect transistor geometry. This alternative mechanism for transistor switching sidesteps all the static and dynamic power consumption problems in conventional field-effect transistors 3 , 4 . Using strain, we achieve large non-volatile changes in channel conductivity ( G on / G off ≈ 10 7 versus G on / G off ≈ 0.04 in the control device) at room temperature. Ferroelectric devices offer the potential to reach sub-nanosecond non-volatile strain switching at the attojoule/bit level 5 – 7 , with immediate applications in ultrafast low-power non-volatile logic and memory 8 while also transforming the landscape of computational architectures because conventional power, speed and volatility considerations for microelectronics may no longer exist. Strain-induced phase change in MoTe 2 enables reversible channel conductivity switching in a field-effect transistor geometry. The primary mechanism of operation of almost all transistors today relies on the electric-field effect in a semiconducting channel to tune its conductivity from the conducting 'on' state to a non-conducting 'off' state. As transistors continue to scale down to increase computational performance, physical limitations from nanoscale field-effect operation begin to cause undesirable current leakage, which is detrimental to the continued advancement of computing1,2. Using a fundamentally different mechanism of operation, we show that through nanoscale strain engineering with thin films and ferroelectrics the transition metal dichalcogenide MoTe2 can be reversibly switched with electric-field-induced strain between the 1T'-MoTe2 (semimetallic) phase to a semiconducting MoTe2 phase in a field-effect transistor geometry. This alternative mechanism for transistor switching sidesteps all the static and dynamic power consumption problems in conventional field-effect transistors3,4. Using strain, we achieve large non-volatile changes in channel conductivity (Gon/Goff ≈ 107 versus Gon/Goff ≈ 0.04 in the control device) at room temperature. Ferroelectric devices offer the potential to reach sub-nanosecond non-volatile strain switching at the attojoule/bit level5-7, with immediate applications in ultrafast low-power non-volatile logic and memory8 while also transforming the landscape of computational architectures because conventional power, speed and volatility considerations for microelectronics may no longer exist.The primary mechanism of operation of almost all transistors today relies on the electric-field effect in a semiconducting channel to tune its conductivity from the conducting 'on' state to a non-conducting 'off' state. As transistors continue to scale down to increase computational performance, physical limitations from nanoscale field-effect operation begin to cause undesirable current leakage, which is detrimental to the continued advancement of computing1,2. Using a fundamentally different mechanism of operation, we show that through nanoscale strain engineering with thin films and ferroelectrics the transition metal dichalcogenide MoTe2 can be reversibly switched with electric-field-induced strain between the 1T'-MoTe2 (semimetallic) phase to a semiconducting MoTe2 phase in a field-effect transistor geometry. This alternative mechanism for transistor switching sidesteps all the static and dynamic power consumption problems in conventional field-effect transistors3,4. Using strain, we achieve large non-volatile changes in channel conductivity (Gon/Goff ≈ 107 versus Gon/Goff ≈ 0.04 in the control device) at room temperature. Ferroelectric devices offer the potential to reach sub-nanosecond non-volatile strain switching at the attojoule/bit level5-7, with immediate applications in ultrafast low-power non-volatile logic and memory8 while also transforming the landscape of computational architectures because conventional power, speed and volatility considerations for microelectronics may no longer exist. |
Author | Wu, Stephen M. Watson, Carla Liu, Ming Sewaket, Arfan Hou, Wenhui Azizimanesh, Ahmad Askari, Hesam Peña, Tara |
Author_xml | – sequence: 1 givenname: Wenhui orcidid: 0000-0002-8249-8185 surname: Hou fullname: Hou, Wenhui organization: Department of Electrical and Computer Engineering, University of Rochester – sequence: 2 givenname: Ahmad surname: Azizimanesh fullname: Azizimanesh, Ahmad organization: Department of Electrical and Computer Engineering, University of Rochester – sequence: 3 givenname: Arfan surname: Sewaket fullname: Sewaket, Arfan organization: Department of Electrical and Computer Engineering, University of Rochester – sequence: 4 givenname: Tara surname: Peña fullname: Peña, Tara organization: Department of Electrical and Computer Engineering, University of Rochester – sequence: 5 givenname: Carla orcidid: 0000-0001-8791-2384 surname: Watson fullname: Watson, Carla organization: Department of Physics and Astronomy, University of Rochester – sequence: 6 givenname: Ming surname: Liu fullname: Liu, Ming organization: Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi’an Jiaotong University – sequence: 7 givenname: Hesam surname: Askari fullname: Askari, Hesam organization: Department of Mechanical Engineering, University of Rochester – sequence: 8 givenname: Stephen M. orcidid: 0000-0001-6079-3354 surname: Wu fullname: Wu, Stephen M. email: stephen.wu@rochester.edu organization: Department of Electrical and Computer Engineering, University of Rochester, Department of Physics and Astronomy, University of Rochester |
BookMark | eNp9kMtKAzEUhoNUsK0-gLsBN26iuUzmspTiDSourG5DJnPGTplJxiQVfHtTRxQKujpZ_N85f74ZmhhrAKFTSi4o4cWlT6nIBCa0xCTNMswO0JTmaYE5L8Xk513kR2jm_YYQwUqWTtHLU3CqNbhSHurEWdvjAP0AToWtgyRewe-2U6HtIHmwK2BJA85Z6EAH1-pkWEcw0WtlXiGJq4xvfbDuGB02qvNw8j3n6PnmerW4w8vH2_vF1RLr2DfgKs-oZqIWsU2p8roA2vCaaA2UpoqkZVXwSmRMcNBFCtAUClRWkQwYa3TN-Rydj3sHZ9-24IPsW6-h65QBu_WSMUFzwlIhYvRsL7qxW2diu68UyWnJSEzlY0o7672DRuo2xO9bs_PUSUrkzrccfcvoW-58SxZJukcOru2V-_iXYSPjYzYadL-d_oY-AYg8lQw |
CitedBy_id | crossref_primary_10_1002_advs_202205680 crossref_primary_10_1002_sstr_202400027 crossref_primary_10_1021_acsnano_9b07095 crossref_primary_10_1016_j_mattod_2020_12_019 crossref_primary_10_1016_j_actamat_2020_116516 crossref_primary_10_1103_PhysRevB_102_024416 crossref_primary_10_1016_j_physb_2024_415932 crossref_primary_10_7567_1882_0786_ab4002 crossref_primary_10_1002_advs_202303437 crossref_primary_10_1002_smll_202005573 crossref_primary_10_1088_1361_6528_acddea crossref_primary_10_1021_acsnano_1c01816 crossref_primary_10_1039_D3CP04656G crossref_primary_10_1002_adfm_202004733 crossref_primary_10_1016_j_physleta_2025_130446 crossref_primary_10_1021_acs_chemrev_2c00048 crossref_primary_10_1016_j_isci_2024_109378 crossref_primary_10_1103_PhysRevApplied_13_044006 crossref_primary_10_1088_1361_648X_ac94af crossref_primary_10_1021_acsami_3c06316 crossref_primary_10_1038_s41467_024_51165_4 crossref_primary_10_1021_acsnano_3c04701 crossref_primary_10_1038_s41467_024_52062_6 crossref_primary_10_1038_s41467_024_46087_0 crossref_primary_10_1038_s41578_022_00451_y crossref_primary_10_1002_adfm_202010901 crossref_primary_10_1016_j_mssp_2024_108442 crossref_primary_10_1515_nanoph_2022_0246 crossref_primary_10_1088_2053_1583_ac08f2 crossref_primary_10_1007_s13204_021_01702_0 crossref_primary_10_1088_1674_1056_ac11d2 crossref_primary_10_1103_PhysRevLett_128_015702 crossref_primary_10_1109_LED_2024_3410095 crossref_primary_10_1016_j_mssp_2024_109095 crossref_primary_10_1007_s11467_023_1286_2 crossref_primary_10_1021_acsnano_0c02649 crossref_primary_10_1021_acsnano_3c10665 crossref_primary_10_1002_smll_202105599 crossref_primary_10_1002_aelm_202400603 crossref_primary_10_1063_5_0087432 crossref_primary_10_1038_s41535_021_00382_x crossref_primary_10_1021_acs_inorgchem_4c04505 crossref_primary_10_1021_acsami_4c03546 crossref_primary_10_1021_acsanm_1c01361 crossref_primary_10_1088_1361_6463_ad865f crossref_primary_10_1021_acsanm_4c04016 crossref_primary_10_3390_nano11112805 crossref_primary_10_3390_nano12010110 crossref_primary_10_1515_nanoph_2023_0725 crossref_primary_10_1038_s41928_023_01071_2 crossref_primary_10_1021_acs_nanolett_2c02194 crossref_primary_10_1021_acs_nanolett_3c00818 crossref_primary_10_1063_5_0049446 crossref_primary_10_1002_aelm_202101099 crossref_primary_10_2139_ssrn_4195343 crossref_primary_10_3390_nano11102688 crossref_primary_10_1002_adom_202302900 crossref_primary_10_7498_aps_73_20240353 crossref_primary_10_1038_s41563_025_02170_5 crossref_primary_10_1002_smll_202301097 crossref_primary_10_1021_acsnanoscienceau_2c00017 crossref_primary_10_1002_smsc_202000053 crossref_primary_10_1063_5_0019555 crossref_primary_10_1039_D2TC01281B crossref_primary_10_1103_PhysRevResearch_2_022059 crossref_primary_10_1002_inf2_12407 crossref_primary_10_1021_acsami_0c16802 crossref_primary_10_1088_1361_6528_abbfd6 crossref_primary_10_1063_5_0149661 crossref_primary_10_1016_j_cclet_2021_07_001 crossref_primary_10_1063_5_0097844 crossref_primary_10_1088_1674_1056_acbaf0 crossref_primary_10_1021_acs_nanolett_2c04519 crossref_primary_10_1088_1674_1056_ad9e9e crossref_primary_10_1021_acs_jpcc_2c01382 crossref_primary_10_1103_PhysRevB_107_184424 crossref_primary_10_1002_aelm_202300211 crossref_primary_10_1021_acs_nanolett_3c03494 crossref_primary_10_1039_D3NR03166G crossref_primary_10_1002_smll_202204380 crossref_primary_10_1021_acsami_4c01503 crossref_primary_10_1021_acsaelm_0c00085 crossref_primary_10_1002_adma_202106371 crossref_primary_10_1002_adma_202004469 crossref_primary_10_1063_5_0165837 crossref_primary_10_1002_adma_202002968 crossref_primary_10_1002_smll_202402561 crossref_primary_10_1021_acs_nanolett_3c03706 crossref_primary_10_1016_j_ceh_2022_02_001 crossref_primary_10_1016_j_apsusc_2021_149024 crossref_primary_10_1186_s11671_024_04068_8 crossref_primary_10_1103_PhysRevB_107_035112 crossref_primary_10_1002_adma_202400332 crossref_primary_10_1002_advs_202002488 crossref_primary_10_1063_5_0096686 crossref_primary_10_1021_acsnano_9b07687 crossref_primary_10_1016_j_apsusc_2023_156988 crossref_primary_10_1088_1361_648X_ac145c crossref_primary_10_1016_j_mtla_2022_101493 crossref_primary_10_1016_j_mattod_2021_08_008 crossref_primary_10_1038_s41467_019_13747_5 crossref_primary_10_1002_smsc_202300093 crossref_primary_10_1021_acs_chemrev_3c00510 crossref_primary_10_1038_s41467_023_41291_w crossref_primary_10_1038_s42254_024_00781_6 crossref_primary_10_1088_0256_307X_38_1_017301 crossref_primary_10_1209_0295_5075_ac63dd crossref_primary_10_1063_5_0177773 crossref_primary_10_1557_jmr_2020_34 crossref_primary_10_1016_j_mattod_2022_06_002 crossref_primary_10_1063_5_0211557 crossref_primary_10_1002_adma_202401838 crossref_primary_10_1103_PhysRevB_102_195431 crossref_primary_10_1021_acs_jpclett_3c02082 crossref_primary_10_1103_PhysRevApplied_17_024013 crossref_primary_10_1115_1_4051306 crossref_primary_10_1002_adom_201900996 crossref_primary_10_1103_PhysRevMaterials_5_084004 crossref_primary_10_1021_acsnano_2c05895 crossref_primary_10_1021_acsami_9b11526 crossref_primary_10_1002_smll_202205327 crossref_primary_10_1039_D1CE00275A crossref_primary_10_1088_2516_1075_abaaf1 crossref_primary_10_1021_acsnano_4c06330 crossref_primary_10_1016_j_mssp_2021_106079 crossref_primary_10_1021_acsnano_0c08069 crossref_primary_10_1063_5_0065568 crossref_primary_10_1021_acsnano_3c05711 crossref_primary_10_1002_adma_202208825 crossref_primary_10_1038_s41467_024_49451_2 crossref_primary_10_1016_j_apsusc_2022_155238 crossref_primary_10_1021_acsnano_2c06359 crossref_primary_10_1021_acsnano_3c09354 crossref_primary_10_1021_acs_chemrev_3c00132 crossref_primary_10_1002_smll_202304445 crossref_primary_10_1063_5_0096704 crossref_primary_10_1039_D3CP02705H crossref_primary_10_1021_jacs_1c06250 crossref_primary_10_1103_PhysRevB_109_104106 crossref_primary_10_1002_smll_202203017 crossref_primary_10_1063_5_0032538 crossref_primary_10_1021_acsmaterialslett_3c00654 crossref_primary_10_1088_2053_1583_ad10bb crossref_primary_10_1016_j_mser_2021_100622 crossref_primary_10_1063_5_0075917 crossref_primary_10_1002_adma_202210854 crossref_primary_10_1016_j_fmre_2021_11_020 crossref_primary_10_1021_acsnano_2c12759 crossref_primary_10_1039_D4NR02638A crossref_primary_10_1103_PhysRevB_111_094106 crossref_primary_10_1134_S0021364024600605 crossref_primary_10_1038_s41578_021_00304_0 crossref_primary_10_1088_2515_7647_ac9a91 crossref_primary_10_1038_s41565_019_0491_1 |
Cites_doi | 10.1126/science.aab3175 10.1016/j.sse.2016.07.006 10.1063/1.3595670 10.1002/adfm.201705901 10.1038/srep04591 10.1002/adma.201400254 10.1109/5.915374 10.1088/1367-2630/17/3/035008 10.1088/2053-1591/aa9762 10.1109/16.34233 10.1063/1.1819976 10.1038/ncomms11983 10.1039/C7NR07607J 10.1103/PhysRevLett.111.027204 10.1080/00150198808201374 10.1002/adma.201606433 10.1109/JEDS.2018.2825360 10.1088/0953-8984/28/10/103003 10.1038/ncomms5214 10.1021/acs.nanolett.5b03481 10.1038/s41563-018-0234-y 10.1063/1.4962662 10.1149/2.0081505jss 10.1038/s41586-018-0770-2 10.1038/nnano.2008.18 10.1063/1.4901527 10.1143/JJAP.44.7160 10.1038/srep21516 10.1063/1.4927286 10.1016/j.mseb.2014.10.003 10.1016/j.optlaseng.2018.04.026 10.1002/adma.201305845 10.1109/VTSA.2010.5488941 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2019 The Author(s), under exclusive licence to Springer Nature Limited 2019. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019. |
DBID | AAYXX CITATION 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1038/s41565-019-0466-2 |
DatabaseName | CrossRef ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database (ProQuest) Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 673 |
ExternalDocumentID | 10_1038_s41565_019_0466_2 |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c415t-b761c25d55299a7d8e1f3d0cce114a049b83b56253ec84eef8aea6b06e22fcd33 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Tue Aug 05 11:18:45 EDT 2025 Fri Jul 25 09:02:18 EDT 2025 Tue Jul 01 01:56:29 EDT 2025 Thu Apr 24 23:10:31 EDT 2025 Fri Feb 21 02:41:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-b761c25d55299a7d8e1f3d0cce114a049b83b56253ec84eef8aea6b06e22fcd33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8791-2384 0000-0001-6079-3354 0000-0002-8249-8185 |
PQID | 2251071920 |
PQPubID | 546299 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2251702455 proquest_journals_2251071920 crossref_citationtrail_10_1038_s41565_019_0466_2 crossref_primary_10_1038_s41565_019_0466_2 springer_journals_10_1038_s41565_019_0466_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nat. Nanotechnol |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Cho (CR16) 2015; 349 Hong (CR6) 2016; 28 Lee, Fitzgerald, Bulsara, Currie, Lochtefeld (CR9) 2005; 97 Muller, Polakowski, Mueller, Mikolajick (CR5) 2015; 4 Zhirnov, Cavin (CR1) 2008; 3 Manchanda, Sharma, Yu, Sellmyer, Skomski (CR31) 2015; 107 Song (CR21) 2016; 16 Damodaran, Breckenfeld, Chen, Lee, Martin (CR13) 2014; 26 Lin (CR17) 2014; 26 Xiang (CR32) 2016; 6 Arlt, Neumann (CR12) 1988; 87 Wu (CR22) 2011; 109 Pimbley, Meindl (CR4) 1989; 36 Frank (CR3) 2001; 89 Buzzi (CR14) 2013; 111 Genenko, Glaum, Hoffmann (CR11) 2015; 192 Li, Wu, Xu, Liu, Ouyang (CR25) 2017; 4 Wang (CR27) 2018; 28 CR2 Duerloo, Li, Reed, Scuseria, Heinz (CR20) 2014; 5 Zhang (CR29) 2019; 18 Pesic (CR24) 2018; 6 Chen (CR8) 2016; 125 Manipatruni (CR7) 2019; 565 Ge, Wan, Yang, Yao (CR33) 2015; 17 Du, Xue, Xu, Kang, Dou (CR15) 2018; 110 Yang (CR23) 2015; 4 Qu (CR18) 2017; 29 Kumar, Dong, Shenoy (CR28) 2016; 6 Vermeulen, Mulder, Momand, Kooi (CR26) 2018; 10 Kalikka (CR30) 2016; 7 Okino, Sakamoto, Yamamoto (CR10) 2005; 44 Fathipour (CR19) 2014; 105 S Fathipour (466_CR19) 2014; 105 P Manchanda (466_CR31) 2015; 107 ML Lee (466_CR9) 2005; 97 H Okino (466_CR10) 2005; 44 DJ Frank (466_CR3) 2001; 89 R Wang (466_CR27) 2018; 28 Y Ge (466_CR33) 2015; 17 S Song (466_CR21) 2016; 16 M Buzzi (466_CR14) 2013; 111 YA Genenko (466_CR11) 2015; 192 J Kalikka (466_CR30) 2016; 7 M Pesic (466_CR24) 2018; 6 JM Pimbley (466_CR4) 1989; 36 466_CR2 H Kumar (466_CR28) 2016; 6 L Yang (466_CR23) 2015; 4 AR Damodaran (466_CR13) 2014; 26 A Chen (466_CR8) 2016; 125 H Xiang (466_CR32) 2016; 6 Y-F Lin (466_CR17) 2014; 26 D Qu (466_CR18) 2017; 29 X Hong (466_CR6) 2016; 28 PA Vermeulen (466_CR26) 2018; 10 VV Zhirnov (466_CR1) 2008; 3 X Li (466_CR25) 2017; 4 F Zhang (466_CR29) 2019; 18 S Cho (466_CR16) 2015; 349 J Muller (466_CR5) 2015; 4 T Wu (466_CR22) 2011; 109 S Manipatruni (466_CR7) 2019; 565 K-AN Duerloo (466_CR20) 2014; 5 H Du (466_CR15) 2018; 110 G Arlt (466_CR12) 1988; 87 |
References_xml | – volume: 349 start-page: 625 year: 2015 end-page: 628 ident: CR16 article-title: Phase patterning for ohmic homojunction contact in MoTe publication-title: Science doi: 10.1126/science.aab3175 – volume: 125 start-page: 25 year: 2016 end-page: 38 ident: CR8 article-title: A review of emerging non-volatile memory (NVM) technologies and applications publication-title: Solid State Electron. doi: 10.1016/j.sse.2016.07.006 – volume: 109 start-page: 124101 year: 2011 ident: CR22 article-title: Domain engineered switchable strain states in ferroelectric (011) [Pb(Mg Nb )O ] -[PbTiO ] (PMN-PT, ≈ 0.32) single crystals publication-title: J. Appl. Phys. doi: 10.1063/1.3595670 – volume: 28 start-page: 1705901 year: 2018 ident: CR27 article-title: 2D or not 2D: strain tuning in weakly coupled heterostructures publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705901 – ident: CR2 – volume: 4 year: 2015 ident: CR23 article-title: Bipolar loop-like non-volatile strain in the (001)-oriented Pb(Mg Nb )O -PbTiO single crystals publication-title: Sci. Rep. doi: 10.1038/srep04591 – volume: 26 start-page: 6341 year: 2014 end-page: 6347 ident: CR13 article-title: Enhancement of ferroelectric Curie temperature in BaTiO films via strain-induced defect dipole alignment publication-title: Adv. Mater. doi: 10.1002/adma.201400254 – volume: 89 start-page: 259 year: 2001 end-page: 288 ident: CR3 article-title: Device scaling limits of Si MOSFETs and their application dependencies publication-title: Proc. IEEE doi: 10.1109/5.915374 – volume: 17 start-page: 035008 year: 2015 ident: CR33 article-title: The strain effect on superconductivity in phosphorene: a first-principles prediction publication-title: New J. Phys. doi: 10.1088/1367-2630/17/3/035008 – volume: 4 start-page: 115018 year: 2017 ident: CR25 article-title: Compressive strain induced dynamical stability of monolayer 1T-MX (M = Mo, W; X = S, Se) publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aa9762 – volume: 36 start-page: 1711 year: 1989 end-page: 1721 ident: CR4 article-title: MOSFET scaling limits determined by subthreshold conduction publication-title: IEEE Trans. Electron Devices doi: 10.1109/16.34233 – volume: 97 start-page: 011101 year: 2005 ident: CR9 article-title: Strained Si, SiGe and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors publication-title: J. Appl. Phys. doi: 10.1063/1.1819976 – volume: 7 year: 2016 ident: CR30 article-title: Strain-engineered diffusive atomic switching in two-dimensional crystals publication-title: Nat. Commun. doi: 10.1038/ncomms11983 – volume: 10 start-page: 1474 year: 2018 end-page: 1480 ident: CR26 article-title: Strain engineering of van der Waals heterostructures publication-title: Nanoscale doi: 10.1039/C7NR07607J – volume: 111 start-page: 027204 year: 2013 ident: CR14 article-title: Single domain spin manipulation by electric fields in strain coupled artificial multiferroic nanostructures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.027204 – volume: 87 start-page: 109 year: 1988 end-page: 120 ident: CR12 article-title: Internal bias in ferroelectric ceramics: origin and time dependence publication-title: Ferroelectrics doi: 10.1080/00150198808201374 – volume: 29 start-page: 1606433 year: 2017 ident: CR18 article-title: Carrier-type modulation and mobility improvement of thin MoTe publication-title: Adv. Mater. doi: 10.1002/adma.201606433 – volume: 6 start-page: 1019 year: 2018 end-page: 1025 ident: CR24 article-title: Built-in bias generation in anti-ferroelectric stacks: methods and device applications publication-title: IEEE J. Electron. Devices Soc. doi: 10.1109/JEDS.2018.2825360 – volume: 28 start-page: 103003 year: 2016 ident: CR6 article-title: Emerging ferroelectric transistors with nanoscale channel materials: the possibilities, the limitations publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/28/10/103003 – volume: 5 year: 2014 ident: CR20 article-title: Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers publication-title: Nat. Commun. doi: 10.1038/ncomms5214 – volume: 16 start-page: 188 year: 2016 end-page: 193 ident: CR21 article-title: Room temperature semiconductor-metal transition of MoTe thin films engineered by strain publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03481 – volume: 18 start-page: 55 year: 2019 end-page: 61 ident: CR29 article-title: Electric-field induced structural transition in vertical MoTe - and Mo W Te -based resistive memories publication-title: Nat. Mater. doi: 10.1038/s41563-018-0234-y – volume: 6 start-page: 095005 year: 2016 ident: CR32 article-title: Quantum spin Hall insulator phase in monolayer WTe by uniaxial strain publication-title: AIP Adv. doi: 10.1063/1.4962662 – volume: 4 start-page: N30 year: 2015 end-page: N35 ident: CR5 article-title: Ferroelectric hafnium oxide based materials and devices: assessment of current status and future prospects publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0081505jss – volume: 565 start-page: 35 year: 2019 end-page: 42 ident: CR7 article-title: Scalable energy-efficient magnetoelectric spin–orbit logic publication-title: Nature doi: 10.1038/s41586-018-0770-2 – volume: 3 start-page: 77 year: 2008 end-page: 78 ident: CR1 article-title: Nanoelectronics: negative capacitance to the rescue? publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.18 – volume: 105 start-page: 192101 year: 2014 ident: CR19 article-title: Exfoliated multilayer MoTe field-effect transistors publication-title: Appl. Phys. Lett. doi: 10.1063/1.4901527 – volume: 44 start-page: 7160 year: 2005 end-page: 7164 ident: CR10 article-title: Cooling-rate-dependence of dielectric constant and domain structures in (1 − )Pb(Mg Nb )O – PbTiO single crystals publication-title: Jpn J. Appl. Phys. doi: 10.1143/JJAP.44.7160 – volume: 6 year: 2016 ident: CR28 article-title: Limits of coherency and strain transfer in flexible 2D van der Waals heterostructures: formation of strain solitons and interlayer debonding publication-title: Sci. Rep. doi: 10.1038/srep21516 – volume: 107 start-page: 032402 year: 2015 ident: CR31 article-title: Magnetism of Ta dichalcogenide monolayers tuned by strain and hydrogenation publication-title: Appl. Phys. Lett. doi: 10.1063/1.4927286 – volume: 192 start-page: 52 year: 2015 end-page: 82 ident: CR11 article-title: Mechanisms of aging and fatigue in ferroelectrics publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2014.10.003 – volume: 110 start-page: 356 year: 2018 end-page: 363 ident: CR15 article-title: Improvement of mechanical properties of graphene/substrate interface via regulation of initial strain through cyclic loading publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2018.04.026 – volume: 26 start-page: 3263 year: 2014 end-page: 3269 ident: CR17 article-title: Ambipolar MoTe transistors and their applications in logic circuits publication-title: Adv. Mater. doi: 10.1002/adma.201305845 – volume: 125 start-page: 25 year: 2016 ident: 466_CR8 publication-title: Solid State Electron. doi: 10.1016/j.sse.2016.07.006 – volume: 28 start-page: 103003 year: 2016 ident: 466_CR6 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/28/10/103003 – volume: 26 start-page: 3263 year: 2014 ident: 466_CR17 publication-title: Adv. Mater. doi: 10.1002/adma.201305845 – volume: 6 start-page: 1019 year: 2018 ident: 466_CR24 publication-title: IEEE J. Electron. Devices Soc. doi: 10.1109/JEDS.2018.2825360 – volume: 5 year: 2014 ident: 466_CR20 publication-title: Nat. Commun. doi: 10.1038/ncomms5214 – ident: 466_CR2 doi: 10.1109/VTSA.2010.5488941 – volume: 89 start-page: 259 year: 2001 ident: 466_CR3 publication-title: Proc. IEEE doi: 10.1109/5.915374 – volume: 26 start-page: 6341 year: 2014 ident: 466_CR13 publication-title: Adv. Mater. doi: 10.1002/adma.201400254 – volume: 97 start-page: 011101 year: 2005 ident: 466_CR9 publication-title: J. Appl. Phys. doi: 10.1063/1.1819976 – volume: 4 year: 2015 ident: 466_CR23 publication-title: Sci. Rep. doi: 10.1038/srep04591 – volume: 107 start-page: 032402 year: 2015 ident: 466_CR31 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4927286 – volume: 6 start-page: 095005 year: 2016 ident: 466_CR32 publication-title: AIP Adv. doi: 10.1063/1.4962662 – volume: 18 start-page: 55 year: 2019 ident: 466_CR29 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0234-y – volume: 7 year: 2016 ident: 466_CR30 publication-title: Nat. Commun. doi: 10.1038/ncomms11983 – volume: 29 start-page: 1606433 year: 2017 ident: 466_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.201606433 – volume: 111 start-page: 027204 year: 2013 ident: 466_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.027204 – volume: 16 start-page: 188 year: 2016 ident: 466_CR21 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03481 – volume: 110 start-page: 356 year: 2018 ident: 466_CR15 publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2018.04.026 – volume: 44 start-page: 7160 year: 2005 ident: 466_CR10 publication-title: Jpn J. Appl. Phys. doi: 10.1143/JJAP.44.7160 – volume: 17 start-page: 035008 year: 2015 ident: 466_CR33 publication-title: New J. Phys. doi: 10.1088/1367-2630/17/3/035008 – volume: 192 start-page: 52 year: 2015 ident: 466_CR11 publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2014.10.003 – volume: 87 start-page: 109 year: 1988 ident: 466_CR12 publication-title: Ferroelectrics doi: 10.1080/00150198808201374 – volume: 36 start-page: 1711 year: 1989 ident: 466_CR4 publication-title: IEEE Trans. Electron Devices doi: 10.1109/16.34233 – volume: 565 start-page: 35 year: 2019 ident: 466_CR7 publication-title: Nature doi: 10.1038/s41586-018-0770-2 – volume: 4 start-page: 115018 year: 2017 ident: 466_CR25 publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aa9762 – volume: 28 start-page: 1705901 year: 2018 ident: 466_CR27 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705901 – volume: 6 year: 2016 ident: 466_CR28 publication-title: Sci. Rep. doi: 10.1038/srep21516 – volume: 10 start-page: 1474 year: 2018 ident: 466_CR26 publication-title: Nanoscale doi: 10.1039/C7NR07607J – volume: 105 start-page: 192101 year: 2014 ident: 466_CR19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4901527 – volume: 3 start-page: 77 year: 2008 ident: 466_CR1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.18 – volume: 349 start-page: 625 year: 2015 ident: 466_CR16 publication-title: Science doi: 10.1126/science.aab3175 – volume: 109 start-page: 124101 year: 2011 ident: 466_CR22 publication-title: J. Appl. Phys. doi: 10.1063/1.3595670 – volume: 4 start-page: N30 year: 2015 ident: 466_CR5 publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0081505jss |
SSID | ssj0052924 |
Score | 2.6257946 |
Snippet | The primary mechanism of operation of almost all transistors today relies on the electric-field effect in a semiconducting channel to tune its conductivity... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 668 |
SubjectTerms | 140/133 639/166/987 639/301/119/996 639/766/1130 639/766/119/2795 639/925/927/1007 Chemistry and Materials Science Computation Computer applications Conductivity Current leakage Electric fields Ferroelectric materials Ferroelectricity Field effect transistors Landscape architecture Letter Materials Science Molybdenum compounds Nanotechnology Nanotechnology and Microengineering Phase transitions Power consumption Room temperature Semiconductor devices Switching Tellurides Thin films Transistors Transition metal compounds Volatility |
Title | Strain-based room-temperature non-volatile MoTe2 ferroelectric phase change transistor |
URI | https://link.springer.com/article/10.1038/s41565-019-0466-2 https://www.proquest.com/docview/2251071920 https://www.proquest.com/docview/2251702455 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEG8UXvTB-BlRJDPxSdM42u6DJwOGSUwgRsHwtnT9iCYEEMb_790-QE3kZXtYu6131979etc7Qm44AwwA5hD1wZymQjNcB6WiVjSbSlnQKNm5tf7A743E89gbFxtuyyKsslwTs4VazxTukd-D3AFSAXvEfZh_Uawahd7VooTGLqli6jKU6mC8Blwea-VFbQMRUoBiQenV5OH9EoELhq2ha8D3KfutlzbG5h__aKZ2okNyUNiLTjtn8BHZMdNjsv8ji-AJeX_L6jxQVEjaQUuYYsKpIluyA_iewhoEHJgYpz8bGuZYs1jM8gI4n8qZf0BHJz8B7KSou7LUIadkFHWHjz1alEugCgaT0iTwm4p52oNxt2SgQ9O0XLtKGcA8EpBAEvIE8Q43KhTG2FAa6SeubxizSnN-RirwS-Yc452kFSIRHtdaQP9Ee9KzRnKrfDAYWzXilsSKVZFLHIc6iTOfNg_jnL4x0DdG-sasRm7XXeZ5Io1tjeslB-JiTi3jjQTUyPX6McwGdHHIqZmt8jYBepO9GrkrObd5xb8fvNj-wUuyxzJRwTDdOqmki5W5AmMkTRqZxME1jJ4apNqOOp0B3DvdwcvrN-js3p0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5V5QAcqhaKWPrASOUCsrqxvZvlUCEEhPSRXEhQb8brh4oUZdNkI8Sf4jcys4-GIpFbzru2d8fjmW88L4ATKdAGQDjEU4TTXDlBctBYHlSnY21AjVLlrQ2GaX-sLq6T6y343ebCUFhlKxMrQe0KS3fkp8h3aKkgHonfz245dY0i72rbQqNmi0v_6yeabIuz80-4v6-F6H0efezzpqsAt6isSp6j4W5F4pIEJbHpusx3gnSxtR5NA4OAOc9kTmaB9DZT3ofMeJPmceqFCNbRBSiK_AdKoianzPTel1by44R1E92uyjiaft3Wiyqz0wUZShQmR66INOXivh5cgdt__LGVmuvtwk6DT9mHmqH2YMtPn8Djv6oWPoVvX6u-EpwUoGOEvDkVuGqqM7NpMeUo83DHJ54NipEXLPj5vKgb7vywbHaDA1mdccxK0pVVqZJ9GG-EkM9gGz_JP6f4KhOUylUinVM4PneJSYI3MtgUAeq7COKWWNo2tcvpVye68qHLTNf01UhfTfTVIoI3d0NmdeGOdS8ftjugmzO80CuOi-DV3WM8feRSMVNfLOt3uuS9TiJ42-7caor_Lvhi_YIv4WF_NLjSV-fDywN4JCq2oRDhQ9gu50t_hECozI8r7mPwfdPs_gfQIxhq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZSyNBEC4kguw-iMcuG88W9EVpkvT0HD6IeAXPIB6Lb709fbCCZGISEf-av86qOYwK-ubzTE_PVFdXfd9UdRXAaiCQAyAc4hHCaS6tIDuoDfey1TLGo0fJz62ddaLDa3l8E96MwXN1FobSKiubmBtqmxn6R95AvUOmgnik2fBlWsT5fnu7d8-pgxRFWqt2GoWKnLinR6Rvg62jfVzrNSHaB1d7h7zsMMANOq4hT5HEGxHaMESrrGObuJYPbNMYhzRBI3hOkyAlihA4k0jnfKKdjtJm5ITwxtLPUDT_4zGxohqM7x50zi8qP4CPLFrqxjLhSATjKqYaJI0B0SZKmqPARBRx8d4rjqDuh-hs7vTaUzBZolW2U6jXNIy57gz8fFPDcBb-XuZdJji5Q8sIh3Mqd1XWambdrMvRAuL63zl2ll05wbzr97Oi_c6tYb3_OJAV54_ZkDxnXrjkF1x_iyh_Qw1fyf2hbCvtpUxlGFgrcXxqQx16pwNvIoSrm3VoVsJSpqxkTp96p_KIepCoQr4K5atIvkrUYf11SK8o4_HVzQvVCqhyRw_USP_qsPJ6GfciBVh012UPxT0xxbLDOmxUKzd6xKcTzn094TJMoKqr06POyTz8ELnWUL7wAtSG_Qe3iKhomC6V6sfg33dr_AuIhh38 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain-based+room-temperature+non-volatile+MoTe2+ferroelectric+phase+change+transistor&rft.jtitle=Nature+nanotechnology&rft.au=Hou+Wenhui&rft.au=Azizimanesh+Ahmad&rft.au=Sewaket+Arfan&rft.au=Pe%C3%B1a%2C+Tara&rft.date=2019-07-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=14&rft.issue=7&rft.spage=668&rft.epage=673&rft_id=info:doi/10.1038%2Fs41565-019-0466-2&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |