Deep Learning Based Prediction Model for the Next Purchase

Time series represent the consecutive measurements taken at equally spaced time intervals. Time series prediction uses the information in a time series to predict future values. The future value prediction is important for many business and administrative decision makers especially in e-commerce. To...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Electrical and Computer Engineering Vol. 20; no. 2; pp. 35 - 44
Main Authors UTKU, A., AKCAYOL, M. A.
Format Journal Article
LanguageEnglish
Published Suceava Stefan cel Mare University of Suceava 01.05.2020
Subjects
Online AccessGet full text
ISSN1582-7445
1844-7600
DOI10.4316/AECE.2020.02005

Cover

Loading…
Abstract Time series represent the consecutive measurements taken at equally spaced time intervals. Time series prediction uses the information in a time series to predict future values. The future value prediction is important for many business and administrative decision makers especially in e-commerce. To promote business, sales prediction and sensing of future consumer behavior can help business decision makers in marketing campaigns, budget and resource planning. In this study, deep learning based a new prediction model has been developed for the time of next purchase in e-commerce. The proposed model has been extensively tested and compared with RF, ARIMA, CNN and MLP using a retail market dataset. The experimental results show that the developed model has been more successful than RF, ARIMA, CNN and MLP to predict the time of the next purchase. Index Terms--time series analysis, deep learning, prediction, e-commerce.
AbstractList Time series represent the consecutive measurements taken at equally spaced time intervals. Time series prediction uses the information in a time series to predict future values. The future value prediction is important for many business and administrative decision makers especially in e-commerce. To promote business, sales prediction and sensing of future consumer behavior can help business decision makers in marketing campaigns, budget and resource planning. In this study, deep learning based a new prediction model has been developed for the time of next purchase in e-commerce. The proposed model has been extensively tested and compared with RF, ARIMA, CNN and MLP using a retail market dataset. The experimental results show that the developed model has been more successful than RF, ARIMA, CNN and MLP to predict the time of the next purchase. Index Terms--time series analysis, deep learning, prediction, e-commerce.
Time series represent the consecutive measurements taken at equally spaced time intervals. Time series prediction uses the information in a time series to predict future values. The future value prediction is important for many business and administrative decision makers especially in e-commerce. To promote business, sales prediction and sensing of future consumer behavior can help business decision makers in marketing campaigns, budget and resource planning. In this study, deep learning based a new prediction model has been developed for the time of next purchase in e-commerce. The proposed model has been extensively tested and compared with RF, ARIMA, CNN and MLP using a retail market dataset. The experimental results show that the developed model has been more successful than RF, ARIMA, CNN and MLP to predict the time of the next purchase.
Audience Academic
Author AKCAYOL, M. A.
UTKU, A.
Author_xml – sequence: 1
  givenname: A.
  surname: UTKU
  fullname: UTKU, A.
– sequence: 2
  givenname: M. A.
  surname: AKCAYOL
  fullname: AKCAYOL, M. A.
BookMark eNp1kc1PGzEQxS1EpVLg3OtKPW_w99q9hTRQpJRygLPltcfBKKyDdyPR_54JQT1UqizL1uj93ozmfSHHQxmAkK-MzqRg-mK-XCxnnHI6w0vVETlhRsq205Qe418Z3nZSqs_kfBxzT6XsuOFCn5DvPwC2zQp8HfKwbi79CLG5qxBzmHIZml8lwqZJpTbTIzS38Do1d7saHlF3Rj4lvxnh_OM9JQ9Xy_vFz3b1-_pmMV-1QTI1tb3gvFfJJmE99UYzo5PSWmkRRQeBB9PTIFHimbYGEgWjQkwmMWaislKckpuDbyz-yW1rfvb1jys-u_dCqWvn65TDBlwQ0As0AEWVlDZ4ExSLPFlBaexVj17fDl7bWl52ME7uqezqgOM7Lpk0qsP9oWp2UK09muYhlan6gCfCcw64-ZSxPtfcSmsRQ-DiAIRaxrFC-jsmo24fkNsH5PYBufeAkFD_ECFPfr9ybJU3_-XeAMFkkr4
CitedBy_id crossref_primary_10_35378_gujs_919572
crossref_primary_10_3390_jtaer18040110
crossref_primary_10_1108_K_02_2023_0245
crossref_primary_10_3390_computation11110210
Cites_doi 10.1016/j.knosys.2009.11.015
10.1007/s11269-015-0962-6
10.4316/AECE.2018.04015
10.3390/app9010108
10.3390/en81112361
10.1016/j.eswa.2016.02.025
10.1109/TNNLS.2019.2918225
10.4316/AECE.2017.03014
10.2307/2284112
10.1016/j.patrec.2014.01.008
10.1016/j.eswa.2014.08.018
10.22190/FUME190327035A
10.4316/AECE.2018.02013
10.1039/C0EM00478B
10.1016/j.epsr.2016.06.003
10.1016/j.econmod.2013.09.024
10.1016/j.jhydrol.2012.11.017
10.1186/1471-2105-15-276
10.1007/s10618-019-00619-1
10.1007/s00521-020-04867-x
ContentType Journal Article
Copyright COPYRIGHT 2020 Stefan cel Mare University of Suceava
Copyright Stefan cel Mare University of Suceava 2020
Copyright_xml – notice: COPYRIGHT 2020 Stefan cel Mare University of Suceava
– notice: Copyright Stefan cel Mare University of Suceava 2020
DBID AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.4316/AECE.2020.02005
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Technology Collection

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Business
EISSN 1844-7600
EndPage 44
ExternalDocumentID oai_doaj_org_article_c3eb30e8e505449ca8c51d2f9300db5b
A629499414
10_4316_AECE_2020_02005
GeographicLocations United States
Trinidad and Tobago
California
GeographicLocations_xml – name: Trinidad and Tobago
– name: United States
– name: California
GroupedDBID 23M
5GY
5VS
AAKPC
AAYXX
ABJCF
ADBBV
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
C1A
CCPQU
CITATION
E3Z
GROUPED_DOAJ
HCIFZ
IAO
IGS
IPNFZ
ITC
KQ8
M7S
OK1
PHGZM
PHGZT
PTHSS
PV9
RIG
RZL
TR2
ADMLS
7SC
7SP
8FD
8FE
8FG
DWQXO
JQ2
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c415t-b322b5f9f39a0a86186f566563d37ec2c8b0c42b5a1698ef0e85cdf8f118d5943
IEDL.DBID BENPR
ISSN 1582-7445
IngestDate Wed Aug 27 01:20:39 EDT 2025
Fri Jul 25 12:03:59 EDT 2025
Tue Apr 29 03:51:03 EDT 2025
Tue Jul 01 01:27:21 EDT 2025
Thu Apr 24 23:14:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-b322b5f9f39a0a86186f566563d37ec2c8b0c42b5a1698ef0e85cdf8f118d5943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/c3eb30e8e505449ca8c51d2f9300db5b
PQID 2414857020
PQPubID 2049588
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_c3eb30e8e505449ca8c51d2f9300db5b
proquest_journals_2414857020
gale_infotracacademiconefile_A629499414
crossref_primary_10_4316_AECE_2020_02005
crossref_citationtrail_10_4316_AECE_2020_02005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Suceava
PublicationPlace_xml – name: Suceava
PublicationTitle Advances in Electrical and Computer Engineering
PublicationYear 2020
Publisher Stefan cel Mare University of Suceava
Publisher_xml – name: Stefan cel Mare University of Suceava
References Siami-Namini (10.1109/ICMLA.2018.00227) 2018
Kane (10.1186/1471-2105-15-276) 2014; 15
NAMOZOV (10.4316/AECE.2018.04015) 2018; 18
Langkvist (10.1016/j.patrec.2014.01.008) 2014; 42
Claveria (10.1016/j.econmod.2013.09.024) 2014; 36
Amini (10.1016/j.epsr.2016.06.003) 2016; 140
Pozna (10.1016/j.knosys.2009.11.015) 2010; 23
Ismail Fawaz (10.1007/s10618-019-00619-1) 2019; 33
Chakravarti (10.2307/2284112) 1973; 68
Wang (10.1007/s11269-015-0962-6) 2015; 29
Irsoy (10.1109/TNNLS.2019.2918225) 2020; 31
Sobreiro (10.23919/CISTI.2018.8399191) 2018
Graves (10.1109/ICASSP.2013.6638947) 2013
Wang (10.1109/ICCCBDA.2018.8386584) 2018
Qiu (10.1109/CIEL.2014.7015739) 2014
Fu (10.1109/YAC.2016.7804912) 2016
Jian Zheng (10.1109/CISS.2017.7926112) 2017
Wang (10.1109/ICMA.2018.8484380) 2018
Livieris (10.1007/s00521-020-04867-x) 2020; 32
McNally (10.1109/PDP2018.2018.00060) 2018
Chen (10.1109/BigData.2015.7364089) 2015
Valipour (10.1016/j.jhydrol.2012.11.017) 2013; 476
Park (10.3390/app9010108) 2019; 9
BUYUK (10.4316/AECE.2018.02013) 2018; 18
Lahmiri (10.1016/j.eswa.2016.02.025) 2016; 55
Albu (10.22190/FUME190327035A) 2019; 17
Yang (10.1109/ISCID.2017.173) 2017
Martinez-Alvarez (10.3390/en81112361) 2015; 8
ZHANG (10.4316/AECE.2017.03014) 2017; 17
Araujo (10.1039/C0EM00478B) 2011; 13
Wang (10.1016/j.eswa.2014.08.018) 2015; 42
References_xml – start-page: 298
  year: 2018
  ident: 10.1109/ICMA.2018.8484380
– volume: 23
  start-page: 182
  year: 2010
  ident: 10.1016/j.knosys.2009.11.015
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2009.11.015
– volume: 29
  start-page: 2655
  year: 2015
  ident: 10.1007/s11269-015-0962-6
  publication-title: Water Resources Management
  doi: 10.1007/s11269-015-0962-6
– start-page: 339
  year: 2018
  ident: 10.1109/PDP2018.2018.00060
– start-page: 2823
  year: 2015
  ident: 10.1109/BigData.2015.7364089
– volume: 18
  start-page: 121
  year: 2018
  ident: 10.4316/AECE.2018.04015
  publication-title: Advances in Electrical and Computer Engineering
  doi: 10.4316/AECE.2018.04015
– start-page: 6645
  year: 2013
  ident: 10.1109/ICASSP.2013.6638947
– start-page: 589
  year: 2018
  ident: 10.1109/ICCCBDA.2018.8386584
– start-page: 1
  year: 2017
  ident: 10.1109/CISS.2017.7926112
– volume: 9
  start-page: 108
  year: 2019
  ident: 10.3390/app9010108
  publication-title: Applied Sciences
  doi: 10.3390/app9010108
– volume: 8
  start-page: 13162
  year: 2015
  ident: 10.3390/en81112361
  publication-title: Energies
  doi: 10.3390/en81112361
– start-page: 1
  year: 2018
  ident: 10.23919/CISTI.2018.8399191
– volume: 55
  start-page: 268
  year: 2016
  ident: 10.1016/j.eswa.2016.02.025
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.02.025
– start-page: 324
  year: 2016
  ident: 10.1109/YAC.2016.7804912
– volume: 31
  start-page: 1124
  year: 2020
  ident: 10.1109/TNNLS.2019.2918225
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2019.2918225
– volume: 17
  start-page: 107
  year: 2017
  ident: 10.4316/AECE.2017.03014
  publication-title: Advances in Electrical and Computer Engineering
  doi: 10.4316/AECE.2017.03014
– start-page: 51
  year: 2017
  ident: 10.1109/ISCID.2017.173
– volume: 68
  start-page: 493
  year: 1973
  ident: 10.2307/2284112
  publication-title: Journal of the American Statistical Association
  doi: 10.2307/2284112
– volume: 42
  start-page: 11
  year: 2014
  ident: 10.1016/j.patrec.2014.01.008
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2014.01.008
– volume: 42
  start-page: 855
  year: 2015
  ident: 10.1016/j.eswa.2014.08.018
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.08.018
– volume: 17
  start-page: 285
  year: 2019
  ident: 10.22190/FUME190327035A
  publication-title: Facta Universitatis, Series: Mechanical Engineering
  doi: 10.22190/FUME190327035A
– volume: 18
  start-page: 101
  year: 2018
  ident: 10.4316/AECE.2018.02013
  publication-title: Advances in Electrical and Computer Engineering
  doi: 10.4316/AECE.2018.02013
– volume: 13
  start-page: 35
  year: 2011
  ident: 10.1039/C0EM00478B
  publication-title: J. Environ. Monit.
  doi: 10.1039/C0EM00478B
– volume: 140
  start-page: 378
  year: 2016
  ident: 10.1016/j.epsr.2016.06.003
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2016.06.003
– volume: 36
  start-page: 220
  year: 2014
  ident: 10.1016/j.econmod.2013.09.024
  publication-title: Economic Modelling
  doi: 10.1016/j.econmod.2013.09.024
– start-page: 1
  year: 2014
  ident: 10.1109/CIEL.2014.7015739
– start-page: 1394
  year: 2018
  ident: 10.1109/ICMLA.2018.00227
– volume: 476
  start-page: 433
  year: 2013
  ident: 10.1016/j.jhydrol.2012.11.017
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2012.11.017
– volume: 15
  start-page: 231
  year: 2014
  ident: 10.1186/1471-2105-15-276
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-15-276
– volume: 33
  start-page: 917
  year: 2019
  ident: 10.1007/s10618-019-00619-1
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1007/s10618-019-00619-1
– volume: 32
  start-page: 17351
  year: 2020
  ident: 10.1007/s00521-020-04867-x
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-020-04867-x
SSID ssib044728236
ssib057620034
ssj0000395691
Score 2.190624
Snippet Time series represent the consecutive measurements taken at equally spaced time intervals. Time series prediction uses the information in a time series to...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 35
SubjectTerms Accuracy
Business
Cable television broadcasting industry
Consumer behavior
Datasets
Deep learning
Digital currencies
e-commerce
Electricity
Electronic commerce
Hepatitis
Machine learning
Marketing
Methods
Neural networks
prediction
Prediction models
Probability distribution
Stock exchanges
Studies
Time series
time series analysis
Traffic flow
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyIT1G-5AEJloBjn52ErS1FFRJVByqxWbFjs1SlKuX_c5ekVRkQC2MiR7LfnX3vHPsdY9eZBpM7EZPUGEhAC5eURuvEewNpHqWXGV1wfhmZ4QSe3_TbRqkvOhPWyAM3wN17hemeCHnAUA1Q-DL3Oq1kLJQQldOOVl-MeRvJFHoSQCZXlbzpGUk1HcKC9e6LUJgXFI2YKlFMAN3o_tDN8PvuoD_A1FGKO0GbLj9CVq3s_9v6XQelp32217JJ3m1GccC2wuyQ7W5oDB6xh8cQ5ryVUX3nPYxaFR8v6P8M2YRTMbQpR-rKkQryEa7VfEwForDdMZs8DV77w6QtmJB4jMPLxOHsdDoWURWlKHOSwo9I17RRlcqClx6t4gGblKkp8hARVu2rmEfMMipdgDph27OPWThlPDXeYHTXyhgHMjOld7GsVCWCVM642GF3K0ysb9XEqajF1GJWQSBaAtESiLYGscNu1x_MGyGN35v2COR1M1LArl-gX9jWL-xfftFhN2QiS_MUO-bL9roBDo8Ur2zXSNLlgRQ67GJlRdtO4E-LxAZI-1-Ks__ozTnbofE1JyUv2PZy8RUukc0s3VXtuN8Vyefh
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep Learning Based Prediction Model for the Next Purchase
URI https://www.proquest.com/docview/2414857020
https://doaj.org/article/c3eb30e8e505449ca8c51d2f9300db5b
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFH9inYTggGCA6BiVD0hwyeb4KwkX1I6UCWlVhZi0mxU79i5TW7py3d_Oe4lT4DAukZI4Uvy-37P9ewDvC61M6XjMcmNUpjR3WWO0zrw3Ki-j8KKgA86XC3Nxpb5d6-tUcLtL2yoHm9gZ6nbtqUZ-hp5GERi74J83PzPqGkWrq6mFxgEcogku9QgOZ_Vi-X2QKKUKMXT0pnsMrmkzltpXYbjE_KDqQVUp1FRK9_g_dEL8bFqf15hCCn7Kqfjyj-vqEP4fsuOdc5o_h2cpqmTTXgxewKOwOoLHw6b2I3j6F-zgS_j0JYQNS8iqN2yGjqxlyy0t2RCbGPVHu2UYzTKMDtkCzTdbUs8oHPcKrub1j_OLLPVQyDy65l3mUGGdjlWUVcObktDxI0Zw2shWFsELj4zyCoc0uanKEHkotW9jGTHxaHWl5GsYrdar8AZYbrxBh6-lMU6JwjTexaaVLQ9COuPiGE4H8lifAMapz8WtxUSD6GmJnpboaTt6juHj_oNNj63x8NAZ0Xs_jECxuwfr7Y1NOma9DE7iBAJGdUpVvim9zlsRK8l567QbwwfiliXVxR_zTTqBgNMjECw7NYKgelDQxnAyMNQmnb6zfyTw-P-v38IT-vN-W-QJjHbbX-Edhi47N4GDcv51kqR00hUA8Hp5X_8Gwurmww
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgJ6QFBAbCngAwguaR2_kiAhtNtutaXtaoVaqTc3duxeqt1luwjxp_iNzOSxwKHcekziRPF4PPONPf4G4G2mlckdj0lqjEqU5i4pjdaJ90aleRReZHTA-XRsRufqy4W-WINf3VkYSqvsbGJtqKuZpzXyPfQ0isjYBf88_5ZQ1SjaXe1KaDRqcRx-_sCQ7ebT0QGO7zshDodn-6OkrSqQeHRWy8ShCjsdiyiLkpc58cVHxDTayEpmwQuPv-4VNilTU-Qh8pBrX8U8IhSvdKEkfvcebCDMKHAWbQyG48nXToOVykRXQZyuEcxT8pdarfpwifFI0ZC4ErRVSjd8Q3Qifa8_3B9iyCr4LqfFnn9cZV1R4Da_UTvDw8fwqEWxrN-o3RNYC9MtuN8l0W_B5l80h0_h40EIc9YyuV6xATrOik0WtEVEasGoHts1Q_TMEI2yMboLNqEaVdjuGZzfiXSfw_p0Ng0vgKXGGwQYWhrjlMhM6V0sK1nxIKQzLvZgtxOP9S2hOdXVuLYY2JA8LcnTkjxtLc8efFi9MG-4PG5vOiB5r5oRCXd9Y7a4su2ctl4GJ7EDAVGkUoUvc6_TSsRCcl457XrwnkbLkqnAH_Nle-IBu0ekW7ZvBFEDoWL3YKcbUNvakBv7R-O3___4DTwYnZ2e2JOj8fFLeEi9aFIyd2B9ufgeXiFsWrrXra4yuLzr6fEbrWQgQw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVKrggKCACBTwAQSXbbx-7S4SQkmTqKUQRYhKvZm11-6lSkIahPhr_Dpm9hHgUG497q53tTMez3y2x98AvMy0MrnjMUmNUYnS3CWl0Trx3qg0j8KLjA44f5qZ4zP14Vyf78Cv7iwMpVV2PrF21NXS0xr5ACONIjJ2wQexTYuYj6fvV98SqiBFO61dOY3GRE7Dzx84fbt6dzLGvn4lxHTy5eg4aSsMJB4D1yZxaM5OxyLKouRlTtzxEfGNNrKSWfDCoxheYZMyNUUeIg-59lXMI8LyShdK4ndvwW6GUTHvwe5oMpt_7qxZqUx01cTpGoE9JYKp7QoQlzg3KRpCV4K5SumGe4hOpw-Gk6MJTl8FP-S08PNP2KyrC1wXQ-rAOL0Hd1tEy4aNCd6HnbDYh70uoX4f7vxFefgA3o5DWLGW1fWCjTCIVmy-pu0iMhFGtdkuGSJphsiUzVD_bE71qrDdQzi7Ee0-gt5iuQiPgaXGGwQbWhrjlMhM6V0sK1nxIKQzLvbhsFOP9S25OdXYuLQ4ySF9WtKnJX3aWp99eLN9YdXwelzfdET63jYjQu76xnJ9Ydvxbb0MTqIAARGlUoUvc6_TSsRCcl457frwmnrLktvAH_Nle_oBxSMCLjs0gmiC0Mj7cNB1qG39yZX9Y_1P_v_4BezhsLAfT2anT-E2CdFkZx5Ab7P-Hp4hgtq4562pMvh606PjN1n-JG8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Based+Prediction+Model+for+the+Next+Purchase&rft.jtitle=Advances+in+Electrical+and+Computer+Engineering&rft.au=Utku%2C+Anil&rft.au=Akcayol%2C+Muhammet+Ali&rft.date=2020-05-01&rft.pub=Stefan+cel+Mare+University+of+Suceava&rft.issn=1582-7445&rft.volume=20&rft.issue=2&rft.spage=35&rft_id=info:doi/10.4316%2FAECE.2020.02005&rft.externalDocID=A629499414
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1582-7445&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1582-7445&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1582-7445&client=summon