Deep Learning Based Prediction Model for the Next Purchase
Time series represent the consecutive measurements taken at equally spaced time intervals. Time series prediction uses the information in a time series to predict future values. The future value prediction is important for many business and administrative decision makers especially in e-commerce. To...
Saved in:
Published in | Advances in Electrical and Computer Engineering Vol. 20; no. 2; pp. 35 - 44 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Suceava
Stefan cel Mare University of Suceava
01.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1582-7445 1844-7600 |
DOI | 10.4316/AECE.2020.02005 |
Cover
Loading…
Abstract | Time series represent the consecutive measurements taken at equally spaced time intervals. Time series prediction uses the information in a time series to predict future values. The future value prediction is important for many business and administrative decision makers especially in e-commerce. To promote business, sales prediction and sensing of future consumer behavior can help business decision makers in marketing campaigns, budget and resource planning. In this study, deep learning based a new prediction model has been developed for the time of next purchase in e-commerce. The proposed model has been extensively tested and compared with RF, ARIMA, CNN and MLP using a retail market dataset. The experimental results show that the developed model has been more successful than RF, ARIMA, CNN and MLP to predict the time of the next purchase. Index Terms--time series analysis, deep learning, prediction, e-commerce. |
---|---|
AbstractList | Time series represent the consecutive measurements taken at equally spaced time intervals. Time series prediction uses the information in a time series to predict future values. The future value prediction is important for many business and administrative decision makers especially in e-commerce. To promote business, sales prediction and sensing of future consumer behavior can help business decision makers in marketing campaigns, budget and resource planning. In this study, deep learning based a new prediction model has been developed for the time of next purchase in e-commerce. The proposed model has been extensively tested and compared with RF, ARIMA, CNN and MLP using a retail market dataset. The experimental results show that the developed model has been more successful than RF, ARIMA, CNN and MLP to predict the time of the next purchase. Index Terms--time series analysis, deep learning, prediction, e-commerce. Time series represent the consecutive measurements taken at equally spaced time intervals. Time series prediction uses the information in a time series to predict future values. The future value prediction is important for many business and administrative decision makers especially in e-commerce. To promote business, sales prediction and sensing of future consumer behavior can help business decision makers in marketing campaigns, budget and resource planning. In this study, deep learning based a new prediction model has been developed for the time of next purchase in e-commerce. The proposed model has been extensively tested and compared with RF, ARIMA, CNN and MLP using a retail market dataset. The experimental results show that the developed model has been more successful than RF, ARIMA, CNN and MLP to predict the time of the next purchase. |
Audience | Academic |
Author | AKCAYOL, M. A. UTKU, A. |
Author_xml | – sequence: 1 givenname: A. surname: UTKU fullname: UTKU, A. – sequence: 2 givenname: M. A. surname: AKCAYOL fullname: AKCAYOL, M. A. |
BookMark | eNp1kc1PGzEQxS1EpVLg3OtKPW_w99q9hTRQpJRygLPltcfBKKyDdyPR_54JQT1UqizL1uj93ozmfSHHQxmAkK-MzqRg-mK-XCxnnHI6w0vVETlhRsq205Qe418Z3nZSqs_kfBxzT6XsuOFCn5DvPwC2zQp8HfKwbi79CLG5qxBzmHIZml8lwqZJpTbTIzS38Do1d7saHlF3Rj4lvxnh_OM9JQ9Xy_vFz3b1-_pmMV-1QTI1tb3gvFfJJmE99UYzo5PSWmkRRQeBB9PTIFHimbYGEgWjQkwmMWaislKckpuDbyz-yW1rfvb1jys-u_dCqWvn65TDBlwQ0As0AEWVlDZ4ExSLPFlBaexVj17fDl7bWl52ME7uqezqgOM7Lpk0qsP9oWp2UK09muYhlan6gCfCcw64-ZSxPtfcSmsRQ-DiAIRaxrFC-jsmo24fkNsH5PYBufeAkFD_ECFPfr9ybJU3_-XeAMFkkr4 |
CitedBy_id | crossref_primary_10_35378_gujs_919572 crossref_primary_10_3390_jtaer18040110 crossref_primary_10_1108_K_02_2023_0245 crossref_primary_10_3390_computation11110210 |
Cites_doi | 10.1016/j.knosys.2009.11.015 10.1007/s11269-015-0962-6 10.4316/AECE.2018.04015 10.3390/app9010108 10.3390/en81112361 10.1016/j.eswa.2016.02.025 10.1109/TNNLS.2019.2918225 10.4316/AECE.2017.03014 10.2307/2284112 10.1016/j.patrec.2014.01.008 10.1016/j.eswa.2014.08.018 10.22190/FUME190327035A 10.4316/AECE.2018.02013 10.1039/C0EM00478B 10.1016/j.epsr.2016.06.003 10.1016/j.econmod.2013.09.024 10.1016/j.jhydrol.2012.11.017 10.1186/1471-2105-15-276 10.1007/s10618-019-00619-1 10.1007/s00521-020-04867-x |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Stefan cel Mare University of Suceava Copyright Stefan cel Mare University of Suceava 2020 |
Copyright_xml | – notice: COPYRIGHT 2020 Stefan cel Mare University of Suceava – notice: Copyright Stefan cel Mare University of Suceava 2020 |
DBID | AAYXX CITATION 7SC 7SP 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ JQ2 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.4316/AECE.2020.02005 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Technology Collection |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Business |
EISSN | 1844-7600 |
EndPage | 44 |
ExternalDocumentID | oai_doaj_org_article_c3eb30e8e505449ca8c51d2f9300db5b A629499414 10_4316_AECE_2020_02005 |
GeographicLocations | United States Trinidad and Tobago California |
GeographicLocations_xml | – name: Trinidad and Tobago – name: United States – name: California |
GroupedDBID | 23M 5GY 5VS AAKPC AAYXX ABJCF ADBBV AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ C1A CCPQU CITATION E3Z GROUPED_DOAJ HCIFZ IAO IGS IPNFZ ITC KQ8 M7S OK1 PHGZM PHGZT PTHSS PV9 RIG RZL TR2 ADMLS 7SC 7SP 8FD 8FE 8FG DWQXO JQ2 L6V L7M L~C L~D P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c415t-b322b5f9f39a0a86186f566563d37ec2c8b0c42b5a1698ef0e85cdf8f118d5943 |
IEDL.DBID | BENPR |
ISSN | 1582-7445 |
IngestDate | Wed Aug 27 01:20:39 EDT 2025 Fri Jul 25 12:03:59 EDT 2025 Tue Apr 29 03:51:03 EDT 2025 Tue Jul 01 01:27:21 EDT 2025 Thu Apr 24 23:14:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-b322b5f9f39a0a86186f566563d37ec2c8b0c42b5a1698ef0e85cdf8f118d5943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/c3eb30e8e505449ca8c51d2f9300db5b |
PQID | 2414857020 |
PQPubID | 2049588 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c3eb30e8e505449ca8c51d2f9300db5b proquest_journals_2414857020 gale_infotracacademiconefile_A629499414 crossref_primary_10_4316_AECE_2020_02005 crossref_citationtrail_10_4316_AECE_2020_02005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Suceava |
PublicationPlace_xml | – name: Suceava |
PublicationTitle | Advances in Electrical and Computer Engineering |
PublicationYear | 2020 |
Publisher | Stefan cel Mare University of Suceava |
Publisher_xml | – name: Stefan cel Mare University of Suceava |
References | Siami-Namini (10.1109/ICMLA.2018.00227) 2018 Kane (10.1186/1471-2105-15-276) 2014; 15 NAMOZOV (10.4316/AECE.2018.04015) 2018; 18 Langkvist (10.1016/j.patrec.2014.01.008) 2014; 42 Claveria (10.1016/j.econmod.2013.09.024) 2014; 36 Amini (10.1016/j.epsr.2016.06.003) 2016; 140 Pozna (10.1016/j.knosys.2009.11.015) 2010; 23 Ismail Fawaz (10.1007/s10618-019-00619-1) 2019; 33 Chakravarti (10.2307/2284112) 1973; 68 Wang (10.1007/s11269-015-0962-6) 2015; 29 Irsoy (10.1109/TNNLS.2019.2918225) 2020; 31 Sobreiro (10.23919/CISTI.2018.8399191) 2018 Graves (10.1109/ICASSP.2013.6638947) 2013 Wang (10.1109/ICCCBDA.2018.8386584) 2018 Qiu (10.1109/CIEL.2014.7015739) 2014 Fu (10.1109/YAC.2016.7804912) 2016 Jian Zheng (10.1109/CISS.2017.7926112) 2017 Wang (10.1109/ICMA.2018.8484380) 2018 Livieris (10.1007/s00521-020-04867-x) 2020; 32 McNally (10.1109/PDP2018.2018.00060) 2018 Chen (10.1109/BigData.2015.7364089) 2015 Valipour (10.1016/j.jhydrol.2012.11.017) 2013; 476 Park (10.3390/app9010108) 2019; 9 BUYUK (10.4316/AECE.2018.02013) 2018; 18 Lahmiri (10.1016/j.eswa.2016.02.025) 2016; 55 Albu (10.22190/FUME190327035A) 2019; 17 Yang (10.1109/ISCID.2017.173) 2017 Martinez-Alvarez (10.3390/en81112361) 2015; 8 ZHANG (10.4316/AECE.2017.03014) 2017; 17 Araujo (10.1039/C0EM00478B) 2011; 13 Wang (10.1016/j.eswa.2014.08.018) 2015; 42 |
References_xml | – start-page: 298 year: 2018 ident: 10.1109/ICMA.2018.8484380 – volume: 23 start-page: 182 year: 2010 ident: 10.1016/j.knosys.2009.11.015 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2009.11.015 – volume: 29 start-page: 2655 year: 2015 ident: 10.1007/s11269-015-0962-6 publication-title: Water Resources Management doi: 10.1007/s11269-015-0962-6 – start-page: 339 year: 2018 ident: 10.1109/PDP2018.2018.00060 – start-page: 2823 year: 2015 ident: 10.1109/BigData.2015.7364089 – volume: 18 start-page: 121 year: 2018 ident: 10.4316/AECE.2018.04015 publication-title: Advances in Electrical and Computer Engineering doi: 10.4316/AECE.2018.04015 – start-page: 6645 year: 2013 ident: 10.1109/ICASSP.2013.6638947 – start-page: 589 year: 2018 ident: 10.1109/ICCCBDA.2018.8386584 – start-page: 1 year: 2017 ident: 10.1109/CISS.2017.7926112 – volume: 9 start-page: 108 year: 2019 ident: 10.3390/app9010108 publication-title: Applied Sciences doi: 10.3390/app9010108 – volume: 8 start-page: 13162 year: 2015 ident: 10.3390/en81112361 publication-title: Energies doi: 10.3390/en81112361 – start-page: 1 year: 2018 ident: 10.23919/CISTI.2018.8399191 – volume: 55 start-page: 268 year: 2016 ident: 10.1016/j.eswa.2016.02.025 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.02.025 – start-page: 324 year: 2016 ident: 10.1109/YAC.2016.7804912 – volume: 31 start-page: 1124 year: 2020 ident: 10.1109/TNNLS.2019.2918225 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2019.2918225 – volume: 17 start-page: 107 year: 2017 ident: 10.4316/AECE.2017.03014 publication-title: Advances in Electrical and Computer Engineering doi: 10.4316/AECE.2017.03014 – start-page: 51 year: 2017 ident: 10.1109/ISCID.2017.173 – volume: 68 start-page: 493 year: 1973 ident: 10.2307/2284112 publication-title: Journal of the American Statistical Association doi: 10.2307/2284112 – volume: 42 start-page: 11 year: 2014 ident: 10.1016/j.patrec.2014.01.008 publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2014.01.008 – volume: 42 start-page: 855 year: 2015 ident: 10.1016/j.eswa.2014.08.018 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.08.018 – volume: 17 start-page: 285 year: 2019 ident: 10.22190/FUME190327035A publication-title: Facta Universitatis, Series: Mechanical Engineering doi: 10.22190/FUME190327035A – volume: 18 start-page: 101 year: 2018 ident: 10.4316/AECE.2018.02013 publication-title: Advances in Electrical and Computer Engineering doi: 10.4316/AECE.2018.02013 – volume: 13 start-page: 35 year: 2011 ident: 10.1039/C0EM00478B publication-title: J. Environ. Monit. doi: 10.1039/C0EM00478B – volume: 140 start-page: 378 year: 2016 ident: 10.1016/j.epsr.2016.06.003 publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2016.06.003 – volume: 36 start-page: 220 year: 2014 ident: 10.1016/j.econmod.2013.09.024 publication-title: Economic Modelling doi: 10.1016/j.econmod.2013.09.024 – start-page: 1 year: 2014 ident: 10.1109/CIEL.2014.7015739 – start-page: 1394 year: 2018 ident: 10.1109/ICMLA.2018.00227 – volume: 476 start-page: 433 year: 2013 ident: 10.1016/j.jhydrol.2012.11.017 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2012.11.017 – volume: 15 start-page: 231 year: 2014 ident: 10.1186/1471-2105-15-276 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-276 – volume: 33 start-page: 917 year: 2019 ident: 10.1007/s10618-019-00619-1 publication-title: Data Mining and Knowledge Discovery doi: 10.1007/s10618-019-00619-1 – volume: 32 start-page: 17351 year: 2020 ident: 10.1007/s00521-020-04867-x publication-title: Neural Computing and Applications doi: 10.1007/s00521-020-04867-x |
SSID | ssib044728236 ssib057620034 ssj0000395691 |
Score | 2.190624 |
Snippet | Time series represent the consecutive measurements taken at equally spaced time intervals. Time series prediction uses the information in a time series to... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 35 |
SubjectTerms | Accuracy Business Cable television broadcasting industry Consumer behavior Datasets Deep learning Digital currencies e-commerce Electricity Electronic commerce Hepatitis Machine learning Marketing Methods Neural networks prediction Prediction models Probability distribution Stock exchanges Studies Time series time series analysis Traffic flow |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyIT1G-5AEJloBjn52ErS1FFRJVByqxWbFjs1SlKuX_c5ekVRkQC2MiR7LfnX3vHPsdY9eZBpM7EZPUGEhAC5eURuvEewNpHqWXGV1wfhmZ4QSe3_TbRqkvOhPWyAM3wN17hemeCHnAUA1Q-DL3Oq1kLJQQldOOVl-MeRvJFHoSQCZXlbzpGUk1HcKC9e6LUJgXFI2YKlFMAN3o_tDN8PvuoD_A1FGKO0GbLj9CVq3s_9v6XQelp32217JJ3m1GccC2wuyQ7W5oDB6xh8cQ5ryVUX3nPYxaFR8v6P8M2YRTMbQpR-rKkQryEa7VfEwForDdMZs8DV77w6QtmJB4jMPLxOHsdDoWURWlKHOSwo9I17RRlcqClx6t4gGblKkp8hARVu2rmEfMMipdgDph27OPWThlPDXeYHTXyhgHMjOld7GsVCWCVM642GF3K0ysb9XEqajF1GJWQSBaAtESiLYGscNu1x_MGyGN35v2COR1M1LArl-gX9jWL-xfftFhN2QiS_MUO-bL9roBDo8Ur2zXSNLlgRQ67GJlRdtO4E-LxAZI-1-Ks__ozTnbofE1JyUv2PZy8RUukc0s3VXtuN8Vyefh priority: 102 providerName: Directory of Open Access Journals |
Title | Deep Learning Based Prediction Model for the Next Purchase |
URI | https://www.proquest.com/docview/2414857020 https://doaj.org/article/c3eb30e8e505449ca8c51d2f9300db5b |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFH9inYTggGCA6BiVD0hwyeb4KwkX1I6UCWlVhZi0mxU79i5TW7py3d_Oe4lT4DAukZI4Uvy-37P9ewDvC61M6XjMcmNUpjR3WWO0zrw3Ki-j8KKgA86XC3Nxpb5d6-tUcLtL2yoHm9gZ6nbtqUZ-hp5GERi74J83PzPqGkWrq6mFxgEcogku9QgOZ_Vi-X2QKKUKMXT0pnsMrmkzltpXYbjE_KDqQVUp1FRK9_g_dEL8bFqf15hCCn7Kqfjyj-vqEP4fsuOdc5o_h2cpqmTTXgxewKOwOoLHw6b2I3j6F-zgS_j0JYQNS8iqN2yGjqxlyy0t2RCbGPVHu2UYzTKMDtkCzTdbUs8oHPcKrub1j_OLLPVQyDy65l3mUGGdjlWUVcObktDxI0Zw2shWFsELj4zyCoc0uanKEHkotW9jGTHxaHWl5GsYrdar8AZYbrxBh6-lMU6JwjTexaaVLQ9COuPiGE4H8lifAMapz8WtxUSD6GmJnpboaTt6juHj_oNNj63x8NAZ0Xs_jECxuwfr7Y1NOma9DE7iBAJGdUpVvim9zlsRK8l567QbwwfiliXVxR_zTTqBgNMjECw7NYKgelDQxnAyMNQmnb6zfyTw-P-v38IT-vN-W-QJjHbbX-Edhi47N4GDcv51kqR00hUA8Hp5X_8Gwurmww |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgJ6QFBAbCngAwguaR2_kiAhtNtutaXtaoVaqTc3duxeqt1luwjxp_iNzOSxwKHcekziRPF4PPONPf4G4G2mlckdj0lqjEqU5i4pjdaJ90aleRReZHTA-XRsRufqy4W-WINf3VkYSqvsbGJtqKuZpzXyPfQ0isjYBf88_5ZQ1SjaXe1KaDRqcRx-_sCQ7ebT0QGO7zshDodn-6OkrSqQeHRWy8ShCjsdiyiLkpc58cVHxDTayEpmwQuPv-4VNilTU-Qh8pBrX8U8IhSvdKEkfvcebCDMKHAWbQyG48nXToOVykRXQZyuEcxT8pdarfpwifFI0ZC4ErRVSjd8Q3Qifa8_3B9iyCr4LqfFnn9cZV1R4Da_UTvDw8fwqEWxrN-o3RNYC9MtuN8l0W_B5l80h0_h40EIc9YyuV6xATrOik0WtEVEasGoHts1Q_TMEI2yMboLNqEaVdjuGZzfiXSfw_p0Ng0vgKXGGwQYWhrjlMhM6V0sK1nxIKQzLvZgtxOP9S2hOdXVuLYY2JA8LcnTkjxtLc8efFi9MG-4PG5vOiB5r5oRCXd9Y7a4su2ctl4GJ7EDAVGkUoUvc6_TSsRCcl457XrwnkbLkqnAH_Nle-IBu0ekW7ZvBFEDoWL3YKcbUNvakBv7R-O3___4DTwYnZ2e2JOj8fFLeEi9aFIyd2B9ufgeXiFsWrrXra4yuLzr6fEbrWQgQw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVKrggKCACBTwAQSXbbx-7S4SQkmTqKUQRYhKvZm11-6lSkIahPhr_Dpm9hHgUG497q53tTMez3y2x98AvMy0MrnjMUmNUYnS3CWl0Trx3qg0j8KLjA44f5qZ4zP14Vyf78Cv7iwMpVV2PrF21NXS0xr5ACONIjJ2wQexTYuYj6fvV98SqiBFO61dOY3GRE7Dzx84fbt6dzLGvn4lxHTy5eg4aSsMJB4D1yZxaM5OxyLKouRlTtzxEfGNNrKSWfDCoxheYZMyNUUeIg-59lXMI8LyShdK4ndvwW6GUTHvwe5oMpt_7qxZqUx01cTpGoE9JYKp7QoQlzg3KRpCV4K5SumGe4hOpw-Gk6MJTl8FP-S08PNP2KyrC1wXQ-rAOL0Hd1tEy4aNCd6HnbDYh70uoX4f7vxFefgA3o5DWLGW1fWCjTCIVmy-pu0iMhFGtdkuGSJphsiUzVD_bE71qrDdQzi7Ee0-gt5iuQiPgaXGGwQbWhrjlMhM6V0sK1nxIKQzLvbhsFOP9S25OdXYuLQ4ySF9WtKnJX3aWp99eLN9YdXwelzfdET63jYjQu76xnJ9Ydvxbb0MTqIAARGlUoUvc6_TSsRCcl457frwmnrLktvAH_Nle_oBxSMCLjs0gmiC0Mj7cNB1qG39yZX9Y_1P_v_4BezhsLAfT2anT-E2CdFkZx5Ab7P-Hp4hgtq4562pMvh606PjN1n-JG8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Based+Prediction+Model+for+the+Next+Purchase&rft.jtitle=Advances+in+Electrical+and+Computer+Engineering&rft.au=Utku%2C+Anil&rft.au=Akcayol%2C+Muhammet+Ali&rft.date=2020-05-01&rft.pub=Stefan+cel+Mare+University+of+Suceava&rft.issn=1582-7445&rft.volume=20&rft.issue=2&rft.spage=35&rft_id=info:doi/10.4316%2FAECE.2020.02005&rft.externalDocID=A629499414 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1582-7445&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1582-7445&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1582-7445&client=summon |