Sparse Support Vector Machine for Intrapartum Fetal Heart Rate Classification

Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for operative delivery remains a challenging task, receiving considerable attention. Th...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 21; no. 3; pp. 664 - 671
Main Authors Spilka, Jiri, Frecon, Jordan, Leonarduzzi, Roberto, Pustelnik, Nelly, Abry, Patrice, Doret, Muriel
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for operative delivery remains a challenging task, receiving considerable attention. This contribution promotes sparse support vector machine classification that permits to select a small number of relevant features and to achieve efficient fetal acidosis detection. A comprehensive set of features is used for FHR description, including enhanced and computerized clinical features, frequency domain, and scaling and multifractal features, all computed on a large (1288 subjects) and well-documented database. The individual performance obtained for each feature independently is discussed first. Then, it is shown that the automatic selection of a sparse subset of features achieves satisfactory classification performance (sensitivity 0.73 and specificity 0.75, outperforming clinical practice). The subset of selected features (average depth of decelerations MAD dtrd , baseline level β 0 , and variability H) receives simple interpretation in clinical practice. Intrapartum fetal acidosis detection is improved in several respects: A comprehensive set of features combining clinical, spectral, and scale-free dynamics is used; an original multivariate classification targeting both sparse feature selection and high performance is devised; state-of-the-art performance is obtained on a much larger database than that generally studied with description of common pitfalls in supervised classification performance assessments.
AbstractList Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for operative delivery remains a challenging task, receiving considerable attention. This contribution promotes sparse support vector machine classification that permits to select a small number of relevant features and to achieve efficient fetal acidosis detection. A comprehensive set of features is used for FHR description, including enhanced and computerized clinical features, frequency domain, and scaling and multifractal features, all computed on a large (1288 subjects) and well-documented database. The individual performance obtained for each feature independently is discussed first. Then, it is shown that the automatic selection of a sparse subset of features achieves satisfactory classification performance (sensitivity 0.73 and specificity 0.75, outperforming clinical practice). The subset of selected features (average depth of decelerations MAD dtrd , baseline level β 0 , and variability H) receives simple interpretation in clinical practice. Intrapartum fetal acidosis detection is improved in several respects: A comprehensive set of features combining clinical, spectral, and scale-free dynamics is used; an original multivariate classification targeting both sparse feature selection and high performance is devised; state-of-the-art performance is obtained on a much larger database than that generally studied with description of common pitfalls in supervised classification performance assessments.
Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for operative delivery remains a challenging task, receiving considerable attention. This contribution promotes sparse support vector machine classification that permits to select a small number of relevant features and to achieve efficient fetal acidosis detection. A comprehensive set of features is used for FHR description, including enhanced and computerized clinical features, frequency domain, and scaling and multifractal features, all computed on a large (1288 subjects) and well-documented database. The individual performance obtained for each feature independently is discussed first. Then, it is shown that the automatic selection of a sparse subset of features achieves satisfactory classification performance (sensitivity 0.73 and specificity 0.75, outperforming clinical practice). The subset of selected features (average depth of decelerations MAD , baseline level β , and variability H) receives simple interpretation in clinical practice. Intrapartum fetal acidosis detection is improved in several respects: A comprehensive set of features combining clinical, spectral, and scale-free dynamics is used; an original multivariate classification targeting both sparse feature selection and high performance is devised; state-of-the-art performance is obtained on a much larger database than that generally studied with description of common pitfalls in supervised classification performance assessments.
Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for operative delivery remains a challenging task, receiving considerable attention. This contribution promotes sparse support vector machine classification that permits to select a small number of relevant features and to achieve efficient fetal acidosis detection. A comprehensive set of features is used for FHR description, including enhanced and computerized clinical features, frequency domain, and scaling and multifractal features, all computed on a large (1288 subjects) and well-documented database. The individual performance obtained for each feature independently is discussed first. Then, it is shown that the automatic selection of a sparse subset of features achieves satisfactory classification performance (sensitivity 0.73 and specificity 0.75, outperforming clinical practice). The subset of selected features (average depth of decelerations MADdtrd, baseline level β0, and variability H) receives simple interpretation in clinical practice. Intrapartum fetal acidosis detection is improved in several respects: A comprehensive set of features combining clinical, spectral, and scale-free dynamics is used; an original multivariate classification targeting both sparse feature selection and high performance is devised; state-of-the-art performance is obtained on a much larger database than that generally studied with description of common pitfalls in supervised classification performance assessments.
Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for operative delivery remains a challenging task, receiving considerable attention. This contribution promotes sparse support vector machine classification that permits to select a small number of relevant features and to achieve efficient fetal acidosis detection. A comprehensive set of features is used for FHR description, including enhanced and computerized clinical features, frequency domain, and scaling and multifractal features, all computed on a large (1288 subjects) and well-documented database. The individual performance obtained for each feature independently is discussed first. Then, it is shown that the automatic selection of a sparse subset of features achieves satisfactory classification performance (sensitivity 0.73 and specificity 0.75, outperforming clinical practice). The subset of selected features (average depth of decelerations MADdtrd, baseline level β0 , and variability H) receives simple interpretation in clinical practice. Intrapartum fetal acidosis detection is improved in several respects: A comprehensive set of features combining clinical, spectral, and scale-free dynamics is used; an original multivariate classification targeting both sparse feature selection and high performance is devised; state-of-the-art performance is obtained on a much larger database than that generally studied with description of common pitfalls in supervised classification performance assessments.Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for operative delivery remains a challenging task, receiving considerable attention. This contribution promotes sparse support vector machine classification that permits to select a small number of relevant features and to achieve efficient fetal acidosis detection. A comprehensive set of features is used for FHR description, including enhanced and computerized clinical features, frequency domain, and scaling and multifractal features, all computed on a large (1288 subjects) and well-documented database. The individual performance obtained for each feature independently is discussed first. Then, it is shown that the automatic selection of a sparse subset of features achieves satisfactory classification performance (sensitivity 0.73 and specificity 0.75, outperforming clinical practice). The subset of selected features (average depth of decelerations MADdtrd, baseline level β0 , and variability H) receives simple interpretation in clinical practice. Intrapartum fetal acidosis detection is improved in several respects: A comprehensive set of features combining clinical, spectral, and scale-free dynamics is used; an original multivariate classification targeting both sparse feature selection and high performance is devised; state-of-the-art performance is obtained on a much larger database than that generally studied with description of common pitfalls in supervised classification performance assessments.
Author Frecon, Jordan
Spilka, Jiri
Abry, Patrice
Doret, Muriel
Leonarduzzi, Roberto
Pustelnik, Nelly
Author_xml – sequence: 1
  givenname: Jiri
  surname: Spilka
  fullname: Spilka, Jiri
  email: jiri.spilka@ciirc.cvut.cz
  organization: Lab. de Phys., Claude Bernard Univ. Lyon 1, Lyon, France
– sequence: 2
  givenname: Jordan
  surname: Frecon
  fullname: Frecon, Jordan
  email: jordan.frecon@ens-lyon.fr
  organization: Lab. de Phys., Claude Bernard Univ. Lyon 1, Lyon, France
– sequence: 3
  givenname: Roberto
  surname: Leonarduzzi
  fullname: Leonarduzzi, Roberto
  email: roberto.leonarduzzi@ens-lyon.fr
  organization: Lab. de Phys., Claude Bernard Univ. Lyon 1, Lyon, France
– sequence: 4
  givenname: Nelly
  surname: Pustelnik
  fullname: Pustelnik, Nelly
  email: nelly.pustelnik@ens-lyon.fr
  organization: Lab. de Phys., Claude Bernard Univ. Lyon 1, Lyon, France
– sequence: 5
  givenname: Patrice
  surname: Abry
  fullname: Abry, Patrice
  email: patrice.abry@ens-lyon.fr
  organization: Lab. de Phys., Claude Bernard Univ. Lyon 1, Lyon, France
– sequence: 6
  givenname: Muriel
  surname: Doret
  fullname: Doret, Muriel
  email: muriel.doret@chu-lyon.fr
  organization: Femme-Mere-Enfant Hosp., Lyon, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27046884$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLAzEUhYNUtFZ_gAgy4MZNa5Jm8lhqsbZSEXxtQ5q5g5HpzJhkFv57U9u6cGE2OTd853JzzxHq1U0NCJ0SPCIEq6v7m9l8RDHhI5ozPiZ0D_Up4XJIKZa9nSaKHaKTED5wOjI9KX6ADqnAjEvJ-ujhuTU-QPbctW3jY_YGNjY-ezD23dWQlUnP6-hNomK3yqYQTZXNIFXZk4mQTSoTgiudNdE19THaL00V4GR7D9Dr9PZlMhsuHu_mk-vF0DKSx6HhhcSQLwsu2LJUJRCluLJpolwWtoAlKAJQglWE4lxabplMqiAghSy5GQ_Q5aZv65vPDkLUKxcsVJWpoemCJpJyLoTIWUIv_qAfTefrNF2ilMCUUU4Sdb6luuUKCt16tzL-S-8WlQCxAaxvQvBQauviz5_TclylCdbrVPQ6Fb1ORW9TSU7yx7lr_p_nbONxAPDLC8awkGL8DeS-lhU
CODEN IJBHA9
CitedBy_id crossref_primary_10_1002_ijgo_15236
crossref_primary_10_1016_j_compbiomed_2021_104218
crossref_primary_10_1016_j_cmpb_2023_107701
crossref_primary_10_1016_j_cmpb_2025_108682
crossref_primary_10_1016_j_cmpb_2022_107300
crossref_primary_10_1016_j_health_2024_100322
crossref_primary_10_3390_bioengineering10091007
crossref_primary_10_3390_biomedinformatics3020019
crossref_primary_10_3390_ma15238504
crossref_primary_10_1016_j_eswa_2018_09_030
crossref_primary_10_1007_s11760_020_01727_y
crossref_primary_10_1109_MCE_2021_3097316
crossref_primary_10_3389_fphys_2024_1398735
crossref_primary_10_1016_j_ajog_2024_04_022
crossref_primary_10_1088_2057_1976_aabc64
crossref_primary_10_1007_s11045_019_00653_8
crossref_primary_10_1515_bmt_2024_0334
crossref_primary_10_2196_16503
crossref_primary_10_12693_APhysPolA_132_451
crossref_primary_10_2174_1872212118666230703155834
crossref_primary_10_1515_jisys_2023_0047
crossref_primary_10_1007_s13755_019_0079_z
crossref_primary_10_1109_TSP_2017_2690391
crossref_primary_10_1111_aogs_13639
crossref_primary_10_3389_fphys_2019_00246
crossref_primary_10_1016_j_bspc_2024_106195
crossref_primary_10_1080_24699322_2016_1240300
crossref_primary_10_1007_s11042_022_13534_3
crossref_primary_10_1038_s41598_024_63108_6
crossref_primary_10_1109_ACCESS_2019_2933368
crossref_primary_10_1038_s44294_024_00033_z
crossref_primary_10_1088_2057_1976_ad17a6
crossref_primary_10_1007_s11265_019_01478_1
crossref_primary_10_1016_j_bspc_2019_101759
crossref_primary_10_3389_frai_2021_622616
crossref_primary_10_7717_peerj_cs_452
crossref_primary_10_1016_j_measurement_2021_110034
crossref_primary_10_1109_ACCESS_2019_2958141
crossref_primary_10_1109_TNNLS_2023_3293888
crossref_primary_10_3389_fphys_2022_969052
crossref_primary_10_1111_jog_15842
crossref_primary_10_1109_JIOT_2018_2845128
crossref_primary_10_1109_JSEN_2023_3278841
crossref_primary_10_1186_s13634_018_0568_2
crossref_primary_10_1016_j_sigpro_2018_03_012
crossref_primary_10_1109_ACCESS_2019_2894366
crossref_primary_10_3389_fphys_2019_00255
crossref_primary_10_1016_j_asoc_2023_110790
crossref_primary_10_1016_j_cmpb_2022_106740
crossref_primary_10_1109_ACCESS_2019_2950798
crossref_primary_10_3389_fped_2021_660476
crossref_primary_10_3389_fped_2021_661400
Cites_doi 10.1109/TNNLS.2013.2286696
10.1016/j.bpobgyn.2013.04.002
10.1111/1471-0528.12568
10.1161/01.CIR.93.5.1043
10.1016/j.ejogrb.2013.01.003
10.1067/mob.2002.122447
10.1007/s00521-011-0743-y
10.1007/978-3-319-32703-7_232
10.1137/050626090
10.1023/A:1008987426876
10.1109/JBHI.2015.2432832
10.1080/14767050500526172
10.1186/1471-2393-14-16
10.1109/TBME.2009.2035818
10.1371/journal.pone.0136661
10.1016/j.ajog.2007.03.063
10.1016/S0140-6736(01)05703-8
10.1088/0967-3334/32/8/022
10.1109/TBME.2014.2330556
10.1088/0967-3334/35/12/L1
10.1016/j.earlhumdev.2006.12.006
10.1109/EMBC.2015.7318771
10.1016/j.bspc.2011.06.008
10.1055/s-0030-1268713
10.1016/j.bpobgyn.2007.02.008
10.1038/20924
10.1088/0967-3334/35/7/1357
10.1109/JBHI.2014.2361688
10.1109/MSP.2007.4286563
10.1007/s10994-013-5367-2
10.1016/j.ajog.2009.04.033
10.1103/PhysRevE.71.021906
10.1002/14651858.CD006066
10.1016/j.ajog.2011.06.086
10.1111/j.1471-0528.2004.00454.x
10.1016/j.eswa.2012.01.196
10.1109/EMBC.2015.7318861
10.1111/j.1471-0528.2012.03335.x
10.1016/j.ejogrb.2010.12.042
10.1109/TBME.2013.2294324
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2016.2546312
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 671
ExternalDocumentID 27046884
10_1109_JBHI_2016_2546312
7440787
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ANR 2010 French
  grantid: #18535
– fundername: Hospices Civil de Lyon's PHRC
– fundername: AMATIS
  grantid: #112432; #NT11124-6/2010
– fundername: FETUSES
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c415t-a6d80e5bd674bf9fe19969c68858dcdebe91eefec912058c6c48120d1e878f6a3
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Fri Jul 11 03:20:24 EDT 2025
Sun Jun 29 16:45:28 EDT 2025
Thu Apr 03 06:58:58 EDT 2025
Thu Apr 24 23:09:32 EDT 2025
Tue Jul 01 02:59:54 EDT 2025
Tue Aug 26 16:38:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-a6d80e5bd674bf9fe19969c68858dcdebe91eefec912058c6c48120d1e878f6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4136-0083
PMID 27046884
PQID 1897024261
PQPubID 85417
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_JBHI_2016_2546312
pubmed_primary_27046884
proquest_journals_1897024261
ieee_primary_7440787
proquest_miscellaneous_1826677754
crossref_primary_10_1109_JBHI_2016_2546312
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-May
2017-5-00
2017-05-00
20170501
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-May
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref30
ref33
ref11
ref32
ref10
hastie (ref31) 2009
ref1
ref39
ref17
ref38
ref16
ref19
ref18
spilka (ref23) 0
ref24
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
(ref2) 1986; 25
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref34
  doi: 10.1109/TNNLS.2013.2286696
– ident: ref27
  doi: 10.1016/j.bpobgyn.2013.04.002
– start-page: 777
  year: 0
  ident: ref23
  article-title: Impacts of first and second labour stages on Hurst parameter based intrapartum fetal heart rate analysis
  publication-title: Proc Comput Cardiol Conf
– ident: ref13
  doi: 10.1111/1471-0528.12568
– ident: ref26
  doi: 10.1161/01.CIR.93.5.1043
– ident: ref38
  doi: 10.1016/j.ejogrb.2013.01.003
– ident: ref25
  doi: 10.1067/mob.2002.122447
– ident: ref21
  doi: 10.1007/s00521-011-0743-y
– ident: ref41
  doi: 10.1007/978-3-319-32703-7_232
– ident: ref36
  doi: 10.1137/050626090
– ident: ref37
  doi: 10.1023/A:1008987426876
– ident: ref32
  doi: 10.1109/JBHI.2015.2432832
– volume: 25
  start-page: 159
  year: 1986
  ident: ref2
  article-title: Guidelines for the Use of Fetal Monitoring
  publication-title: Int J Gynaecol Obstet
– ident: ref5
  doi: 10.1080/14767050500526172
– ident: ref40
  doi: 10.1186/1471-2393-14-16
– ident: ref15
  doi: 10.1109/TBME.2009.2035818
– ident: ref8
  doi: 10.1371/journal.pone.0136661
– ident: ref39
  doi: 10.1016/j.ajog.2007.03.063
– ident: ref24
  doi: 10.1016/S0140-6736(01)05703-8
– ident: ref12
  doi: 10.1088/0967-3334/32/8/022
– ident: ref19
  doi: 10.1109/TBME.2014.2330556
– ident: ref18
  doi: 10.1088/0967-3334/35/12/L1
– ident: ref11
  doi: 10.1016/j.earlhumdev.2006.12.006
– ident: ref28
  doi: 10.1109/EMBC.2015.7318771
– ident: ref16
  doi: 10.1016/j.bspc.2011.06.008
– ident: ref7
  doi: 10.1055/s-0030-1268713
– ident: ref1
  doi: 10.1016/j.bpobgyn.2007.02.008
– ident: ref30
  doi: 10.1038/20924
– year: 2009
  ident: ref31
  publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction
– ident: ref17
  doi: 10.1088/0967-3334/35/7/1357
– ident: ref33
  doi: 10.1109/JBHI.2014.2361688
– ident: ref29
  doi: 10.1109/MSP.2007.4286563
– ident: ref35
  doi: 10.1007/s10994-013-5367-2
– ident: ref14
  doi: 10.1016/j.ajog.2009.04.033
– ident: ref9
  doi: 10.1103/PhysRevE.71.021906
– ident: ref4
  doi: 10.1002/14651858.CD006066
– ident: ref3
  doi: 10.1016/j.ajog.2011.06.086
– ident: ref6
  doi: 10.1111/j.1471-0528.2004.00454.x
– ident: ref20
  doi: 10.1016/j.eswa.2012.01.196
– ident: ref43
  doi: 10.1109/EMBC.2015.7318861
– ident: ref42
  doi: 10.1111/j.1471-0528.2012.03335.x
– ident: ref22
  doi: 10.1016/j.ejogrb.2010.12.042
– ident: ref10
  doi: 10.1109/TBME.2013.2294324
SSID ssj0000816896
Score 2.4592888
Snippet Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 664
SubjectTerms Acidosis
Algorithms
Attention task
Biomedical signal processing
Childbirth & labor
Classification
Clinical medicine
Electrocardiography - methods
Feature extraction
feature selection
Female
Fetal heart rate
Fetuses
Fractals
Heart rate
Heart Rate, Fetal - physiology
Humans
Informatics
Monitoring
Pregnancy
Scaling
Signal Processing, Computer-Assisted
sparse support vector machine (S-SVM)
supervised classification
Support Vector Machine
Support vector machines
Title Sparse Support Vector Machine for Intrapartum Fetal Heart Rate Classification
URI https://ieeexplore.ieee.org/document/7440787
https://www.ncbi.nlm.nih.gov/pubmed/27046884
https://www.proquest.com/docview/1897024261
https://www.proquest.com/docview/1826677754
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB8SlUB5tWlq5Uk-ILHHWiZ0jVF3trpQeykPcosSeXIBdVJILv54ZJxsJBKi3SBnnMQ_5m4dnAH7K0ozrpFahdCoKlU7SMDMlOSuJLF1sXZlUfN45_5NOL9X8Orleg-PhLAwi-uIzHPGlz-W7pW05VHbCzexIwdZhnRy37qzWEE_xAyT8OK6YLkIyRNUnMWWUnczPpjOu40pHvv-75CE2sSbf0Bj1bEfyI1beRpt-15lsQ7763q7Y5GbUNtXIPr5o5fi_P7QDH3r4KU47ffkIa7jYhc28T7DvQX5-T54uCh72ScBcXPmgvsh9ySUKQrhixuFgomraOzFBwu5iStbSiL-EWoWfscnVR17g-3A5-X3xaxr2ExdCSxt5E5apMxGSeFKtqjqrkWuUM0tcSoyzjgSeScQabSbjKDE2tYoAQuQkGm3qtBwfwMZiucDPIPRYo3YprSqtimNrKnLbZVVraZHcmDqAaMX1wvbtyHkqxm3h3ZIoK1hmBcus6GUWwNGw5L7rxfEe8R7zeyDsWR3A4Uq0RW-tD4U0mfZYRQbwY7hNdsbJk3KBy5ZpCMpo7hcYwKdOJYZnrzTpy-vv_ApbMYMBXyZ5CBvNvxa_EZRpqu9eh58A_xbsbQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9VAEJ8gJOgFEVCrgGviydBHt2_b3R6V8NKHlIMC4da0u9OL-h6R9sJfz8y2r4kGjbcmne3HzkzmNx87A_BBVmbaJI0KpVNRqHSShpmpyFlJZOVi66qk5vPOxUWaX6mzm-RmDY7GszCI6IvPcMKXPpfvlrbjUNkxN7MjAXsCG2T3E9mf1hojKn6EhB_IFdNFSKqohjSmjLLjs8_5nCu50onvAC95jE2syTs0Rv1mk_yQlb_jTW93Zs-hWH1xX27yfdK19cTe_9HM8X9_aRu2BgAqPvUS8wLWcLEDm8WQYt-F4tst-booeNwnQXNx7cP6ovBFlygI44o5B4SJqu1-ihkSehc56UsrvhJuFX7KJtcfeZbvwdXs9PIkD4eZC6ElU96GVepMhMSgVKu6yRrkKuXM0i4lxllHLM8kYoM2k3GUGJtaRRAhchKNNk1aTV_C-mK5wNcg9FSjdimtqqyKY2tqctxl3WhpkRyZJoBoteulHRqS81yMH6V3TKKsZJ6VzLNy4FkAH8clt303jn8R7_J-j4TDVgewv2JtOejrXSlNpj1akQG8H2-TpnH6pFrgsmMaAjOaOwYG8KoXifHZK0l68_g738HT_LI4L8_nF1_ewrOYoYEvmtyH9fZXhwcEbNr60MvzA3zz77Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Support+Vector+Machine+for+Intrapartum+Fetal+Heart+Rate+Classification&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Spilka%2C+Jiri&rft.au=Frecon%2C+Jordan&rft.au=Leonarduzzi%2C+Roberto&rft.au=Pustelnik%2C+Nelly&rft.date=2017-05-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=21&rft.issue=3&rft.spage=664&rft.epage=671&rft_id=info:doi/10.1109%2FJBHI.2016.2546312&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2016_2546312
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon