Sparse Support Vector Machine for Intrapartum Fetal Heart Rate Classification
Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for operative delivery remains a challenging task, receiving considerable attention. Th...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 21; no. 3; pp. 664 - 671 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for operative delivery remains a challenging task, receiving considerable attention. This contribution promotes sparse support vector machine classification that permits to select a small number of relevant features and to achieve efficient fetal acidosis detection. A comprehensive set of features is used for FHR description, including enhanced and computerized clinical features, frequency domain, and scaling and multifractal features, all computed on a large (1288 subjects) and well-documented database. The individual performance obtained for each feature independently is discussed first. Then, it is shown that the automatic selection of a sparse subset of features achieves satisfactory classification performance (sensitivity 0.73 and specificity 0.75, outperforming clinical practice). The subset of selected features (average depth of decelerations MAD dtrd , baseline level β 0 , and variability H) receives simple interpretation in clinical practice. Intrapartum fetal acidosis detection is improved in several respects: A comprehensive set of features combining clinical, spectral, and scale-free dynamics is used; an original multivariate classification targeting both sparse feature selection and high performance is devised; state-of-the-art performance is obtained on a much larger database than that generally studied with description of common pitfalls in supervised classification performance assessments. |
---|---|
AbstractList | Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for operative delivery remains a challenging task, receiving considerable attention. This contribution promotes sparse support vector machine classification that permits to select a small number of relevant features and to achieve efficient fetal acidosis detection. A comprehensive set of features is used for FHR description, including enhanced and computerized clinical features, frequency domain, and scaling and multifractal features, all computed on a large (1288 subjects) and well-documented database. The individual performance obtained for each feature independently is discussed first. Then, it is shown that the automatic selection of a sparse subset of features achieves satisfactory classification performance (sensitivity 0.73 and specificity 0.75, outperforming clinical practice). The subset of selected features (average depth of decelerations MAD dtrd , baseline level β 0 , and variability H) receives simple interpretation in clinical practice. Intrapartum fetal acidosis detection is improved in several respects: A comprehensive set of features combining clinical, spectral, and scale-free dynamics is used; an original multivariate classification targeting both sparse feature selection and high performance is devised; state-of-the-art performance is obtained on a much larger database than that generally studied with description of common pitfalls in supervised classification performance assessments. Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for operative delivery remains a challenging task, receiving considerable attention. This contribution promotes sparse support vector machine classification that permits to select a small number of relevant features and to achieve efficient fetal acidosis detection. A comprehensive set of features is used for FHR description, including enhanced and computerized clinical features, frequency domain, and scaling and multifractal features, all computed on a large (1288 subjects) and well-documented database. The individual performance obtained for each feature independently is discussed first. Then, it is shown that the automatic selection of a sparse subset of features achieves satisfactory classification performance (sensitivity 0.73 and specificity 0.75, outperforming clinical practice). The subset of selected features (average depth of decelerations MAD , baseline level β , and variability H) receives simple interpretation in clinical practice. Intrapartum fetal acidosis detection is improved in several respects: A comprehensive set of features combining clinical, spectral, and scale-free dynamics is used; an original multivariate classification targeting both sparse feature selection and high performance is devised; state-of-the-art performance is obtained on a much larger database than that generally studied with description of common pitfalls in supervised classification performance assessments. Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for operative delivery remains a challenging task, receiving considerable attention. This contribution promotes sparse support vector machine classification that permits to select a small number of relevant features and to achieve efficient fetal acidosis detection. A comprehensive set of features is used for FHR description, including enhanced and computerized clinical features, frequency domain, and scaling and multifractal features, all computed on a large (1288 subjects) and well-documented database. The individual performance obtained for each feature independently is discussed first. Then, it is shown that the automatic selection of a sparse subset of features achieves satisfactory classification performance (sensitivity 0.73 and specificity 0.75, outperforming clinical practice). The subset of selected features (average depth of decelerations MADdtrd, baseline level β0, and variability H) receives simple interpretation in clinical practice. Intrapartum fetal acidosis detection is improved in several respects: A comprehensive set of features combining clinical, spectral, and scale-free dynamics is used; an original multivariate classification targeting both sparse feature selection and high performance is devised; state-of-the-art performance is obtained on a much larger database than that generally studied with description of common pitfalls in supervised classification performance assessments. Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for operative delivery remains a challenging task, receiving considerable attention. This contribution promotes sparse support vector machine classification that permits to select a small number of relevant features and to achieve efficient fetal acidosis detection. A comprehensive set of features is used for FHR description, including enhanced and computerized clinical features, frequency domain, and scaling and multifractal features, all computed on a large (1288 subjects) and well-documented database. The individual performance obtained for each feature independently is discussed first. Then, it is shown that the automatic selection of a sparse subset of features achieves satisfactory classification performance (sensitivity 0.73 and specificity 0.75, outperforming clinical practice). The subset of selected features (average depth of decelerations MADdtrd, baseline level β0 , and variability H) receives simple interpretation in clinical practice. Intrapartum fetal acidosis detection is improved in several respects: A comprehensive set of features combining clinical, spectral, and scale-free dynamics is used; an original multivariate classification targeting both sparse feature selection and high performance is devised; state-of-the-art performance is obtained on a much larger database than that generally studied with description of common pitfalls in supervised classification performance assessments.Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for operative delivery remains a challenging task, receiving considerable attention. This contribution promotes sparse support vector machine classification that permits to select a small number of relevant features and to achieve efficient fetal acidosis detection. A comprehensive set of features is used for FHR description, including enhanced and computerized clinical features, frequency domain, and scaling and multifractal features, all computed on a large (1288 subjects) and well-documented database. The individual performance obtained for each feature independently is discussed first. Then, it is shown that the automatic selection of a sparse subset of features achieves satisfactory classification performance (sensitivity 0.73 and specificity 0.75, outperforming clinical practice). The subset of selected features (average depth of decelerations MADdtrd, baseline level β0 , and variability H) receives simple interpretation in clinical practice. Intrapartum fetal acidosis detection is improved in several respects: A comprehensive set of features combining clinical, spectral, and scale-free dynamics is used; an original multivariate classification targeting both sparse feature selection and high performance is devised; state-of-the-art performance is obtained on a much larger database than that generally studied with description of common pitfalls in supervised classification performance assessments. |
Author | Frecon, Jordan Spilka, Jiri Abry, Patrice Doret, Muriel Leonarduzzi, Roberto Pustelnik, Nelly |
Author_xml | – sequence: 1 givenname: Jiri surname: Spilka fullname: Spilka, Jiri email: jiri.spilka@ciirc.cvut.cz organization: Lab. de Phys., Claude Bernard Univ. Lyon 1, Lyon, France – sequence: 2 givenname: Jordan surname: Frecon fullname: Frecon, Jordan email: jordan.frecon@ens-lyon.fr organization: Lab. de Phys., Claude Bernard Univ. Lyon 1, Lyon, France – sequence: 3 givenname: Roberto surname: Leonarduzzi fullname: Leonarduzzi, Roberto email: roberto.leonarduzzi@ens-lyon.fr organization: Lab. de Phys., Claude Bernard Univ. Lyon 1, Lyon, France – sequence: 4 givenname: Nelly surname: Pustelnik fullname: Pustelnik, Nelly email: nelly.pustelnik@ens-lyon.fr organization: Lab. de Phys., Claude Bernard Univ. Lyon 1, Lyon, France – sequence: 5 givenname: Patrice surname: Abry fullname: Abry, Patrice email: patrice.abry@ens-lyon.fr organization: Lab. de Phys., Claude Bernard Univ. Lyon 1, Lyon, France – sequence: 6 givenname: Muriel surname: Doret fullname: Doret, Muriel email: muriel.doret@chu-lyon.fr organization: Femme-Mere-Enfant Hosp., Lyon, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27046884$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLAzEUhYNUtFZ_gAgy4MZNa5Jm8lhqsbZSEXxtQ5q5g5HpzJhkFv57U9u6cGE2OTd853JzzxHq1U0NCJ0SPCIEq6v7m9l8RDHhI5ozPiZ0D_Up4XJIKZa9nSaKHaKTED5wOjI9KX6ADqnAjEvJ-ujhuTU-QPbctW3jY_YGNjY-ezD23dWQlUnP6-hNomK3yqYQTZXNIFXZk4mQTSoTgiudNdE19THaL00V4GR7D9Dr9PZlMhsuHu_mk-vF0DKSx6HhhcSQLwsu2LJUJRCluLJpolwWtoAlKAJQglWE4lxabplMqiAghSy5GQ_Q5aZv65vPDkLUKxcsVJWpoemCJpJyLoTIWUIv_qAfTefrNF2ilMCUUU4Sdb6luuUKCt16tzL-S-8WlQCxAaxvQvBQauviz5_TclylCdbrVPQ6Fb1ORW9TSU7yx7lr_p_nbONxAPDLC8awkGL8DeS-lhU |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_1002_ijgo_15236 crossref_primary_10_1016_j_compbiomed_2021_104218 crossref_primary_10_1016_j_cmpb_2023_107701 crossref_primary_10_1016_j_cmpb_2025_108682 crossref_primary_10_1016_j_cmpb_2022_107300 crossref_primary_10_1016_j_health_2024_100322 crossref_primary_10_3390_bioengineering10091007 crossref_primary_10_3390_biomedinformatics3020019 crossref_primary_10_3390_ma15238504 crossref_primary_10_1016_j_eswa_2018_09_030 crossref_primary_10_1007_s11760_020_01727_y crossref_primary_10_1109_MCE_2021_3097316 crossref_primary_10_3389_fphys_2024_1398735 crossref_primary_10_1016_j_ajog_2024_04_022 crossref_primary_10_1088_2057_1976_aabc64 crossref_primary_10_1007_s11045_019_00653_8 crossref_primary_10_1515_bmt_2024_0334 crossref_primary_10_2196_16503 crossref_primary_10_12693_APhysPolA_132_451 crossref_primary_10_2174_1872212118666230703155834 crossref_primary_10_1515_jisys_2023_0047 crossref_primary_10_1007_s13755_019_0079_z crossref_primary_10_1109_TSP_2017_2690391 crossref_primary_10_1111_aogs_13639 crossref_primary_10_3389_fphys_2019_00246 crossref_primary_10_1016_j_bspc_2024_106195 crossref_primary_10_1080_24699322_2016_1240300 crossref_primary_10_1007_s11042_022_13534_3 crossref_primary_10_1038_s41598_024_63108_6 crossref_primary_10_1109_ACCESS_2019_2933368 crossref_primary_10_1038_s44294_024_00033_z crossref_primary_10_1088_2057_1976_ad17a6 crossref_primary_10_1007_s11265_019_01478_1 crossref_primary_10_1016_j_bspc_2019_101759 crossref_primary_10_3389_frai_2021_622616 crossref_primary_10_7717_peerj_cs_452 crossref_primary_10_1016_j_measurement_2021_110034 crossref_primary_10_1109_ACCESS_2019_2958141 crossref_primary_10_1109_TNNLS_2023_3293888 crossref_primary_10_3389_fphys_2022_969052 crossref_primary_10_1111_jog_15842 crossref_primary_10_1109_JIOT_2018_2845128 crossref_primary_10_1109_JSEN_2023_3278841 crossref_primary_10_1186_s13634_018_0568_2 crossref_primary_10_1016_j_sigpro_2018_03_012 crossref_primary_10_1109_ACCESS_2019_2894366 crossref_primary_10_3389_fphys_2019_00255 crossref_primary_10_1016_j_asoc_2023_110790 crossref_primary_10_1016_j_cmpb_2022_106740 crossref_primary_10_1109_ACCESS_2019_2950798 crossref_primary_10_3389_fped_2021_660476 crossref_primary_10_3389_fped_2021_661400 |
Cites_doi | 10.1109/TNNLS.2013.2286696 10.1016/j.bpobgyn.2013.04.002 10.1111/1471-0528.12568 10.1161/01.CIR.93.5.1043 10.1016/j.ejogrb.2013.01.003 10.1067/mob.2002.122447 10.1007/s00521-011-0743-y 10.1007/978-3-319-32703-7_232 10.1137/050626090 10.1023/A:1008987426876 10.1109/JBHI.2015.2432832 10.1080/14767050500526172 10.1186/1471-2393-14-16 10.1109/TBME.2009.2035818 10.1371/journal.pone.0136661 10.1016/j.ajog.2007.03.063 10.1016/S0140-6736(01)05703-8 10.1088/0967-3334/32/8/022 10.1109/TBME.2014.2330556 10.1088/0967-3334/35/12/L1 10.1016/j.earlhumdev.2006.12.006 10.1109/EMBC.2015.7318771 10.1016/j.bspc.2011.06.008 10.1055/s-0030-1268713 10.1016/j.bpobgyn.2007.02.008 10.1038/20924 10.1088/0967-3334/35/7/1357 10.1109/JBHI.2014.2361688 10.1109/MSP.2007.4286563 10.1007/s10994-013-5367-2 10.1016/j.ajog.2009.04.033 10.1103/PhysRevE.71.021906 10.1002/14651858.CD006066 10.1016/j.ajog.2011.06.086 10.1111/j.1471-0528.2004.00454.x 10.1016/j.eswa.2012.01.196 10.1109/EMBC.2015.7318861 10.1111/j.1471-0528.2012.03335.x 10.1016/j.ejogrb.2010.12.042 10.1109/TBME.2013.2294324 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/JBHI.2016.2546312 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 671 |
ExternalDocumentID | 27046884 10_1109_JBHI_2016_2546312 7440787 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ANR 2010 French grantid: #18535 – fundername: Hospices Civil de Lyon's PHRC – fundername: AMATIS grantid: #112432; #NT11124-6/2010 – fundername: FETUSES |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c415t-a6d80e5bd674bf9fe19969c68858dcdebe91eefec912058c6c48120d1e878f6a3 |
IEDL.DBID | RIE |
ISSN | 2168-2194 2168-2208 |
IngestDate | Fri Jul 11 03:20:24 EDT 2025 Sun Jun 29 16:45:28 EDT 2025 Thu Apr 03 06:58:58 EDT 2025 Thu Apr 24 23:09:32 EDT 2025 Tue Jul 01 02:59:54 EDT 2025 Tue Aug 26 16:38:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-a6d80e5bd674bf9fe19969c68858dcdebe91eefec912058c6c48120d1e878f6a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4136-0083 |
PMID | 27046884 |
PQID | 1897024261 |
PQPubID | 85417 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1109_JBHI_2016_2546312 pubmed_primary_27046884 proquest_journals_1897024261 ieee_primary_7440787 proquest_miscellaneous_1826677754 crossref_primary_10_1109_JBHI_2016_2546312 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-May 2017-5-00 2017-05-00 20170501 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-May |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref30 ref33 ref11 ref32 ref10 hastie (ref31) 2009 ref1 ref39 ref17 ref38 ref16 ref19 ref18 spilka (ref23) 0 ref24 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 (ref2) 1986; 25 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref34 doi: 10.1109/TNNLS.2013.2286696 – ident: ref27 doi: 10.1016/j.bpobgyn.2013.04.002 – start-page: 777 year: 0 ident: ref23 article-title: Impacts of first and second labour stages on Hurst parameter based intrapartum fetal heart rate analysis publication-title: Proc Comput Cardiol Conf – ident: ref13 doi: 10.1111/1471-0528.12568 – ident: ref26 doi: 10.1161/01.CIR.93.5.1043 – ident: ref38 doi: 10.1016/j.ejogrb.2013.01.003 – ident: ref25 doi: 10.1067/mob.2002.122447 – ident: ref21 doi: 10.1007/s00521-011-0743-y – ident: ref41 doi: 10.1007/978-3-319-32703-7_232 – ident: ref36 doi: 10.1137/050626090 – ident: ref37 doi: 10.1023/A:1008987426876 – ident: ref32 doi: 10.1109/JBHI.2015.2432832 – volume: 25 start-page: 159 year: 1986 ident: ref2 article-title: Guidelines for the Use of Fetal Monitoring publication-title: Int J Gynaecol Obstet – ident: ref5 doi: 10.1080/14767050500526172 – ident: ref40 doi: 10.1186/1471-2393-14-16 – ident: ref15 doi: 10.1109/TBME.2009.2035818 – ident: ref8 doi: 10.1371/journal.pone.0136661 – ident: ref39 doi: 10.1016/j.ajog.2007.03.063 – ident: ref24 doi: 10.1016/S0140-6736(01)05703-8 – ident: ref12 doi: 10.1088/0967-3334/32/8/022 – ident: ref19 doi: 10.1109/TBME.2014.2330556 – ident: ref18 doi: 10.1088/0967-3334/35/12/L1 – ident: ref11 doi: 10.1016/j.earlhumdev.2006.12.006 – ident: ref28 doi: 10.1109/EMBC.2015.7318771 – ident: ref16 doi: 10.1016/j.bspc.2011.06.008 – ident: ref7 doi: 10.1055/s-0030-1268713 – ident: ref1 doi: 10.1016/j.bpobgyn.2007.02.008 – ident: ref30 doi: 10.1038/20924 – year: 2009 ident: ref31 publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction – ident: ref17 doi: 10.1088/0967-3334/35/7/1357 – ident: ref33 doi: 10.1109/JBHI.2014.2361688 – ident: ref29 doi: 10.1109/MSP.2007.4286563 – ident: ref35 doi: 10.1007/s10994-013-5367-2 – ident: ref14 doi: 10.1016/j.ajog.2009.04.033 – ident: ref9 doi: 10.1103/PhysRevE.71.021906 – ident: ref4 doi: 10.1002/14651858.CD006066 – ident: ref3 doi: 10.1016/j.ajog.2011.06.086 – ident: ref6 doi: 10.1111/j.1471-0528.2004.00454.x – ident: ref20 doi: 10.1016/j.eswa.2012.01.196 – ident: ref43 doi: 10.1109/EMBC.2015.7318861 – ident: ref42 doi: 10.1111/j.1471-0528.2012.03335.x – ident: ref22 doi: 10.1016/j.ejogrb.2010.12.042 – ident: ref10 doi: 10.1109/TBME.2013.2294324 |
SSID | ssj0000816896 |
Score | 2.4592888 |
Snippet | Fetal heart rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal health status during delivery. However, early... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 664 |
SubjectTerms | Acidosis Algorithms Attention task Biomedical signal processing Childbirth & labor Classification Clinical medicine Electrocardiography - methods Feature extraction feature selection Female Fetal heart rate Fetuses Fractals Heart rate Heart Rate, Fetal - physiology Humans Informatics Monitoring Pregnancy Scaling Signal Processing, Computer-Assisted sparse support vector machine (S-SVM) supervised classification Support Vector Machine Support vector machines |
Title | Sparse Support Vector Machine for Intrapartum Fetal Heart Rate Classification |
URI | https://ieeexplore.ieee.org/document/7440787 https://www.ncbi.nlm.nih.gov/pubmed/27046884 https://www.proquest.com/docview/1897024261 https://www.proquest.com/docview/1826677754 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB8SlUB5tWlq5Uk-ILHHWiZ0jVF3trpQeykPcosSeXIBdVJILv54ZJxsJBKi3SBnnMQ_5m4dnAH7K0ozrpFahdCoKlU7SMDMlOSuJLF1sXZlUfN45_5NOL9X8Orleg-PhLAwi-uIzHPGlz-W7pW05VHbCzexIwdZhnRy37qzWEE_xAyT8OK6YLkIyRNUnMWWUnczPpjOu40pHvv-75CE2sSbf0Bj1bEfyI1beRpt-15lsQ7763q7Y5GbUNtXIPr5o5fi_P7QDH3r4KU47ffkIa7jYhc28T7DvQX5-T54uCh72ScBcXPmgvsh9ySUKQrhixuFgomraOzFBwu5iStbSiL-EWoWfscnVR17g-3A5-X3xaxr2ExdCSxt5E5apMxGSeFKtqjqrkWuUM0tcSoyzjgSeScQabSbjKDE2tYoAQuQkGm3qtBwfwMZiucDPIPRYo3YprSqtimNrKnLbZVVraZHcmDqAaMX1wvbtyHkqxm3h3ZIoK1hmBcus6GUWwNGw5L7rxfEe8R7zeyDsWR3A4Uq0RW-tD4U0mfZYRQbwY7hNdsbJk3KBy5ZpCMpo7hcYwKdOJYZnrzTpy-vv_ApbMYMBXyZ5CBvNvxa_EZRpqu9eh58A_xbsbQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9VAEJ8gJOgFEVCrgGviydBHt2_b3R6V8NKHlIMC4da0u9OL-h6R9sJfz8y2r4kGjbcmne3HzkzmNx87A_BBVmbaJI0KpVNRqHSShpmpyFlJZOVi66qk5vPOxUWaX6mzm-RmDY7GszCI6IvPcMKXPpfvlrbjUNkxN7MjAXsCG2T3E9mf1hojKn6EhB_IFdNFSKqohjSmjLLjs8_5nCu50onvAC95jE2syTs0Rv1mk_yQlb_jTW93Zs-hWH1xX27yfdK19cTe_9HM8X9_aRu2BgAqPvUS8wLWcLEDm8WQYt-F4tst-booeNwnQXNx7cP6ovBFlygI44o5B4SJqu1-ihkSehc56UsrvhJuFX7KJtcfeZbvwdXs9PIkD4eZC6ElU96GVepMhMSgVKu6yRrkKuXM0i4lxllHLM8kYoM2k3GUGJtaRRAhchKNNk1aTV_C-mK5wNcg9FSjdimtqqyKY2tqctxl3WhpkRyZJoBoteulHRqS81yMH6V3TKKsZJ6VzLNy4FkAH8clt303jn8R7_J-j4TDVgewv2JtOejrXSlNpj1akQG8H2-TpnH6pFrgsmMaAjOaOwYG8KoXifHZK0l68_g738HT_LI4L8_nF1_ewrOYoYEvmtyH9fZXhwcEbNr60MvzA3zz77Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Support+Vector+Machine+for+Intrapartum+Fetal+Heart+Rate+Classification&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Spilka%2C+Jiri&rft.au=Frecon%2C+Jordan&rft.au=Leonarduzzi%2C+Roberto&rft.au=Pustelnik%2C+Nelly&rft.date=2017-05-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=21&rft.issue=3&rft.spage=664&rft.epage=671&rft_id=info:doi/10.1109%2FJBHI.2016.2546312&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2016_2546312 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |