Inverse Modeling of Hydrologic Parameters in CLM4 via Generalized Polynomial Chaos in the Bayesian Framework
In this work, generalized polynomial chaos (gPC) expansion for land surface model parameter estimation is evaluated. We perform inverse modeling and compute the posterior distribution of the critical hydrological parameters that are subject to great uncertainty in the Community Land Model (CLM) for...
Saved in:
Published in | Computation Vol. 10; no. 5; p. 72 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, generalized polynomial chaos (gPC) expansion for land surface model parameter estimation is evaluated. We perform inverse modeling and compute the posterior distribution of the critical hydrological parameters that are subject to great uncertainty in the Community Land Model (CLM) for a given value of the output LH. The unknown parameters include those that have been identified as the most influential factors on the simulations of surface and subsurface runoff, latent and sensible heat fluxes, and soil moisture in CLM4.0. We set up the inversion problem in the Bayesian framework in two steps: (i) building a surrogate model expressing the input–output mapping, and (ii) performing inverse modeling and computing the posterior distributions of the input parameters using observation data for a given value of the output LH. The development of the surrogate model is carried out with a Bayesian procedure based on the variable selection methods that use gPC expansions. Our approach accounts for bases selection uncertainty and quantifies the importance of the gPC terms, and, hence, all of the input parameters, via the associated posterior probabilities. |
---|---|
AbstractList | In this work, generalized polynomial chaos (gPC) expansion for land surface model parameter estimation is evaluated. We perform inverse modeling and compute the posterior distribution of the critical hydrological parameters that are subject to great uncertainty in the Community Land Model (CLM) for a given value of the output LH. The unknown parameters include those that have been identified as the most influential factors on the simulations of surface and subsurface runoff, latent and sensible heat fluxes, and soil moisture in CLM4.0. We set up the inversion problem in the Bayesian framework in two steps: (i) building a surrogate model expressing the input–output mapping, and (ii) performing inverse modeling and computing the posterior distributions of the input parameters using observation data for a given value of the output LH. The development of the surrogate model is carried out with a Bayesian procedure based on the variable selection methods that use gPC expansions. Our approach accounts for bases selection uncertainty and quantifies the importance of the gPC terms, and, hence, all of the input parameters, via the associated posterior probabilities. |
Author | Huang, Maoyi Hou, Zhangshuan Lin, Guang Karagiannis, Georgios |
Author_xml | – sequence: 1 givenname: Georgios orcidid: 0000-0002-2677-1474 surname: Karagiannis fullname: Karagiannis, Georgios – sequence: 2 givenname: Zhangshuan orcidid: 0000-0002-9388-6060 surname: Hou fullname: Hou, Zhangshuan – sequence: 3 givenname: Maoyi surname: Huang fullname: Huang, Maoyi – sequence: 4 givenname: Guang orcidid: 0000-0002-0976-1987 surname: Lin fullname: Lin, Guang |
BackLink | https://www.osti.gov/biblio/1866514$$D View this record in Osti.gov |
BookMark | eNp9kcFuEzEQhi1UJEroE3Cx4Byw1_bu-ggRbSOlogc4W157nDhsPMF2WoWnZ5sghBBiLh5Z3_9pRvOSXCRMQMhrzt4Jodl7h7v9odoaMXHGFGNd84xcNqzTc8F1d_FH_4JclbJlU2ku-oZdknGZHiAXoHfoYYxpTTHQ26PPOOI6Onpvs91BnRAaE12s7iR9iJbeQIJsx_gDPL3H8ZhwF-1IFxuLJ7BugH60RyjRJnr9pHjE_O0VeR7sWODq1zsjX68_fVnczlefb5aLD6u5k1zVuQbNOW-VBCG1Aw9DJyWDtodBBq16LVkYmsFp4KxtLO-D6ls3iCYwHzplxYwsz16Pdmv2Oe5sPhq00Zw-MK-NzTW6EYzQTohOtZoxLoVTvXJdHwYpvHdeaJhcb84uLDWa4mIFt3GYErhqeN-2asrNyNsztM_4_QClmi0ecpp2NE3bTeaWKTVR4ky5jKVkCL9H48w8ndL845RTSv-VmmY4ITXbOP43-xNuvqlW |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2023_129941 |
Cites_doi | 10.1016/j.jcp.2010.12.021 10.1007/s00382-009-0614-8 10.1029/2009JD012035 10.1029/2012JD017521 10.5194/hess-17-4995-2013 10.1002/joc.893 10.1029/1999JD900155 10.5194/hess-19-2409-2015 10.1175/JCLI3760.1 10.1017/S0962492900002804 10.1007/s11222-009-9160-9 10.1175/1520-0477(1995)076<0489:TPFIOL>2.0.CO;2 10.1109/TPAMI.1984.4767596 10.1029/2007JG000563 10.1029/2006JD007522 10.1515/9781400835348 10.1214/009053604000000238 10.1016/j.cam.2007.01.005 10.1175/EI231.1 10.1016/j.jcp.2011.01.002 10.1615/Int.J.UncertaintyQuantification.2013006821 10.1175/JHM-D-12-0138.1 10.1029/2005JD006111 10.4208/cicp.2009.v6.p826 10.1002/2015JD024339 10.1137/S1064827501387826 10.1016/j.jcp.2013.11.016 10.1137/140957998 10.1007/978-1-4757-4145-2 10.1029/2011MS000045 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U OTOTI DOA |
DOI | 10.3390/computation10050072 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 2079-3197 |
ExternalDocumentID | oai_doaj_org_article_39c33756900143c585c78fb43ddcd39e 1866514 10_3390_computation10050072 |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABUWG ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC K6V K7- KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI PRINS Q9U AAPBV DKF OTOTI PUEGO |
ID | FETCH-LOGICAL-c415t-9e9111654e349cedeb7440e68eb4f958940fb2bc9e1062a18f586cb32f0df75a3 |
IEDL.DBID | DOA |
ISSN | 2079-3197 |
IngestDate | Wed Aug 27 01:01:39 EDT 2025 Thu May 18 22:40:10 EDT 2023 Sun Jul 13 04:33:03 EDT 2025 Tue Jul 01 01:46:39 EDT 2025 Thu Apr 24 23:01:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-9e9111654e349cedeb7440e68eb4f958940fb2bc9e1062a18f586cb32f0df75a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE 382247; SC0021142 |
ORCID | 0000-0002-9388-6060 0000-0002-0976-1987 0000-0002-2677-1474 0000000226771474 0000000293886060 0000000209761987 |
OpenAccessLink | https://doaj.org/article/39c33756900143c585c78fb43ddcd39e |
PQID | 2670146055 |
PQPubID | 2032414 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_39c33756900143c585c78fb43ddcd39e osti_scitechconnect_1866514 proquest_journals_2670146055 crossref_primary_10_3390_computation10050072 crossref_citationtrail_10_3390_computation10050072 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel – name: Switzerland |
PublicationTitle | Computation |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Pitman (ref_1) 2003; 23 Hou (ref_6) 2012; 117 Caflisch (ref_22) 1998; 7 Ray (ref_11) 2015; 3 Sargsyan (ref_14) 2014; 4 Gong (ref_13) 2015; 19 Hoeting (ref_33) 1999; 14 Huang (ref_7) 2013; 14 Hans (ref_31) 2010; 20 ref_10 ref_32 Xiu (ref_28) 2002; 24 Blatman (ref_29) 2011; 230 Wang (ref_23) 2008; 213 ref_17 Barbieri (ref_34) 2004; 32 Rosero (ref_5) 2010; 115 Oleson (ref_20) 2008; 113 Fischer (ref_16) 2007; 11 Gent (ref_9) 2010; 34 Karagiannis (ref_15) 2014; 259 ref_25 Niu (ref_18) 2005; 110 Pitman (ref_3) 1995; 76 Niu (ref_19) 2007; 112 ref_21 Sun (ref_35) 2013; 17 Marzouk (ref_24) 2009; 6 Bastidas (ref_2) 1999; 104 Doostan (ref_30) 2011; 230 ref_27 ref_26 Collins (ref_8) 2006; 19 ref_4 Huang (ref_12) 2016; 121 |
References_xml | – volume: 230 start-page: 2345 year: 2011 ident: ref_29 article-title: Adaptive sparse polynomial chaos expansion based on least angle regression publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.12.021 – volume: 34 start-page: 819 year: 2010 ident: ref_9 article-title: Improvements in a half degree atmosphere/land version of the CCSM publication-title: Clim. Dyn. doi: 10.1007/s00382-009-0614-8 – volume: 115 start-page: D03106 year: 2010 ident: ref_5 article-title: Quantifying parameter sensitivity, interaction, and transferability in hydrologically enhanced versions of the Noah land surface model over transition zones during the warm season publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2009JD012035 – volume: 117 start-page: D15 year: 2012 ident: ref_6 article-title: Sensitivity of surface flux simulations to hydrologic parameters based on an uncertainty quantification framework applied to the Community Land Model publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2012JD017521 – volume: 17 start-page: 4995 year: 2013 ident: ref_35 article-title: Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-17-4995-2013 – volume: 23 start-page: 479 year: 2003 ident: ref_1 article-title: The evolution of, and revolution in, land surface schemes designed for climate models publication-title: Int. J. Climatol. J. R. Meteorol. Soc. doi: 10.1002/joc.893 – volume: 104 start-page: 19481 year: 1999 ident: ref_2 article-title: Sensitivity analysis of a land surface scheme using multicriteria methods publication-title: J. Geophys. Res. Atmos. doi: 10.1029/1999JD900155 – volume: 19 start-page: 2409 year: 2015 ident: ref_13 article-title: Multi-objective parameter optimization of common land model using adaptive surrogate modeling publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-19-2409-2015 – volume: 19 start-page: 2144 year: 2006 ident: ref_8 article-title: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3) publication-title: J. Clim. doi: 10.1175/JCLI3760.1 – volume: 7 start-page: 1 year: 1998 ident: ref_22 article-title: Monte carlo and quasi-monte carlo methods publication-title: Acta Numer. doi: 10.1017/S0962492900002804 – volume: 20 start-page: 221 year: 2010 ident: ref_31 article-title: Model uncertainty and variable selection in Bayesian LASSO regression publication-title: Stat. Comput. doi: 10.1007/s11222-009-9160-9 – ident: ref_4 doi: 10.1175/1520-0477(1995)076<0489:TPFIOL>2.0.CO;2 – ident: ref_32 doi: 10.1109/TPAMI.1984.4767596 – volume: 113 start-page: G1 year: 2008 ident: ref_20 article-title: Improvements to the Community Land Model and their impact on the hydrological cycle publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2007JG000563 – volume: 76 start-page: 489 year: 1995 ident: ref_3 article-title: The project for intercomparison of land surface parameterization schemes (PILPS): Phases 2 and 3 publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(1995)076<0489:TPFIOL>2.0.CO;2 – ident: ref_21 – volume: 112 start-page: D7 year: 2007 ident: ref_19 article-title: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2006JD007522 – ident: ref_27 doi: 10.1515/9781400835348 – volume: 32 start-page: 870 year: 2004 ident: ref_34 article-title: Optimal Predictive Model Selection publication-title: Ann. Stat. doi: 10.1214/009053604000000238 – volume: 213 start-page: 366 year: 2008 ident: ref_23 article-title: Low discrepancy sequences in high dimensions: How well are their projections distributed? publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2007.01.005 – volume: 11 start-page: 1 year: 2007 ident: ref_16 article-title: Spatiotemporal variations in growing season exchanges of CO2, H2O, and sensible heat in agricultural fields of the Southern Great Plains publication-title: Earth Interact. doi: 10.1175/EI231.1 – ident: ref_25 – volume: 230 start-page: 3015 year: 2011 ident: ref_30 article-title: A non-adapted sparse approximation of PDEs with stochastic inputs publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.01.002 – volume: 4 start-page: 63 year: 2014 ident: ref_14 article-title: Dimensionality reduction for complex models via Bayesian compressive sensing publication-title: Int. J. Uncertain. Quantif. doi: 10.1615/Int.J.UncertaintyQuantification.2013006821 – volume: 14 start-page: 1754 year: 2013 ident: ref_7 article-title: Uncertainty analysis of runoff simulations and parameter identifiability in the Community Land Model: Evidence from MOPEX basins publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-12-0138.1 – volume: 110 start-page: D21 year: 2005 ident: ref_18 article-title: A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2005JD006111 – volume: 6 start-page: 826 year: 2009 ident: ref_24 article-title: A Stochastic Collocation Approach to Bayesian Inference in Inverse Problems publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.2009.v6.p826 – volume: 14 start-page: 382 year: 1999 ident: ref_33 article-title: Bayesian model averaging: A tutorial publication-title: Stat. Sci. – volume: 121 start-page: 7548 year: 2016 ident: ref_12 article-title: On the applicability of surrogate-based Markov chain Monte Carlo-Bayesian inversion to the Community Land Model: Case studies at flux tower sites publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2015JD024339 – volume: 24 start-page: 619 year: 2002 ident: ref_28 article-title: The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827501387826 – volume: 259 start-page: 114 year: 2014 ident: ref_15 article-title: Selection of polynomial chaos bases via Bayesian model uncertainty methods with applications to sparse approximation of PDEs with stochastic inputs publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.11.016 – ident: ref_17 – volume: 3 start-page: 199 year: 2015 ident: ref_11 article-title: Bayesian calibration of the Community Land Model using surrogates publication-title: SIAM/ASA J. Uncertain. Quantif. doi: 10.1137/140957998 – ident: ref_26 doi: 10.1007/978-1-4757-4145-2 – ident: ref_10 doi: 10.1029/2011MS000045 |
SSID | ssj0000913820 |
Score | 2.1887949 |
Snippet | In this work, generalized polynomial chaos (gPC) expansion for land surface model parameter estimation is evaluated. We perform inverse modeling and compute... |
SourceID | doaj osti proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 72 |
SubjectTerms | Bayesian analysis Bayesian inversion Calibration Enthalpy General circulation models generalized polynomial chaos Heat flux Hydrology inverse modeling Mathematical models Maximum entropy method Modelling Moisture effects Parameter estimation Parameter identification Polynomials Simulation Soil moisture Uncertainty uncertainty quantification US-ARM |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3daxNBEMAXbV_0QWxVjG1lH3xQ8Giy3_dUTGgIYkoQC31bbmd3NRByNReF-Nd3Z7NJEaVPB3ubHJfZmdnZzPyGkHdGgBNSuqRpXFciMlPhaVs1YFF5yRVIwOLk6ZWaXIvPN_KmHLh1Ja1yZxOzofYt4Bn5OVMaOSd9KS9uf1bYNQr_XS0tNB6Tw2SCTQq-DoeXV7Ov-1MWpF4mH7fFDfEU359DbpaQ33qA8JO-Zn-5pEzuT5c2adg_9jk7nfFz8qzsFumnrXiPyKOwPCZPp3vUandMjop2dvR9QUh_eEEWiM9YdYFiqzMsOKdtpJONX21NHZ01mJOFYE06X9LRl6mgv-cNLV8w_xM8nbWLDZYsp8ePfjRtnpgeS4fNJmDhJR3v0rpekuvx5bfRpCp9FSpI7npd1QEtnJIicFFD8MEhJTAoE5yItTS16EfHHNQhxYusGZgojQLHWez7qGXDX5GDZbsMrwk1oAFY5EmLk6-PYLQLwRgR02DQKvYI2_20Fgp0HHtfLGwKPlAe9j_y6JGP-w_dbpkbD08fosz2UxGYnQfa1Xdb9M_yGjjXUtUYE3JIQRJoE53g3oPndeiRE5S4TfsOhOcCZhnB2mYc4ED0yOluIdii4529X5FvHr59Qp4wLJrIaZKn5GC9-hXO0lZm7d6W9XoHmSb1Sg priority: 102 providerName: ProQuest |
Title | Inverse Modeling of Hydrologic Parameters in CLM4 via Generalized Polynomial Chaos in the Bayesian Framework |
URI | https://www.proquest.com/docview/2670146055 https://www.osti.gov/biblio/1866514 https://doaj.org/article/39c33756900143c585c78fb43ddcd39e |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NaxNBFMAfWi96kLYqxtYwBw8KLt3Mx87ssQlNg5gSxEJvw87bGQyEbEmikP71nTe7CRVFLz0tLLNfM-9j3vLe7wF8MBKdVMpFTRM6k4GbjP62ZQMeilqJAhVScfL0qphcyy836uZBqy_KCWvxwO3EnYkShdAqBnFEosO4u0VtgpOirrEWpSfrG33eg2Aq2eCS2Hp5ixkSMa4_w9QkIX3tgKAnuea_uaJE7I-HJmrWH3Y5OZvxIbzsdonsvH27I3jil8fwYrpHrK6P4ajTyjX72KGjP72CBWEzVmvPqMUZFZqzJrDJtl61Jo7NKsrFIqAmmy_Z6OtUsl_zinU3mN_5ms2axZZKlePjRz-qJg2Mj2XDauup4JKNd-lcr-F6fPF9NMm6fgoZRje9yUpPlq1Q0gtZoq-9IzqgL4x3MpTKlDIPjjssfYwTeTUwQZkCneAhr4NWlXgDB8tm6d8CM6gReRBRe6OPD2i0894YGeJJr4vQA76bWosdbJx6XixsDDpoPexf1qMHn_cX3basjX8PH9Ka7YcSKDudiOJjO_Gx_xOfHpzQitu43yBoLlJ2EW5swgAOZA9Od4JgO91eW15oIu7kSr17jDc4geecSipSEuUpHGxWP_37uNHZuD48NePLPjwbXlzNvvWThN8DgJv-YQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a4wAcJjZAKxvgA0ggES31R-IcEGKF0rF22mGTdjPJiw2VqmZrCqj8UfyN-DlJEQLttlMkx7Elv2_nvd8DeK4lFlKpwkuaSCPpuI7oti3qc5eUSiSokIqTJyfJ6Fx-ulAXG_Crq4WhtMpOJwZFXVZId-QHPEkJ5yRW6u3lVURdo-jvatdCo2GLY7v64UO2-s3Re0_fF5wPP5wNRlHbVSBCb6yWUWZJvhMlrZAZ2tIWhJFnE20L6TKlMxm7gheYWR8t8byvndIJFoK7uHSpyoVf9xbclkJkJFF6-HF9p0MYm96iNuBG_n18gKE1QzjjPkGtxCn_ywCGPgH-UXl5_scaBBM3vA9brW_K3jXMtA0bdr4D9yZrYNd6B7ZbXVCzly1g9asHMCOwjkVtGTVWo_J2Vjk2WpWLRrGy05wywAjGk03nbDCeSPZ9mrN2gelPW7LTaraiAmm__eBrXoWJflt2mK8slXmyYZdE9hDOb-S8H8HmvJrbXWAaU0TuhNcZ3rNwqNPCWq2l84M2TVwPeHe0BluIc-q0MTM-1CF6mP_Qowev1x9dNggf108_JJqtpxI8dxioFl9MK-1GZChEqpKMIlCBPiTDVLtCirLEUmS2B3tEceO9HILqRcppwqUJ4IN92YP9jhFMq1Fq84f_H1__-hncGZ1NxmZ8dHK8B3c5lWuEBM192Fwuvtkn3olaFk8D5zL4fNOi8huXrDC_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8anYTggNgArWyADyCBRNTUH7FzQIh2qzq2VhVi0m4hdmyoVDWjKaDyp_HX4Zc4RQi0206RHMeW_L6d934P4LniRnMhtJc0JiPuqIrwti3qU5cUgiVGGCxOnkyT8QV_fykud-BXWwuDaZWtTqwVdVEavCPv0UQizkksRM-FtIjZ8ejt1dcIO0jhn9a2nUbDImd288OHb9Wb02NP6xeUjk4-DsdR6DAQGW-41lFqUdYTwS3jqbGF1YiXZxNlNXepUCmPnabapNZHTjTvKydUYjSjLi6cFDnz696CXemjorgDu4OT6ezD9oYHETe9fW2gjhhL456pGzXUJ95H4JVY0r_MYd01wD9KL93_2Iba4I3uw73gqZJ3DWvtwY5d7sPdyRbmtdqHvaAZKvIywFe_egALhO5YVZZgmzUsdielI-NNsWrULJnlmA-GoJ5kviTD8wkn3-c5CQvMf9qCzMrFBsul_fbDL3lZT_TbkkG-sVj0SUZtStlDuLiRE38EnWW5tAdAlJHGUMe8BvF-hjNKamuV4s4PWpm4LtD2aDMTAM-x78Yi84EP0iP7Dz268Hr70VWD93H99AHSbDsVwbrrgXL1OQuyn7HUMCZFkmI8yowP0IxUTnNWFKZgqe3CIVI88z4PAvcazHAy66yGIuzzLhy1jJAF_VJlf6Th8fWvn8FtLybZ-en07BDuUKzdqLM1j6CzXn2zT7xHtdZPA-sS-HTT0vIbp6g2UQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+Modeling+of+Hydrologic+Parameters+in+CLM4+via+Generalized+Polynomial+Chaos+in+the+Bayesian+Framework&rft.jtitle=Computation&rft.au=Georgios+Karagiannis&rft.au=Zhangshuan+Hou&rft.au=Maoyi+Huang&rft.au=Guang+Lin&rft.date=2022-05-01&rft.pub=MDPI+AG&rft.eissn=2079-3197&rft.volume=10&rft.issue=5&rft.spage=72&rft_id=info:doi/10.3390%2Fcomputation10050072&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_39c33756900143c585c78fb43ddcd39e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-3197&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-3197&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-3197&client=summon |