Inverse Modeling of Hydrologic Parameters in CLM4 via Generalized Polynomial Chaos in the Bayesian Framework

In this work, generalized polynomial chaos (gPC) expansion for land surface model parameter estimation is evaluated. We perform inverse modeling and compute the posterior distribution of the critical hydrological parameters that are subject to great uncertainty in the Community Land Model (CLM) for...

Full description

Saved in:
Bibliographic Details
Published inComputation Vol. 10; no. 5; p. 72
Main Authors Karagiannis, Georgios, Hou, Zhangshuan, Huang, Maoyi, Lin, Guang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, generalized polynomial chaos (gPC) expansion for land surface model parameter estimation is evaluated. We perform inverse modeling and compute the posterior distribution of the critical hydrological parameters that are subject to great uncertainty in the Community Land Model (CLM) for a given value of the output LH. The unknown parameters include those that have been identified as the most influential factors on the simulations of surface and subsurface runoff, latent and sensible heat fluxes, and soil moisture in CLM4.0. We set up the inversion problem in the Bayesian framework in two steps: (i) building a surrogate model expressing the input–output mapping, and (ii) performing inverse modeling and computing the posterior distributions of the input parameters using observation data for a given value of the output LH. The development of the surrogate model is carried out with a Bayesian procedure based on the variable selection methods that use gPC expansions. Our approach accounts for bases selection uncertainty and quantifies the importance of the gPC terms, and, hence, all of the input parameters, via the associated posterior probabilities.
AbstractList In this work, generalized polynomial chaos (gPC) expansion for land surface model parameter estimation is evaluated. We perform inverse modeling and compute the posterior distribution of the critical hydrological parameters that are subject to great uncertainty in the Community Land Model (CLM) for a given value of the output LH. The unknown parameters include those that have been identified as the most influential factors on the simulations of surface and subsurface runoff, latent and sensible heat fluxes, and soil moisture in CLM4.0. We set up the inversion problem in the Bayesian framework in two steps: (i) building a surrogate model expressing the input–output mapping, and (ii) performing inverse modeling and computing the posterior distributions of the input parameters using observation data for a given value of the output LH. The development of the surrogate model is carried out with a Bayesian procedure based on the variable selection methods that use gPC expansions. Our approach accounts for bases selection uncertainty and quantifies the importance of the gPC terms, and, hence, all of the input parameters, via the associated posterior probabilities.
Author Huang, Maoyi
Hou, Zhangshuan
Lin, Guang
Karagiannis, Georgios
Author_xml – sequence: 1
  givenname: Georgios
  orcidid: 0000-0002-2677-1474
  surname: Karagiannis
  fullname: Karagiannis, Georgios
– sequence: 2
  givenname: Zhangshuan
  orcidid: 0000-0002-9388-6060
  surname: Hou
  fullname: Hou, Zhangshuan
– sequence: 3
  givenname: Maoyi
  surname: Huang
  fullname: Huang, Maoyi
– sequence: 4
  givenname: Guang
  orcidid: 0000-0002-0976-1987
  surname: Lin
  fullname: Lin, Guang
BackLink https://www.osti.gov/biblio/1866514$$D View this record in Osti.gov
BookMark eNp9kcFuEzEQhi1UJEroE3Cx4Byw1_bu-ggRbSOlogc4W157nDhsPMF2WoWnZ5sghBBiLh5Z3_9pRvOSXCRMQMhrzt4Jodl7h7v9odoaMXHGFGNd84xcNqzTc8F1d_FH_4JclbJlU2ku-oZdknGZHiAXoHfoYYxpTTHQ26PPOOI6Onpvs91BnRAaE12s7iR9iJbeQIJsx_gDPL3H8ZhwF-1IFxuLJ7BugH60RyjRJnr9pHjE_O0VeR7sWODq1zsjX68_fVnczlefb5aLD6u5k1zVuQbNOW-VBCG1Aw9DJyWDtodBBq16LVkYmsFp4KxtLO-D6ls3iCYwHzplxYwsz16Pdmv2Oe5sPhq00Zw-MK-NzTW6EYzQTohOtZoxLoVTvXJdHwYpvHdeaJhcb84uLDWa4mIFt3GYErhqeN-2asrNyNsztM_4_QClmi0ecpp2NE3bTeaWKTVR4ky5jKVkCL9H48w8ndL845RTSv-VmmY4ITXbOP43-xNuvqlW
CitedBy_id crossref_primary_10_1016_j_jhydrol_2023_129941
Cites_doi 10.1016/j.jcp.2010.12.021
10.1007/s00382-009-0614-8
10.1029/2009JD012035
10.1029/2012JD017521
10.5194/hess-17-4995-2013
10.1002/joc.893
10.1029/1999JD900155
10.5194/hess-19-2409-2015
10.1175/JCLI3760.1
10.1017/S0962492900002804
10.1007/s11222-009-9160-9
10.1175/1520-0477(1995)076<0489:TPFIOL>2.0.CO;2
10.1109/TPAMI.1984.4767596
10.1029/2007JG000563
10.1029/2006JD007522
10.1515/9781400835348
10.1214/009053604000000238
10.1016/j.cam.2007.01.005
10.1175/EI231.1
10.1016/j.jcp.2011.01.002
10.1615/Int.J.UncertaintyQuantification.2013006821
10.1175/JHM-D-12-0138.1
10.1029/2005JD006111
10.4208/cicp.2009.v6.p826
10.1002/2015JD024339
10.1137/S1064827501387826
10.1016/j.jcp.2013.11.016
10.1137/140957998
10.1007/978-1-4757-4145-2
10.1029/2011MS000045
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
OTOTI
DOA
DOI 10.3390/computation10050072
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 2079-3197
ExternalDocumentID oai_doaj_org_article_39c33756900143c585c78fb43ddcd39e
1866514
10_3390_computation10050072
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABUWG
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
K6V
K7-
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
AAPBV
DKF
OTOTI
PUEGO
ID FETCH-LOGICAL-c415t-9e9111654e349cedeb7440e68eb4f958940fb2bc9e1062a18f586cb32f0df75a3
IEDL.DBID DOA
ISSN 2079-3197
IngestDate Wed Aug 27 01:01:39 EDT 2025
Thu May 18 22:40:10 EDT 2023
Sun Jul 13 04:33:03 EDT 2025
Tue Jul 01 01:46:39 EDT 2025
Thu Apr 24 23:01:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-9e9111654e349cedeb7440e68eb4f958940fb2bc9e1062a18f586cb32f0df75a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
382247; SC0021142
ORCID 0000-0002-9388-6060
0000-0002-0976-1987
0000-0002-2677-1474
0000000226771474
0000000293886060
0000000209761987
OpenAccessLink https://doaj.org/article/39c33756900143c585c78fb43ddcd39e
PQID 2670146055
PQPubID 2032414
ParticipantIDs doaj_primary_oai_doaj_org_article_39c33756900143c585c78fb43ddcd39e
osti_scitechconnect_1866514
proquest_journals_2670146055
crossref_primary_10_3390_computation10050072
crossref_citationtrail_10_3390_computation10050072
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
– name: Switzerland
PublicationTitle Computation
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Pitman (ref_1) 2003; 23
Hou (ref_6) 2012; 117
Caflisch (ref_22) 1998; 7
Ray (ref_11) 2015; 3
Sargsyan (ref_14) 2014; 4
Gong (ref_13) 2015; 19
Hoeting (ref_33) 1999; 14
Huang (ref_7) 2013; 14
Hans (ref_31) 2010; 20
ref_10
ref_32
Xiu (ref_28) 2002; 24
Blatman (ref_29) 2011; 230
Wang (ref_23) 2008; 213
ref_17
Barbieri (ref_34) 2004; 32
Rosero (ref_5) 2010; 115
Oleson (ref_20) 2008; 113
Fischer (ref_16) 2007; 11
Gent (ref_9) 2010; 34
Karagiannis (ref_15) 2014; 259
ref_25
Niu (ref_18) 2005; 110
Pitman (ref_3) 1995; 76
Niu (ref_19) 2007; 112
ref_21
Sun (ref_35) 2013; 17
Marzouk (ref_24) 2009; 6
Bastidas (ref_2) 1999; 104
Doostan (ref_30) 2011; 230
ref_27
ref_26
Collins (ref_8) 2006; 19
ref_4
Huang (ref_12) 2016; 121
References_xml – volume: 230
  start-page: 2345
  year: 2011
  ident: ref_29
  article-title: Adaptive sparse polynomial chaos expansion based on least angle regression
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.12.021
– volume: 34
  start-page: 819
  year: 2010
  ident: ref_9
  article-title: Improvements in a half degree atmosphere/land version of the CCSM
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-009-0614-8
– volume: 115
  start-page: D03106
  year: 2010
  ident: ref_5
  article-title: Quantifying parameter sensitivity, interaction, and transferability in hydrologically enhanced versions of the Noah land surface model over transition zones during the warm season
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2009JD012035
– volume: 117
  start-page: D15
  year: 2012
  ident: ref_6
  article-title: Sensitivity of surface flux simulations to hydrologic parameters based on an uncertainty quantification framework applied to the Community Land Model
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2012JD017521
– volume: 17
  start-page: 4995
  year: 2013
  ident: ref_35
  article-title: Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-17-4995-2013
– volume: 23
  start-page: 479
  year: 2003
  ident: ref_1
  article-title: The evolution of, and revolution in, land surface schemes designed for climate models
  publication-title: Int. J. Climatol. J. R. Meteorol. Soc.
  doi: 10.1002/joc.893
– volume: 104
  start-page: 19481
  year: 1999
  ident: ref_2
  article-title: Sensitivity analysis of a land surface scheme using multicriteria methods
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/1999JD900155
– volume: 19
  start-page: 2409
  year: 2015
  ident: ref_13
  article-title: Multi-objective parameter optimization of common land model using adaptive surrogate modeling
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-19-2409-2015
– volume: 19
  start-page: 2144
  year: 2006
  ident: ref_8
  article-title: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3)
  publication-title: J. Clim.
  doi: 10.1175/JCLI3760.1
– volume: 7
  start-page: 1
  year: 1998
  ident: ref_22
  article-title: Monte carlo and quasi-monte carlo methods
  publication-title: Acta Numer.
  doi: 10.1017/S0962492900002804
– volume: 20
  start-page: 221
  year: 2010
  ident: ref_31
  article-title: Model uncertainty and variable selection in Bayesian LASSO regression
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-009-9160-9
– ident: ref_4
  doi: 10.1175/1520-0477(1995)076<0489:TPFIOL>2.0.CO;2
– ident: ref_32
  doi: 10.1109/TPAMI.1984.4767596
– volume: 113
  start-page: G1
  year: 2008
  ident: ref_20
  article-title: Improvements to the Community Land Model and their impact on the hydrological cycle
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2007JG000563
– volume: 76
  start-page: 489
  year: 1995
  ident: ref_3
  article-title: The project for intercomparison of land surface parameterization schemes (PILPS): Phases 2 and 3
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1995)076<0489:TPFIOL>2.0.CO;2
– ident: ref_21
– volume: 112
  start-page: D7
  year: 2007
  ident: ref_19
  article-title: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2006JD007522
– ident: ref_27
  doi: 10.1515/9781400835348
– volume: 32
  start-page: 870
  year: 2004
  ident: ref_34
  article-title: Optimal Predictive Model Selection
  publication-title: Ann. Stat.
  doi: 10.1214/009053604000000238
– volume: 213
  start-page: 366
  year: 2008
  ident: ref_23
  article-title: Low discrepancy sequences in high dimensions: How well are their projections distributed?
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2007.01.005
– volume: 11
  start-page: 1
  year: 2007
  ident: ref_16
  article-title: Spatiotemporal variations in growing season exchanges of CO2, H2O, and sensible heat in agricultural fields of the Southern Great Plains
  publication-title: Earth Interact.
  doi: 10.1175/EI231.1
– ident: ref_25
– volume: 230
  start-page: 3015
  year: 2011
  ident: ref_30
  article-title: A non-adapted sparse approximation of PDEs with stochastic inputs
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.01.002
– volume: 4
  start-page: 63
  year: 2014
  ident: ref_14
  article-title: Dimensionality reduction for complex models via Bayesian compressive sensing
  publication-title: Int. J. Uncertain. Quantif.
  doi: 10.1615/Int.J.UncertaintyQuantification.2013006821
– volume: 14
  start-page: 1754
  year: 2013
  ident: ref_7
  article-title: Uncertainty analysis of runoff simulations and parameter identifiability in the Community Land Model: Evidence from MOPEX basins
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-12-0138.1
– volume: 110
  start-page: D21
  year: 2005
  ident: ref_18
  article-title: A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2005JD006111
– volume: 6
  start-page: 826
  year: 2009
  ident: ref_24
  article-title: A Stochastic Collocation Approach to Bayesian Inference in Inverse Problems
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.2009.v6.p826
– volume: 14
  start-page: 382
  year: 1999
  ident: ref_33
  article-title: Bayesian model averaging: A tutorial
  publication-title: Stat. Sci.
– volume: 121
  start-page: 7548
  year: 2016
  ident: ref_12
  article-title: On the applicability of surrogate-based Markov chain Monte Carlo-Bayesian inversion to the Community Land Model: Case studies at flux tower sites
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2015JD024339
– volume: 24
  start-page: 619
  year: 2002
  ident: ref_28
  article-title: The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827501387826
– volume: 259
  start-page: 114
  year: 2014
  ident: ref_15
  article-title: Selection of polynomial chaos bases via Bayesian model uncertainty methods with applications to sparse approximation of PDEs with stochastic inputs
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.11.016
– ident: ref_17
– volume: 3
  start-page: 199
  year: 2015
  ident: ref_11
  article-title: Bayesian calibration of the Community Land Model using surrogates
  publication-title: SIAM/ASA J. Uncertain. Quantif.
  doi: 10.1137/140957998
– ident: ref_26
  doi: 10.1007/978-1-4757-4145-2
– ident: ref_10
  doi: 10.1029/2011MS000045
SSID ssj0000913820
Score 2.1887949
Snippet In this work, generalized polynomial chaos (gPC) expansion for land surface model parameter estimation is evaluated. We perform inverse modeling and compute...
SourceID doaj
osti
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 72
SubjectTerms Bayesian analysis
Bayesian inversion
Calibration
Enthalpy
General circulation models
generalized polynomial chaos
Heat flux
Hydrology
inverse modeling
Mathematical models
Maximum entropy method
Modelling
Moisture effects
Parameter estimation
Parameter identification
Polynomials
Simulation
Soil moisture
Uncertainty
uncertainty quantification
US-ARM
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3daxNBEMAXbV_0QWxVjG1lH3xQ8Giy3_dUTGgIYkoQC31bbmd3NRByNReF-Nd3Z7NJEaVPB3ubHJfZmdnZzPyGkHdGgBNSuqRpXFciMlPhaVs1YFF5yRVIwOLk6ZWaXIvPN_KmHLh1Ja1yZxOzofYt4Bn5OVMaOSd9KS9uf1bYNQr_XS0tNB6Tw2SCTQq-DoeXV7Ov-1MWpF4mH7fFDfEU359DbpaQ33qA8JO-Zn-5pEzuT5c2adg_9jk7nfFz8qzsFumnrXiPyKOwPCZPp3vUandMjop2dvR9QUh_eEEWiM9YdYFiqzMsOKdtpJONX21NHZ01mJOFYE06X9LRl6mgv-cNLV8w_xM8nbWLDZYsp8ePfjRtnpgeS4fNJmDhJR3v0rpekuvx5bfRpCp9FSpI7npd1QEtnJIicFFD8MEhJTAoE5yItTS16EfHHNQhxYusGZgojQLHWez7qGXDX5GDZbsMrwk1oAFY5EmLk6-PYLQLwRgR02DQKvYI2_20Fgp0HHtfLGwKPlAe9j_y6JGP-w_dbpkbD08fosz2UxGYnQfa1Xdb9M_yGjjXUtUYE3JIQRJoE53g3oPndeiRE5S4TfsOhOcCZhnB2mYc4ED0yOluIdii4529X5FvHr59Qp4wLJrIaZKn5GC9-hXO0lZm7d6W9XoHmSb1Sg
  priority: 102
  providerName: ProQuest
Title Inverse Modeling of Hydrologic Parameters in CLM4 via Generalized Polynomial Chaos in the Bayesian Framework
URI https://www.proquest.com/docview/2670146055
https://www.osti.gov/biblio/1866514
https://doaj.org/article/39c33756900143c585c78fb43ddcd39e
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NaxNBFMAfWi96kLYqxtYwBw8KLt3Mx87ssQlNg5gSxEJvw87bGQyEbEmikP71nTe7CRVFLz0tLLNfM-9j3vLe7wF8MBKdVMpFTRM6k4GbjP62ZQMeilqJAhVScfL0qphcyy836uZBqy_KCWvxwO3EnYkShdAqBnFEosO4u0VtgpOirrEWpSfrG33eg2Aq2eCS2Hp5ixkSMa4_w9QkIX3tgKAnuea_uaJE7I-HJmrWH3Y5OZvxIbzsdonsvH27I3jil8fwYrpHrK6P4ajTyjX72KGjP72CBWEzVmvPqMUZFZqzJrDJtl61Jo7NKsrFIqAmmy_Z6OtUsl_zinU3mN_5ms2axZZKlePjRz-qJg2Mj2XDauup4JKNd-lcr-F6fPF9NMm6fgoZRje9yUpPlq1Q0gtZoq-9IzqgL4x3MpTKlDIPjjssfYwTeTUwQZkCneAhr4NWlXgDB8tm6d8CM6gReRBRe6OPD2i0894YGeJJr4vQA76bWosdbJx6XixsDDpoPexf1qMHn_cX3basjX8PH9Ka7YcSKDudiOJjO_Gx_xOfHpzQitu43yBoLlJ2EW5swgAOZA9Od4JgO91eW15oIu7kSr17jDc4geecSipSEuUpHGxWP_37uNHZuD48NePLPjwbXlzNvvWThN8DgJv-YQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a4wAcJjZAKxvgA0ggES31R-IcEGKF0rF22mGTdjPJiw2VqmZrCqj8UfyN-DlJEQLttlMkx7Elv2_nvd8DeK4lFlKpwkuaSCPpuI7oti3qc5eUSiSokIqTJyfJ6Fx-ulAXG_Crq4WhtMpOJwZFXVZId-QHPEkJ5yRW6u3lVURdo-jvatdCo2GLY7v64UO2-s3Re0_fF5wPP5wNRlHbVSBCb6yWUWZJvhMlrZAZ2tIWhJFnE20L6TKlMxm7gheYWR8t8byvndIJFoK7uHSpyoVf9xbclkJkJFF6-HF9p0MYm96iNuBG_n18gKE1QzjjPkGtxCn_ywCGPgH-UXl5_scaBBM3vA9brW_K3jXMtA0bdr4D9yZrYNd6B7ZbXVCzly1g9asHMCOwjkVtGTVWo_J2Vjk2WpWLRrGy05wywAjGk03nbDCeSPZ9mrN2gelPW7LTaraiAmm__eBrXoWJflt2mK8slXmyYZdE9hDOb-S8H8HmvJrbXWAaU0TuhNcZ3rNwqNPCWq2l84M2TVwPeHe0BluIc-q0MTM-1CF6mP_Qowev1x9dNggf108_JJqtpxI8dxioFl9MK-1GZChEqpKMIlCBPiTDVLtCirLEUmS2B3tEceO9HILqRcppwqUJ4IN92YP9jhFMq1Fq84f_H1__-hncGZ1NxmZ8dHK8B3c5lWuEBM192Fwuvtkn3olaFk8D5zL4fNOi8huXrDC_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8anYTggNgArWyADyCBRNTUH7FzQIh2qzq2VhVi0m4hdmyoVDWjKaDyp_HX4Zc4RQi0206RHMeW_L6d934P4LniRnMhtJc0JiPuqIrwti3qU5cUgiVGGCxOnkyT8QV_fykud-BXWwuDaZWtTqwVdVEavCPv0UQizkksRM-FtIjZ8ejt1dcIO0jhn9a2nUbDImd288OHb9Wb02NP6xeUjk4-DsdR6DAQGW-41lFqUdYTwS3jqbGF1YiXZxNlNXepUCmPnabapNZHTjTvKydUYjSjLi6cFDnz696CXemjorgDu4OT6ezD9oYHETe9fW2gjhhL456pGzXUJ95H4JVY0r_MYd01wD9KL93_2Iba4I3uw73gqZJ3DWvtwY5d7sPdyRbmtdqHvaAZKvIywFe_egALhO5YVZZgmzUsdielI-NNsWrULJnlmA-GoJ5kviTD8wkn3-c5CQvMf9qCzMrFBsul_fbDL3lZT_TbkkG-sVj0SUZtStlDuLiRE38EnWW5tAdAlJHGUMe8BvF-hjNKamuV4s4PWpm4LtD2aDMTAM-x78Yi84EP0iP7Dz268Hr70VWD93H99AHSbDsVwbrrgXL1OQuyn7HUMCZFkmI8yowP0IxUTnNWFKZgqe3CIVI88z4PAvcazHAy66yGIuzzLhy1jJAF_VJlf6Th8fWvn8FtLybZ-en07BDuUKzdqLM1j6CzXn2zT7xHtdZPA-sS-HTT0vIbp6g2UQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+Modeling+of+Hydrologic+Parameters+in+CLM4+via+Generalized+Polynomial+Chaos+in+the+Bayesian+Framework&rft.jtitle=Computation&rft.au=Georgios+Karagiannis&rft.au=Zhangshuan+Hou&rft.au=Maoyi+Huang&rft.au=Guang+Lin&rft.date=2022-05-01&rft.pub=MDPI+AG&rft.eissn=2079-3197&rft.volume=10&rft.issue=5&rft.spage=72&rft_id=info:doi/10.3390%2Fcomputation10050072&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_39c33756900143c585c78fb43ddcd39e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-3197&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-3197&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-3197&client=summon