State-dependent and site-directed photodynamic transformation of HCN2 channel by singlet oxygen
Singlet oxygen (1O2), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and clinical practice. However, its role as a signaling factor, as well as a mechanistic understanding of the oxidation process, remains poorly un...
Saved in:
Published in | The Journal of general physiology Vol. 143; no. 5; pp. 633 - 644 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
01.05.2014
The Rockefeller University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Singlet oxygen (1O2), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and clinical practice. However, its role as a signaling factor, as well as a mechanistic understanding of the oxidation process, remains poorly understood. Here, we show that hyperpolarization-activated, cAMP-gated (HCN) channels–which conduct the hyperpolarization-activated current (Ih) and the voltage-insensitive instantaneous current (Iinst), and contribute to diverse physiological functions including learning and memory, cardiac pacemaking, and the sensation of pain–are subject to modification by 1O2. To increase the site specificity of 1O2 generation, we used fluorescein-conjugated cAMP, which specifically binds to HCN channels, or a chimeric channel in which an in-frame 1O2 generator (SOG) protein was fused to the HCN C terminus. Millisecond laser pulses reduced Ih current amplitude, slowed channel deactivation, and enhanced Iinst current. The modification of HCN channel function is a photodynamic process that involves 1O2, as supported by the dependence on dissolved oxygen in solutions, the inhibitory effect by a 1O2 scavenger, and the results with the HCN2-SOG fusion protein. Intriguingly, 1O2 modification of the HCN2 channel is state dependent: laser pulses applied to open channels mainly slow down deactivation and increase Iinst, whereas for the closed channels, 1O2 modification mainly reduced Ih amplitude. We identified a histidine residue (H434 in S6) near the activation gate in the pore critical for 1O2 modulation of HCN function. Alanine replacement of H434 abolished the delay in channel deactivation and the generation of Iinst induced by photodynamic modification. Our study provides new insights into the instantaneous current conducted by HCN channels, showing that modifications to the region close to the intracellular gate underlie the expression of Iinst, and establishes a well-defined model for studying 1O2 modifications at the molecular level. |
---|---|
AbstractList | Singlet oxygen ((1)O2), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and clinical practice. However, its role as a signaling factor, as well as a mechanistic understanding of the oxidation process, remains poorly understood. Here, we show that hyperpolarization-activated, cAMP-gated (HCN) channels--which conduct the hyperpolarization-activated current (Ih) and the voltage-insensitive instantaneous current (Iinst), and contribute to diverse physiological functions including learning and memory, cardiac pacemaking, and the sensation of pain--are subject to modification by (1)O2. To increase the site specificity of (1)O2 generation, we used fluorescein-conjugated cAMP, which specifically binds to HCN channels, or a chimeric channel in which an in-frame (1)O2 generator (SOG) protein was fused to the HCN C terminus. Millisecond laser pulses reduced Ih current amplitude, slowed channel deactivation, and enhanced Iinst current. The modification of HCN channel function is a photodynamic process that involves (1)O2, as supported by the dependence on dissolved oxygen in solutions, the inhibitory effect by a (1)O2 scavenger, and the results with the HCN2-SOG fusion protein. Intriguingly, (1)O2 modification of the HCN2 channel is state dependent: laser pulses applied to open channels mainly slow down deactivation and increase Iinst, whereas for the closed channels, (1)O2 modification mainly reduced Ih amplitude. We identified a histidine residue (H434 in S6) near the activation gate in the pore critical for (1)O2 modulation of HCN function. Alanine replacement of H434 abolished the delay in channel deactivation and the generation of Iinst induced by photodynamic modification. Our study provides new insights into the instantaneous current conducted by HCN channels, showing that modifications to the region close to the intracellular gate underlie the expression of Iinst, and establishes a well-defined model for studying (1)O2 modifications at the molecular level. Singlet oxygen (...), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and clinical practice. However, its role as a signaling factor, as well as a mechanistic understanding of the oxidation process, remains poorly understood. Here, we show that hyperpolarization-activated, cAMP-gated (HCN) channels -- which conduct the hyperpolarization-activated current (I...) and the voltage-insensitive instantaneous current (I...), and contribute to diverse physiological functions including learning and memory, cardiac pacemaking, and the sensation of pain -- are subject to modification by ... To increase the site specificity of ... generation, we used fluorescein-conjugated cAMP, which specifically binds to HCN channels, or a chimeric channel in which an in-frame ... generator (SOG) protein was fused to the HCN C terminus. Millisecond laser pulses reduced Ih current amplitude, slowed channel deactivation, and enhanced Iinst current. The modification of HCN channel function is a photodynamic process that involves ..., as supported by the dependence on dissolved oxygen in solutions, the inhibitory effect by a ... scavenger, and the results with the HCN2-SOG fusion protein. Intriguingly, ...modification of the HCN2 channel is state dependent: laser pulses applied to open channels mainly slow down deactivation and increase Iinst, whereas for the closed channels, ... modification mainly reduced Ih amplitude. We identified a histidine residue (H434 in S6) near the activation gate in the pore critical for ... modulation of HCN function. Alanine replacement of H434 abolished the delay in channel deactivation and the generation of I... induced by photodynamic modification. Our study provides new insights into the instantaneous current conducted by HCN channels, showing that modifications to the region close to the intracellular gate underlie the expression of Iinst, and establishes a well-defined model for studying ... modifications at the molecular level. (ProQuest: ... denotes formulae/symbols omitted.) Singlet oxygen acts through a histidine residue to delay HCN channel deactivation and enhance voltage-insensitive current. Singlet oxygen ( 1 O 2 ), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and clinical practice. However, its role as a signaling factor, as well as a mechanistic understanding of the oxidation process, remains poorly understood. Here, we show that hyperpolarization-activated, cAMP-gated (HCN) channels–which conduct the hyperpolarization-activated current (I h ) and the voltage-insensitive instantaneous current (I inst ), and contribute to diverse physiological functions including learning and memory, cardiac pacemaking, and the sensation of pain–are subject to modification by 1 O 2 . To increase the site specificity of 1 O 2 generation, we used fluorescein-conjugated cAMP, which specifically binds to HCN channels, or a chimeric channel in which an in-frame 1 O 2 generator (SOG) protein was fused to the HCN C terminus. Millisecond laser pulses reduced I h current amplitude, slowed channel deactivation, and enhanced I inst current. The modification of HCN channel function is a photodynamic process that involves 1 O 2 , as supported by the dependence on dissolved oxygen in solutions, the inhibitory effect by a 1 O 2 scavenger, and the results with the HCN2-SOG fusion protein. Intriguingly, 1 O 2 modification of the HCN2 channel is state dependent: laser pulses applied to open channels mainly slow down deactivation and increase I inst , whereas for the closed channels, 1 O 2 modification mainly reduced I h amplitude. We identified a histidine residue (H434 in S6) near the activation gate in the pore critical for 1 O 2 modulation of HCN function. Alanine replacement of H434 abolished the delay in channel deactivation and the generation of I inst induced by photodynamic modification. Our study provides new insights into the instantaneous current conducted by HCN channels, showing that modifications to the region close to the intracellular gate underlie the expression of I inst , and establishes a well-defined model for studying 1 O 2 modifications at the molecular level. Singlet oxygen (1O2), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and clinical practice. However, its role as a signaling factor, as well as a mechanistic understanding of the oxidation process, remains poorly understood. Here, we show that hyperpolarization-activated, cAMP-gated (HCN) channels–which conduct the hyperpolarization-activated current (Ih) and the voltage-insensitive instantaneous current (Iinst), and contribute to diverse physiological functions including learning and memory, cardiac pacemaking, and the sensation of pain–are subject to modification by 1O2. To increase the site specificity of 1O2 generation, we used fluorescein-conjugated cAMP, which specifically binds to HCN channels, or a chimeric channel in which an in-frame 1O2 generator (SOG) protein was fused to the HCN C terminus. Millisecond laser pulses reduced Ih current amplitude, slowed channel deactivation, and enhanced Iinst current. The modification of HCN channel function is a photodynamic process that involves 1O2, as supported by the dependence on dissolved oxygen in solutions, the inhibitory effect by a 1O2 scavenger, and the results with the HCN2-SOG fusion protein. Intriguingly, 1O2 modification of the HCN2 channel is state dependent: laser pulses applied to open channels mainly slow down deactivation and increase Iinst, whereas for the closed channels, 1O2 modification mainly reduced Ih amplitude. We identified a histidine residue (H434 in S6) near the activation gate in the pore critical for 1O2 modulation of HCN function. Alanine replacement of H434 abolished the delay in channel deactivation and the generation of Iinst induced by photodynamic modification. Our study provides new insights into the instantaneous current conducted by HCN channels, showing that modifications to the region close to the intracellular gate underlie the expression of Iinst, and establishes a well-defined model for studying 1O2 modifications at the molecular level. Singlet oxygen ((1)O2), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and clinical practice. However, its role as a signaling factor, as well as a mechanistic understanding of the oxidation process, remains poorly understood. Here, we show that hyperpolarization-activated, cAMP-gated (HCN) channels--which conduct the hyperpolarization-activated current (Ih) and the voltage-insensitive instantaneous current (Iinst), and contribute to diverse physiological functions including learning and memory, cardiac pacemaking, and the sensation of pain--are subject to modification by (1)O2. To increase the site specificity of (1)O2 generation, we used fluorescein-conjugated cAMP, which specifically binds to HCN channels, or a chimeric channel in which an in-frame (1)O2 generator (SOG) protein was fused to the HCN C terminus. Millisecond laser pulses reduced Ih current amplitude, slowed channel deactivation, and enhanced Iinst current. The modification of HCN channel function is a photodynamic process that involves (1)O2, as supported by the dependence on dissolved oxygen in solutions, the inhibitory effect by a (1)O2 scavenger, and the results with the HCN2-SOG fusion protein. Intriguingly, (1)O2 modification of the HCN2 channel is state dependent: laser pulses applied to open channels mainly slow down deactivation and increase Iinst, whereas for the closed channels, (1)O2 modification mainly reduced Ih amplitude. We identified a histidine residue (H434 in S6) near the activation gate in the pore critical for (1)O2 modulation of HCN function. Alanine replacement of H434 abolished the delay in channel deactivation and the generation of Iinst induced by photodynamic modification. Our study provides new insights into the instantaneous current conducted by HCN channels, showing that modifications to the region close to the intracellular gate underlie the expression of Iinst, and establishes a well-defined model for studying (1)O2 modifications at the molecular level.Singlet oxygen ((1)O2), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and clinical practice. However, its role as a signaling factor, as well as a mechanistic understanding of the oxidation process, remains poorly understood. Here, we show that hyperpolarization-activated, cAMP-gated (HCN) channels--which conduct the hyperpolarization-activated current (Ih) and the voltage-insensitive instantaneous current (Iinst), and contribute to diverse physiological functions including learning and memory, cardiac pacemaking, and the sensation of pain--are subject to modification by (1)O2. To increase the site specificity of (1)O2 generation, we used fluorescein-conjugated cAMP, which specifically binds to HCN channels, or a chimeric channel in which an in-frame (1)O2 generator (SOG) protein was fused to the HCN C terminus. Millisecond laser pulses reduced Ih current amplitude, slowed channel deactivation, and enhanced Iinst current. The modification of HCN channel function is a photodynamic process that involves (1)O2, as supported by the dependence on dissolved oxygen in solutions, the inhibitory effect by a (1)O2 scavenger, and the results with the HCN2-SOG fusion protein. Intriguingly, (1)O2 modification of the HCN2 channel is state dependent: laser pulses applied to open channels mainly slow down deactivation and increase Iinst, whereas for the closed channels, (1)O2 modification mainly reduced Ih amplitude. We identified a histidine residue (H434 in S6) near the activation gate in the pore critical for (1)O2 modulation of HCN function. Alanine replacement of H434 abolished the delay in channel deactivation and the generation of Iinst induced by photodynamic modification. Our study provides new insights into the instantaneous current conducted by HCN channels, showing that modifications to the region close to the intracellular gate underlie the expression of Iinst, and establishes a well-defined model for studying (1)O2 modifications at the molecular level. |
Author | Liu, Qinglian Su, Zhuocheng Gao, Weihua Zhou, Lei |
AuthorAffiliation | Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298 |
AuthorAffiliation_xml | – name: Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298 |
Author_xml | – sequence: 1 givenname: Weihua surname: Gao fullname: Gao, Weihua – sequence: 2 givenname: Zhuocheng surname: Su fullname: Su, Zhuocheng – sequence: 3 givenname: Qinglian surname: Liu fullname: Liu, Qinglian – sequence: 4 givenname: Lei surname: Zhou fullname: Zhou, Lei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24733837$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1v1DAQxS3Uim4LR64oEpdeUsZfm-SChFalRaroAThbjj3Z9Sqxg-1F7H-Pty0rqMT4YMn-zdO8eefkxAePhLyhcEWhle-36_mKAeW0FHtBFlQKqJtGtCdkAcBYTVknz8h5SlsoJRm8JGdMNJy3vFkQ9TXrjLXFGb1FnyvtbZXc4clFNBltNW9CDnbv9eRMlaP2aQhx0tkFX4Whul19YZXZaO9xrPp9afbrEXMVfu3X6F-R00GPCV8_3Rfk-6frb6vb-u7-5vPq411tBJW57qzsLYAA2zZ6SamQKHqOdEDTt9BbtgQqWoHQswaoMYM0nRjkUpvD4T2_IB8ededdP6E1xUrUo5qjm3Tcq6Cd-vfHu41ah59KAHDatkXg8kkghh87TFlNLhkcR-0x7JKiZXOUguy6gr57hm7DLvpi70DxhrKWiUK9_Xui4yh_dl-A-hEwMaQUcTgiFNQhW1WyVcdsC8-f8cblhxiKITf-p-s3zDSo2g |
CODEN | JGPLAD |
CitedBy_id | crossref_primary_10_3390_biom10101423 crossref_primary_10_1085_jgp_201711961 crossref_primary_10_1111_php_13611 crossref_primary_10_3389_fphys_2017_00191 crossref_primary_10_1021_acschemneuro_9b00475 crossref_primary_10_1134_S0006297919100043 |
Cites_doi | 10.1073/pnas.0502225102 10.1085/jgp.200609590 10.1073/pnas.1010122108 10.1113/jphysiol.2009.172700 10.1085/jgp.201210838 10.1007/s00424-006-0095-0 10.1126/stke.2212004pe7 10.1016/S0021-9258(18)42228-4 10.1007/s002100100431 10.1073/pnas.1204096109 10.1371/journal.pbio.1001041 10.1016/j.freeradbiomed.2009.04.015 10.1038/nature06265 10.1021/cr010371d 10.1085/jgp.200709769 10.1021/jp051163i 10.1529/biophysj.107.107128 10.1113/jphysiol.1990.sp018331 10.1113/jphysiol.1996.sp021754 10.1074/jbc.M400518200 10.1074/jbc.M106974200 10.1016/j.cell.2007.03.015 10.1038/nn1862 10.1085/jgp.200308928 10.1085/jgp.201110749 10.1039/c1pp05142c 10.1146/annurev.physiol.65.092101.142734 10.1099/mic.0.054700-0 10.1113/jphysiol.1992.sp019029 10.1038/31821 10.1016/S0010-8545(02)00034-6 10.1016/S0092-8674(00)81635-9 10.1016/j.jphotobiol.2009.08.010 10.1016/j.nano.2009.11.004 10.1152/physrev.00029.2008 10.1529/biophysj.106.082388 10.1016/j.bpj.2011.01.034 10.1038/nbt914 10.3322/caac.20114 10.1128/mBio.00541-12 10.1111/j.1751-1097.2011.00951.x 10.1111/j.1751-1097.1991.tb03923.x 10.1007/s00424-011-1025-3 10.1038/nmeth.2089 10.1038/35002099 10.1016/S0092-8674(03)00884-5 10.1126/science.1121636 10.1152/physrev.1993.73.1.197 10.1038/nature12487 10.1016/j.tplants.2009.01.008 10.1016/S0896-6273(04)00083-2 10.1039/b926014p 10.1073/pnas.91.7.2659 10.1085/jgp.200509389 10.1085/jgp.201210850 |
ContentType | Journal Article |
Copyright | Copyright Rockefeller University Press May 2014 2014 Gao et al. 2014 |
Copyright_xml | – notice: Copyright Rockefeller University Press May 2014 – notice: 2014 Gao et al. 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 K9. P64 7X8 5PM |
DOI | 10.1085/jgp.201311112 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Technology Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | Modification of HCN channel by single oxygen |
EISSN | 1540-7748 |
EndPage | 644 |
ExternalDocumentID | PMC4003188 3300391441 24733837 10_1085_jgp_201311112 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM098592 – fundername: NIGMS NIH HHS grantid: R01 GM109193 |
GroupedDBID | --- -DZ -~X 123 18M 29K 2WC 36B 4.4 5RE 5VS 79B 85S AAYXX ACGFO ACGOD ACIWK ACNCT ACPRK ADBBV AENEX AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C45 CITATION CS3 D-I D0L DIK DU5 E3Z EBS EJD EMB F5P F9R GX1 H13 HF~ HYE KQ8 L7B O5R O5S OK1 P2P PQQKQ RHI RXW SJN TAE TAF TR2 TRP TWZ UHB UPT W8F WH7 WOQ YKV YOC YQT YSK YWH YZZ ZCA ZUP .55 .GJ 0VX 1CY 39C 3O- 53G 9M8 AFFNX AI. C1A CGR CUY CVF ECM EIF EMOBN MVM NEJ NPM OHT RHF RPM SV3 UKR VH1 VXZ X7M XOL YR5 YYQ ZGI 7QP 7QR 7TK 7TS 8FD FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c415t-9d5bd0040d87a61145e4b3e1fecb80bd2601484e0b2701ccf5c94f56acacac3b3 |
ISSN | 0022-1295 1540-7748 |
IngestDate | Thu Aug 21 17:34:32 EDT 2025 Fri Jul 11 05:45:21 EDT 2025 Mon Jun 30 10:36:18 EDT 2025 Wed Feb 19 01:55:34 EST 2025 Thu Apr 24 23:06:52 EDT 2025 Tue Jul 01 04:04:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c415t-9d5bd0040d87a61145e4b3e1fecb80bd2601484e0b2701ccf5c94f56acacac3b3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 W. Gao and Z. Su contributed equally to this paper. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4003188 |
PMID | 24733837 |
PQID | 1523712824 |
PQPubID | 42336 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4003188 proquest_miscellaneous_1520110599 proquest_journals_1523712824 pubmed_primary_24733837 crossref_primary_10_1085_jgp_201311112 crossref_citationtrail_10_1085_jgp_201311112 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | The Journal of general physiology |
PublicationTitleAlternate | J Gen Physiol |
PublicationYear | 2014 |
Publisher | Rockefeller University Press The Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press – name: The Rockefeller University Press |
References | Shin (2023072623171841500_bib46) 2004; 41 Liao (2023072623171841500_bib23) 1994; 91 McCormick (2023072623171841500_bib27) 1990; 431 Skovsen (2023072623171841500_bib48) 2005; 109 Wang (2023072623171841500_bib53) 2007; 129 Schneider (2023072623171841500_bib44) 2012; 9 Nam (2023072623171841500_bib31) 2013; 4 Proenza (2023072623171841500_bib37) 2002; 277 Graf (2023072623171841500_bib14) 2001; 364 Metz (2023072623171841500_bib28) 2012; 158 Triantaphylidès (2023072623171841500_bib51) 2009; 14 Hagiwara (2023072623171841500_bib16) 1992; 448 Baruscotti (2023072623171841500_bib5) 2011; 108 Pedersen (2023072623171841500_bib35) 2011; 87 Haitin (2023072623171841500_bib17) 2013; 501 Gracanin (2023072623171841500_bib13) 2009; 47 Morais Cabral (2023072623171841500_bib30) 1998; 95 Sassone-Corsi (2023072623171841500_bib43) 1998; 392 Bäumler (2023072623171841500_bib6) 2012; 11 Wu (2023072623171841500_bib55) 2012; 140 Long (2023072623171841500_bib24) 2007; 450 Proenza (2023072623171841500_bib36) 2006; 127 Irisawa (2023072623171841500_bib18) 1993; 73 Baier (2023072623171841500_bib4) 2006; 91 Schweitzer (2023072623171841500_bib45) 2003; 103 Macri (2023072623171841500_bib26) 2004; 279 Anderson (2023072623171841500_bib2) 2011; 462 DeRosa (2023072623171841500_bib10) 2002; 233–234 Rothberg (2023072623171841500_bib41) 2003; 122 Tour (2023072623171841500_bib50) 2003; 21 Valenzeno (2023072623171841500_bib52) 1991; 53 Latch (2023072623171841500_bib22) 2006; 311 Kwan (2023072623171841500_bib21) 2012; 140 Ogilby (2023072623171841500_bib33) 2010; 39 Bruening-Wright (2023072623171841500_bib8) 2007; 130 Jiménez-Banzo (2023072623171841500_bib19) 2008; 94 Shu (2023072623171841500_bib47) 2011; 9 Biel (2023072623171841500_bib7) 2009; 89 Maccaferri (2023072623171841500_bib25) 1996; 497 Prole (2023072623171841500_bib38) 2006; 128 Ryu (2023072623171841500_bib42) 2012; 140 Mistrík (2023072623171841500_bib29) 2006; 452 Robinson (2023072623171841500_bib40) 2003; 65 Ohara (2023072623171841500_bib34) 2009; 97 Anthony (2023072623171841500_bib3) 2005; 102 Guo (2023072623171841500_bib15) 2010; 6 Qi (2023072623171841500_bib39) 2012; 109 Wu (2023072623171841500_bib54) 2011; 100 Nolan (2023072623171841500_bib32) 2003; 115 Eisenman (2023072623171841500_bib11) 2007; 10 Steinbeck (2023072623171841500_bib49) 1992; 267 Kochevar (2023072623171841500_bib20) 2004; 2004 del Camino (2023072623171841500_bib9) 2000; 403 Agostinis (2023072623171841500_bib1) 2011; 61 Eisenman (2023072623171841500_bib12) 2009; 587 14651847 - Cell. 2003 Nov 26;115(5):551-64 14983102 - Sci STKE. 2004 Feb 24;2004(221):pe7 22053008 - Microbiology. 2012 Feb;158(Pt 2):368-79 23071265 - J Gen Physiol. 2012 Nov;140(5):469-79 22532663 - Proc Natl Acad Sci U S A. 2012 May 8;109(19):7499-504 16446506 - J Gen Physiol. 2006 Feb;127(2):183-90 23975098 - Nature. 2013 Sep 19;501(7467):444-8 15855269 - Proc Natl Acad Sci U S A. 2005 May 3;102(18):6502-7 16908727 - J Gen Physiol. 2006 Sep;128(3):273-82 8380502 - Physiol Rev. 1993 Jan;73(1):197-227 17591986 - J Gen Physiol. 2007 Jul;130(1):71-81 8146171 - Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2659-63 12744692 - Chem Rev. 2003 May;103(5):1685-757 16497888 - Science. 2006 Mar 24;311(5768):1743-7 14557404 - J Gen Physiol. 2003 Nov;122(5):501-10 16852012 - J Phys Chem B. 2005 May 12;109(18):8570-3 20571680 - Chem Soc Rev. 2010 Aug;39(8):3181-209 21617154 - CA Cancer J Clin. 2011 Jul-Aug;61(4):250-81 16751234 - Biophys J. 2006 Aug 15;91(4):1452-9 17448997 - Cell. 2007 Apr 20;129(2):397-410 21986813 - Photochem Photobiol Sci. 2012 Jan;11(1):107-17 21668871 - Photochem Photobiol. 2011 Sep-Oct;87(5):1077-91 18004376 - Nature. 2007 Nov 15;450(7168):376-82 8951716 - J Physiol. 1996 Nov 15;497 ( Pt 1):119-30 19303348 - Trends Plant Sci. 2009 Apr;14(4):219-28 15003173 - Neuron. 2004 Mar 4;41(5):737-44 1320020 - J Biol Chem. 1992 Jul 5;267(19):13425-33 19781956 - J Photochem Photobiol B. 2009 Dec 2;97(3):132-7 22930802 - J Gen Physiol. 2012 Sep;140(3):279-91 11534852 - Naunyn Schmiedebergs Arch Pharmacol. 2001 Aug;364(2):131-9 9845367 - Cell. 1998 Nov 25;95(5):649-55 9582067 - Nature. 1998 Apr 30;392(6679):871-4 22930834 - Nat Methods. 2012 Jul;9(7):671-5 12471170 - Annu Rev Physiol. 2003;65:453-80 16715293 - Pflugers Arch. 2006 Sep;452(6):718-27 14625562 - Nat Biotechnol. 2003 Dec;21(12):1505-8 23300250 - MBio. 2013;4(1):e00541-12 2011623 - Photochem Photobiol. 1991 Feb;53(2):195-201 17766345 - Biophys J. 2008 Jan 1;94(1):168-72 1317444 - J Physiol. 1992 Mar;448:53-72 21483721 - PLoS Biol. 2011 Apr;9(4):e1001041 1712843 - J Physiol. 1990 Dec;431:291-318 20044035 - Nanomedicine. 2010 Jun;6(3):486-95 19403611 - J Physiol. 2009 Jun 15;587(Pt 12):2937-47 19584315 - Physiol Rev. 2009 Jul;89(3):847-85 11741901 - J Biol Chem. 2002 Feb 15;277(7):5101-9 22689828 - J Gen Physiol. 2012 Jul;140(1):29-39 21938402 - Pflugers Arch. 2011 Dec;462(6):895-912 19375501 - Free Radic Biol Med. 2009 Jul 1;47(1):92-102 17322875 - Nat Neurosci. 2007 Apr;10(4):523-30 21354395 - Biophys J. 2011 Mar 2;100(5):1226-32 10659852 - Nature. 2000 Jan 20;403(6767):321-5 14752094 - J Biol Chem. 2004 Apr 16;279(16):16832-46 21220308 - Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1705-10 |
References_xml | – volume: 102 start-page: 6502 year: 2005 ident: 2023072623171841500_bib3 article-title: A transcriptional response to singlet oxygen, a toxic byproduct of photosynthesis publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0502225102 – volume: 128 start-page: 273 year: 2006 ident: 2023072623171841500_bib38 article-title: Reversal of HCN channel voltage dependence via bridging of the S4–S5 linker and Post-S6 publication-title: J. Gen. Physiol. doi: 10.1085/jgp.200609590 – volume: 108 start-page: 1705 year: 2011 ident: 2023072623171841500_bib5 article-title: Deep bradycardia and heart block caused by inducible cardiac-specific knockout of the pacemaker channel gene Hcn4 publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1010122108 – volume: 587 start-page: 2937 year: 2009 ident: 2023072623171841500_bib12 article-title: NMDA potentiation by visible light in the presence of a fluorescent neurosteroid analogue publication-title: J. Physiol. doi: 10.1113/jphysiol.2009.172700 – volume: 140 start-page: 279 year: 2012 ident: 2023072623171841500_bib21 article-title: Structural changes during HCN channel gating defined by high affinity metal bridges publication-title: J. Gen. Physiol. doi: 10.1085/jgp.201210838 – volume: 452 start-page: 718 year: 2006 ident: 2023072623171841500_bib29 article-title: The enhancement of HCN channel instantaneous current facilitated by slow deactivation is regulated by intracellular chloride concentration publication-title: Pflugers Arch. doi: 10.1007/s00424-006-0095-0 – volume: 2004 start-page: pe7 year: 2004 ident: 2023072623171841500_bib20 article-title: Singlet oxygen signaling: From intimate to global publication-title: Sci. STKE. doi: 10.1126/stke.2212004pe7 – volume: 267 start-page: 13425 year: 1992 ident: 2023072623171841500_bib49 article-title: Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)42228-4 – volume: 364 start-page: 131 year: 2001 ident: 2023072623171841500_bib14 article-title: The hyperpolarization-activated current If in ventricular myocytes of non-transgenic and β2-adrenoceptor overexpressing mice publication-title: Naunyn Schmiedebergs Arch. Pharmacol. doi: 10.1007/s002100100431 – volume: 109 start-page: 7499 year: 2012 ident: 2023072623171841500_bib39 article-title: Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1204096109 – volume: 9 start-page: e1001041 year: 2011 ident: 2023072623171841500_bib47 article-title: A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001041 – volume: 47 start-page: 92 year: 2009 ident: 2023072623171841500_bib13 article-title: Singlet-oxygen-mediated amino acid and protein oxidation: Formation of tryptophan peroxides and decomposition products publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2009.04.015 – volume: 450 start-page: 376 year: 2007 ident: 2023072623171841500_bib24 article-title: Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment publication-title: Nature. doi: 10.1038/nature06265 – volume: 103 start-page: 1685 year: 2003 ident: 2023072623171841500_bib45 article-title: Physical mechanisms of generation and deactivation of singlet oxygen publication-title: Chem. Rev. doi: 10.1021/cr010371d – volume: 130 start-page: 71 year: 2007 ident: 2023072623171841500_bib8 article-title: Kinetic relationship between the voltage sensor and the activation gate in spHCN channels publication-title: J. Gen. Physiol. doi: 10.1085/jgp.200709769 – volume: 109 start-page: 8570 year: 2005 ident: 2023072623171841500_bib48 article-title: Lifetime and diffusion of singlet oxygen in a cell publication-title: J. Phys. Chem. B. doi: 10.1021/jp051163i – volume: 94 start-page: 168 year: 2008 ident: 2023072623171841500_bib19 article-title: Singlet oxygen photosensitization by EGFP and its chromophore HBDI publication-title: Biophys. J. doi: 10.1529/biophysj.107.107128 – volume: 431 start-page: 291 year: 1990 ident: 2023072623171841500_bib27 article-title: Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones publication-title: J. Physiol. doi: 10.1113/jphysiol.1990.sp018331 – volume: 497 start-page: 119 year: 1996 ident: 2023072623171841500_bib25 article-title: The hyperpolarization-activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens-alveus interneurones publication-title: J. Physiol. doi: 10.1113/jphysiol.1996.sp021754 – volume: 279 start-page: 16832 year: 2004 ident: 2023072623171841500_bib26 article-title: Structural elements of instantaneous and slow gating in hyperpolarization-activated cyclic nucleotide-gated channels publication-title: J. Biol. Chem. doi: 10.1074/jbc.M400518200 – volume: 277 start-page: 5101 year: 2002 ident: 2023072623171841500_bib37 article-title: Pacemaker channels produce an instantaneous current publication-title: J. Biol. Chem. doi: 10.1074/jbc.M106974200 – volume: 129 start-page: 397 year: 2007 ident: 2023072623171841500_bib53 article-title: α2A-Adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex publication-title: Cell. doi: 10.1016/j.cell.2007.03.015 – volume: 10 start-page: 523 year: 2007 ident: 2023072623171841500_bib11 article-title: Anticonvulsant and anesthetic effects of a fluorescent neurosteroid analog activated by visible light publication-title: Nat. Neurosci. doi: 10.1038/nn1862 – volume: 122 start-page: 501 year: 2003 ident: 2023072623171841500_bib41 article-title: Movements near the gate of a hyperpolarization-activated cation channel publication-title: J. Gen. Physiol. doi: 10.1085/jgp.200308928 – volume: 140 start-page: 29 year: 2012 ident: 2023072623171841500_bib55 article-title: Inner activation gate in S6 contributes to the state-dependent binding of cAMP in full-length HCN2 channel publication-title: J. Gen. Physiol. doi: 10.1085/jgp.201110749 – volume: 11 start-page: 107 year: 2012 ident: 2023072623171841500_bib6 article-title: UVA and endogenous photosensitizers—the detection of singlet oxygen by its luminescence publication-title: Photochem. Photobiol. Sci. doi: 10.1039/c1pp05142c – volume: 65 start-page: 453 year: 2003 ident: 2023072623171841500_bib40 article-title: Hyperpolarization-activated cation currents: From molecules to physiological function publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.physiol.65.092101.142734 – volume: 158 start-page: 368 year: 2012 ident: 2023072623171841500_bib28 article-title: Role of a short light, oxygen, voltage (LOV) domain protein in blue light- and singlet oxygen-dependent gene regulation in Rhodobacter sphaeroides publication-title: Microbiology. doi: 10.1099/mic.0.054700-0 – volume: 448 start-page: 53 year: 1992 ident: 2023072623171841500_bib16 article-title: Background current in sino-atrial node cells of the rabbit heart publication-title: J. Physiol. doi: 10.1113/jphysiol.1992.sp019029 – volume: 392 start-page: 871 year: 1998 ident: 2023072623171841500_bib43 article-title: Molecular clocks: mastering time by gene regulation publication-title: Nature. doi: 10.1038/31821 – volume: 233–234 start-page: 351 year: 2002 ident: 2023072623171841500_bib10 article-title: Photosensitized singlet oxygen and its applications publication-title: Coord. Chem. Rev. doi: 10.1016/S0010-8545(02)00034-6 – volume: 95 start-page: 649 year: 1998 ident: 2023072623171841500_bib30 article-title: Crystal structure and functional analysis of the HERG potassium channel N terminus: A eukaryotic PAS domain publication-title: Cell. doi: 10.1016/S0092-8674(00)81635-9 – volume: 97 start-page: 132 year: 2009 ident: 2023072623171841500_bib34 article-title: Singlet oxygen quenching by trolox C in aqueous micelle solutions publication-title: J. Photochem. Photobiol. B. doi: 10.1016/j.jphotobiol.2009.08.010 – volume: 6 start-page: 486 year: 2010 ident: 2023072623171841500_bib15 article-title: Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer publication-title: Nanomedicine. doi: 10.1016/j.nano.2009.11.004 – volume: 89 start-page: 847 year: 2009 ident: 2023072623171841500_bib7 article-title: Hyperpolarization-activated cation channels: From genes to function publication-title: Physiol. Rev. doi: 10.1152/physrev.00029.2008 – volume: 91 start-page: 1452 year: 2006 ident: 2023072623171841500_bib4 article-title: Singlet oxygen generation by UVA light exposure of endogenous photosensitizers publication-title: Biophys. J. doi: 10.1529/biophysj.106.082388 – volume: 100 start-page: 1226 year: 2011 ident: 2023072623171841500_bib54 article-title: State-dependent cAMP binding to functioning HCN channels studied by patch-clamp fluorometry publication-title: Biophys. J. doi: 10.1016/j.bpj.2011.01.034 – volume: 21 start-page: 1505 year: 2003 ident: 2023072623171841500_bib50 article-title: Genetically targeted chromophore-assisted light inactivation publication-title: Nat. Biotechnol. doi: 10.1038/nbt914 – volume: 61 start-page: 250 year: 2011 ident: 2023072623171841500_bib1 article-title: Photodynamic therapy of cancer: An update publication-title: CA Cancer J. Clin. doi: 10.3322/caac.20114 – volume: 4 start-page: e00541-12 year: 2013 ident: 2023072623171841500_bib31 article-title: Proteins needed to activate a transcriptional response to the reactive oxygen species singlet oxygen publication-title: MBio. doi: 10.1128/mBio.00541-12 – volume: 87 start-page: 1077 year: 2011 ident: 2023072623171841500_bib35 article-title: Single cell responses to spatially controlled photosensitized production of extracellular singlet oxygen publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.2011.00951.x – volume: 53 start-page: 195 year: 1991 ident: 2023072623171841500_bib52 article-title: Membrane photomodification of cardiac myocytes: Potassium and leakage currents publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1991.tb03923.x – volume: 462 start-page: 895 year: 2011 ident: 2023072623171841500_bib2 article-title: Properties and functional implications of Ih in hippocampal area CA3 interneurons publication-title: Pflugers Arch. doi: 10.1007/s00424-011-1025-3 – volume: 9 start-page: 671 year: 2012 ident: 2023072623171841500_bib44 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods. doi: 10.1038/nmeth.2089 – volume: 403 start-page: 321 year: 2000 ident: 2023072623171841500_bib9 article-title: Blocker protection in the pore of a voltage-gated K+ channel and its structural implications publication-title: Nature. doi: 10.1038/35002099 – volume: 115 start-page: 551 year: 2003 ident: 2023072623171841500_bib32 article-title: The hyperpolarization-activated HCN1 channel is important for motor learning and neuronal integration by cerebellar Purkinje cells publication-title: Cell. doi: 10.1016/S0092-8674(03)00884-5 – volume: 311 start-page: 1743 year: 2006 ident: 2023072623171841500_bib22 article-title: Microheterogeneity of singlet oxygen distributions in irradiated humic acid solutions publication-title: Science. doi: 10.1126/science.1121636 – volume: 73 start-page: 197 year: 1993 ident: 2023072623171841500_bib18 article-title: Cardiac pacemaking in the sinoatrial node publication-title: Physiol. Rev. doi: 10.1152/physrev.1993.73.1.197 – volume: 501 start-page: 444 year: 2013 ident: 2023072623171841500_bib17 article-title: The structural mechanism of KCNH-channel regulation by the eag domain publication-title: Nature. doi: 10.1038/nature12487 – volume: 14 start-page: 219 year: 2009 ident: 2023072623171841500_bib51 article-title: Singlet oxygen in plants: production, detoxification and signaling publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2009.01.008 – volume: 41 start-page: 737 year: 2004 ident: 2023072623171841500_bib46 article-title: Inactivation in HCN channels results from reclosure of the activation gate: Desensitization to voltage publication-title: Neuron. doi: 10.1016/S0896-6273(04)00083-2 – volume: 39 start-page: 3181 year: 2010 ident: 2023072623171841500_bib33 article-title: Singlet oxygen: there is indeed something new under the sun publication-title: Chem. Soc. Rev. doi: 10.1039/b926014p – volume: 91 start-page: 2659 year: 1994 ident: 2023072623171841500_bib23 article-title: Chromophore-assisted laser inactivation of proteins is mediated by the photogeneration of free radicals publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.91.7.2659 – volume: 127 start-page: 183 year: 2006 ident: 2023072623171841500_bib36 article-title: Distinct populations of HCN pacemaker channels produce voltage-dependent and voltage-independent currents publication-title: J. Gen. Physiol. doi: 10.1085/jgp.200509389 – volume: 140 start-page: 469 year: 2012 ident: 2023072623171841500_bib42 article-title: Charge movement in gating-locked HCN channels reveals weak coupling of voltage sensors and gate publication-title: J. Gen. Physiol. doi: 10.1085/jgp.201210850 – reference: 1320020 - J Biol Chem. 1992 Jul 5;267(19):13425-33 – reference: 8146171 - Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2659-63 – reference: 11534852 - Naunyn Schmiedebergs Arch Pharmacol. 2001 Aug;364(2):131-9 – reference: 17766345 - Biophys J. 2008 Jan 1;94(1):168-72 – reference: 12471170 - Annu Rev Physiol. 2003;65:453-80 – reference: 20571680 - Chem Soc Rev. 2010 Aug;39(8):3181-209 – reference: 14625562 - Nat Biotechnol. 2003 Dec;21(12):1505-8 – reference: 19781956 - J Photochem Photobiol B. 2009 Dec 2;97(3):132-7 – reference: 16852012 - J Phys Chem B. 2005 May 12;109(18):8570-3 – reference: 19303348 - Trends Plant Sci. 2009 Apr;14(4):219-28 – reference: 22930802 - J Gen Physiol. 2012 Sep;140(3):279-91 – reference: 14983102 - Sci STKE. 2004 Feb 24;2004(221):pe7 – reference: 22532663 - Proc Natl Acad Sci U S A. 2012 May 8;109(19):7499-504 – reference: 19584315 - Physiol Rev. 2009 Jul;89(3):847-85 – reference: 21483721 - PLoS Biol. 2011 Apr;9(4):e1001041 – reference: 21668871 - Photochem Photobiol. 2011 Sep-Oct;87(5):1077-91 – reference: 8380502 - Physiol Rev. 1993 Jan;73(1):197-227 – reference: 9582067 - Nature. 1998 Apr 30;392(6679):871-4 – reference: 22689828 - J Gen Physiol. 2012 Jul;140(1):29-39 – reference: 15855269 - Proc Natl Acad Sci U S A. 2005 May 3;102(18):6502-7 – reference: 21354395 - Biophys J. 2011 Mar 2;100(5):1226-32 – reference: 22053008 - Microbiology. 2012 Feb;158(Pt 2):368-79 – reference: 21938402 - Pflugers Arch. 2011 Dec;462(6):895-912 – reference: 8951716 - J Physiol. 1996 Nov 15;497 ( Pt 1):119-30 – reference: 9845367 - Cell. 1998 Nov 25;95(5):649-55 – reference: 22930834 - Nat Methods. 2012 Jul;9(7):671-5 – reference: 19375501 - Free Radic Biol Med. 2009 Jul 1;47(1):92-102 – reference: 18004376 - Nature. 2007 Nov 15;450(7168):376-82 – reference: 17591986 - J Gen Physiol. 2007 Jul;130(1):71-81 – reference: 1712843 - J Physiol. 1990 Dec;431:291-318 – reference: 19403611 - J Physiol. 2009 Jun 15;587(Pt 12):2937-47 – reference: 21986813 - Photochem Photobiol Sci. 2012 Jan;11(1):107-17 – reference: 17322875 - Nat Neurosci. 2007 Apr;10(4):523-30 – reference: 20044035 - Nanomedicine. 2010 Jun;6(3):486-95 – reference: 16446506 - J Gen Physiol. 2006 Feb;127(2):183-90 – reference: 10659852 - Nature. 2000 Jan 20;403(6767):321-5 – reference: 14557404 - J Gen Physiol. 2003 Nov;122(5):501-10 – reference: 16715293 - Pflugers Arch. 2006 Sep;452(6):718-27 – reference: 2011623 - Photochem Photobiol. 1991 Feb;53(2):195-201 – reference: 16908727 - J Gen Physiol. 2006 Sep;128(3):273-82 – reference: 23975098 - Nature. 2013 Sep 19;501(7467):444-8 – reference: 17448997 - Cell. 2007 Apr 20;129(2):397-410 – reference: 21617154 - CA Cancer J Clin. 2011 Jul-Aug;61(4):250-81 – reference: 1317444 - J Physiol. 1992 Mar;448:53-72 – reference: 16497888 - Science. 2006 Mar 24;311(5768):1743-7 – reference: 23071265 - J Gen Physiol. 2012 Nov;140(5):469-79 – reference: 14651847 - Cell. 2003 Nov 26;115(5):551-64 – reference: 14752094 - J Biol Chem. 2004 Apr 16;279(16):16832-46 – reference: 15003173 - Neuron. 2004 Mar 4;41(5):737-44 – reference: 12744692 - Chem Rev. 2003 May;103(5):1685-757 – reference: 16751234 - Biophys J. 2006 Aug 15;91(4):1452-9 – reference: 23300250 - MBio. 2013;4(1):e00541-12 – reference: 21220308 - Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1705-10 – reference: 11741901 - J Biol Chem. 2002 Feb 15;277(7):5101-9 |
SSID | ssj0000520 |
Score | 2.1229155 |
Snippet | Singlet oxygen (1O2), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and... Singlet oxygen ((1)O2), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and... Singlet oxygen (...), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and... Singlet oxygen acts through a histidine residue to delay HCN channel deactivation and enhance voltage-insensitive current. Singlet oxygen ( 1 O 2 ), which is... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 633 |
SubjectTerms | Action Potentials Amino Acid Sequence Animals Cells Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - chemistry Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - genetics Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - metabolism Ion Channel Gating Mice Molecular Sequence Data Molecules Mutation Oxidation Oxygen Potassium Channels - chemistry Potassium Channels - genetics Potassium Channels - metabolism Protein Structure, Tertiary Proteins Singlet Oxygen - metabolism Xenopus |
Title | State-dependent and site-directed photodynamic transformation of HCN2 channel by singlet oxygen |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24733837 https://www.proquest.com/docview/1523712824 https://www.proquest.com/docview/1520110599 https://pubmed.ncbi.nlm.nih.gov/PMC4003188 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFAeMSGMhIaC8QyMW5PU4TUCGYQGyi4iWyHaftNJIJEonyE_jVnGO7btINaaBKUeU4ddvz5fiLfc53CHkWcyznECR-KmTtM8kLn4cy9guehmkgZB5XmCj84SidnrB3s2Q2mfweRC31nXgpf12aV_I_VoU2sCtmyf6DZd2HQgO8B_vCESwMxyvZWDNFf13H1sSK426wbyYq4JLni7ZrK1N1HstBOJJqaOL08CjSub-NOkMiigsHYMjn7c_V3OaInW7gNCCvc6NWbRZGRivzb7lefP2iloveufzPvd4EWfRYn8vOlRgFtNTtn3DUAUy_Llrd_l4th4sSIduEAA6SBIBKmA1rZX0rBi9mRljTOV8j0mRRlgxcaWoEMuysnBqVyAsOHxgjOvw5So-iclBog7JHwtpbE54LQ9Qb8HlSwuWlu_wauR7BI4dOHJ9twoUwXmitPI8_zOq1wuWvRqOP-c2Fh5bt2NsBmTm-RW5aQ9IDA6nbZKKaO2T3oOFd-21F9-lHZ9ZdUm6hjALK6AhldIgyOkYZbWuKKKMWZVSsqEUZNSi7S07evD4-nPq2LIcvge11flElokLnX-UZ3NEhSxQTsQprJUUeiApF6ljOVCCiLAilrBNZsDpJucRXLOJ7ZKdpG_WAUPAFjKkiiFkgWSajghcyY7zIQi4ToWKPvFj_maW0mvVYOuWsvNR0Htl33c-NWMvfOu6tLVPa-_lHCUw2zoCuRcwjT91p8La4hcYb1fa6DxLmpCg8ct8Y0o0UsUyv93gkG5nYdUAl9_GZZrnQiu5Mz635w6t-_0fkxuau2yM73fdePQZy3IknGrV_AL1HvMg |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State-dependent+and+site-directed+photodynamic+transformation+of+HCN2+channel+by+singlet+oxygen&rft.jtitle=The+Journal+of+general+physiology&rft.au=Gao%2C+Weihua&rft.au=Su%2C+Zhuocheng&rft.au=Liu%2C+Qinglian&rft.au=Zhou%2C+Lei&rft.date=2014-05-01&rft.issn=0022-1295&rft.eissn=1540-7748&rft.volume=143&rft.issue=5&rft.spage=633&rft.epage=644&rft_id=info:doi/10.1085%2Fjgp.201311112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1085_jgp_201311112 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1295&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1295&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1295&client=summon |