State-dependent and site-directed photodynamic transformation of HCN2 channel by singlet oxygen

Singlet oxygen (1O2), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and clinical practice. However, its role as a signaling factor, as well as a mechanistic understanding of the oxidation process, remains poorly un...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of general physiology Vol. 143; no. 5; pp. 633 - 644
Main Authors Gao, Weihua, Su, Zhuocheng, Liu, Qinglian, Zhou, Lei
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 01.05.2014
The Rockefeller University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Singlet oxygen (1O2), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and clinical practice. However, its role as a signaling factor, as well as a mechanistic understanding of the oxidation process, remains poorly understood. Here, we show that hyperpolarization-activated, cAMP-gated (HCN) channels–which conduct the hyperpolarization-activated current (Ih) and the voltage-insensitive instantaneous current (Iinst), and contribute to diverse physiological functions including learning and memory, cardiac pacemaking, and the sensation of pain–are subject to modification by 1O2. To increase the site specificity of 1O2 generation, we used fluorescein-conjugated cAMP, which specifically binds to HCN channels, or a chimeric channel in which an in-frame 1O2 generator (SOG) protein was fused to the HCN C terminus. Millisecond laser pulses reduced Ih current amplitude, slowed channel deactivation, and enhanced Iinst current. The modification of HCN channel function is a photodynamic process that involves 1O2, as supported by the dependence on dissolved oxygen in solutions, the inhibitory effect by a 1O2 scavenger, and the results with the HCN2-SOG fusion protein. Intriguingly, 1O2 modification of the HCN2 channel is state dependent: laser pulses applied to open channels mainly slow down deactivation and increase Iinst, whereas for the closed channels, 1O2 modification mainly reduced Ih amplitude. We identified a histidine residue (H434 in S6) near the activation gate in the pore critical for 1O2 modulation of HCN function. Alanine replacement of H434 abolished the delay in channel deactivation and the generation of Iinst induced by photodynamic modification. Our study provides new insights into the instantaneous current conducted by HCN channels, showing that modifications to the region close to the intracellular gate underlie the expression of Iinst, and establishes a well-defined model for studying 1O2 modifications at the molecular level.
AbstractList Singlet oxygen ((1)O2), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and clinical practice. However, its role as a signaling factor, as well as a mechanistic understanding of the oxidation process, remains poorly understood. Here, we show that hyperpolarization-activated, cAMP-gated (HCN) channels--which conduct the hyperpolarization-activated current (Ih) and the voltage-insensitive instantaneous current (Iinst), and contribute to diverse physiological functions including learning and memory, cardiac pacemaking, and the sensation of pain--are subject to modification by (1)O2. To increase the site specificity of (1)O2 generation, we used fluorescein-conjugated cAMP, which specifically binds to HCN channels, or a chimeric channel in which an in-frame (1)O2 generator (SOG) protein was fused to the HCN C terminus. Millisecond laser pulses reduced Ih current amplitude, slowed channel deactivation, and enhanced Iinst current. The modification of HCN channel function is a photodynamic process that involves (1)O2, as supported by the dependence on dissolved oxygen in solutions, the inhibitory effect by a (1)O2 scavenger, and the results with the HCN2-SOG fusion protein. Intriguingly, (1)O2 modification of the HCN2 channel is state dependent: laser pulses applied to open channels mainly slow down deactivation and increase Iinst, whereas for the closed channels, (1)O2 modification mainly reduced Ih amplitude. We identified a histidine residue (H434 in S6) near the activation gate in the pore critical for (1)O2 modulation of HCN function. Alanine replacement of H434 abolished the delay in channel deactivation and the generation of Iinst induced by photodynamic modification. Our study provides new insights into the instantaneous current conducted by HCN channels, showing that modifications to the region close to the intracellular gate underlie the expression of Iinst, and establishes a well-defined model for studying (1)O2 modifications at the molecular level.
Singlet oxygen (...), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and clinical practice. However, its role as a signaling factor, as well as a mechanistic understanding of the oxidation process, remains poorly understood. Here, we show that hyperpolarization-activated, cAMP-gated (HCN) channels -- which conduct the hyperpolarization-activated current (I...) and the voltage-insensitive instantaneous current (I...), and contribute to diverse physiological functions including learning and memory, cardiac pacemaking, and the sensation of pain -- are subject to modification by ... To increase the site specificity of ... generation, we used fluorescein-conjugated cAMP, which specifically binds to HCN channels, or a chimeric channel in which an in-frame ... generator (SOG) protein was fused to the HCN C terminus. Millisecond laser pulses reduced Ih current amplitude, slowed channel deactivation, and enhanced Iinst current. The modification of HCN channel function is a photodynamic process that involves ..., as supported by the dependence on dissolved oxygen in solutions, the inhibitory effect by a ... scavenger, and the results with the HCN2-SOG fusion protein. Intriguingly, ...modification of the HCN2 channel is state dependent: laser pulses applied to open channels mainly slow down deactivation and increase Iinst, whereas for the closed channels, ... modification mainly reduced Ih amplitude. We identified a histidine residue (H434 in S6) near the activation gate in the pore critical for ... modulation of HCN function. Alanine replacement of H434 abolished the delay in channel deactivation and the generation of I... induced by photodynamic modification. Our study provides new insights into the instantaneous current conducted by HCN channels, showing that modifications to the region close to the intracellular gate underlie the expression of Iinst, and establishes a well-defined model for studying ... modifications at the molecular level. (ProQuest: ... denotes formulae/symbols omitted.)
Singlet oxygen acts through a histidine residue to delay HCN channel deactivation and enhance voltage-insensitive current. Singlet oxygen ( 1 O 2 ), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and clinical practice. However, its role as a signaling factor, as well as a mechanistic understanding of the oxidation process, remains poorly understood. Here, we show that hyperpolarization-activated, cAMP-gated (HCN) channels–which conduct the hyperpolarization-activated current (I h ) and the voltage-insensitive instantaneous current (I inst ), and contribute to diverse physiological functions including learning and memory, cardiac pacemaking, and the sensation of pain–are subject to modification by 1 O 2 . To increase the site specificity of 1 O 2 generation, we used fluorescein-conjugated cAMP, which specifically binds to HCN channels, or a chimeric channel in which an in-frame 1 O 2 generator (SOG) protein was fused to the HCN C terminus. Millisecond laser pulses reduced I h current amplitude, slowed channel deactivation, and enhanced I inst current. The modification of HCN channel function is a photodynamic process that involves 1 O 2 , as supported by the dependence on dissolved oxygen in solutions, the inhibitory effect by a 1 O 2 scavenger, and the results with the HCN2-SOG fusion protein. Intriguingly, 1 O 2 modification of the HCN2 channel is state dependent: laser pulses applied to open channels mainly slow down deactivation and increase I inst , whereas for the closed channels, 1 O 2 modification mainly reduced I h amplitude. We identified a histidine residue (H434 in S6) near the activation gate in the pore critical for 1 O 2 modulation of HCN function. Alanine replacement of H434 abolished the delay in channel deactivation and the generation of I inst induced by photodynamic modification. Our study provides new insights into the instantaneous current conducted by HCN channels, showing that modifications to the region close to the intracellular gate underlie the expression of I inst , and establishes a well-defined model for studying 1 O 2 modifications at the molecular level.
Singlet oxygen (1O2), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and clinical practice. However, its role as a signaling factor, as well as a mechanistic understanding of the oxidation process, remains poorly understood. Here, we show that hyperpolarization-activated, cAMP-gated (HCN) channels–which conduct the hyperpolarization-activated current (Ih) and the voltage-insensitive instantaneous current (Iinst), and contribute to diverse physiological functions including learning and memory, cardiac pacemaking, and the sensation of pain–are subject to modification by 1O2. To increase the site specificity of 1O2 generation, we used fluorescein-conjugated cAMP, which specifically binds to HCN channels, or a chimeric channel in which an in-frame 1O2 generator (SOG) protein was fused to the HCN C terminus. Millisecond laser pulses reduced Ih current amplitude, slowed channel deactivation, and enhanced Iinst current. The modification of HCN channel function is a photodynamic process that involves 1O2, as supported by the dependence on dissolved oxygen in solutions, the inhibitory effect by a 1O2 scavenger, and the results with the HCN2-SOG fusion protein. Intriguingly, 1O2 modification of the HCN2 channel is state dependent: laser pulses applied to open channels mainly slow down deactivation and increase Iinst, whereas for the closed channels, 1O2 modification mainly reduced Ih amplitude. We identified a histidine residue (H434 in S6) near the activation gate in the pore critical for 1O2 modulation of HCN function. Alanine replacement of H434 abolished the delay in channel deactivation and the generation of Iinst induced by photodynamic modification. Our study provides new insights into the instantaneous current conducted by HCN channels, showing that modifications to the region close to the intracellular gate underlie the expression of Iinst, and establishes a well-defined model for studying 1O2 modifications at the molecular level.
Singlet oxygen ((1)O2), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and clinical practice. However, its role as a signaling factor, as well as a mechanistic understanding of the oxidation process, remains poorly understood. Here, we show that hyperpolarization-activated, cAMP-gated (HCN) channels--which conduct the hyperpolarization-activated current (Ih) and the voltage-insensitive instantaneous current (Iinst), and contribute to diverse physiological functions including learning and memory, cardiac pacemaking, and the sensation of pain--are subject to modification by (1)O2. To increase the site specificity of (1)O2 generation, we used fluorescein-conjugated cAMP, which specifically binds to HCN channels, or a chimeric channel in which an in-frame (1)O2 generator (SOG) protein was fused to the HCN C terminus. Millisecond laser pulses reduced Ih current amplitude, slowed channel deactivation, and enhanced Iinst current. The modification of HCN channel function is a photodynamic process that involves (1)O2, as supported by the dependence on dissolved oxygen in solutions, the inhibitory effect by a (1)O2 scavenger, and the results with the HCN2-SOG fusion protein. Intriguingly, (1)O2 modification of the HCN2 channel is state dependent: laser pulses applied to open channels mainly slow down deactivation and increase Iinst, whereas for the closed channels, (1)O2 modification mainly reduced Ih amplitude. We identified a histidine residue (H434 in S6) near the activation gate in the pore critical for (1)O2 modulation of HCN function. Alanine replacement of H434 abolished the delay in channel deactivation and the generation of Iinst induced by photodynamic modification. Our study provides new insights into the instantaneous current conducted by HCN channels, showing that modifications to the region close to the intracellular gate underlie the expression of Iinst, and establishes a well-defined model for studying (1)O2 modifications at the molecular level.Singlet oxygen ((1)O2), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and clinical practice. However, its role as a signaling factor, as well as a mechanistic understanding of the oxidation process, remains poorly understood. Here, we show that hyperpolarization-activated, cAMP-gated (HCN) channels--which conduct the hyperpolarization-activated current (Ih) and the voltage-insensitive instantaneous current (Iinst), and contribute to diverse physiological functions including learning and memory, cardiac pacemaking, and the sensation of pain--are subject to modification by (1)O2. To increase the site specificity of (1)O2 generation, we used fluorescein-conjugated cAMP, which specifically binds to HCN channels, or a chimeric channel in which an in-frame (1)O2 generator (SOG) protein was fused to the HCN C terminus. Millisecond laser pulses reduced Ih current amplitude, slowed channel deactivation, and enhanced Iinst current. The modification of HCN channel function is a photodynamic process that involves (1)O2, as supported by the dependence on dissolved oxygen in solutions, the inhibitory effect by a (1)O2 scavenger, and the results with the HCN2-SOG fusion protein. Intriguingly, (1)O2 modification of the HCN2 channel is state dependent: laser pulses applied to open channels mainly slow down deactivation and increase Iinst, whereas for the closed channels, (1)O2 modification mainly reduced Ih amplitude. We identified a histidine residue (H434 in S6) near the activation gate in the pore critical for (1)O2 modulation of HCN function. Alanine replacement of H434 abolished the delay in channel deactivation and the generation of Iinst induced by photodynamic modification. Our study provides new insights into the instantaneous current conducted by HCN channels, showing that modifications to the region close to the intracellular gate underlie the expression of Iinst, and establishes a well-defined model for studying (1)O2 modifications at the molecular level.
Author Liu, Qinglian
Su, Zhuocheng
Gao, Weihua
Zhou, Lei
AuthorAffiliation Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
AuthorAffiliation_xml – name: Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
Author_xml – sequence: 1
  givenname: Weihua
  surname: Gao
  fullname: Gao, Weihua
– sequence: 2
  givenname: Zhuocheng
  surname: Su
  fullname: Su, Zhuocheng
– sequence: 3
  givenname: Qinglian
  surname: Liu
  fullname: Liu, Qinglian
– sequence: 4
  givenname: Lei
  surname: Zhou
  fullname: Zhou, Lei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24733837$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1v1DAQxS3Uim4LR64oEpdeUsZfm-SChFalRaroAThbjj3Z9Sqxg-1F7H-Pty0rqMT4YMn-zdO8eefkxAePhLyhcEWhle-36_mKAeW0FHtBFlQKqJtGtCdkAcBYTVknz8h5SlsoJRm8JGdMNJy3vFkQ9TXrjLXFGb1FnyvtbZXc4clFNBltNW9CDnbv9eRMlaP2aQhx0tkFX4Whul19YZXZaO9xrPp9afbrEXMVfu3X6F-R00GPCV8_3Rfk-6frb6vb-u7-5vPq411tBJW57qzsLYAA2zZ6SamQKHqOdEDTt9BbtgQqWoHQswaoMYM0nRjkUpvD4T2_IB8ededdP6E1xUrUo5qjm3Tcq6Cd-vfHu41ah59KAHDatkXg8kkghh87TFlNLhkcR-0x7JKiZXOUguy6gr57hm7DLvpi70DxhrKWiUK9_Xui4yh_dl-A-hEwMaQUcTgiFNQhW1WyVcdsC8-f8cblhxiKITf-p-s3zDSo2g
CODEN JGPLAD
CitedBy_id crossref_primary_10_3390_biom10101423
crossref_primary_10_1085_jgp_201711961
crossref_primary_10_1111_php_13611
crossref_primary_10_3389_fphys_2017_00191
crossref_primary_10_1021_acschemneuro_9b00475
crossref_primary_10_1134_S0006297919100043
Cites_doi 10.1073/pnas.0502225102
10.1085/jgp.200609590
10.1073/pnas.1010122108
10.1113/jphysiol.2009.172700
10.1085/jgp.201210838
10.1007/s00424-006-0095-0
10.1126/stke.2212004pe7
10.1016/S0021-9258(18)42228-4
10.1007/s002100100431
10.1073/pnas.1204096109
10.1371/journal.pbio.1001041
10.1016/j.freeradbiomed.2009.04.015
10.1038/nature06265
10.1021/cr010371d
10.1085/jgp.200709769
10.1021/jp051163i
10.1529/biophysj.107.107128
10.1113/jphysiol.1990.sp018331
10.1113/jphysiol.1996.sp021754
10.1074/jbc.M400518200
10.1074/jbc.M106974200
10.1016/j.cell.2007.03.015
10.1038/nn1862
10.1085/jgp.200308928
10.1085/jgp.201110749
10.1039/c1pp05142c
10.1146/annurev.physiol.65.092101.142734
10.1099/mic.0.054700-0
10.1113/jphysiol.1992.sp019029
10.1038/31821
10.1016/S0010-8545(02)00034-6
10.1016/S0092-8674(00)81635-9
10.1016/j.jphotobiol.2009.08.010
10.1016/j.nano.2009.11.004
10.1152/physrev.00029.2008
10.1529/biophysj.106.082388
10.1016/j.bpj.2011.01.034
10.1038/nbt914
10.3322/caac.20114
10.1128/mBio.00541-12
10.1111/j.1751-1097.2011.00951.x
10.1111/j.1751-1097.1991.tb03923.x
10.1007/s00424-011-1025-3
10.1038/nmeth.2089
10.1038/35002099
10.1016/S0092-8674(03)00884-5
10.1126/science.1121636
10.1152/physrev.1993.73.1.197
10.1038/nature12487
10.1016/j.tplants.2009.01.008
10.1016/S0896-6273(04)00083-2
10.1039/b926014p
10.1073/pnas.91.7.2659
10.1085/jgp.200509389
10.1085/jgp.201210850
ContentType Journal Article
Copyright Copyright Rockefeller University Press May 2014
2014 Gao et al. 2014
Copyright_xml – notice: Copyright Rockefeller University Press May 2014
– notice: 2014 Gao et al. 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
K9.
P64
7X8
5PM
DOI 10.1085/jgp.201311112
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Technology Research Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate Modification of HCN channel by single oxygen
EISSN 1540-7748
EndPage 644
ExternalDocumentID PMC4003188
3300391441
24733837
10_1085_jgp_201311112
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM098592
– fundername: NIGMS NIH HHS
  grantid: R01 GM109193
GroupedDBID ---
-DZ
-~X
123
18M
29K
2WC
36B
4.4
5RE
5VS
79B
85S
AAYXX
ACGFO
ACGOD
ACIWK
ACNCT
ACPRK
ADBBV
AENEX
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C45
CITATION
CS3
D-I
D0L
DIK
DU5
E3Z
EBS
EJD
EMB
F5P
F9R
GX1
H13
HF~
HYE
KQ8
L7B
O5R
O5S
OK1
P2P
PQQKQ
RHI
RXW
SJN
TAE
TAF
TR2
TRP
TWZ
UHB
UPT
W8F
WH7
WOQ
YKV
YOC
YQT
YSK
YWH
YZZ
ZCA
ZUP
.55
.GJ
0VX
1CY
39C
3O-
53G
9M8
AFFNX
AI.
C1A
CGR
CUY
CVF
ECM
EIF
EMOBN
MVM
NEJ
NPM
OHT
RHF
RPM
SV3
UKR
VH1
VXZ
X7M
XOL
YR5
YYQ
ZGI
7QP
7QR
7TK
7TS
8FD
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c415t-9d5bd0040d87a61145e4b3e1fecb80bd2601484e0b2701ccf5c94f56acacac3b3
ISSN 0022-1295
1540-7748
IngestDate Thu Aug 21 17:34:32 EDT 2025
Fri Jul 11 05:45:21 EDT 2025
Mon Jun 30 10:36:18 EDT 2025
Wed Feb 19 01:55:34 EST 2025
Thu Apr 24 23:06:52 EDT 2025
Tue Jul 01 04:04:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c415t-9d5bd0040d87a61145e4b3e1fecb80bd2601484e0b2701ccf5c94f56acacac3b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
W. Gao and Z. Su contributed equally to this paper.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4003188
PMID 24733837
PQID 1523712824
PQPubID 42336
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4003188
proquest_miscellaneous_1520110599
proquest_journals_1523712824
pubmed_primary_24733837
crossref_primary_10_1085_jgp_201311112
crossref_citationtrail_10_1085_jgp_201311112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle The Journal of general physiology
PublicationTitleAlternate J Gen Physiol
PublicationYear 2014
Publisher Rockefeller University Press
The Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
– name: The Rockefeller University Press
References Shin (2023072623171841500_bib46) 2004; 41
Liao (2023072623171841500_bib23) 1994; 91
McCormick (2023072623171841500_bib27) 1990; 431
Skovsen (2023072623171841500_bib48) 2005; 109
Wang (2023072623171841500_bib53) 2007; 129
Schneider (2023072623171841500_bib44) 2012; 9
Nam (2023072623171841500_bib31) 2013; 4
Proenza (2023072623171841500_bib37) 2002; 277
Graf (2023072623171841500_bib14) 2001; 364
Metz (2023072623171841500_bib28) 2012; 158
Triantaphylidès (2023072623171841500_bib51) 2009; 14
Hagiwara (2023072623171841500_bib16) 1992; 448
Baruscotti (2023072623171841500_bib5) 2011; 108
Pedersen (2023072623171841500_bib35) 2011; 87
Haitin (2023072623171841500_bib17) 2013; 501
Gracanin (2023072623171841500_bib13) 2009; 47
Morais Cabral (2023072623171841500_bib30) 1998; 95
Sassone-Corsi (2023072623171841500_bib43) 1998; 392
Bäumler (2023072623171841500_bib6) 2012; 11
Wu (2023072623171841500_bib55) 2012; 140
Long (2023072623171841500_bib24) 2007; 450
Proenza (2023072623171841500_bib36) 2006; 127
Irisawa (2023072623171841500_bib18) 1993; 73
Baier (2023072623171841500_bib4) 2006; 91
Schweitzer (2023072623171841500_bib45) 2003; 103
Macri (2023072623171841500_bib26) 2004; 279
Anderson (2023072623171841500_bib2) 2011; 462
DeRosa (2023072623171841500_bib10) 2002; 233–234
Rothberg (2023072623171841500_bib41) 2003; 122
Tour (2023072623171841500_bib50) 2003; 21
Valenzeno (2023072623171841500_bib52) 1991; 53
Latch (2023072623171841500_bib22) 2006; 311
Kwan (2023072623171841500_bib21) 2012; 140
Ogilby (2023072623171841500_bib33) 2010; 39
Bruening-Wright (2023072623171841500_bib8) 2007; 130
Jiménez-Banzo (2023072623171841500_bib19) 2008; 94
Shu (2023072623171841500_bib47) 2011; 9
Biel (2023072623171841500_bib7) 2009; 89
Maccaferri (2023072623171841500_bib25) 1996; 497
Prole (2023072623171841500_bib38) 2006; 128
Ryu (2023072623171841500_bib42) 2012; 140
Mistrík (2023072623171841500_bib29) 2006; 452
Robinson (2023072623171841500_bib40) 2003; 65
Ohara (2023072623171841500_bib34) 2009; 97
Anthony (2023072623171841500_bib3) 2005; 102
Guo (2023072623171841500_bib15) 2010; 6
Qi (2023072623171841500_bib39) 2012; 109
Wu (2023072623171841500_bib54) 2011; 100
Nolan (2023072623171841500_bib32) 2003; 115
Eisenman (2023072623171841500_bib11) 2007; 10
Steinbeck (2023072623171841500_bib49) 1992; 267
Kochevar (2023072623171841500_bib20) 2004; 2004
del Camino (2023072623171841500_bib9) 2000; 403
Agostinis (2023072623171841500_bib1) 2011; 61
Eisenman (2023072623171841500_bib12) 2009; 587
14651847 - Cell. 2003 Nov 26;115(5):551-64
14983102 - Sci STKE. 2004 Feb 24;2004(221):pe7
22053008 - Microbiology. 2012 Feb;158(Pt 2):368-79
23071265 - J Gen Physiol. 2012 Nov;140(5):469-79
22532663 - Proc Natl Acad Sci U S A. 2012 May 8;109(19):7499-504
16446506 - J Gen Physiol. 2006 Feb;127(2):183-90
23975098 - Nature. 2013 Sep 19;501(7467):444-8
15855269 - Proc Natl Acad Sci U S A. 2005 May 3;102(18):6502-7
16908727 - J Gen Physiol. 2006 Sep;128(3):273-82
8380502 - Physiol Rev. 1993 Jan;73(1):197-227
17591986 - J Gen Physiol. 2007 Jul;130(1):71-81
8146171 - Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2659-63
12744692 - Chem Rev. 2003 May;103(5):1685-757
16497888 - Science. 2006 Mar 24;311(5768):1743-7
14557404 - J Gen Physiol. 2003 Nov;122(5):501-10
16852012 - J Phys Chem B. 2005 May 12;109(18):8570-3
20571680 - Chem Soc Rev. 2010 Aug;39(8):3181-209
21617154 - CA Cancer J Clin. 2011 Jul-Aug;61(4):250-81
16751234 - Biophys J. 2006 Aug 15;91(4):1452-9
17448997 - Cell. 2007 Apr 20;129(2):397-410
21986813 - Photochem Photobiol Sci. 2012 Jan;11(1):107-17
21668871 - Photochem Photobiol. 2011 Sep-Oct;87(5):1077-91
18004376 - Nature. 2007 Nov 15;450(7168):376-82
8951716 - J Physiol. 1996 Nov 15;497 ( Pt 1):119-30
19303348 - Trends Plant Sci. 2009 Apr;14(4):219-28
15003173 - Neuron. 2004 Mar 4;41(5):737-44
1320020 - J Biol Chem. 1992 Jul 5;267(19):13425-33
19781956 - J Photochem Photobiol B. 2009 Dec 2;97(3):132-7
22930802 - J Gen Physiol. 2012 Sep;140(3):279-91
11534852 - Naunyn Schmiedebergs Arch Pharmacol. 2001 Aug;364(2):131-9
9845367 - Cell. 1998 Nov 25;95(5):649-55
9582067 - Nature. 1998 Apr 30;392(6679):871-4
22930834 - Nat Methods. 2012 Jul;9(7):671-5
12471170 - Annu Rev Physiol. 2003;65:453-80
16715293 - Pflugers Arch. 2006 Sep;452(6):718-27
14625562 - Nat Biotechnol. 2003 Dec;21(12):1505-8
23300250 - MBio. 2013;4(1):e00541-12
2011623 - Photochem Photobiol. 1991 Feb;53(2):195-201
17766345 - Biophys J. 2008 Jan 1;94(1):168-72
1317444 - J Physiol. 1992 Mar;448:53-72
21483721 - PLoS Biol. 2011 Apr;9(4):e1001041
1712843 - J Physiol. 1990 Dec;431:291-318
20044035 - Nanomedicine. 2010 Jun;6(3):486-95
19403611 - J Physiol. 2009 Jun 15;587(Pt 12):2937-47
19584315 - Physiol Rev. 2009 Jul;89(3):847-85
11741901 - J Biol Chem. 2002 Feb 15;277(7):5101-9
22689828 - J Gen Physiol. 2012 Jul;140(1):29-39
21938402 - Pflugers Arch. 2011 Dec;462(6):895-912
19375501 - Free Radic Biol Med. 2009 Jul 1;47(1):92-102
17322875 - Nat Neurosci. 2007 Apr;10(4):523-30
21354395 - Biophys J. 2011 Mar 2;100(5):1226-32
10659852 - Nature. 2000 Jan 20;403(6767):321-5
14752094 - J Biol Chem. 2004 Apr 16;279(16):16832-46
21220308 - Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1705-10
References_xml – volume: 102
  start-page: 6502
  year: 2005
  ident: 2023072623171841500_bib3
  article-title: A transcriptional response to singlet oxygen, a toxic byproduct of photosynthesis
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.0502225102
– volume: 128
  start-page: 273
  year: 2006
  ident: 2023072623171841500_bib38
  article-title: Reversal of HCN channel voltage dependence via bridging of the S4–S5 linker and Post-S6
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.200609590
– volume: 108
  start-page: 1705
  year: 2011
  ident: 2023072623171841500_bib5
  article-title: Deep bradycardia and heart block caused by inducible cardiac-specific knockout of the pacemaker channel gene Hcn4
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1010122108
– volume: 587
  start-page: 2937
  year: 2009
  ident: 2023072623171841500_bib12
  article-title: NMDA potentiation by visible light in the presence of a fluorescent neurosteroid analogue
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2009.172700
– volume: 140
  start-page: 279
  year: 2012
  ident: 2023072623171841500_bib21
  article-title: Structural changes during HCN channel gating defined by high affinity metal bridges
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.201210838
– volume: 452
  start-page: 718
  year: 2006
  ident: 2023072623171841500_bib29
  article-title: The enhancement of HCN channel instantaneous current facilitated by slow deactivation is regulated by intracellular chloride concentration
  publication-title: Pflugers Arch.
  doi: 10.1007/s00424-006-0095-0
– volume: 2004
  start-page: pe7
  year: 2004
  ident: 2023072623171841500_bib20
  article-title: Singlet oxygen signaling: From intimate to global
  publication-title: Sci. STKE.
  doi: 10.1126/stke.2212004pe7
– volume: 267
  start-page: 13425
  year: 1992
  ident: 2023072623171841500_bib49
  article-title: Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)42228-4
– volume: 364
  start-page: 131
  year: 2001
  ident: 2023072623171841500_bib14
  article-title: The hyperpolarization-activated current If in ventricular myocytes of non-transgenic and β2-adrenoceptor overexpressing mice
  publication-title: Naunyn Schmiedebergs Arch. Pharmacol.
  doi: 10.1007/s002100100431
– volume: 109
  start-page: 7499
  year: 2012
  ident: 2023072623171841500_bib39
  article-title: Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1204096109
– volume: 9
  start-page: e1001041
  year: 2011
  ident: 2023072623171841500_bib47
  article-title: A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001041
– volume: 47
  start-page: 92
  year: 2009
  ident: 2023072623171841500_bib13
  article-title: Singlet-oxygen-mediated amino acid and protein oxidation: Formation of tryptophan peroxides and decomposition products
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2009.04.015
– volume: 450
  start-page: 376
  year: 2007
  ident: 2023072623171841500_bib24
  article-title: Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment
  publication-title: Nature.
  doi: 10.1038/nature06265
– volume: 103
  start-page: 1685
  year: 2003
  ident: 2023072623171841500_bib45
  article-title: Physical mechanisms of generation and deactivation of singlet oxygen
  publication-title: Chem. Rev.
  doi: 10.1021/cr010371d
– volume: 130
  start-page: 71
  year: 2007
  ident: 2023072623171841500_bib8
  article-title: Kinetic relationship between the voltage sensor and the activation gate in spHCN channels
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.200709769
– volume: 109
  start-page: 8570
  year: 2005
  ident: 2023072623171841500_bib48
  article-title: Lifetime and diffusion of singlet oxygen in a cell
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp051163i
– volume: 94
  start-page: 168
  year: 2008
  ident: 2023072623171841500_bib19
  article-title: Singlet oxygen photosensitization by EGFP and its chromophore HBDI
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.107128
– volume: 431
  start-page: 291
  year: 1990
  ident: 2023072623171841500_bib27
  article-title: Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1990.sp018331
– volume: 497
  start-page: 119
  year: 1996
  ident: 2023072623171841500_bib25
  article-title: The hyperpolarization-activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens-alveus interneurones
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1996.sp021754
– volume: 279
  start-page: 16832
  year: 2004
  ident: 2023072623171841500_bib26
  article-title: Structural elements of instantaneous and slow gating in hyperpolarization-activated cyclic nucleotide-gated channels
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M400518200
– volume: 277
  start-page: 5101
  year: 2002
  ident: 2023072623171841500_bib37
  article-title: Pacemaker channels produce an instantaneous current
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M106974200
– volume: 129
  start-page: 397
  year: 2007
  ident: 2023072623171841500_bib53
  article-title: α2A-Adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex
  publication-title: Cell.
  doi: 10.1016/j.cell.2007.03.015
– volume: 10
  start-page: 523
  year: 2007
  ident: 2023072623171841500_bib11
  article-title: Anticonvulsant and anesthetic effects of a fluorescent neurosteroid analog activated by visible light
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1862
– volume: 122
  start-page: 501
  year: 2003
  ident: 2023072623171841500_bib41
  article-title: Movements near the gate of a hyperpolarization-activated cation channel
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.200308928
– volume: 140
  start-page: 29
  year: 2012
  ident: 2023072623171841500_bib55
  article-title: Inner activation gate in S6 contributes to the state-dependent binding of cAMP in full-length HCN2 channel
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.201110749
– volume: 11
  start-page: 107
  year: 2012
  ident: 2023072623171841500_bib6
  article-title: UVA and endogenous photosensitizers—the detection of singlet oxygen by its luminescence
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/c1pp05142c
– volume: 65
  start-page: 453
  year: 2003
  ident: 2023072623171841500_bib40
  article-title: Hyperpolarization-activated cation currents: From molecules to physiological function
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev.physiol.65.092101.142734
– volume: 158
  start-page: 368
  year: 2012
  ident: 2023072623171841500_bib28
  article-title: Role of a short light, oxygen, voltage (LOV) domain protein in blue light- and singlet oxygen-dependent gene regulation in Rhodobacter sphaeroides
  publication-title: Microbiology.
  doi: 10.1099/mic.0.054700-0
– volume: 448
  start-page: 53
  year: 1992
  ident: 2023072623171841500_bib16
  article-title: Background current in sino-atrial node cells of the rabbit heart
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1992.sp019029
– volume: 392
  start-page: 871
  year: 1998
  ident: 2023072623171841500_bib43
  article-title: Molecular clocks: mastering time by gene regulation
  publication-title: Nature.
  doi: 10.1038/31821
– volume: 233–234
  start-page: 351
  year: 2002
  ident: 2023072623171841500_bib10
  article-title: Photosensitized singlet oxygen and its applications
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/S0010-8545(02)00034-6
– volume: 95
  start-page: 649
  year: 1998
  ident: 2023072623171841500_bib30
  article-title: Crystal structure and functional analysis of the HERG potassium channel N terminus: A eukaryotic PAS domain
  publication-title: Cell.
  doi: 10.1016/S0092-8674(00)81635-9
– volume: 97
  start-page: 132
  year: 2009
  ident: 2023072623171841500_bib34
  article-title: Singlet oxygen quenching by trolox C in aqueous micelle solutions
  publication-title: J. Photochem. Photobiol. B.
  doi: 10.1016/j.jphotobiol.2009.08.010
– volume: 6
  start-page: 486
  year: 2010
  ident: 2023072623171841500_bib15
  article-title: Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer
  publication-title: Nanomedicine.
  doi: 10.1016/j.nano.2009.11.004
– volume: 89
  start-page: 847
  year: 2009
  ident: 2023072623171841500_bib7
  article-title: Hyperpolarization-activated cation channels: From genes to function
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00029.2008
– volume: 91
  start-page: 1452
  year: 2006
  ident: 2023072623171841500_bib4
  article-title: Singlet oxygen generation by UVA light exposure of endogenous photosensitizers
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.082388
– volume: 100
  start-page: 1226
  year: 2011
  ident: 2023072623171841500_bib54
  article-title: State-dependent cAMP binding to functioning HCN channels studied by patch-clamp fluorometry
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2011.01.034
– volume: 21
  start-page: 1505
  year: 2003
  ident: 2023072623171841500_bib50
  article-title: Genetically targeted chromophore-assisted light inactivation
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt914
– volume: 61
  start-page: 250
  year: 2011
  ident: 2023072623171841500_bib1
  article-title: Photodynamic therapy of cancer: An update
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.20114
– volume: 4
  start-page: e00541-12
  year: 2013
  ident: 2023072623171841500_bib31
  article-title: Proteins needed to activate a transcriptional response to the reactive oxygen species singlet oxygen
  publication-title: MBio.
  doi: 10.1128/mBio.00541-12
– volume: 87
  start-page: 1077
  year: 2011
  ident: 2023072623171841500_bib35
  article-title: Single cell responses to spatially controlled photosensitized production of extracellular singlet oxygen
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.2011.00951.x
– volume: 53
  start-page: 195
  year: 1991
  ident: 2023072623171841500_bib52
  article-title: Membrane photomodification of cardiac myocytes: Potassium and leakage currents
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.1991.tb03923.x
– volume: 462
  start-page: 895
  year: 2011
  ident: 2023072623171841500_bib2
  article-title: Properties and functional implications of Ih in hippocampal area CA3 interneurons
  publication-title: Pflugers Arch.
  doi: 10.1007/s00424-011-1025-3
– volume: 9
  start-page: 671
  year: 2012
  ident: 2023072623171841500_bib44
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods.
  doi: 10.1038/nmeth.2089
– volume: 403
  start-page: 321
  year: 2000
  ident: 2023072623171841500_bib9
  article-title: Blocker protection in the pore of a voltage-gated K+ channel and its structural implications
  publication-title: Nature.
  doi: 10.1038/35002099
– volume: 115
  start-page: 551
  year: 2003
  ident: 2023072623171841500_bib32
  article-title: The hyperpolarization-activated HCN1 channel is important for motor learning and neuronal integration by cerebellar Purkinje cells
  publication-title: Cell.
  doi: 10.1016/S0092-8674(03)00884-5
– volume: 311
  start-page: 1743
  year: 2006
  ident: 2023072623171841500_bib22
  article-title: Microheterogeneity of singlet oxygen distributions in irradiated humic acid solutions
  publication-title: Science.
  doi: 10.1126/science.1121636
– volume: 73
  start-page: 197
  year: 1993
  ident: 2023072623171841500_bib18
  article-title: Cardiac pacemaking in the sinoatrial node
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1993.73.1.197
– volume: 501
  start-page: 444
  year: 2013
  ident: 2023072623171841500_bib17
  article-title: The structural mechanism of KCNH-channel regulation by the eag domain
  publication-title: Nature.
  doi: 10.1038/nature12487
– volume: 14
  start-page: 219
  year: 2009
  ident: 2023072623171841500_bib51
  article-title: Singlet oxygen in plants: production, detoxification and signaling
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2009.01.008
– volume: 41
  start-page: 737
  year: 2004
  ident: 2023072623171841500_bib46
  article-title: Inactivation in HCN channels results from reclosure of the activation gate: Desensitization to voltage
  publication-title: Neuron.
  doi: 10.1016/S0896-6273(04)00083-2
– volume: 39
  start-page: 3181
  year: 2010
  ident: 2023072623171841500_bib33
  article-title: Singlet oxygen: there is indeed something new under the sun
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b926014p
– volume: 91
  start-page: 2659
  year: 1994
  ident: 2023072623171841500_bib23
  article-title: Chromophore-assisted laser inactivation of proteins is mediated by the photogeneration of free radicals
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.91.7.2659
– volume: 127
  start-page: 183
  year: 2006
  ident: 2023072623171841500_bib36
  article-title: Distinct populations of HCN pacemaker channels produce voltage-dependent and voltage-independent currents
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.200509389
– volume: 140
  start-page: 469
  year: 2012
  ident: 2023072623171841500_bib42
  article-title: Charge movement in gating-locked HCN channels reveals weak coupling of voltage sensors and gate
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.201210850
– reference: 1320020 - J Biol Chem. 1992 Jul 5;267(19):13425-33
– reference: 8146171 - Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2659-63
– reference: 11534852 - Naunyn Schmiedebergs Arch Pharmacol. 2001 Aug;364(2):131-9
– reference: 17766345 - Biophys J. 2008 Jan 1;94(1):168-72
– reference: 12471170 - Annu Rev Physiol. 2003;65:453-80
– reference: 20571680 - Chem Soc Rev. 2010 Aug;39(8):3181-209
– reference: 14625562 - Nat Biotechnol. 2003 Dec;21(12):1505-8
– reference: 19781956 - J Photochem Photobiol B. 2009 Dec 2;97(3):132-7
– reference: 16852012 - J Phys Chem B. 2005 May 12;109(18):8570-3
– reference: 19303348 - Trends Plant Sci. 2009 Apr;14(4):219-28
– reference: 22930802 - J Gen Physiol. 2012 Sep;140(3):279-91
– reference: 14983102 - Sci STKE. 2004 Feb 24;2004(221):pe7
– reference: 22532663 - Proc Natl Acad Sci U S A. 2012 May 8;109(19):7499-504
– reference: 19584315 - Physiol Rev. 2009 Jul;89(3):847-85
– reference: 21483721 - PLoS Biol. 2011 Apr;9(4):e1001041
– reference: 21668871 - Photochem Photobiol. 2011 Sep-Oct;87(5):1077-91
– reference: 8380502 - Physiol Rev. 1993 Jan;73(1):197-227
– reference: 9582067 - Nature. 1998 Apr 30;392(6679):871-4
– reference: 22689828 - J Gen Physiol. 2012 Jul;140(1):29-39
– reference: 15855269 - Proc Natl Acad Sci U S A. 2005 May 3;102(18):6502-7
– reference: 21354395 - Biophys J. 2011 Mar 2;100(5):1226-32
– reference: 22053008 - Microbiology. 2012 Feb;158(Pt 2):368-79
– reference: 21938402 - Pflugers Arch. 2011 Dec;462(6):895-912
– reference: 8951716 - J Physiol. 1996 Nov 15;497 ( Pt 1):119-30
– reference: 9845367 - Cell. 1998 Nov 25;95(5):649-55
– reference: 22930834 - Nat Methods. 2012 Jul;9(7):671-5
– reference: 19375501 - Free Radic Biol Med. 2009 Jul 1;47(1):92-102
– reference: 18004376 - Nature. 2007 Nov 15;450(7168):376-82
– reference: 17591986 - J Gen Physiol. 2007 Jul;130(1):71-81
– reference: 1712843 - J Physiol. 1990 Dec;431:291-318
– reference: 19403611 - J Physiol. 2009 Jun 15;587(Pt 12):2937-47
– reference: 21986813 - Photochem Photobiol Sci. 2012 Jan;11(1):107-17
– reference: 17322875 - Nat Neurosci. 2007 Apr;10(4):523-30
– reference: 20044035 - Nanomedicine. 2010 Jun;6(3):486-95
– reference: 16446506 - J Gen Physiol. 2006 Feb;127(2):183-90
– reference: 10659852 - Nature. 2000 Jan 20;403(6767):321-5
– reference: 14557404 - J Gen Physiol. 2003 Nov;122(5):501-10
– reference: 16715293 - Pflugers Arch. 2006 Sep;452(6):718-27
– reference: 2011623 - Photochem Photobiol. 1991 Feb;53(2):195-201
– reference: 16908727 - J Gen Physiol. 2006 Sep;128(3):273-82
– reference: 23975098 - Nature. 2013 Sep 19;501(7467):444-8
– reference: 17448997 - Cell. 2007 Apr 20;129(2):397-410
– reference: 21617154 - CA Cancer J Clin. 2011 Jul-Aug;61(4):250-81
– reference: 1317444 - J Physiol. 1992 Mar;448:53-72
– reference: 16497888 - Science. 2006 Mar 24;311(5768):1743-7
– reference: 23071265 - J Gen Physiol. 2012 Nov;140(5):469-79
– reference: 14651847 - Cell. 2003 Nov 26;115(5):551-64
– reference: 14752094 - J Biol Chem. 2004 Apr 16;279(16):16832-46
– reference: 15003173 - Neuron. 2004 Mar 4;41(5):737-44
– reference: 12744692 - Chem Rev. 2003 May;103(5):1685-757
– reference: 16751234 - Biophys J. 2006 Aug 15;91(4):1452-9
– reference: 23300250 - MBio. 2013;4(1):e00541-12
– reference: 21220308 - Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1705-10
– reference: 11741901 - J Biol Chem. 2002 Feb 15;277(7):5101-9
SSID ssj0000520
Score 2.1229155
Snippet Singlet oxygen (1O2), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and...
Singlet oxygen ((1)O2), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and...
Singlet oxygen (...), which is generated through metabolic reactions and oxidizes numerous biological molecules, has been a useful tool in basic research and...
Singlet oxygen acts through a histidine residue to delay HCN channel deactivation and enhance voltage-insensitive current. Singlet oxygen ( 1 O 2 ), which is...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 633
SubjectTerms Action Potentials
Amino Acid Sequence
Animals
Cells
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - chemistry
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - genetics
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - metabolism
Ion Channel Gating
Mice
Molecular Sequence Data
Molecules
Mutation
Oxidation
Oxygen
Potassium Channels - chemistry
Potassium Channels - genetics
Potassium Channels - metabolism
Protein Structure, Tertiary
Proteins
Singlet Oxygen - metabolism
Xenopus
Title State-dependent and site-directed photodynamic transformation of HCN2 channel by singlet oxygen
URI https://www.ncbi.nlm.nih.gov/pubmed/24733837
https://www.proquest.com/docview/1523712824
https://www.proquest.com/docview/1520110599
https://pubmed.ncbi.nlm.nih.gov/PMC4003188
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFAeMSGMhIaC8QyMW5PU4TUCGYQGyi4iWyHaftNJIJEonyE_jVnGO7btINaaBKUeU4ddvz5fiLfc53CHkWcyznECR-KmTtM8kLn4cy9guehmkgZB5XmCj84SidnrB3s2Q2mfweRC31nXgpf12aV_I_VoU2sCtmyf6DZd2HQgO8B_vCESwMxyvZWDNFf13H1sSK426wbyYq4JLni7ZrK1N1HstBOJJqaOL08CjSub-NOkMiigsHYMjn7c_V3OaInW7gNCCvc6NWbRZGRivzb7lefP2iloveufzPvd4EWfRYn8vOlRgFtNTtn3DUAUy_Llrd_l4th4sSIduEAA6SBIBKmA1rZX0rBi9mRljTOV8j0mRRlgxcaWoEMuysnBqVyAsOHxgjOvw5So-iclBog7JHwtpbE54LQ9Qb8HlSwuWlu_wauR7BI4dOHJ9twoUwXmitPI8_zOq1wuWvRqOP-c2Fh5bt2NsBmTm-RW5aQ9IDA6nbZKKaO2T3oOFd-21F9-lHZ9ZdUm6hjALK6AhldIgyOkYZbWuKKKMWZVSsqEUZNSi7S07evD4-nPq2LIcvge11flElokLnX-UZ3NEhSxQTsQprJUUeiApF6ljOVCCiLAilrBNZsDpJucRXLOJ7ZKdpG_WAUPAFjKkiiFkgWSajghcyY7zIQi4ToWKPvFj_maW0mvVYOuWsvNR0Htl33c-NWMvfOu6tLVPa-_lHCUw2zoCuRcwjT91p8La4hcYb1fa6DxLmpCg8ct8Y0o0UsUyv93gkG5nYdUAl9_GZZrnQiu5Mz635w6t-_0fkxuau2yM73fdePQZy3IknGrV_AL1HvMg
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State-dependent+and+site-directed+photodynamic+transformation+of+HCN2+channel+by+singlet+oxygen&rft.jtitle=The+Journal+of+general+physiology&rft.au=Gao%2C+Weihua&rft.au=Su%2C+Zhuocheng&rft.au=Liu%2C+Qinglian&rft.au=Zhou%2C+Lei&rft.date=2014-05-01&rft.issn=0022-1295&rft.eissn=1540-7748&rft.volume=143&rft.issue=5&rft.spage=633&rft.epage=644&rft_id=info:doi/10.1085%2Fjgp.201311112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1085_jgp_201311112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1295&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1295&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1295&client=summon