State estimation in wall-bounded flow systems. Part 2. Turbulent flows

This work extends the estimator developed in Part 1 of this study to the problem of estimating a turbulent channel flow at $Re_{\tau}\,{=}\,100$ based on a history of noisy measurements on the wall. The key advancement enabling this work is the development and implementation of an efficient techniqu...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 552; no. 1; pp. 167 - 187
Main Authors CHEVALIER, MATTIAS, HŒPFFNER, JÉRÔME, BEWLEY, THOMAS R., HENNINGSON, DAN S.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 10.04.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work extends the estimator developed in Part 1 of this study to the problem of estimating a turbulent channel flow at $Re_{\tau}\,{=}\,100$ based on a history of noisy measurements on the wall. The key advancement enabling this work is the development and implementation of an efficient technique to extract, from direct numerical simulations, the relevant statistics of an appropriately defined ‘external forcing’ term on the Navier–Stokes equation linearized about the mean turbulent flow profile. This forcing term is designed to account for the unmodelled (nonlinear) terms during the computation of the (linear) Kalman filter feedback gains in Fourier space. Upon inverse transform of the resulting feedback gains computed on an array of wavenumber pairs to physical space, we obtain, as in Part 1, effective and well-resolved feedback convolution kernels for the estimation problem. It is demonstrated that, by applying the feedback so determined, satisfactory correlation between the actual and estimated flow is obtained in the near-wall region. As anticipated, extended Kalman filters (with the nonlinearity of the actual system reintroduced into the estimator model after the feedback gains are determined) outperform standard (linear) Kalman filters on the full system.
AbstractList This work extends the estimator developed in Part 1 of this study to the problem of estimating a turbulent channel flow at $Re_{\tau}\,{=}\,100$ based on a history of noisy measurements on the wall. The key advancement enabling this work is the development and implementation of an efficient technique to extract, from direct numerical simulations, the relevant statistics of an appropriately defined ‘external forcing’ term on the Navier–Stokes equation linearized about the mean turbulent flow profile. This forcing term is designed to account for the unmodelled (nonlinear) terms during the computation of the (linear) Kalman filter feedback gains in Fourier space. Upon inverse transform of the resulting feedback gains computed on an array of wavenumber pairs to physical space, we obtain, as in Part 1, effective and well-resolved feedback convolution kernels for the estimation problem. It is demonstrated that, by applying the feedback so determined, satisfactory correlation between the actual and estimated flow is obtained in the near-wall region. As anticipated, extended Kalman filters (with the nonlinearity of the actual system reintroduced into the estimator model after the feedback gains are determined) outperform standard (linear) Kalman filters on the full system.
This work extends the estimator developed in Part 1 of this study to the problem of estimating a turbulent channel flow at $Re_{\tau}\,{=}\,100$ based on a history of noisy measurements on the wall. The key advancement enabling this work is the development and implementation of an efficient technique to extract, from direct numerical simulations, the relevant statistics of an appropriately defined 'external forcing' term on the Navier-Stokes equation linearized about the mean turbulent flow profile. This forcing term is designed to account for the unmodelled (nonlinear) terms during the computation of the (linear) Kalman filter feedback gains in Fourier space. Upon inverse transform of the resulting feedback gains computed on an array of wavenumber pairs to physical space, we obtain, as in Part 1, effective and well-resolved feedback convolution kernels for the estimation problem. It is demonstrated that, by applying the feedback so determined, satisfactory correlation between the actual and estimated flow is obtained in the near-wall region. As anticipated, extended Kalman filters (with the nonlinearity of the actual system reintroduced into the estimator model after the feedback gains are determined) outperform standard (linear) Kalman filters on the full system. [PUBLICATION ABSTRACT]
This work extends the estimator developed in Part 1 of this study to the problem of estimating a turbulent channel flow at Re(tau) = 100 basedon a history of noisy measurements on the wall. The key advancement enabling this work is the development and implementation of an efficient technique to extract, from direct numerical simulations, the relevant statistics of an appropriately defined 'external forcing'term on the Navier-Stokes equation linearized about the mean turbulent flow profile. This forcing term is designed to account forthe unmodelled (nonlinear) terms during the computation of the (linear) Kalman filter feedback gains in Fourier space. Upon inverse transform of the resulting feedback gains computed on an array of wavenumber pairs to physical space, we obtain, as in Part 1, effective and well-resolved feedback convolutionkernels for the estimation problem. It is demonstrated that, by applying the feedback sodetermined, satisfactory correlation between theactual and estimated flow is obtained inthe near-wall region. As anticipated, extended Kalman filters (with the nonlinearity of the actual system reintroduced into the estimator model after the feedback gains are determined) outperform standard (linear) Kalman filters on the full system.
Author CHEVALIER, MATTIAS
BEWLEY, THOMAS R.
HENNINGSON, DAN S.
HŒPFFNER, JÉRÔME
Author_xml – sequence: 1
  givenname: MATTIAS
  surname: CHEVALIER
  fullname: CHEVALIER, MATTIAS
  organization: The Swedish Defence Research Agency (FOI), SE-164 90, Stockholm, Sweden
– sequence: 2
  givenname: JÉRÔME
  surname: HŒPFFNER
  fullname: HŒPFFNER, JÉRÔME
  organization: Department of Mechanics, Royal Institute of Technology, SE-100 44, Stockholm, Sweden
– sequence: 3
  givenname: THOMAS R.
  surname: BEWLEY
  fullname: BEWLEY, THOMAS R.
  organization: Flow Control Lab, Department of MAE, UC San Diego, La Jolla, CA 92093, USA
– sequence: 4
  givenname: DAN S.
  surname: HENNINGSON
  fullname: HENNINGSON, DAN S.
  organization: The Swedish Defence Research Agency (FOI), SE-164 90, Stockholm, Sweden
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17664704$$DView record in Pascal Francis
BookMark eNp1kE1r3DAQhkVJoJtNf0BuptDevBnJGkk-lm3zAQtpyTZXMSvLxalXTiWbNP8-2u6SQEvnMof3meHhPWFHYQiesTMOCw5cn98CCMG5AEAAg9q8YTMuVV1qJfGIzXZxucvfspOU7gF4BbWesYvbkUZf-DR2Wxq7IRRdKB6p78vNMIXGN0XbD49Fekqj36ZF8ZXiWIhFsZ7iZup9GP_k6ZQdt9Qn_-6w5-z7xZf18qpc3VxeLz-tSic5jmWNxgusOFBVgwHNBZJD6QicVijJiMZgU5EHSW2jqRaITuFGcAQtWlfN2cf934c4_Jqytd12yfm-p-CHKVlR1whVnjl7_xd4P0wxZDcrOBijldEZ4nvIxSGl6Fv7EHMN8clysLta7T-15psPh8eUHPVtpOC69HqolZIaZObKPdfl5n6_5BR_WqUrjVZdfrPms1kt13fSYuargwttN7FrfvhX4__bPAMHRJR8
CODEN JFLSA7
CitedBy_id crossref_primary_10_1017_S0022112010003393
crossref_primary_10_1063_1_2904993
crossref_primary_10_1016_j_automatica_2008_02_022
crossref_primary_10_2514_1_41365
crossref_primary_10_1017_jfm_2017_313
crossref_primary_10_1017_jfm_2017_355
crossref_primary_10_1007_s00162_021_00586_8
crossref_primary_10_1063_5_0135388
crossref_primary_10_1017_jfm_2020_690
crossref_primary_10_2514_1_J059599
crossref_primary_10_3389_fcvm_2021_742110
crossref_primary_10_1146_annurev_control_053018_023843
crossref_primary_10_1146_annurev_fluid_010908_165221
crossref_primary_10_1299_transjsme_21_00061
crossref_primary_10_1017_S0022112007007392
crossref_primary_10_1016_j_jcp_2023_112477
crossref_primary_10_1017_jfm_2020_802
crossref_primary_10_1146_annurev_fluid_010719_060244
crossref_primary_10_1017_jfm_2017_580
crossref_primary_10_1017_jfm_2021_268
crossref_primary_10_1016_j_compchemeng_2009_12_001
crossref_primary_10_1002_acs_3252
crossref_primary_10_1063_5_0060760
crossref_primary_10_1016_j_jcp_2017_06_042
crossref_primary_10_1146_annurev_fluid_39_050905_110153
crossref_primary_10_1063_1_3005860
crossref_primary_10_1017_jfm_2020_435
crossref_primary_10_1017_jfm_2022_102
crossref_primary_10_1016_j_ijheatfluidflow_2022_108997
crossref_primary_10_1017_jfm_2022_225
crossref_primary_10_1016_j_ifacsc_2024_100261
crossref_primary_10_1017_jfm_2023_867
crossref_primary_10_1016_j_ijheatfluidflow_2008_03_009
crossref_primary_10_1007_s00162_023_00663_0
crossref_primary_10_1017_jfm_2020_918
crossref_primary_10_1017_jfm_2021_671
crossref_primary_10_1016_j_nucengdes_2021_111431
crossref_primary_10_1038_s41598_022_07515_7
crossref_primary_10_1103_PhysRevFluids_8_064612
crossref_primary_10_1017_jfm_2011_222
crossref_primary_10_1017_jfm_2020_1168
crossref_primary_10_1017_jfm_2016_682
crossref_primary_10_1115_1_4001478
crossref_primary_10_1016_j_ijheatfluidflow_2022_109073
crossref_primary_10_1017_jfm_2011_32
crossref_primary_10_1115_1_3077635
crossref_primary_10_1016_j_jcp_2008_03_013
crossref_primary_10_1017_jfm_2023_234
crossref_primary_10_3390_en16196908
crossref_primary_10_1115_1_4055178
crossref_primary_10_1017_jfm_2021_762
crossref_primary_10_1016_j_ijheatfluidflow_2020_108735
crossref_primary_10_1103_PhysRevFluids_8_074606
crossref_primary_10_1017_jfm_2021_764
crossref_primary_10_1017_jfm_2023_1035
crossref_primary_10_1115_1_4027483
crossref_primary_10_2514_1_J050966
crossref_primary_10_1017_jfm_2022_295
crossref_primary_10_1088_1742_6596_1001_1_012006
crossref_primary_10_1016_j_ijheatfluidflow_2023_109169
crossref_primary_10_1017_jfm_2023_1073
crossref_primary_10_1088_0169_5983_47_5_051201
crossref_primary_10_1017_jfm_2019_960
crossref_primary_10_1016_j_physd_2022_133454
crossref_primary_10_1017_jfm_2018_129
crossref_primary_10_1017_S0022112011000620
ContentType Journal Article
Copyright 2006 Cambridge University Press
2006 INIST-CNRS
Copyright_xml – notice: 2006 Cambridge University Press
– notice: 2006 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PQEST
PQQKQ
PQUKI
PTHSS
Q9U
S0W
DOI 10.1017/S0022112005008578
DatabaseName Istex
Pascal-Francis
CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aerospace Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
EndPage 187
ExternalDocumentID 1399469201
10_1017_S0022112005008578
17664704
ark_67375_6GQ_8D8LCTV4_5
Genre Feature
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
3V.
4.4
5GY
5VS
6TJ
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTAH
ABTCQ
ABUWG
ABZCX
ABZUI
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
COF
CS3
D-I
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
H~9
I.6
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LHUNA
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZE2
ZY4
ZYDXJ
~02
ABVZP
ABXAU
BSCLL
-1F
-2P
-2V
-~6
-~N
08R
6~7
8WZ
9M5
A6W
AANRG
ABBJB
ABDMP
ABFSI
ABKAW
ABTRL
ABVFV
ACETC
ACKIV
ADOVH
AEBPU
AENCP
AGLWM
AI.
ALEEW
BESQT
BMAJL
CCUQV
CDIZJ
DC4
G8K
I.7
I.9
IOO
IQODW
KAFGG
KC5
NMFBF
VH1
VOH
ZJOSE
ZMEZD
~V1
AAYXX
CITATION
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c415t-958e25310a390807125ac54ca0c7654a82d85d3ae04afd7a9255c65b215072fc3
IEDL.DBID BENPR
ISSN 0022-1120
IngestDate Fri Oct 25 05:31:42 EDT 2024
Thu Oct 10 20:58:42 EDT 2024
Thu Sep 26 17:48:50 EDT 2024
Sun Oct 29 17:08:09 EDT 2023
Wed Oct 30 09:51:15 EDT 2024
Wed Mar 13 05:52:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Digital filtering
Turbulent flow
Pipe flow
Feedback
Digital simulation
Control systems
Modelling
Kalman filters
Stochastic method
State estimation
Turbulence structure
Turbulent laminar transition
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-958e25310a390807125ac54ca0c7654a82d85d3ae04afd7a9255c65b215072fc3
Notes PII:S0022112005008578
istex:6449D58622678CCCABA213650587267A680FBA1D
ark:/67375/6GQ-8D8LCTV4-5
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 210887687
PQPubID 34769
PageCount 21
ParticipantIDs proquest_miscellaneous_29950333
proquest_journals_210887687
crossref_primary_10_1017_S0022112005008578
pascalfrancis_primary_17664704
istex_primary_ark_67375_6GQ_8D8LCTV4_5
cambridge_journals_10_1017_S0022112005008578
PublicationCentury 2000
PublicationDate 2006-04-10
PublicationDateYYYYMMDD 2006-04-10
PublicationDate_xml – month: 04
  year: 2006
  text: 2006-04-10
  day: 10
PublicationDecade 2000
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2006
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
SSID ssj0013097
Score 2.2255948
Snippet This work extends the estimator developed in Part 1 of this study to the problem of estimating a turbulent channel flow at $Re_{\tau}\,{=}\,100$ based on a...
This work extends the estimator developed in Part 1 of this study to the problem of estimating a turbulent channel flow at Re(tau) = 100 basedon a history of...
SourceID proquest
crossref
pascalfrancis
istex
cambridge
SourceType Aggregation Database
Index Database
Publisher
StartPage 167
SubjectTerms Channel flow
Exact sciences and technology
Filters
Flow profiles
Flow system
Fluid dynamics
Fluid mechanics
Fundamental areas of phenomenology (including applications)
Kalman filters
Physics
Turbulence control
Turbulent flow
Turbulent flows, convection, and heat transfer
Title State estimation in wall-bounded flow systems. Part 2. Turbulent flows
URI https://www.cambridge.org/core/product/identifier/S0022112005008578/type/journal_article
https://api.istex.fr/ark:/67375/6GQ-8D8LCTV4-5/fulltext.pdf
https://www.proquest.com/docview/210887687
https://search.proquest.com/docview/29950333
Volume 552
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED9Bq0njYUA3RAYUP0x7mBYIjh0nTxNfBU0bYlOZeIscf0jTqpSRVuzP39lxUxASr7Fziu7D9zvf5Q7gQ6UqbaQ9io1OeMwUNWhzGKxwB65RB2zhL9y-X2WXN-zrLb8NtTlNKKtcnIn-oNZT5e7IDzE0QXvIcvHl7m_shka55GqYoLEKfYqBAu1B_-T86vrnMo2QFGLRLhyBRZfW9D2j8aF7lnDf5T1_3FzhiZPqO37_c0WTskG-2XbgxbOz2zuk0Qa8CUiSHLei34QVUw9gPaBKEmy2GcDao5aDA3jlSz5V8xZGHmcS12Wj_X2R_K7Jg5xM4sqNWkIadjJ9IG2r5-aAXKOSEXpAxnMUhPNVfr15Bzej8_HpZRymKsQKnfUsLnhuKFpeItMC4aJAhCMVZ0omSmScyZzqnOtUmoRJq4UsMOhQGa-og47UqnQLevW0NttAUmGoZIhBtK2YTQ3aPhJKbYakTap1BJ87lpbBNpqyrSsT5TMJRPBpwfXyru218dLmj14u3U55_8cVqQleZhc_yvws_3Y6_sVKHsHwieCWpEWWMZGwCHYWklx-ZKduEex3q2h5Lp0iazOd45aicDng9P2L7-_A6_bWhqHH24Xe7H5u9hDHzKohrOaji2HQ2f9_yevZ
link.rule.ids 315,783,787,12779,21402,27938,27939,33387,33388,33758,33759,43614,43819
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8NEAIeYHRDBAb4AfEwLV0W23HyNE1spYOCQCoTb5HjD2miSoG0gj-fs5OmICRebecU3YfvZ9_5DuCwUIU20v4IjY54yFRs0ObwsMIduEYdsJm_cDu_SPrX7PSG3zS5OVWTVjnbE_1GrcfK3ZF_x6MJ2kOSip9396FrGuWCq00HjQVYYhT9jHso3juZBxGiTMyKhSOsaIOavmI0DrqxiPsa7-nL0gqvXNSS4_aTS5mUFXLN1u0u3uzc3h31PsJ6gyPJr1rwm_DBlB3YaDAlaSy26sDai4KDHVj2CZ-q-gQ9jzKJq7FRP14k_0vyKEejsHCNlpCGHY0fSV3oueqSS1QxEnfJcIpicJ7Kz1ef4br3Z3jcD5ueCqFCVz0JM56aGO0ukjRDsCgQ30jFmZKREglnMo11yjWVJmLSaiEzPHKohBexA46xVXQLFstxabaBUGFiyRCBaFswSw1aPhKiNkHShmodwLeWpXljGVVeZ5WJ_I0EAvg643p-V1faeG_xkZdLu1I-3LoUNcHz5OQqT3-ng-PhP5bzAPZfCW5OWiQJExELYHcmyflPtsoWwEE7i3bngimyNOMpLskyFwGmO-9-fwAr_eH5IB_8vTjbhdX6_oah7_sCi5OHqdlDRDMp9r3ePgMqhOx-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+estimation+in+wall-bounded+flow+systems.+Part+2.+Turbulent+flows&rft.jtitle=Journal+of+fluid+mechanics&rft.au=CHEVALIER%2C+MATTIAS&rft.au=H%C5%92PFFNER%2C+J%C3%89R%C3%94ME&rft.au=BEWLEY%2C+THOMAS+R.&rft.au=HENNINGSON%2C+DAN+S.&rft.date=2006-04-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=552&rft.spage=167&rft.epage=187&rft_id=info:doi/10.1017%2FS0022112005008578&rft.externalDocID=10_1017_S0022112005008578
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon