State estimation in wall-bounded flow systems. Part 2. Turbulent flows
This work extends the estimator developed in Part 1 of this study to the problem of estimating a turbulent channel flow at $Re_{\tau}\,{=}\,100$ based on a history of noisy measurements on the wall. The key advancement enabling this work is the development and implementation of an efficient techniqu...
Saved in:
Published in | Journal of fluid mechanics Vol. 552; no. 1; pp. 167 - 187 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
10.04.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work extends the estimator developed in Part 1 of this study to the problem of estimating a turbulent channel flow at $Re_{\tau}\,{=}\,100$ based on a history of noisy measurements on the wall. The key advancement enabling this work is the development and implementation of an efficient technique to extract, from direct numerical simulations, the relevant statistics of an appropriately defined ‘external forcing’ term on the Navier–Stokes equation linearized about the mean turbulent flow profile. This forcing term is designed to account for the unmodelled (nonlinear) terms during the computation of the (linear) Kalman filter feedback gains in Fourier space. Upon inverse transform of the resulting feedback gains computed on an array of wavenumber pairs to physical space, we obtain, as in Part 1, effective and well-resolved feedback convolution kernels for the estimation problem. It is demonstrated that, by applying the feedback so determined, satisfactory correlation between the actual and estimated flow is obtained in the near-wall region. As anticipated, extended Kalman filters (with the nonlinearity of the actual system reintroduced into the estimator model after the feedback gains are determined) outperform standard (linear) Kalman filters on the full system. |
---|---|
AbstractList | This work extends the estimator developed in Part 1 of this study to the problem of estimating a turbulent channel flow at $Re_{\tau}\,{=}\,100$ based on a history of noisy measurements on the wall. The key advancement enabling this work is the development and implementation of an efficient technique to extract, from direct numerical simulations, the relevant statistics of an appropriately defined ‘external forcing’ term on the Navier–Stokes equation linearized about the mean turbulent flow profile. This forcing term is designed to account for the unmodelled (nonlinear) terms during the computation of the (linear) Kalman filter feedback gains in Fourier space. Upon inverse transform of the resulting feedback gains computed on an array of wavenumber pairs to physical space, we obtain, as in Part 1, effective and well-resolved feedback convolution kernels for the estimation problem. It is demonstrated that, by applying the feedback so determined, satisfactory correlation between the actual and estimated flow is obtained in the near-wall region. As anticipated, extended Kalman filters (with the nonlinearity of the actual system reintroduced into the estimator model after the feedback gains are determined) outperform standard (linear) Kalman filters on the full system. This work extends the estimator developed in Part 1 of this study to the problem of estimating a turbulent channel flow at $Re_{\tau}\,{=}\,100$ based on a history of noisy measurements on the wall. The key advancement enabling this work is the development and implementation of an efficient technique to extract, from direct numerical simulations, the relevant statistics of an appropriately defined 'external forcing' term on the Navier-Stokes equation linearized about the mean turbulent flow profile. This forcing term is designed to account for the unmodelled (nonlinear) terms during the computation of the (linear) Kalman filter feedback gains in Fourier space. Upon inverse transform of the resulting feedback gains computed on an array of wavenumber pairs to physical space, we obtain, as in Part 1, effective and well-resolved feedback convolution kernels for the estimation problem. It is demonstrated that, by applying the feedback so determined, satisfactory correlation between the actual and estimated flow is obtained in the near-wall region. As anticipated, extended Kalman filters (with the nonlinearity of the actual system reintroduced into the estimator model after the feedback gains are determined) outperform standard (linear) Kalman filters on the full system. [PUBLICATION ABSTRACT] This work extends the estimator developed in Part 1 of this study to the problem of estimating a turbulent channel flow at Re(tau) = 100 basedon a history of noisy measurements on the wall. The key advancement enabling this work is the development and implementation of an efficient technique to extract, from direct numerical simulations, the relevant statistics of an appropriately defined 'external forcing'term on the Navier-Stokes equation linearized about the mean turbulent flow profile. This forcing term is designed to account forthe unmodelled (nonlinear) terms during the computation of the (linear) Kalman filter feedback gains in Fourier space. Upon inverse transform of the resulting feedback gains computed on an array of wavenumber pairs to physical space, we obtain, as in Part 1, effective and well-resolved feedback convolutionkernels for the estimation problem. It is demonstrated that, by applying the feedback sodetermined, satisfactory correlation between theactual and estimated flow is obtained inthe near-wall region. As anticipated, extended Kalman filters (with the nonlinearity of the actual system reintroduced into the estimator model after the feedback gains are determined) outperform standard (linear) Kalman filters on the full system. |
Author | CHEVALIER, MATTIAS BEWLEY, THOMAS R. HENNINGSON, DAN S. HŒPFFNER, JÉRÔME |
Author_xml | – sequence: 1 givenname: MATTIAS surname: CHEVALIER fullname: CHEVALIER, MATTIAS organization: The Swedish Defence Research Agency (FOI), SE-164 90, Stockholm, Sweden – sequence: 2 givenname: JÉRÔME surname: HŒPFFNER fullname: HŒPFFNER, JÉRÔME organization: Department of Mechanics, Royal Institute of Technology, SE-100 44, Stockholm, Sweden – sequence: 3 givenname: THOMAS R. surname: BEWLEY fullname: BEWLEY, THOMAS R. organization: Flow Control Lab, Department of MAE, UC San Diego, La Jolla, CA 92093, USA – sequence: 4 givenname: DAN S. surname: HENNINGSON fullname: HENNINGSON, DAN S. organization: The Swedish Defence Research Agency (FOI), SE-164 90, Stockholm, Sweden |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17664704$$DView record in Pascal Francis |
BookMark | eNp1kE1r3DAQhkVJoJtNf0BuptDevBnJGkk-lm3zAQtpyTZXMSvLxalXTiWbNP8-2u6SQEvnMof3meHhPWFHYQiesTMOCw5cn98CCMG5AEAAg9q8YTMuVV1qJfGIzXZxucvfspOU7gF4BbWesYvbkUZf-DR2Wxq7IRRdKB6p78vNMIXGN0XbD49Fekqj36ZF8ZXiWIhFsZ7iZup9GP_k6ZQdt9Qn_-6w5-z7xZf18qpc3VxeLz-tSic5jmWNxgusOFBVgwHNBZJD6QicVijJiMZgU5EHSW2jqRaITuFGcAQtWlfN2cf934c4_Jqytd12yfm-p-CHKVlR1whVnjl7_xd4P0wxZDcrOBijldEZ4nvIxSGl6Fv7EHMN8clysLta7T-15psPh8eUHPVtpOC69HqolZIaZObKPdfl5n6_5BR_WqUrjVZdfrPms1kt13fSYuargwttN7FrfvhX4__bPAMHRJR8 |
CODEN | JFLSA7 |
CitedBy_id | crossref_primary_10_1017_S0022112010003393 crossref_primary_10_1063_1_2904993 crossref_primary_10_1016_j_automatica_2008_02_022 crossref_primary_10_2514_1_41365 crossref_primary_10_1017_jfm_2017_313 crossref_primary_10_1017_jfm_2017_355 crossref_primary_10_1007_s00162_021_00586_8 crossref_primary_10_1063_5_0135388 crossref_primary_10_1017_jfm_2020_690 crossref_primary_10_2514_1_J059599 crossref_primary_10_3389_fcvm_2021_742110 crossref_primary_10_1146_annurev_control_053018_023843 crossref_primary_10_1146_annurev_fluid_010908_165221 crossref_primary_10_1299_transjsme_21_00061 crossref_primary_10_1017_S0022112007007392 crossref_primary_10_1016_j_jcp_2023_112477 crossref_primary_10_1017_jfm_2020_802 crossref_primary_10_1146_annurev_fluid_010719_060244 crossref_primary_10_1017_jfm_2017_580 crossref_primary_10_1017_jfm_2021_268 crossref_primary_10_1016_j_compchemeng_2009_12_001 crossref_primary_10_1002_acs_3252 crossref_primary_10_1063_5_0060760 crossref_primary_10_1016_j_jcp_2017_06_042 crossref_primary_10_1146_annurev_fluid_39_050905_110153 crossref_primary_10_1063_1_3005860 crossref_primary_10_1017_jfm_2020_435 crossref_primary_10_1017_jfm_2022_102 crossref_primary_10_1016_j_ijheatfluidflow_2022_108997 crossref_primary_10_1017_jfm_2022_225 crossref_primary_10_1016_j_ifacsc_2024_100261 crossref_primary_10_1017_jfm_2023_867 crossref_primary_10_1016_j_ijheatfluidflow_2008_03_009 crossref_primary_10_1007_s00162_023_00663_0 crossref_primary_10_1017_jfm_2020_918 crossref_primary_10_1017_jfm_2021_671 crossref_primary_10_1016_j_nucengdes_2021_111431 crossref_primary_10_1038_s41598_022_07515_7 crossref_primary_10_1103_PhysRevFluids_8_064612 crossref_primary_10_1017_jfm_2011_222 crossref_primary_10_1017_jfm_2020_1168 crossref_primary_10_1017_jfm_2016_682 crossref_primary_10_1115_1_4001478 crossref_primary_10_1016_j_ijheatfluidflow_2022_109073 crossref_primary_10_1017_jfm_2011_32 crossref_primary_10_1115_1_3077635 crossref_primary_10_1016_j_jcp_2008_03_013 crossref_primary_10_1017_jfm_2023_234 crossref_primary_10_3390_en16196908 crossref_primary_10_1115_1_4055178 crossref_primary_10_1017_jfm_2021_762 crossref_primary_10_1016_j_ijheatfluidflow_2020_108735 crossref_primary_10_1103_PhysRevFluids_8_074606 crossref_primary_10_1017_jfm_2021_764 crossref_primary_10_1017_jfm_2023_1035 crossref_primary_10_1115_1_4027483 crossref_primary_10_2514_1_J050966 crossref_primary_10_1017_jfm_2022_295 crossref_primary_10_1088_1742_6596_1001_1_012006 crossref_primary_10_1016_j_ijheatfluidflow_2023_109169 crossref_primary_10_1017_jfm_2023_1073 crossref_primary_10_1088_0169_5983_47_5_051201 crossref_primary_10_1017_jfm_2019_960 crossref_primary_10_1016_j_physd_2022_133454 crossref_primary_10_1017_jfm_2018_129 crossref_primary_10_1017_S0022112011000620 |
ContentType | Journal Article |
Copyright | 2006 Cambridge University Press 2006 INIST-CNRS |
Copyright_xml | – notice: 2006 Cambridge University Press – notice: 2006 INIST-CNRS |
DBID | BSCLL IQODW AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PQEST PQQKQ PQUKI PTHSS Q9U S0W |
DOI | 10.1017/S0022112005008578 |
DatabaseName | Istex Pascal-Francis CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep ProQuest Central Student Technology Collection Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aerospace Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1469-7645 |
EndPage | 187 |
ExternalDocumentID | 1399469201 10_1017_S0022112005008578 17664704 ark_67375_6GQ_8D8LCTV4_5 |
Genre | Feature |
GroupedDBID | -DZ -E. -~X .DC .FH 09C 09E 0E1 0R~ 29K 3V. 4.4 5GY 5VS 6TJ 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTAH ABTCQ ABUWG ABZCX ABZUI ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADVJH AEBAK AEHGV AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC COF CS3 D-I DOHLZ DU5 DWQXO E.L EBS EJD F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ H~9 I.6 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LHUNA LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZE2 ZY4 ZYDXJ ~02 ABVZP ABXAU BSCLL -1F -2P -2V -~6 -~N 08R 6~7 8WZ 9M5 A6W AANRG ABBJB ABDMP ABFSI ABKAW ABTRL ABVFV ACETC ACKIV ADOVH AEBPU AENCP AGLWM AI. ALEEW BESQT BMAJL CCUQV CDIZJ DC4 G8K I.7 I.9 IOO IQODW KAFGG KC5 NMFBF VH1 VOH ZJOSE ZMEZD ~V1 AAYXX CITATION 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c415t-958e25310a390807125ac54ca0c7654a82d85d3ae04afd7a9255c65b215072fc3 |
IEDL.DBID | BENPR |
ISSN | 0022-1120 |
IngestDate | Fri Oct 25 05:31:42 EDT 2024 Thu Oct 10 20:58:42 EDT 2024 Thu Sep 26 17:48:50 EDT 2024 Sun Oct 29 17:08:09 EDT 2023 Wed Oct 30 09:51:15 EDT 2024 Wed Mar 13 05:52:10 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Digital filtering Turbulent flow Pipe flow Feedback Digital simulation Control systems Modelling Kalman filters Stochastic method State estimation Turbulence structure Turbulent laminar transition |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-958e25310a390807125ac54ca0c7654a82d85d3ae04afd7a9255c65b215072fc3 |
Notes | PII:S0022112005008578 istex:6449D58622678CCCABA213650587267A680FBA1D ark:/67375/6GQ-8D8LCTV4-5 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 210887687 |
PQPubID | 34769 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_29950333 proquest_journals_210887687 crossref_primary_10_1017_S0022112005008578 pascalfrancis_primary_17664704 istex_primary_ark_67375_6GQ_8D8LCTV4_5 cambridge_journals_10_1017_S0022112005008578 |
PublicationCentury | 2000 |
PublicationDate | 2006-04-10 |
PublicationDateYYYYMMDD | 2006-04-10 |
PublicationDate_xml | – month: 04 year: 2006 text: 2006-04-10 day: 10 |
PublicationDecade | 2000 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2006 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
SSID | ssj0013097 |
Score | 2.2255948 |
Snippet | This work extends the estimator developed in Part 1 of this study to the problem of estimating a turbulent channel flow at $Re_{\tau}\,{=}\,100$ based on a... This work extends the estimator developed in Part 1 of this study to the problem of estimating a turbulent channel flow at Re(tau) = 100 basedon a history of... |
SourceID | proquest crossref pascalfrancis istex cambridge |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 167 |
SubjectTerms | Channel flow Exact sciences and technology Filters Flow profiles Flow system Fluid dynamics Fluid mechanics Fundamental areas of phenomenology (including applications) Kalman filters Physics Turbulence control Turbulent flow Turbulent flows, convection, and heat transfer |
Title | State estimation in wall-bounded flow systems. Part 2. Turbulent flows |
URI | https://www.cambridge.org/core/product/identifier/S0022112005008578/type/journal_article https://api.istex.fr/ark:/67375/6GQ-8D8LCTV4-5/fulltext.pdf https://www.proquest.com/docview/210887687 https://search.proquest.com/docview/29950333 |
Volume | 552 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED9Bq0njYUA3RAYUP0x7mBYIjh0nTxNfBU0bYlOZeIscf0jTqpSRVuzP39lxUxASr7Fziu7D9zvf5Q7gQ6UqbaQ9io1OeMwUNWhzGKxwB65RB2zhL9y-X2WXN-zrLb8NtTlNKKtcnIn-oNZT5e7IDzE0QXvIcvHl7m_shka55GqYoLEKfYqBAu1B_-T86vrnMo2QFGLRLhyBRZfW9D2j8aF7lnDf5T1_3FzhiZPqO37_c0WTskG-2XbgxbOz2zuk0Qa8CUiSHLei34QVUw9gPaBKEmy2GcDao5aDA3jlSz5V8xZGHmcS12Wj_X2R_K7Jg5xM4sqNWkIadjJ9IG2r5-aAXKOSEXpAxnMUhPNVfr15Bzej8_HpZRymKsQKnfUsLnhuKFpeItMC4aJAhCMVZ0omSmScyZzqnOtUmoRJq4UsMOhQGa-og47UqnQLevW0NttAUmGoZIhBtK2YTQ3aPhJKbYakTap1BJ87lpbBNpqyrSsT5TMJRPBpwfXyru218dLmj14u3U55_8cVqQleZhc_yvws_3Y6_sVKHsHwieCWpEWWMZGwCHYWklx-ZKduEex3q2h5Lp0iazOd45aicDng9P2L7-_A6_bWhqHH24Xe7H5u9hDHzKohrOaji2HQ2f9_yevZ |
link.rule.ids | 315,783,787,12779,21402,27938,27939,33387,33388,33758,33759,43614,43819 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8NEAIeYHRDBAb4AfEwLV0W23HyNE1spYOCQCoTb5HjD2miSoG0gj-fs5OmICRebecU3YfvZ9_5DuCwUIU20v4IjY54yFRs0ObwsMIduEYdsJm_cDu_SPrX7PSG3zS5OVWTVjnbE_1GrcfK3ZF_x6MJ2kOSip9396FrGuWCq00HjQVYYhT9jHso3juZBxGiTMyKhSOsaIOavmI0DrqxiPsa7-nL0gqvXNSS4_aTS5mUFXLN1u0u3uzc3h31PsJ6gyPJr1rwm_DBlB3YaDAlaSy26sDai4KDHVj2CZ-q-gQ9jzKJq7FRP14k_0vyKEejsHCNlpCGHY0fSV3oueqSS1QxEnfJcIpicJ7Kz1ef4br3Z3jcD5ueCqFCVz0JM56aGO0ukjRDsCgQ30jFmZKREglnMo11yjWVJmLSaiEzPHKohBexA46xVXQLFstxabaBUGFiyRCBaFswSw1aPhKiNkHShmodwLeWpXljGVVeZ5WJ_I0EAvg643p-V1faeG_xkZdLu1I-3LoUNcHz5OQqT3-ng-PhP5bzAPZfCW5OWiQJExELYHcmyflPtsoWwEE7i3bngimyNOMpLskyFwGmO-9-fwAr_eH5IB_8vTjbhdX6_oah7_sCi5OHqdlDRDMp9r3ePgMqhOx- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+estimation+in+wall-bounded+flow+systems.+Part+2.+Turbulent+flows&rft.jtitle=Journal+of+fluid+mechanics&rft.au=CHEVALIER%2C+MATTIAS&rft.au=H%C5%92PFFNER%2C+J%C3%89R%C3%94ME&rft.au=BEWLEY%2C+THOMAS+R.&rft.au=HENNINGSON%2C+DAN+S.&rft.date=2006-04-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=552&rft.spage=167&rft.epage=187&rft_id=info:doi/10.1017%2FS0022112005008578&rft.externalDocID=10_1017_S0022112005008578 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |