Application of Soft Computing Techniques to Predict the Strength of Geopolymer Composites

Geopolymers may be the best alternative to ordinary Portland cement because they are manufactured using waste materials enriched in aluminosilicate. Research on geopolymer composites is accelerating. However, considerable work, expense, and time are needed to cast, cure, and test specimens. The appl...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 14; no. 6; p. 1074
Main Authors Wang, Qichen, Ahmad, Waqas, Ahmad, Ayaz, Aslam, Fahid, Mohamed, Abdullah, Vatin, Nikolai Ivanovich
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.03.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Geopolymers may be the best alternative to ordinary Portland cement because they are manufactured using waste materials enriched in aluminosilicate. Research on geopolymer composites is accelerating. However, considerable work, expense, and time are needed to cast, cure, and test specimens. The application of computational methods to the stated objective is critical for speedy and cost-effective research. In this study, supervised machine learning approaches were employed to predict the compressive strength of geopolymer composites. One individual machine learning approach, decision tree, and two ensembled machine learning approaches, AdaBoost and random forest, were used. The coefficient correlation (R2), statistical tests, and k-fold analysis were used to determine the validity and comparison of all models. It was discovered that ensembled machine learning techniques outperformed individual machine learning techniques in forecasting the compressive strength of geopolymer composites. However, the outcomes of the individual machine learning model were also within the acceptable limit. R2 values of 0.90, 0.90, and 0.83 were obtained for AdaBoost, random forest, and decision models, respectively. The models’ decreased error values, such as mean absolute error, mean absolute percentage error, and root-mean-square errors, further confirmed the ensembled machine learning techniques’ increased precision. Machine learning approaches will aid the building industry by providing quick and cost-effective methods for evaluating material properties.
AbstractList Geopolymers may be the best alternative to ordinary Portland cement because they are manufactured using waste materials enriched in aluminosilicate. Research on geopolymer composites is accelerating. However, considerable work, expense, and time are needed to cast, cure, and test specimens. The application of computational methods to the stated objective is critical for speedy and cost-effective research. In this study, supervised machine learning approaches were employed to predict the compressive strength of geopolymer composites. One individual machine learning approach, decision tree, and two ensembled machine learning approaches, AdaBoost and random forest, were used. The coefficient correlation (R2), statistical tests, and k-fold analysis were used to determine the validity and comparison of all models. It was discovered that ensembled machine learning techniques outperformed individual machine learning techniques in forecasting the compressive strength of geopolymer composites. However, the outcomes of the individual machine learning model were also within the acceptable limit. R2 values of 0.90, 0.90, and 0.83 were obtained for AdaBoost, random forest, and decision models, respectively. The models’ decreased error values, such as mean absolute error, mean absolute percentage error, and root-mean-square errors, further confirmed the ensembled machine learning techniques’ increased precision. Machine learning approaches will aid the building industry by providing quick and cost-effective methods for evaluating material properties.
Geopolymers may be the best alternative to ordinary Portland cement because they are manufactured using waste materials enriched in aluminosilicate. Research on geopolymer composites is accelerating. However, considerable work, expense, and time are needed to cast, cure, and test specimens. The application of computational methods to the stated objective is critical for speedy and cost-effective research. In this study, supervised machine learning approaches were employed to predict the compressive strength of geopolymer composites. One individual machine learning approach, decision tree, and two ensembled machine learning approaches, AdaBoost and random forest, were used. The coefficient correlation (R2), statistical tests, and k-fold analysis were used to determine the validity and comparison of all models. It was discovered that ensembled machine learning techniques outperformed individual machine learning techniques in forecasting the compressive strength of geopolymer composites. However, the outcomes of the individual machine learning model were also within the acceptable limit. R2 values of 0.90, 0.90, and 0.83 were obtained for AdaBoost, random forest, and decision models, respectively. The models' decreased error values, such as mean absolute error, mean absolute percentage error, and root-mean-square errors, further confirmed the ensembled machine learning techniques' increased precision. Machine learning approaches will aid the building industry by providing quick and cost-effective methods for evaluating material properties.Geopolymers may be the best alternative to ordinary Portland cement because they are manufactured using waste materials enriched in aluminosilicate. Research on geopolymer composites is accelerating. However, considerable work, expense, and time are needed to cast, cure, and test specimens. The application of computational methods to the stated objective is critical for speedy and cost-effective research. In this study, supervised machine learning approaches were employed to predict the compressive strength of geopolymer composites. One individual machine learning approach, decision tree, and two ensembled machine learning approaches, AdaBoost and random forest, were used. The coefficient correlation (R2), statistical tests, and k-fold analysis were used to determine the validity and comparison of all models. It was discovered that ensembled machine learning techniques outperformed individual machine learning techniques in forecasting the compressive strength of geopolymer composites. However, the outcomes of the individual machine learning model were also within the acceptable limit. R2 values of 0.90, 0.90, and 0.83 were obtained for AdaBoost, random forest, and decision models, respectively. The models' decreased error values, such as mean absolute error, mean absolute percentage error, and root-mean-square errors, further confirmed the ensembled machine learning techniques' increased precision. Machine learning approaches will aid the building industry by providing quick and cost-effective methods for evaluating material properties.
Geopolymers may be the best alternative to ordinary Portland cement because they are manufactured using waste materials enriched in aluminosilicate. Research on geopolymer composites is accelerating. However, considerable work, expense, and time are needed to cast, cure, and test specimens. The application of computational methods to the stated objective is critical for speedy and cost-effective research. In this study, supervised machine learning approaches were employed to predict the compressive strength of geopolymer composites. One individual machine learning approach, decision tree, and two ensembled machine learning approaches, AdaBoost and random forest, were used. The coefficient correlation (R ), statistical tests, and k-fold analysis were used to determine the validity and comparison of all models. It was discovered that ensembled machine learning techniques outperformed individual machine learning techniques in forecasting the compressive strength of geopolymer composites. However, the outcomes of the individual machine learning model were also within the acceptable limit. R values of 0.90, 0.90, and 0.83 were obtained for AdaBoost, random forest, and decision models, respectively. The models' decreased error values, such as mean absolute error, mean absolute percentage error, and root-mean-square errors, further confirmed the ensembled machine learning techniques' increased precision. Machine learning approaches will aid the building industry by providing quick and cost-effective methods for evaluating material properties.
Geopolymers may be the best alternative to ordinary Portland cement because they are manufactured using waste materials enriched in aluminosilicate. Research on geopolymer composites is accelerating. However, considerable work, expense, and time are needed to cast, cure, and test specimens. The application of computational methods to the stated objective is critical for speedy and cost-effective research. In this study, supervised machine learning approaches were employed to predict the compressive strength of geopolymer composites. One individual machine learning approach, decision tree, and two ensembled machine learning approaches, AdaBoost and random forest, were used. The coefficient correlation (R 2 ), statistical tests, and k-fold analysis were used to determine the validity and comparison of all models. It was discovered that ensembled machine learning techniques outperformed individual machine learning techniques in forecasting the compressive strength of geopolymer composites. However, the outcomes of the individual machine learning model were also within the acceptable limit. R 2 values of 0.90, 0.90, and 0.83 were obtained for AdaBoost, random forest, and decision models, respectively. The models’ decreased error values, such as mean absolute error, mean absolute percentage error, and root-mean-square errors, further confirmed the ensembled machine learning techniques’ increased precision. Machine learning approaches will aid the building industry by providing quick and cost-effective methods for evaluating material properties.
Author Vatin, Nikolai Ivanovich
Aslam, Fahid
Mohamed, Abdullah
Wang, Qichen
Ahmad, Waqas
Ahmad, Ayaz
AuthorAffiliation 2 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad 22060, Pakistan; ayazahmad@cuiatd.edu.pk
4 Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; f.aslam@psau.edu.sa
3 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland
6 Peter the Great St. Petersburg Polytechnic University, 195291 St. Petersburg, Russia; vatin@mail.ru
1 Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242, USA
5 Research Centre, Future University in Egypt, New Cairo 11745, Egypt; mohamed.a@fue.edu.eg
AuthorAffiliation_xml – name: 1 Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242, USA
– name: 5 Research Centre, Future University in Egypt, New Cairo 11745, Egypt; mohamed.a@fue.edu.eg
– name: 6 Peter the Great St. Petersburg Polytechnic University, 195291 St. Petersburg, Russia; vatin@mail.ru
– name: 4 Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; f.aslam@psau.edu.sa
– name: 3 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland
– name: 2 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad 22060, Pakistan; ayazahmad@cuiatd.edu.pk
Author_xml – sequence: 1
  givenname: Qichen
  surname: Wang
  fullname: Wang, Qichen
– sequence: 2
  givenname: Waqas
  orcidid: 0000-0002-1668-7607
  surname: Ahmad
  fullname: Ahmad, Waqas
– sequence: 3
  givenname: Ayaz
  orcidid: 0000-0002-0312-2965
  surname: Ahmad
  fullname: Ahmad, Ayaz
– sequence: 4
  givenname: Fahid
  orcidid: 0000-0003-2863-3283
  surname: Aslam
  fullname: Aslam, Fahid
– sequence: 5
  givenname: Abdullah
  surname: Mohamed
  fullname: Mohamed, Abdullah
– sequence: 6
  givenname: Nikolai Ivanovich
  orcidid: 0000-0002-1196-8004
  surname: Vatin
  fullname: Vatin, Nikolai Ivanovich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35335405$$D View this record in MEDLINE/PubMed
BookMark eNptkUtLxDAUhYMovpdupeDGTTWZPNpsBBl8wYCCunAVOuntTKRNapIK8-_NjKOoGAIJ5DuHc3P20KZ1FhA6IviMUonPe9cuOsKwILhgG2h3hAuaMyrw5o_7DjoM4RWnxbgQpNhGO5RTyhnmu-jlsu9bo6tonM1ckz26JmZj1_VDNHaWPYGeW_M2QMiiyx481EbHLM4he4we7CzOl6IbcKsk4FdSF0yEcIC2mqoNcLg-99Hz9dXT-Daf3N_cjS8nuWaEx7wEWQOWWIgRpgDTQkzltAHAZVkTKqumbHjNS11QKCrZcMFASKnrhNUjyhjdRxefvv0w7aDWYKOvWtV701V-oVxl1O8Xa-Zq5t5VKbnAtEgGp2sD75aTRtWZoKFtKwtuCGokGMOYMEESevIHfXWDt2m8JZW2EJQm6vhnou8oX7-eAPoJaO9C8NAobeKqghTQtIpgtaxX_ao3qfI_qi_j__kP3UiofQ
CitedBy_id crossref_primary_10_1155_2022_7791582
crossref_primary_10_1007_s11595_025_3041_8
crossref_primary_10_3390_polym14163386
crossref_primary_10_1016_j_jobe_2024_109184
crossref_primary_10_3390_polym14183906
crossref_primary_10_1016_j_jobe_2023_107041
crossref_primary_10_1016_j_mtcomm_2023_105428
crossref_primary_10_3390_ma15113762
crossref_primary_10_1007_s42824_024_00128_7
crossref_primary_10_1016_j_cscm_2022_e01759
crossref_primary_10_1007_s40996_024_01569_5
crossref_primary_10_3390_ma15155208
crossref_primary_10_1088_2053_1591_acf983
crossref_primary_10_1007_s42107_023_00676_4
crossref_primary_10_3390_polym14153065
crossref_primary_10_3390_ma15217800
crossref_primary_10_1002_pc_28346
crossref_primary_10_1007_s42947_023_00321_y
crossref_primary_10_3390_polym14122509
crossref_primary_10_1016_j_conbuildmat_2024_137370
crossref_primary_10_3390_ma15103430
crossref_primary_10_1061_JSDCCC_SCENG_1724
crossref_primary_10_3390_ma15124209
crossref_primary_10_1016_j_conbuildmat_2022_129253
crossref_primary_10_3390_ma15134512
crossref_primary_10_1016_j_enbuild_2024_114899
crossref_primary_10_3390_ma15082823
crossref_primary_10_3390_app14093601
crossref_primary_10_1007_s42452_023_05447_z
crossref_primary_10_3390_ma15103523
crossref_primary_10_1016_j_cscm_2024_e03849
crossref_primary_10_1016_j_clema_2024_100263
crossref_primary_10_1016_j_cscm_2022_e01620
crossref_primary_10_1166_sam_2022_4342
crossref_primary_10_1016_j_heliyon_2023_e17953
crossref_primary_10_1007_s41024_024_00461_z
crossref_primary_10_1016_j_jmrt_2023_03_036
crossref_primary_10_3389_fmats_2022_1098304
crossref_primary_10_3390_polym14132739
crossref_primary_10_3390_polym14102128
crossref_primary_10_3390_ma15207344
crossref_primary_10_3390_ma15124194
crossref_primary_10_1016_j_cscm_2024_e03439
crossref_primary_10_1016_j_jobe_2023_107932
crossref_primary_10_1016_j_jenvman_2024_123462
crossref_primary_10_1016_j_jmrt_2023_04_209
crossref_primary_10_1016_j_heliyon_2023_e16288
crossref_primary_10_3390_ma15134450
crossref_primary_10_1016_j_cscm_2023_e02160
crossref_primary_10_3390_polym14225008
crossref_primary_10_3390_ma15196852
crossref_primary_10_3390_cryst14100830
crossref_primary_10_1016_j_mtcomm_2024_108804
crossref_primary_10_1007_s40996_023_01308_2
crossref_primary_10_3390_buildings14092894
crossref_primary_10_2478_sgem_2024_0020
crossref_primary_10_1016_j_conbuildmat_2023_133540
crossref_primary_10_1016_j_cscm_2022_e01243
crossref_primary_10_1080_24705314_2023_2211850
crossref_primary_10_1016_j_mtsust_2025_101095
Cites_doi 10.1016/j.mineng.2011.09.009
10.1016/j.conbuildmat.2020.121278
10.1016/j.conbuildmat.2020.120292
10.1016/j.conbuildmat.2021.124046
10.1016/j.conbuildmat.2018.06.150
10.1016/j.jhazmat.2021.125659
10.1016/j.conbuildmat.2020.120950
10.1002/fam.2968
10.1016/j.cemconres.2007.09.008
10.1016/j.jclepro.2020.120578
10.1016/j.compstruc.2013.10.006
10.1016/j.compstruct.2020.113505
10.1016/j.jclepro.2016.05.041
10.1016/j.jclepro.2019.118024
10.3390/ma14143829
10.1061/(ASCE)MT.1943-5533.0000352
10.1016/j.cemconres.2011.03.019
10.1016/j.conbuildmat.2019.117000
10.1007/s10098-018-01660-2
10.1016/j.aei.2020.101126
10.32604/cmes.2019.07653
10.1080/07474938.2010.481554
10.1016/j.conbuildmat.2019.01.103
10.1016/j.conbuildmat.2020.118581
10.1016/j.engstruct.2018.01.008
10.1016/j.conbuildmat.2016.08.111
10.1016/j.conbuildmat.2019.07.315
10.3390/app10207330
10.1016/j.jclepro.2019.04.299
10.1590/s1983-41952021000300009
10.3390/su11040995
10.1140/epjp/s13360-021-01179-4
10.1061/(ASCE)ST.1943-541X.0002402
10.3390/ma12081256
10.3390/buildings11080324
10.3390/ma14164518
10.1198/tast.2009.08199
10.3390/ma13143211
10.1002/suco.201900326
10.1016/j.jclepro.2016.08.070
10.3390/ma14154264
10.1016/j.jobe.2019.01.032
10.1016/j.conbuildmat.2018.12.043
10.1088/1757-899X/263/3/032012
10.3390/ma14020332
10.1016/j.chemosphere.2020.128900
10.1016/j.conbuildmat.2018.09.065
10.3390/ma13041015
10.1016/j.ceramint.2017.07.221
10.1016/j.engstruct.2020.111470
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/polym14061074
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
ProQuest Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Publicly Available Content Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2073-4360
ExternalDocumentID PMC8956037
35335405
10_3390_polym14061074
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Science and Higher Education of the Russian Federation
  grantid: 075-15-2021-1333
GroupedDBID 53G
5VS
8FE
8FG
A8Z
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACGFO
ACIWK
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
ESX
F5P
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
ML~
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RNS
RPM
TR2
TUS
GROUPED_DOAJ
NPM
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c415t-8e9de09066203eeb76b9bfee088d139af8f5d58c73e7a9f564e699cd6b9d23443
IEDL.DBID BENPR
ISSN 2073-4360
IngestDate Thu Aug 21 18:01:08 EDT 2025
Fri Jul 11 00:21:05 EDT 2025
Fri Jul 25 11:59:13 EDT 2025
Wed Feb 19 02:26:27 EST 2025
Tue Jul 01 02:20:24 EDT 2025
Thu Apr 24 22:53:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords compressive strength
prediction models
geopolymer composites
machine learning
sustainable materials
artificial intelligence
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-8e9de09066203eeb76b9bfee088d139af8f5d58c73e7a9f564e699cd6b9d23443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1668-7607
0000-0002-0312-2965
0000-0002-1196-8004
0000-0003-2863-3283
OpenAccessLink https://www.proquest.com/docview/2642646633?pq-origsite=%requestingapplication%
PMID 35335405
PQID 2642646633
PQPubID 2032345
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8956037
proquest_miscellaneous_2644001461
proquest_journals_2642646633
pubmed_primary_35335405
crossref_citationtrail_10_3390_polym14061074
crossref_primary_10_3390_polym14061074
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220308
PublicationDateYYYYMMDD 2022-03-08
PublicationDate_xml – month: 3
  year: 2022
  text: 20220308
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Polymers
PublicationTitleAlternate Polymers (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Khater (ref_19) 2012; 24
Khan (ref_2) 2016; 125
Ren (ref_20) 2021; 267
Huang (ref_40) 2019; 121
Mangalathu (ref_47) 2019; 145
Nguyen (ref_56) 2020; 247
Vu (ref_41) 2021; 259
Pavithra (ref_27) 2016; 133
Deepa (ref_60) 2010; 6
ref_17
ref_16
ref_15
ref_59
Xie (ref_3) 2020; 265
Mohajerani (ref_29) 2019; 21
Khan (ref_5) 2021; 46
Kaja (ref_18) 2018; 189
Hillebrand (ref_52) 2010; 29
Feng (ref_58) 2020; 45
Olalusi (ref_48) 2021; 227
Feng (ref_39) 2020; 230
Han (ref_54) 2019; 226
Gopalakrishnan (ref_7) 2021; 136
Singh (ref_24) 2019; 239
ref_28
ref_26
Song (ref_51) 2015; 27
Karbassi (ref_53) 2014; 130
Toniolo (ref_30) 2017; 43
Nguyen (ref_44) 2021; 266
Dutta (ref_49) 2018; 21
Marvila (ref_33) 2021; 15
Naseri (ref_38) 2020; 258
Meesala (ref_12) 2020; 21
Chu (ref_1) 2021; 269
Khan (ref_23) 2019; 203
Buyondo (ref_32) 2020; 13
ref_37
Provis (ref_31) 2012; 29
(ref_55) 2009; 63
Prayogo (ref_57) 2020; 36
Ferone (ref_36) 2019; 229
Huseien (ref_13) 2019; 23
Schneider (ref_8) 2011; 41
ref_46
ref_45
ref_43
ref_42
Ahmad (ref_14) 2022; 16
Podolsky (ref_21) 2021; 15
Suksiripattanapong (ref_34) 2020; 12
Cleetus (ref_11) 2018; 5
Damtoft (ref_10) 2008; 38
Mangalathu (ref_50) 2018; 160
Khan (ref_4) 2018; 182
Cao (ref_9) 2016; 139
Khan (ref_25) 2021; 300
Asim (ref_35) 2019; 199
ref_6
Pu (ref_22) 2021; 415
References_xml – volume: 29
  start-page: 89
  year: 2012
  ident: ref_31
  article-title: Technical and commercial progress in the adoption of geopolymer cement
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2011.09.009
– volume: 269
  start-page: 121278
  year: 2021
  ident: ref_1
  article-title: Carbon fiber reinforced geopolymer (FRG) mix design based on liquid film thickness
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.121278
– volume: 16
  start-page: e00840
  year: 2022
  ident: ref_14
  article-title: Compressive strength prediction of fly ash-based geopolymer concrete via advanced machine learning techniques
  publication-title: Case Stud. Constr. Mater.
– volume: 265
  start-page: 120292
  year: 2020
  ident: ref_3
  article-title: Experimental evaluation on fiber distribution characteristics and mechanical properties of calcium carbonate whisker modified hybrid fibers reinforced cementitious composites
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.120292
– volume: 300
  start-page: 124046
  year: 2021
  ident: ref_25
  article-title: Effect of silica-fume content on performance of CaCO3 whisker and basalt fiber at matrix interface in cement-based composites
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.124046
– volume: 182
  start-page: 703
  year: 2018
  ident: ref_4
  article-title: Effect of super plasticizer on the properties of medium strength concrete prepared with coconut fiber
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.06.150
– volume: 415
  start-page: 125659
  year: 2021
  ident: ref_22
  article-title: A novel acidic phosphoric-based geopolymer binder for lead solidification/stabilization
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125659
– volume: 266
  start-page: 120950
  year: 2021
  ident: ref_44
  article-title: Efficient machine learning models for prediction of concrete strengths
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.120950
– volume: 46
  start-page: 205
  year: 2021
  ident: ref_5
  article-title: Experimental and analytical study of hybrid fiber reinforced concrete prepared with basalt fiber under high temperature
  publication-title: Fire Mater.
  doi: 10.1002/fam.2968
– volume: 38
  start-page: 115
  year: 2008
  ident: ref_10
  article-title: Sustainable development and climate change initiatives
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2007.09.008
– volume: 258
  start-page: 120578
  year: 2020
  ident: ref_38
  article-title: Designing sustainable concrete mixture by developing a new machine learning technique
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120578
– volume: 130
  start-page: 46
  year: 2014
  ident: ref_53
  article-title: Damage prediction for regular reinforced concrete buildings using the decision tree algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2013.10.006
– volume: 259
  start-page: 113505
  year: 2021
  ident: ref_41
  article-title: Machine learning-based prediction of CFST columns using gradient tree boosting algorithm
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2020.113505
– volume: 133
  start-page: 117
  year: 2016
  ident: ref_27
  article-title: A mix design procedure for geopolymer concrete with fly ash
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.05.041
– volume: 239
  start-page: 118024
  year: 2019
  ident: ref_24
  article-title: Production and characterization of low-energy Portland composite cement from post-industrial waste
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118024
– ident: ref_45
  doi: 10.3390/ma14143829
– volume: 24
  start-page: 92
  year: 2012
  ident: ref_19
  article-title: Effect of calcium on geopolymerization of aluminosilicate wastes
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0000352
– volume: 36
  start-page: 1135
  year: 2020
  ident: ref_57
  article-title: Combining machine learning models via adaptive ensemble weighting for prediction of shear capacity of reinforced-concrete deep beams
  publication-title: Eng. Comput.
– volume: 41
  start-page: 642
  year: 2011
  ident: ref_8
  article-title: Sustainable cement production—present and future
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2011.03.019
– volume: 230
  start-page: 117000
  year: 2020
  ident: ref_39
  article-title: Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117000
– volume: 27
  start-page: 130
  year: 2015
  ident: ref_51
  article-title: Decision tree methods: Applications for classification and prediction
  publication-title: Shanghai Arch. Psychiatry
– volume: 21
  start-page: 493
  year: 2019
  ident: ref_29
  article-title: Recycling waste materials in geopolymer concrete
  publication-title: Clean Technol. Environ. Policy
  doi: 10.1007/s10098-018-01660-2
– volume: 45
  start-page: 101126
  year: 2020
  ident: ref_58
  article-title: Failure mode classification and bearing capacity prediction for reinforced concrete columns based on ensemble machine learning algorithm
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2020.101126
– volume: 121
  start-page: 845
  year: 2019
  ident: ref_40
  article-title: Review on application of artificial intelligence in civil engineering
  publication-title: Comput. Modeling Eng. Sci.
  doi: 10.32604/cmes.2019.07653
– volume: 29
  start-page: 571
  year: 2010
  ident: ref_52
  article-title: The benefits of bagging for forecast models of realized volatility
  publication-title: Econom. Rev.
  doi: 10.1080/07474938.2010.481554
– volume: 203
  start-page: 174
  year: 2019
  ident: ref_23
  article-title: Improvement in concrete behavior with fly ash, silica-fume and coconut fibres
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.01.103
– volume: 247
  start-page: 118581
  year: 2020
  ident: ref_56
  article-title: Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approaches
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118581
– volume: 160
  start-page: 85
  year: 2018
  ident: ref_50
  article-title: Classification of failure mode and prediction of shear strength for reinforced concrete beam-column joints using machine learning techniques
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2018.01.008
– volume: 125
  start-page: 800
  year: 2016
  ident: ref_2
  article-title: Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.08.111
– volume: 226
  start-page: 734
  year: 2019
  ident: ref_54
  article-title: A generalized method to predict the compressive strength of high-performance concrete by improved random forest algorithm
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.07.315
– ident: ref_59
  doi: 10.3390/app10207330
– volume: 13
  start-page: e00461
  year: 2020
  ident: ref_32
  article-title: Optimization of production parameters for rice husk ash-based geopolymer cement using response surface methodology
  publication-title: Case Stud. Constr. Mater.
– volume: 229
  start-page: 1
  year: 2019
  ident: ref_36
  article-title: Sustainable management of water potabilization sludge by means of geopolymers production
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.04.299
– ident: ref_17
  doi: 10.1590/s1983-41952021000300009
– ident: ref_37
  doi: 10.3390/su11040995
– volume: 136
  start-page: 1
  year: 2021
  ident: ref_7
  article-title: Using graphene oxide to improve the mechanical and electrical properties of fiber-reinforced high-volume sugarcane bagasse ash cement mortar
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-021-01179-4
– volume: 145
  start-page: 04019104
  year: 2019
  ident: ref_47
  article-title: Machine learning–based failure mode recognition of circular reinforced concrete bridge columns: Comparative study
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0002402
– ident: ref_46
  doi: 10.3390/ma12081256
– ident: ref_42
  doi: 10.3390/buildings11080324
– volume: 15
  start-page: e00637
  year: 2021
  ident: ref_21
  article-title: State of the Art on the Application of Waste Materials in Geopolymer Concrete
  publication-title: Case Stud. Constr. Mater.
– ident: ref_43
  doi: 10.3390/ma14164518
– volume: 63
  start-page: 308
  year: 2009
  ident: ref_55
  article-title: Variable importance assessment in regression: Linear regression versus random forest
  publication-title: Am. Stat.
  doi: 10.1198/tast.2009.08199
– ident: ref_15
  doi: 10.3390/ma13143211
– volume: 12
  start-page: e00337
  year: 2020
  ident: ref_34
  article-title: Properties of cellular lightweight high calcium bottom ash-portland cement geopolymer mortar
  publication-title: Case Stud. Constr. Mater.
– volume: 21
  start-page: 1013
  year: 2020
  ident: ref_12
  article-title: Critical review on fly-ash based geopolymer concrete
  publication-title: Struct. Concr.
  doi: 10.1002/suco.201900326
– volume: 15
  start-page: e00662
  year: 2021
  ident: ref_33
  article-title: Effect of the addition and processing of glass polishing waste on the durability of geopolymeric mortars
  publication-title: Case Stud. Constr. Mater.
– volume: 139
  start-page: 527
  year: 2016
  ident: ref_9
  article-title: Toward a better practice for estimating the CO2 emission factors of cement production: An experience from China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.08.070
– volume: 5
  start-page: 3033
  year: 2018
  ident: ref_11
  article-title: Analysis and study of the effect of GGBFS on concrete structures
  publication-title: Int. Res. J. Eng. Technol. (IRJET), Mar Athanasius Coll. Eng. Kerala India
– ident: ref_28
  doi: 10.3390/ma14154264
– volume: 23
  start-page: 155
  year: 2019
  ident: ref_13
  article-title: Sustainability of nanomaterials based self-healing concrete: An all-inclusive insight
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2019.01.032
– volume: 199
  start-page: 540
  year: 2019
  ident: ref_35
  article-title: Emerging sustainable solutions for depollution: Geopolymers
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.12.043
– ident: ref_6
  doi: 10.1088/1757-899X/263/3/032012
– ident: ref_26
  doi: 10.3390/ma14020332
– volume: 267
  start-page: 128900
  year: 2021
  ident: ref_20
  article-title: Eco-friendly geopolymer prepared from solid wastes: A critical review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128900
– volume: 6
  start-page: 18
  year: 2010
  ident: ref_60
  article-title: Prediction of the compressive strength of high performance concrete mix using tree based modeling
  publication-title: Int. J. Comput. Appl.
– volume: 189
  start-page: 1113
  year: 2018
  ident: ref_18
  article-title: Effects of Portland cement on activation mechanism of class F fly ash geopolymer cured under ambient conditions
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.09.065
– ident: ref_16
  doi: 10.3390/ma13041015
– volume: 43
  start-page: 14545
  year: 2017
  ident: ref_30
  article-title: Fly ash-based geopolymers containing added silicate waste. A review
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.07.221
– volume: 227
  start-page: 111470
  year: 2021
  ident: ref_48
  article-title: Shear capacity prediction of slender reinforced concrete structures with steel fibers using machine learning
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.111470
– volume: 21
  start-page: 463
  year: 2018
  ident: ref_49
  article-title: Comparison of machine learning techniques to predict compressive strength of concrete
  publication-title: Comput. Concr.
SSID ssj0000456617
Score 2.5000286
Snippet Geopolymers may be the best alternative to ordinary Portland cement because they are manufactured using waste materials enriched in aluminosilicate. Research...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1074
SubjectTerms Aggregates
Algorithms
Aluminosilicates
Aluminum silicates
Artificial intelligence
Cement
Composite materials
Compressive strength
Concrete
Construction industry
Decision trees
Errors
Gene expression
Geopolymers
Landfill
Machine learning
Material properties
Portland cements
R&D
Research & development
Soft computing
Statistical tests
Temperature effects
Variables
Waste materials
Title Application of Soft Computing Techniques to Predict the Strength of Geopolymer Composites
URI https://www.ncbi.nlm.nih.gov/pubmed/35335405
https://www.proquest.com/docview/2642646633
https://www.proquest.com/docview/2644001461
https://pubmed.ncbi.nlm.nih.gov/PMC8956037
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7BcmgvVQt9hFLkSqinRiTYazuniiJ2EVIR4iFtT1H8gko0WXbDof--M3nRbVWkXCKPlWgmme-zZzwDsJcKp-h8ZRxSGWKhLI-NVCE2yGWtKXxmNB1w_nYmT67F6Ww86zbcll1aZe8TG0ftKkt75PsI3HghPvIv8_uYukZRdLVrobEOG-iCtR7Bxtfjs_OLYZeFCAtidFtck-P6fn9e3f36mRKMJUqsgtE_DPPvRMk_kGfyEl50lJEdtjZ-BWu-3IRnR32nti34fvgYhWZVYJfoWlnbrgGBiV31ZVqXrK7Y-YJCMzVD4scoJF3e1Lc0aeqr5qX9oplKuVx--RquJ8dXRydx1zIhtojEdax95nySUVn3hHtvlDSZCd6jL3HI9Yqgw9iNtVXcqyILYym8zDLrUMwdcCH4GxiVVenfAQtJMNqr1FluhSuMls4kIZhCm0IqqyP43Osut109cWprcZfjuoJUna-oOoJPg_i8LaTxP8Gd3hB59z8t80frR_BxGEY1U3ijKH310MgIWvHJNIK3rd2GJ3FktcRNI1ArFh0EqMr26kj547aptq1pBcnV9tOv9R6eH9DBCMpO0zswqhcP_gPSldrswrqeTHe7LxPvprP0N3ER8c8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxJuUAkYCTkRN1l7bOSBUFbZb-hASW6mc0vhFkdpk2U2F-qf4jcwkm5QFwa1Sbh4n0czY843HMwPwMhVOUX5lHFIZYqEsj41UITaIZa0pfGY0JTgfHMrxkfh4PDxegZ9dLgxdq-z2xGajdpWlM_JNNNz4oH3k76bfY-oaRdHVroVGqxZ7_vIHumzzt7vvUb6vBoPRh8n2OF50FYgtGqs61j5zPsmo8nnCvTdKmswE73G5OYRDRdBh6IbaKu5VkYWhFF5mmXVI5gZcCI7vvQE3BUdLTpnpo53-TIfgESKCtpQnjieb0-rs8jwlo5kosWz6_sKzf17L_M3Oje7A7QVAZVutRt2FFV_eg7Xtri_cffiydRXzZlVgn3EjZ21zCDSDbNIVhZ2zumKfZhQIqhnCTEYB8PJrfUqTdnzV_LSfNVPp5pifP4Cja2HlQ1gtq9I_BhaSYLRXqbPcClcYLZ1JQjCFNoVUVkfwpuNdbhfVy6mJxlmOXgyxOl9idQSve_JpW7bjX4QbnSDyxeqd51e6FsGLfhjZTMGUovTVRUMjyL-UaQSPWrn1X-KIoQkJR6CWJNoTUE3v5ZHy22lT21uTv8rV-v9_6zmsjScH-_n-7uHeE7g1oJQMuhenN2C1nl34pwiUavOs0U4GJ9e9HH4B7EosEQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbKVgIuiDeBAoMEnIg22ZnNTA4IlbZLS2G1glYqp5B5UaSSLLupUP8avw47r7IguFXKbTxJ5LHHn8ceG-BpLKyk-5WhjxMfCml4qBPpQ41Y1ujcpVrRBef302T3ULw9Gh-twc_uLgylVXZ7Yr1R29LQGfkQDTc-aB_50LdpEbPtyav595A6SFGktWun0YjIvjv7ge7b8uXeNq71s9FosnOwtRu2HQZCg4arCpVLrYtSqoIecee0THSqvXOoehahUe6VH9uxMpI7mad-nAiXpKmxSGZHXAiO770E65K8ogGsv96Zzj70JzwElhAfNIU9OU-j4bw8OfsWkwmNpFg1hH-h2z-TNH-zepPrcK2Fq2yzka8bsOaKm3Blq-sSdws-bZ5HwFnp2Ufc1lnTKgKNIjvoSsQuWVWy2YLCQhVD0MkoHF58qY5p0htX1j_tFvVUyiNzy9tweCHMvAODoizcPWA-8lo5GVvDjbC5VonVkfc6VzpPpFEBvOh4l5m2ljm11DjJ0KchVmcrrA7geU8-b4p4_Itwo1uIrNXlZXYueQE86YeRzRRayQtXntY0grzNJA7gbrNu_Zc4ImrCxQHIlRXtCajC9-pI8fW4rvStyHvl8v7_f-sxXEZVyN7tTfcfwNUR3c-gJDm1AYNqceoeImqq9KNWPBl8vmiN-AVunzGj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Soft+Computing+Techniques+to+Predict+the+Strength+of+Geopolymer+Composites&rft.jtitle=Polymers&rft.au=Wang%2C+Qichen&rft.au=Ahmad%2C+Waqas&rft.au=Ayaz%2C+Ahmad&rft.au=Aslam%2C+Fahid&rft.date=2022-03-08&rft.pub=MDPI+AG&rft.eissn=2073-4360&rft.volume=14&rft.issue=6&rft.spage=1074&rft_id=info:doi/10.3390%2Fpolym14061074&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon