Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants
Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Her...
Saved in:
Published in | The Journal of general physiology Vol. 149; no. 4; pp. 465 - 481 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
03.04.2017
The Rockefeller University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds. |
---|---|
AbstractList | A number of different drugs block sodium channels, but their mechanism of block is unclear. Tikhonov and Zhorov combine homology modeling with ligand docking and propose a pharmacophore for sodium channel blockers involving cationic and aromatic moieties.
Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds. Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds. Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds.Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds. |
Author | Tikhonov, Denis B. Zhorov, Boris S. |
AuthorAffiliation | 2 Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada 1 Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia |
AuthorAffiliation_xml | – name: 1 Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia – name: 2 Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada |
Author_xml | – sequence: 1 givenname: Denis B. surname: Tikhonov fullname: Tikhonov, Denis B. – sequence: 2 givenname: Boris S. orcidid: 0000-0002-3630-7114 surname: Zhorov fullname: Zhorov, Boris S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28258204$$D View this record in MEDLINE/PubMed |
BookMark | eNptUU1P3DAUtBBVWaBHrlWkXnpowH6JP3JBqhD9kEBc2huSZTte4q1jL3aCtP8eLyyoRX2XZz_PG814DtF-iMEidELwKcGCnq3u1qeACSOEMbGHFoS2uOa8FftogTFATaCjB-gw5xUuRQG_RwcggArA7QLdXlszqODyWMVllWPv5rHaToL1lfbR_Kn0pipd-UoFm6fBTs7kL-UyOZXSsJmGcTfon4YmhofZ53LMx-jdUvlsP-z6Efr97fLXxY_66ub7z4uvV7VpCZ1qoYoUoijrWMupUYwaMFT1GhpoerCEg9aYAVhKgBejQKwWSoul1Q3nvDlC58-861mPtjc2TEl5uU5uVGkjo3Ly35fgBnkXHyRteNeRLcHnHUGK93NxKUeXjfW-WI5zlkTwthQwUaCf3kBXcU6h2CuoDmPBmo4U1Me_Fb1Kefn4AmieASbFnJNdSuMmNbm4Fei8JFhu45UlXvkab9mq32y9EP8f_wjftqcw |
CODEN | JGPLAD |
CitedBy_id | crossref_primary_10_3390_ph15101208 crossref_primary_10_3390_insects13080745 crossref_primary_10_1002_cmdc_202100547 crossref_primary_10_1021_acs_chemrev_8b00630 crossref_primary_10_3389_fphar_2022_855792 crossref_primary_10_3390_ijms252011229 crossref_primary_10_1038_s41589_018_0090_8 crossref_primary_10_1590_1414_431x2023e12073 crossref_primary_10_3390_cancers14184401 crossref_primary_10_3389_fncel_2020_593050 crossref_primary_10_3389_fphys_2021_737834 crossref_primary_10_1073_pnas_1714131115 crossref_primary_10_1097_MS9_0000000000002291 crossref_primary_10_1039_D2CC06519C crossref_primary_10_1177_1744806920901890 crossref_primary_10_1016_j_neuropharm_2020_108266 crossref_primary_10_1007_s00249_023_01628_1 crossref_primary_10_1038_s41598_018_22033_1 crossref_primary_10_3390_toxins14070490 crossref_primary_10_31857_S0006302924030144 crossref_primary_10_1007_s10822_020_00330_0 crossref_primary_10_1038_s41598_020_69612_9 crossref_primary_10_1080_19336950_2022_2026015 crossref_primary_10_1152_jn_00210_2019 crossref_primary_10_3389_fphar_2018_00880 crossref_primary_10_3390_ph12020099 crossref_primary_10_1016_j_colsurfa_2022_128316 crossref_primary_10_1073_pnas_1817446116 crossref_primary_10_1016_j_bpj_2024_12_019 crossref_primary_10_1134_S199074782470017X crossref_primary_10_1021_acs_jcim_3c00645 crossref_primary_10_24884_2078_5658_2023_20_3_52_58 crossref_primary_10_1016_j_hrthm_2023_01_032 crossref_primary_10_3390_ph17040461 crossref_primary_10_1007_s11055_020_00987_y crossref_primary_10_3389_fphar_2021_742508 crossref_primary_10_1124_jpet_122_001407 crossref_primary_10_3389_fphar_2022_837088 crossref_primary_10_1085_jgp_201711783 crossref_primary_10_1085_jgp_202313418 crossref_primary_10_3390_membranes12100954 crossref_primary_10_3390_pharmaceutics14071356 crossref_primary_10_1124_mol_118_114025 crossref_primary_10_3390_ijms25074033 crossref_primary_10_1213_ANE_0000000000006738 crossref_primary_10_1016_j_neurom_2023_10_003 crossref_primary_10_1213_ANE_0000000000003597 crossref_primary_10_1016_j_toxicon_2020_06_002 crossref_primary_10_1073_pnas_1711699114 crossref_primary_10_1186_s13741_023_00314_2 crossref_primary_10_3389_fphar_2021_791740 crossref_primary_10_1134_S0022093021020150 crossref_primary_10_1016_j_drudis_2021_11_026 crossref_primary_10_3390_membranes12020229 crossref_primary_10_1142_S0219477520500157 crossref_primary_10_3390_ijms24010857 crossref_primary_10_7554_eLife_68128 crossref_primary_10_1134_S1607672919020054 crossref_primary_10_1016_j_molstruc_2020_128854 crossref_primary_10_1097_CORR_0000000000001566 crossref_primary_10_23950_jcmk_13541 crossref_primary_10_1039_D3CC02269B crossref_primary_10_23950_jcmk_11680 crossref_primary_10_3389_fphar_2021_756415 crossref_primary_10_3390_ijms22158143 crossref_primary_10_1016_j_colsurfb_2021_112215 crossref_primary_10_3389_fphar_2019_01374 crossref_primary_10_3390_toxins12040230 crossref_primary_10_1007_s00210_024_02954_7 crossref_primary_10_1213_ANE_0000000000004216 crossref_primary_10_3390_membranes12121252 crossref_primary_10_1016_j_cbpc_2024_110082 crossref_primary_10_3389_fphys_2019_00335 crossref_primary_10_7759_cureus_81128 crossref_primary_10_7759_cureus_43405 crossref_primary_10_1016_j_tips_2023_01_006 crossref_primary_10_1186_s13643_022_02068_2 crossref_primary_10_1085_jgp_201812278 crossref_primary_10_1080_17460441_2019_1553951 crossref_primary_10_1021_acs_jafc_9b00826 crossref_primary_10_1016_j_jbc_2023_102967 crossref_primary_10_1085_jgp_202413658 crossref_primary_10_1097_EJA_0000000000001348 crossref_primary_10_1134_S0006350924700568 crossref_primary_10_31857_S0233475524050033 crossref_primary_10_1021_acs_jpcb_0c11181 crossref_primary_10_3390_md21070396 crossref_primary_10_3390_ph14030204 crossref_primary_10_1021_acs_jpcb_3c07411 crossref_primary_10_1007_s12016_022_08937_x crossref_primary_10_1016_j_bpj_2021_11_014 |
Cites_doi | 10.1085/jgp.69.4.497 10.1016/S0026-895X(24)13073-8 10.1016/S0006-3495(96)79563-2 10.1124/mol.109.055863 10.1124/mol.105.014803 10.1371/journal.pone.0041667 10.1124/mol.114.097659 10.1016/S0022-3565(24)37206-4 10.1016/S0006-3495(00)76616-1 10.1016/j.tips.2013.01.002 10.1073/pnas.94.25.14126 10.1073/pnas.93.17.9270 10.1074/jbc.M206126200 10.1038/35102067 10.1107/S0907444909042073 10.1016/j.febslet.2006.10.035 10.1113/jphysiol.2011.224204 10.1124/mol.55.1.134 10.1073/pnas.84.19.6611 10.1016/j.febslet.2005.07.017 10.1016/j.jpain.2006.10.001 10.1073/pnas.1406855111 10.1016/S0006-3495(00)76390-9 10.1038/nature11054 10.1113/jphysiol.2001.016139 10.1007/s00424-014-1508-0 10.1074/jbc.M807569200 10.1007/s10822-009-9317-9 10.1038/nature12775 10.1113/jphysiol.2003.054973 10.1124/mol.113.091173 10.1085/jgp.103.3.501 10.1016/j.ejphar.2016.03.048 10.2174/1874467211003030129 10.1124/mol.112.078212 10.1021/ja00299a024 10.1124/mol.110.064683 10.1021/jm970327j 10.1021/jm000155h 10.1021/bi000486w 10.1016/0165-6147(87)90011-3 10.1016/0079-6107(82)90020-7 10.1038/nature10238 10.1126/science.8085162 10.1529/biophysj.106.100248 10.1073/pnas.92.25.11839 10.1016/S0026-895X(25)10187-9 10.1124/mol.105.018200 10.1016/S0028-3908(02)00400-8 10.1038/ncomms1351 10.1161/CIRCRESAHA.107.160663 10.1002/jcc.540070216 10.1016/S0026-895X(24)13075-1 10.1063/1.449621 10.1021/ja00315a051 10.1007/s00894-005-0066-y 10.1007/s004240050515 10.1073/pnas.1408710111 10.1124/mol.67.2 10.1038/nature19321 10.1038/35102009 10.1038/ncomms2184 10.1074/jbc.M006992200 10.1124/mol.59.5.1100 10.1126/science.aad2395 10.1146/annurev.pa.20.040180.000311 10.1124/mol.108.049759 10.1113/jphysiol.2007.130161 10.15252/embj.201593285 |
ContentType | Journal Article |
Copyright | 2017 Tikhonov and Zhorov. Copyright Rockefeller University Press Apr 2017 2017 Tikhonov and Zhorov 2017 |
Copyright_xml | – notice: 2017 Tikhonov and Zhorov. – notice: Copyright Rockefeller University Press Apr 2017 – notice: 2017 Tikhonov and Zhorov 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 K9. P64 7X8 5PM |
DOI | 10.1085/jgp.201611668 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Technology Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | Sodium channel block |
EISSN | 1540-7748 |
EndPage | 481 |
ExternalDocumentID | PMC5379917 4321876297 28258204 10_1085_jgp_201611668 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; |
GroupedDBID | --- -DZ -~X 123 18M 29K 2WC 36B 4.4 5RE 5VS 79B 85S AAYXX ACGFO ACGOD ACIWK ACNCT ACPRK ADBBV AENEX AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C45 CITATION CS3 D-I D0L DIK DU5 E3Z EBS EJD EMB F5P F9R GX1 H13 HF~ HYE KQ8 L7B O5R O5S OK1 P2P PQQKQ RHI RXW SJN TAE TAF TR2 TRP TWZ UHB UPT W8F WH7 WOQ YKV YOC YQT YSK YWH YZZ ZCA ZUP CGR CUY CVF ECM EIF NPM RHF RPM 7QP 7QR 7TK 7TS 8FD FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c415t-8a2041a5696475ca65c2c5adb2323d2e172bb0622e512711621eb8ab8feb37773 |
ISSN | 0022-1295 1540-7748 |
IngestDate | Thu Aug 21 14:11:56 EDT 2025 Fri Jul 11 09:55:08 EDT 2025 Mon Jun 30 10:39:39 EDT 2025 Thu Jan 02 22:41:49 EST 2025 Thu Jul 03 08:44:32 EDT 2025 Thu Apr 24 22:55:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | 2017 Tikhonov and Zhorov. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c415t-8a2041a5696475ca65c2c5adb2323d2e172bb0622e512711621eb8ab8feb37773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3630-7114 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5379917 |
PMID | 28258204 |
PQID | 1890086391 |
PQPubID | 42336 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5379917 proquest_miscellaneous_1874444268 proquest_journals_1890086391 pubmed_primary_28258204 crossref_citationtrail_10_1085_jgp_201611668 crossref_primary_10_1085_jgp_201611668 |
PublicationCentury | 2000 |
PublicationDate | 20170403 |
PublicationDateYYYYMMDD | 2017-04-03 |
PublicationDate_xml | – month: 4 year: 2017 text: 20170403 day: 3 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | The Journal of general physiology |
PublicationTitleAlternate | J Gen Physiol |
PublicationYear | 2017 |
Publisher | Rockefeller University Press The Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press – name: The Rockefeller University Press |
References | Catterall (2023072704554038800_bib10) 1987; 8 Dewar (2023072704554038800_bib14) 1985; 107 Kuo (2023072704554038800_bib22) 1998; 54 Wang (2023072704554038800_bib58) 2001; 59 Catterall (2023072704554038800_bib11) 2012; 590 Naylor (2023072704554038800_bib31) 2016; 35 Pancrazio (2023072704554038800_bib34) 1998; 284 Lipkind (2023072704554038800_bib26) 2005; 68 Tikhonov (2023072704554038800_bib48) 2012; 82 Lipkind (2023072704554038800_bib25) 2000; 39 Hille (2023072704554038800_bib18) 1977; 69 Quan (2023072704554038800_bib39) 1996; 70 Unverferth (2023072704554038800_bib52) 1998; 41 Yamagishi (2023072704554038800_bib65) 2009; 76 Pless (2023072704554038800_bib36) 2011; 2 Liu (2023072704554038800_bib28) 2003; 44 Wu (2023072704554038800_bib64) 2016; 537 Khodorov (2023072704554038800_bib20) 1981; 37 Tikhonov (2023072704554038800_bib49) 2006; 580 Wright (2023072704554038800_bib62) 1998; 54 Zhou (2023072704554038800_bib71) 2001; 414 Tikhonov (2023072704554038800_bib47) 2007; 93 Wang (2023072704554038800_bib53) 1994; 103 Tang (2023072704554038800_bib45) 2014; 505 McNulty (2023072704554038800_bib29) 2007; 581 Hebert (2023072704554038800_bib17) 1994; 45 Porter (2023072704554038800_bib37) 2012 Tsang (2023072704554038800_bib51) 2005; 67 Wang (2023072704554038800_bib56) 2004; 554 O’Leary (2023072704554038800_bib32) 2002; 541 Wang (2023072704554038800_bib54) 2014; 85 Qu (2023072704554038800_bib38) 1995; 92 Li (2023072704554038800_bib24) 1999; 55 Ragsdale (2023072704554038800_bib40) 1994; 265 Ragsdale (2023072704554038800_bib41) 1996; 93 Brooks (2023072704554038800_bib6) 1985; 83 Bruhova (2023072704554038800_bib8) 2008; 74 Zhang (2023072704554038800_bib69) 2012; 486 Garden (2023072704554038800_bib16) 2010; 24 Tikhonov (2023072704554038800_bib50) 2015; 467 Li (2023072704554038800_bib23) 1987; 84 Weiner (2023072704554038800_bib61) 1986; 7 Wang (2023072704554038800_bib59) 2006; 69 Weiner (2023072704554038800_bib60) 1984; 106 Catterall (2023072704554038800_bib12) 2015; 88 Wu (2023072704554038800_bib63) 2015; 350 Anger (2023072704554038800_bib2) 2001; 44 Dick (2023072704554038800_bib15) 2007; 8 Scheib (2023072704554038800_bib42) 2006; 12 Payandeh (2023072704554038800_bib35) 2011; 475 Hille (2023072704554038800_bib19) 2001 Yarov-Yarovoy (2023072704554038800_bib68) 2002; 277 O’Reilly (2023072704554038800_bib33) 2012; 7 Ahern (2023072704554038800_bib1) 2008; 102 Catterall (2023072704554038800_bib9) 1980; 20 Yang (2023072704554038800_bib66) 2012; 3 Chen (2023072704554038800_bib13) 2010; 66 Wang (2023072704554038800_bib55) 1997; 435 Korkosh (2023072704554038800_bib21) 2016; 780 Mike (2023072704554038800_bib30) 2010; 3 Tikhonov (2023072704554038800_bib46) 2005; 579 Browne (2023072704554038800_bib7) 2009; 284 Bagnéris (2023072704554038800_bib3) 2014; 111 Boiteux (2023072704554038800_bib5) 2014; 111 Wang (2023072704554038800_bib57) 2000; 79 Sunami (2023072704554038800_bib44) 1997; 94 Zhorov (2023072704554038800_bib70) 2013; 34 Lipkind (2023072704554038800_bib27) 2010; 78 Shrivastava (2023072704554038800_bib43) 2000; 78 Bernèche (2023072704554038800_bib4) 2001; 414 Yarov-Yarovoy (2023072704554038800_bib67) 2001; 276 28289068 - J Gen Physiol. 2017 Apr 3;149(4):405 |
References_xml | – volume: 69 start-page: 497 year: 1977 ident: 2023072704554038800_bib18 article-title: Local anesthetics: Hydrophilic and hydrophobic pathways for the drug-receptor reaction publication-title: J. Gen. Physiol. doi: 10.1085/jgp.69.4.497 – volume: 54 start-page: 712 year: 1998 ident: 2023072704554038800_bib22 article-title: A common anticonvulsant binding site for phenytoin, carbamazepine, and lamotrigine in neuronal Na+ channels publication-title: Mol. Pharmacol. doi: 10.1016/S0026-895X(24)13073-8 – volume: 70 start-page: 194 year: 1996 ident: 2023072704554038800_bib39 article-title: Use-dependent inhibition of Na+ currents by benzocaine homologs publication-title: Biophys. J. doi: 10.1016/S0006-3495(96)79563-2 – volume: 76 start-page: 861 year: 2009 ident: 2023072704554038800_bib65 article-title: Novel molecular determinants in the pore region of sodium channels regulate local anesthetic binding publication-title: Mol. Pharmacol. doi: 10.1124/mol.109.055863 – volume: 68 start-page: 1611 year: 2005 ident: 2023072704554038800_bib26 article-title: Molecular modeling of local anesthetic drug binding by voltage-gated sodium channels publication-title: Mol. Pharmacol. doi: 10.1124/mol.105.014803 – volume: 7 start-page: e41667 year: 2012 ident: 2023072704554038800_bib33 article-title: Bisphenol A binds to the local anesthetic receptor site to block the human cardiac sodium channel publication-title: PLoS One. doi: 10.1371/journal.pone.0041667 – volume: 88 start-page: 141 year: 2015 ident: 2023072704554038800_bib12 article-title: Structural basis for pharmacology of voltage-gated sodium and calcium channels publication-title: Mol. Pharmacol. doi: 10.1124/mol.114.097659 – volume: 284 start-page: 208 year: 1998 ident: 2023072704554038800_bib34 article-title: Inhibition of neuronal Na+ channels by antidepressant drugs publication-title: J. Pharmacol. Exp. Ther. doi: 10.1016/S0022-3565(24)37206-4 – volume: 78 start-page: 557 year: 2000 ident: 2023072704554038800_bib43 article-title: Simulations of ion permeation through a potassium channel: Molecular dynamics of KcsA in a phospholipid bilayer publication-title: Biophys. J. doi: 10.1016/S0006-3495(00)76616-1 – volume: 34 start-page: 154 year: 2013 ident: 2023072704554038800_bib70 article-title: Ligand action on sodium, potassium, and calcium channels: Role of permeant ions publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2013.01.002 – volume: 94 start-page: 14126 year: 1997 ident: 2023072704554038800_bib44 article-title: Sodium channel selectivity filter regulates antiarrhythmic drug binding publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.94.25.14126 – volume: 93 start-page: 9270 year: 1996 ident: 2023072704554038800_bib41 article-title: Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.93.17.9270 – volume: 277 start-page: 35393 year: 2002 ident: 2023072704554038800_bib68 article-title: Role of amino acid residues in transmembrane segments IS6 and IIS6 of the Na+ channel alpha subunit in voltage-dependent gating and drug block publication-title: J. Biol. Chem. doi: 10.1074/jbc.M206126200 – volume: 414 start-page: 73 year: 2001 ident: 2023072704554038800_bib4 article-title: Energetics of ion conduction through the K+ channel publication-title: Nature. doi: 10.1038/35102067 – volume: 66 start-page: 12 year: 2010 ident: 2023072704554038800_bib13 article-title: MolProbity: All-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909042073 – volume: 580 start-page: 6027 year: 2006 ident: 2023072704554038800_bib49 article-title: Atomic determinants of state-dependent block of sodium channels by charged local anesthetics and benzocaine publication-title: FEBS Lett. doi: 10.1016/j.febslet.2006.10.035 – volume: 590 start-page: 2577 year: 2012 ident: 2023072704554038800_bib11 article-title: Voltage-gated sodium channels at 60: Structure, function and pathophysiology publication-title: J. Physiol. doi: 10.1113/jphysiol.2011.224204 – volume: 55 start-page: 134 year: 1999 ident: 2023072704554038800_bib24 article-title: A molecular basis for the different local anesthetic affinities of resting versus open and inactivated states of the sodium channel publication-title: Mol. Pharmacol. doi: 10.1124/mol.55.1.134 – volume: 84 start-page: 6611 year: 1987 ident: 2023072704554038800_bib23 article-title: Monte Carlo-minimization approach to the multiple-minima problem in protein folding publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.84.19.6611 – volume: 579 start-page: 4207 year: 2005 ident: 2023072704554038800_bib46 article-title: Sodium channel activators: Model of binding inside the pore and a possible mechanism of action publication-title: FEBS Lett. doi: 10.1016/j.febslet.2005.07.017 – volume: 8 start-page: 315 year: 2007 ident: 2023072704554038800_bib15 article-title: Sodium channel blockade may contribute to the analgesic efficacy of antidepressants publication-title: J. Pain. doi: 10.1016/j.jpain.2006.10.001 – volume: 111 start-page: 8428 year: 2014 ident: 2023072704554038800_bib3 article-title: Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1406855111 – volume: 79 start-page: 1379 year: 2000 ident: 2023072704554038800_bib57 article-title: Residues in Na(+) channel D3-S6 segment modulate both batrachotoxin and local anesthetic affinities publication-title: Biophys. J. doi: 10.1016/S0006-3495(00)76390-9 – volume: 486 start-page: 130 year: 2012 ident: 2023072704554038800_bib69 article-title: Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel publication-title: Nature. doi: 10.1038/nature11054 – start-page: 663 volume-title: Handbook of Clinical Neurology. Epilepsy, Part II. year: 2012 ident: 2023072704554038800_bib37 article-title: Mechanisms of action of antiseizure drugs – volume: 541 start-page: 701 year: 2002 ident: 2023072704554038800_bib32 article-title: Cocaine binds to a common site on open and inactivated human heart (Na(v)1.5) sodium channels publication-title: J. Physiol. doi: 10.1113/jphysiol.2001.016139 – volume: 467 start-page: 253 year: 2015 ident: 2023072704554038800_bib50 article-title: State-dependent inter-repeat contacts of exceptionally conserved asparagines in the inner helices of sodium and calcium channels publication-title: Pflugers Arch. doi: 10.1007/s00424-014-1508-0 – volume: 284 start-page: 10523 year: 2009 ident: 2023072704554038800_bib7 article-title: Structural determinants of drugs acting on the Nav1.8 channel publication-title: J. Biol. Chem. doi: 10.1074/jbc.M807569200 – volume: 24 start-page: 91 year: 2010 ident: 2023072704554038800_bib16 article-title: Docking flexible ligands in proteins with a solvent exposure- and distance-dependent dielectric function publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-009-9317-9 – volume: 505 start-page: 56 year: 2014 ident: 2023072704554038800_bib45 article-title: Structural basis for Ca2+ selectivity of a voltage-gated calcium channel publication-title: Nature. doi: 10.1038/nature12775 – volume: 554 start-page: 621 year: 2004 ident: 2023072704554038800_bib56 article-title: Mexiletine block of wild-type and inactivation-deficient human skeletal muscle hNav1.4 Na+ channels publication-title: J. Physiol. doi: 10.1113/jphysiol.2003.054973 – volume: 85 start-page: 692 year: 2014 ident: 2023072704554038800_bib54 article-title: Block of human cardiac sodium channels by lacosamide: Evidence for slow drug binding along the activation pathway publication-title: Mol. Pharmacol. doi: 10.1124/mol.113.091173 – volume: 103 start-page: 501 year: 1994 ident: 2023072704554038800_bib53 article-title: Binding of benzocaine in batrachotoxin-modified Na+ channels. State-dependent interactions publication-title: J. Gen. Physiol. doi: 10.1085/jgp.103.3.501 – volume: 780 start-page: 188 year: 2016 ident: 2023072704554038800_bib21 article-title: Modeling interactions between blocking and permeant cations in the NavMs channel publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2016.03.048 – volume: 3 start-page: 129 year: 2010 ident: 2023072704554038800_bib30 article-title: The enigmatic drug binding site for sodium channel inhibitors publication-title: Curr. Mol. Pharmacol. doi: 10.2174/1874467211003030129 – volume: 82 start-page: 97 year: 2012 ident: 2023072704554038800_bib48 article-title: Architecture and pore block of eukaryotic voltage-gated sodium channels in view of NavAb bacterial sodium channel structure publication-title: Mol. Pharmacol. doi: 10.1124/mol.112.078212 – volume: 107 start-page: 3902 year: 1985 ident: 2023072704554038800_bib14 article-title: Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical model publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00299a024 – volume: 78 start-page: 631 year: 2010 ident: 2023072704554038800_bib27 article-title: Molecular model of anticonvulsant drug binding to the voltage-gated sodium channel inner pore publication-title: Mol. Pharmacol. doi: 10.1124/mol.110.064683 – volume: 41 start-page: 63 year: 1998 ident: 2023072704554038800_bib52 article-title: Synthesis, anticonvulsant activity, and structure-activity relationships of sodium channel blocking 3-aminopyrroles publication-title: J. Med. Chem. doi: 10.1021/jm970327j – volume: 44 start-page: 115 year: 2001 ident: 2023072704554038800_bib2 article-title: Medicinal chemistry of neuronal voltage-gated sodium channel blockers publication-title: J. Med. Chem. doi: 10.1021/jm000155h – volume: 39 start-page: 8161 year: 2000 ident: 2023072704554038800_bib25 article-title: KcsA crystal structure as framework for a molecular model of the Na(+) channel pore publication-title: Biochemistry. doi: 10.1021/bi000486w – volume: 8 start-page: 57 year: 1987 ident: 2023072704554038800_bib10 article-title: Common modes of drug action on Na+ channels: local anesthetics, antiarrhythmics and anticonvulsants publication-title: Trends Pharmacol. Sci. doi: 10.1016/0165-6147(87)90011-3 – volume: 37 start-page: 49 year: 1981 ident: 2023072704554038800_bib20 article-title: Sodium inactivation and drug-induced immobilization of the gating charge in nerve membrane publication-title: Prog. Biophys. Mol. Biol. doi: 10.1016/0079-6107(82)90020-7 – volume: 475 start-page: 353 year: 2011 ident: 2023072704554038800_bib35 article-title: The crystal structure of a voltage-gated sodium channel publication-title: Nature. doi: 10.1038/nature10238 – volume: 265 start-page: 1724 year: 1994 ident: 2023072704554038800_bib40 article-title: Molecular determinants of state-dependent block of Na+ channels by local anesthetics publication-title: Science. doi: 10.1126/science.8085162 – volume: 93 start-page: 1557 year: 2007 ident: 2023072704554038800_bib47 article-title: Sodium channels: Ionic model of slow inactivation and state-dependent drug binding publication-title: Biophys. J. doi: 10.1529/biophysj.106.100248 – volume: 92 start-page: 11839 year: 1995 ident: 2023072704554038800_bib38 article-title: Molecular determinants of drug access to the receptor site for antiarrhythmic drugs in the cardiac Na+ channel publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.92.25.11839 – volume: 45 start-page: 1055 year: 1994 ident: 2023072704554038800_bib17 article-title: Block of the rat brain IIA sodium channel alpha subunit by the neuroprotective drug riluzole publication-title: Mol. Pharmacol. doi: 10.1016/S0026-895X(25)10187-9 – volume: 69 start-page: 788 year: 2006 ident: 2023072704554038800_bib59 article-title: How batrachotoxin modifies the sodium channel permeation pathway: Computer modeling and site-directed mutagenesis publication-title: Mol. Pharmacol. doi: 10.1124/mol.105.018200 – volume: 44 start-page: 413 year: 2003 ident: 2023072704554038800_bib28 article-title: Differential interactions of lamotrigine and related drugs with transmembrane segment IVS6 of voltage-gated sodium channels publication-title: Neuropharmacology. doi: 10.1016/S0028-3908(02)00400-8 – volume: 2 start-page: 351 year: 2011 ident: 2023072704554038800_bib36 article-title: Molecular basis for class Ib anti-arrhythmic inhibition of cardiac sodium channels publication-title: Nat. Commun. doi: 10.1038/ncomms1351 – volume: 102 start-page: 86 year: 2008 ident: 2023072704554038800_bib1 article-title: Electrostatic contributions of aromatic residues in the local anesthetic receptor of voltage-gated sodium channels publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.107.160663 – volume: 7 start-page: 230 year: 1986 ident: 2023072704554038800_bib61 article-title: An all atom force field for simulations of proteins and nucleic acids publication-title: J. Comput. Chem. doi: 10.1002/jcc.540070216 – volume: 54 start-page: 733 year: 1998 ident: 2023072704554038800_bib62 article-title: Lysine point mutations in Na+ channel D4-S6 reduce inactivated channel block by local anesthetics publication-title: Mol. Pharmacol. doi: 10.1016/S0026-895X(24)13075-1 – volume: 83 start-page: 5897 year: 1985 ident: 2023072704554038800_bib6 article-title: Structural and energetic effects of truncating long ranged interactions in ionic and polar fluids publication-title: J. Chem. Phys. doi: 10.1063/1.449621 – volume: 106 start-page: 765 year: 1984 ident: 2023072704554038800_bib60 article-title: A new force field for molecular mechanical simulation of nucleic acids and proteins publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00315a051 – volume: 12 start-page: 813 year: 2006 ident: 2023072704554038800_bib42 article-title: Modeling the pore structure of voltage-gated sodium channels in closed, open, and fast-inactivated conformation reveals details of site 1 toxin and local anesthetic binding publication-title: J. Mol. Model. doi: 10.1007/s00894-005-0066-y – volume: 435 start-page: 293 year: 1997 ident: 2023072704554038800_bib55 article-title: A common local anesthetic receptor for benzocaine and etidocaine in voltage-gated mu1 Na+ channels publication-title: Pflugers Arch. doi: 10.1007/s004240050515 – volume: 111 start-page: 13057 year: 2014 ident: 2023072704554038800_bib5 article-title: Local anesthetic and antiepileptic drug access and binding to a bacterial voltage-gated sodium channel publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1408710111 – volume: 67 start-page: 424 year: 2005 ident: 2023072704554038800_bib51 article-title: A multifunctional aromatic residue in the external pore vestibule of Na+ channels contributes to the local anesthetic receptor publication-title: Mol. Pharmacol. doi: 10.1124/mol.67.2 – volume: 537 start-page: 191 year: 2016 ident: 2023072704554038800_bib64 article-title: Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution publication-title: Nature. doi: 10.1038/nature19321 – volume: 414 start-page: 43 year: 2001 ident: 2023072704554038800_bib71 article-title: Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution publication-title: Nature. doi: 10.1038/35102009 – volume-title: Ion Channels of Excitable Membranes. year: 2001 ident: 2023072704554038800_bib19 – volume: 3 start-page: 1186 year: 2012 ident: 2023072704554038800_bib66 article-title: Structural modelling and mutant cycle analysis predict pharmacoresponsiveness of a Na(V)1.7 mutant channel publication-title: Nat. Commun. doi: 10.1038/ncomms2184 – volume: 276 start-page: 20 year: 2001 ident: 2023072704554038800_bib67 article-title: Molecular determinants of voltage-dependent gating and binding of pore-blocking drugs in transmembrane segment IIIS6 of the Na(+) channel alpha subunit publication-title: J. Biol. Chem. doi: 10.1074/jbc.M006992200 – volume: 59 start-page: 1100 year: 2001 ident: 2023072704554038800_bib58 article-title: Disparate role of Na(+) channel D2-S6 residues in batrachotoxin and local anesthetic action publication-title: Mol. Pharmacol. doi: 10.1124/mol.59.5.1100 – volume: 350 start-page: aad2395 year: 2015 ident: 2023072704554038800_bib63 article-title: Structure of the voltage-gated calcium channel Cav1.1 complex publication-title: Science. doi: 10.1126/science.aad2395 – volume: 20 start-page: 15 year: 1980 ident: 2023072704554038800_bib9 article-title: Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev.pa.20.040180.000311 – volume: 74 start-page: 1033 year: 2008 ident: 2023072704554038800_bib8 article-title: Access and binding of local anesthetics in the closed sodium channel publication-title: Mol. Pharmacol. doi: 10.1124/mol.108.049759 – volume: 581 start-page: 741 year: 2007 ident: 2023072704554038800_bib29 article-title: Charge at the lidocaine binding site residue Phe-1759 affects permeation in human cardiac voltage-gated sodium channels publication-title: J. Physiol. doi: 10.1113/jphysiol.2007.130161 – volume: 35 start-page: 820 year: 2016 ident: 2023072704554038800_bib31 article-title: Molecular basis of ion permeability in a voltage-gated sodium channel publication-title: EMBO J. doi: 10.15252/embj.201593285 – reference: 28289068 - J Gen Physiol. 2017 Apr 3;149(4):405 |
SSID | ssj0000520 |
Score | 2.4966245 |
Snippet | Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior... A number of different drugs block sodium channels, but their mechanism of block is unclear. Tikhonov and Zhorov combine homology modeling with ligand docking... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 465 |
SubjectTerms | Acetamides - pharmacology Anesthetics, Local - pharmacology Animals Anti-Arrhythmia Agents - pharmacology Anticonvulsants - pharmacology Benzhydryl Compounds - pharmacology Binding Sites Bisphenol A Carbamazepine - pharmacology Cocaine - pharmacology Humans Lacosamide Lamotrigine Lidocaine - analogs & derivatives Lidocaine - pharmacology Ligands Molecular Docking Simulation NAV1.4 Voltage-Gated Sodium Channel - chemistry NAV1.4 Voltage-Gated Sodium Channel - metabolism Phenols - pharmacology Phenytoin - pharmacology Piperazines - pharmacology Protein Binding Pyrimidines - pharmacology Quinidine - pharmacology Sodium Sodium Channel Blockers - pharmacology Triazines - pharmacology |
Title | Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28258204 https://www.proquest.com/docview/1890086391 https://www.proquest.com/docview/1874444268 https://pubmed.ncbi.nlm.nih.gov/PMC5379917 |
Volume | 149 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgvPCCgHHpNpCR0F66lMax4-RxQ8CENIREJ_UBKXIcZ63WJqhNJ5Vfzzlx6ibdkAZ9iCrbufk7Of5snwsh7wMdq8xn2lNSGI_7OvKiMICJq2EGprhBLCL0d774Fp5f8q9jMd7u4NfeJVU60L_v9Cv5H1ShDHBFL9l_QNZdFArgP-ALR0AYjvfC-MKg3y6muQDKtyyz6Wpee_IWZoYW6foayWU9WvUVqDTgelVjFwT9OVWLxWRdTeauKKuL0Q59NVuqJsbThrlufchq9nplw1XblZHO0vxoej0pi_LGajN4uv7ZYLs8XS5szVkJ2qX_Y9BedYCRDI1VgrYmZZgUxSbIHJhGeaJ1orSRM512tRFJGzHiLV3JQ9EadrnN3HJLowMlRI1-hbFFgZ36oc3C042cvTOiOTvDeoc9EgmcnrjTH5JHDOYUmO7iy3hrD4QGQZvQ8vhiTUBWOP1D5-5dAnNrVrJrXNtiK6On5EkDFD21MvOMPDDFc7J_WqiqnK_pMf3uYNsnP50Y0TKnVoxoI0a0FiOarmktRrQlRid0R4iwIKM7IvSCXH7-NPp47jVJNzwNXK7yIsWG3FciRBdloVUoNNNCZSlQ7yBjBghvmg5DxgxQRQk9wnyTRiqNcpMGUsrgJdkrysK8JjT2A21UNMxNlnOhRBrnITcmMrmOjeTDHjnZ9GSim4j0mBhlltyJW48cu-a_bCiWvzU82sCSNF_rMvGjGKfvQez3yDtXDboUN8ig88oVtpEcfgwv8cqi6O6EPt7AlnmPyA6-rgHGae_WFNNJHa9dBBJmYfLgvs9_SB5vP7kjslctVuYNUN8qfVuL7B9jO7Dt |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+sodium+channel+block+by+local+anesthetics%2C+antiarrhythmics%2C+and+anticonvulsants&rft.jtitle=The+Journal+of+general+physiology&rft.au=Tikhonov%2C+Denis+B.&rft.au=Zhorov%2C+Boris+S.&rft.date=2017-04-03&rft.issn=0022-1295&rft.eissn=1540-7748&rft.volume=149&rft.issue=4&rft.spage=465&rft.epage=481&rft_id=info:doi/10.1085%2Fjgp.201611668&rft.externalDBID=n%2Fa&rft.externalDocID=10_1085_jgp_201611668 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1295&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1295&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1295&client=summon |