Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants

Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Her...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of general physiology Vol. 149; no. 4; pp. 465 - 481
Main Authors Tikhonov, Denis B., Zhorov, Boris S.
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 03.04.2017
The Rockefeller University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds.
AbstractList A number of different drugs block sodium channels, but their mechanism of block is unclear. Tikhonov and Zhorov combine homology modeling with ligand docking and propose a pharmacophore for sodium channel blockers involving cationic and aromatic moieties. Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds.
Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds.
Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds.Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior studies have revealed a common drug-binding region within the pore, but details about the binding sites and mechanism of block remain unclear. Here, we use the x-ray structure of a prokaryotic sodium channel, NavMs, to model a eukaryotic channel and dock representative ligands. These include lidocaine, QX-314, cocaine, quinidine, lamotrigine, carbamazepine (CMZ), phenytoin, lacosamide, sipatrigine, and bisphenol A. Preliminary calculations demonstrated that a sodium ion near the selectivity filter attracts electroneutral CMZ but repels cationic lidocaine. Therefore, we further docked electroneutral and cationic drugs with and without a sodium ion, respectively. In our models, all the drugs interact with a phenylalanine in helix IVS6. Electroneutral drugs trap a sodium ion in the proximity of the selectivity filter, and this same site attracts the charged group of cationic ligands. At this position, even small drugs can block the permeation pathway by an electrostatic or steric mechanism. Our study proposes a common pharmacophore for these diverse drugs. It includes a cationic moiety and an aromatic moiety, which are usually linked by four bonds.
Author Tikhonov, Denis B.
Zhorov, Boris S.
AuthorAffiliation 2 Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
1 Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
AuthorAffiliation_xml – name: 1 Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
– name: 2 Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
Author_xml – sequence: 1
  givenname: Denis B.
  surname: Tikhonov
  fullname: Tikhonov, Denis B.
– sequence: 2
  givenname: Boris S.
  orcidid: 0000-0002-3630-7114
  surname: Zhorov
  fullname: Zhorov, Boris S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28258204$$D View this record in MEDLINE/PubMed
BookMark eNptUU1P3DAUtBBVWaBHrlWkXnpowH6JP3JBqhD9kEBc2huSZTte4q1jL3aCtP8eLyyoRX2XZz_PG814DtF-iMEidELwKcGCnq3u1qeACSOEMbGHFoS2uOa8FftogTFATaCjB-gw5xUuRQG_RwcggArA7QLdXlszqODyWMVllWPv5rHaToL1lfbR_Kn0pipd-UoFm6fBTs7kL-UyOZXSsJmGcTfon4YmhofZ53LMx-jdUvlsP-z6Efr97fLXxY_66ub7z4uvV7VpCZ1qoYoUoijrWMupUYwaMFT1GhpoerCEg9aYAVhKgBejQKwWSoul1Q3nvDlC58-861mPtjc2TEl5uU5uVGkjo3Ly35fgBnkXHyRteNeRLcHnHUGK93NxKUeXjfW-WI5zlkTwthQwUaCf3kBXcU6h2CuoDmPBmo4U1Me_Fb1Kefn4AmieASbFnJNdSuMmNbm4Fei8JFhu45UlXvkab9mq32y9EP8f_wjftqcw
CODEN JGPLAD
CitedBy_id crossref_primary_10_3390_ph15101208
crossref_primary_10_3390_insects13080745
crossref_primary_10_1002_cmdc_202100547
crossref_primary_10_1021_acs_chemrev_8b00630
crossref_primary_10_3389_fphar_2022_855792
crossref_primary_10_3390_ijms252011229
crossref_primary_10_1038_s41589_018_0090_8
crossref_primary_10_1590_1414_431x2023e12073
crossref_primary_10_3390_cancers14184401
crossref_primary_10_3389_fncel_2020_593050
crossref_primary_10_3389_fphys_2021_737834
crossref_primary_10_1073_pnas_1714131115
crossref_primary_10_1097_MS9_0000000000002291
crossref_primary_10_1039_D2CC06519C
crossref_primary_10_1177_1744806920901890
crossref_primary_10_1016_j_neuropharm_2020_108266
crossref_primary_10_1007_s00249_023_01628_1
crossref_primary_10_1038_s41598_018_22033_1
crossref_primary_10_3390_toxins14070490
crossref_primary_10_31857_S0006302924030144
crossref_primary_10_1007_s10822_020_00330_0
crossref_primary_10_1038_s41598_020_69612_9
crossref_primary_10_1080_19336950_2022_2026015
crossref_primary_10_1152_jn_00210_2019
crossref_primary_10_3389_fphar_2018_00880
crossref_primary_10_3390_ph12020099
crossref_primary_10_1016_j_colsurfa_2022_128316
crossref_primary_10_1073_pnas_1817446116
crossref_primary_10_1016_j_bpj_2024_12_019
crossref_primary_10_1134_S199074782470017X
crossref_primary_10_1021_acs_jcim_3c00645
crossref_primary_10_24884_2078_5658_2023_20_3_52_58
crossref_primary_10_1016_j_hrthm_2023_01_032
crossref_primary_10_3390_ph17040461
crossref_primary_10_1007_s11055_020_00987_y
crossref_primary_10_3389_fphar_2021_742508
crossref_primary_10_1124_jpet_122_001407
crossref_primary_10_3389_fphar_2022_837088
crossref_primary_10_1085_jgp_201711783
crossref_primary_10_1085_jgp_202313418
crossref_primary_10_3390_membranes12100954
crossref_primary_10_3390_pharmaceutics14071356
crossref_primary_10_1124_mol_118_114025
crossref_primary_10_3390_ijms25074033
crossref_primary_10_1213_ANE_0000000000006738
crossref_primary_10_1016_j_neurom_2023_10_003
crossref_primary_10_1213_ANE_0000000000003597
crossref_primary_10_1016_j_toxicon_2020_06_002
crossref_primary_10_1073_pnas_1711699114
crossref_primary_10_1186_s13741_023_00314_2
crossref_primary_10_3389_fphar_2021_791740
crossref_primary_10_1134_S0022093021020150
crossref_primary_10_1016_j_drudis_2021_11_026
crossref_primary_10_3390_membranes12020229
crossref_primary_10_1142_S0219477520500157
crossref_primary_10_3390_ijms24010857
crossref_primary_10_7554_eLife_68128
crossref_primary_10_1134_S1607672919020054
crossref_primary_10_1016_j_molstruc_2020_128854
crossref_primary_10_1097_CORR_0000000000001566
crossref_primary_10_23950_jcmk_13541
crossref_primary_10_1039_D3CC02269B
crossref_primary_10_23950_jcmk_11680
crossref_primary_10_3389_fphar_2021_756415
crossref_primary_10_3390_ijms22158143
crossref_primary_10_1016_j_colsurfb_2021_112215
crossref_primary_10_3389_fphar_2019_01374
crossref_primary_10_3390_toxins12040230
crossref_primary_10_1007_s00210_024_02954_7
crossref_primary_10_1213_ANE_0000000000004216
crossref_primary_10_3390_membranes12121252
crossref_primary_10_1016_j_cbpc_2024_110082
crossref_primary_10_3389_fphys_2019_00335
crossref_primary_10_7759_cureus_81128
crossref_primary_10_7759_cureus_43405
crossref_primary_10_1016_j_tips_2023_01_006
crossref_primary_10_1186_s13643_022_02068_2
crossref_primary_10_1085_jgp_201812278
crossref_primary_10_1080_17460441_2019_1553951
crossref_primary_10_1021_acs_jafc_9b00826
crossref_primary_10_1016_j_jbc_2023_102967
crossref_primary_10_1085_jgp_202413658
crossref_primary_10_1097_EJA_0000000000001348
crossref_primary_10_1134_S0006350924700568
crossref_primary_10_31857_S0233475524050033
crossref_primary_10_1021_acs_jpcb_0c11181
crossref_primary_10_3390_md21070396
crossref_primary_10_3390_ph14030204
crossref_primary_10_1021_acs_jpcb_3c07411
crossref_primary_10_1007_s12016_022_08937_x
crossref_primary_10_1016_j_bpj_2021_11_014
Cites_doi 10.1085/jgp.69.4.497
10.1016/S0026-895X(24)13073-8
10.1016/S0006-3495(96)79563-2
10.1124/mol.109.055863
10.1124/mol.105.014803
10.1371/journal.pone.0041667
10.1124/mol.114.097659
10.1016/S0022-3565(24)37206-4
10.1016/S0006-3495(00)76616-1
10.1016/j.tips.2013.01.002
10.1073/pnas.94.25.14126
10.1073/pnas.93.17.9270
10.1074/jbc.M206126200
10.1038/35102067
10.1107/S0907444909042073
10.1016/j.febslet.2006.10.035
10.1113/jphysiol.2011.224204
10.1124/mol.55.1.134
10.1073/pnas.84.19.6611
10.1016/j.febslet.2005.07.017
10.1016/j.jpain.2006.10.001
10.1073/pnas.1406855111
10.1016/S0006-3495(00)76390-9
10.1038/nature11054
10.1113/jphysiol.2001.016139
10.1007/s00424-014-1508-0
10.1074/jbc.M807569200
10.1007/s10822-009-9317-9
10.1038/nature12775
10.1113/jphysiol.2003.054973
10.1124/mol.113.091173
10.1085/jgp.103.3.501
10.1016/j.ejphar.2016.03.048
10.2174/1874467211003030129
10.1124/mol.112.078212
10.1021/ja00299a024
10.1124/mol.110.064683
10.1021/jm970327j
10.1021/jm000155h
10.1021/bi000486w
10.1016/0165-6147(87)90011-3
10.1016/0079-6107(82)90020-7
10.1038/nature10238
10.1126/science.8085162
10.1529/biophysj.106.100248
10.1073/pnas.92.25.11839
10.1016/S0026-895X(25)10187-9
10.1124/mol.105.018200
10.1016/S0028-3908(02)00400-8
10.1038/ncomms1351
10.1161/CIRCRESAHA.107.160663
10.1002/jcc.540070216
10.1016/S0026-895X(24)13075-1
10.1063/1.449621
10.1021/ja00315a051
10.1007/s00894-005-0066-y
10.1007/s004240050515
10.1073/pnas.1408710111
10.1124/mol.67.2
10.1038/nature19321
10.1038/35102009
10.1038/ncomms2184
10.1074/jbc.M006992200
10.1124/mol.59.5.1100
10.1126/science.aad2395
10.1146/annurev.pa.20.040180.000311
10.1124/mol.108.049759
10.1113/jphysiol.2007.130161
10.15252/embj.201593285
ContentType Journal Article
Copyright 2017 Tikhonov and Zhorov.
Copyright Rockefeller University Press Apr 2017
2017 Tikhonov and Zhorov 2017
Copyright_xml – notice: 2017 Tikhonov and Zhorov.
– notice: Copyright Rockefeller University Press Apr 2017
– notice: 2017 Tikhonov and Zhorov 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
K9.
P64
7X8
5PM
DOI 10.1085/jgp.201611668
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Technology Research Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate Sodium channel block
EISSN 1540-7748
EndPage 481
ExternalDocumentID PMC5379917
4321876297
28258204
10_1085_jgp_201611668
Genre Journal Article
GrantInformation_xml – fundername: ;
GroupedDBID ---
-DZ
-~X
123
18M
29K
2WC
36B
4.4
5RE
5VS
79B
85S
AAYXX
ACGFO
ACGOD
ACIWK
ACNCT
ACPRK
ADBBV
AENEX
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C45
CITATION
CS3
D-I
D0L
DIK
DU5
E3Z
EBS
EJD
EMB
F5P
F9R
GX1
H13
HF~
HYE
KQ8
L7B
O5R
O5S
OK1
P2P
PQQKQ
RHI
RXW
SJN
TAE
TAF
TR2
TRP
TWZ
UHB
UPT
W8F
WH7
WOQ
YKV
YOC
YQT
YSK
YWH
YZZ
ZCA
ZUP
CGR
CUY
CVF
ECM
EIF
NPM
RHF
RPM
7QP
7QR
7TK
7TS
8FD
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c415t-8a2041a5696475ca65c2c5adb2323d2e172bb0622e512711621eb8ab8feb37773
ISSN 0022-1295
1540-7748
IngestDate Thu Aug 21 14:11:56 EDT 2025
Fri Jul 11 09:55:08 EDT 2025
Mon Jun 30 10:39:39 EDT 2025
Thu Jan 02 22:41:49 EST 2025
Thu Jul 03 08:44:32 EDT 2025
Thu Apr 24 22:55:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2017 Tikhonov and Zhorov.
This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c415t-8a2041a5696475ca65c2c5adb2323d2e172bb0622e512711621eb8ab8feb37773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3630-7114
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5379917
PMID 28258204
PQID 1890086391
PQPubID 42336
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5379917
proquest_miscellaneous_1874444268
proquest_journals_1890086391
pubmed_primary_28258204
crossref_citationtrail_10_1085_jgp_201611668
crossref_primary_10_1085_jgp_201611668
PublicationCentury 2000
PublicationDate 20170403
PublicationDateYYYYMMDD 2017-04-03
PublicationDate_xml – month: 4
  year: 2017
  text: 20170403
  day: 3
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle The Journal of general physiology
PublicationTitleAlternate J Gen Physiol
PublicationYear 2017
Publisher Rockefeller University Press
The Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
– name: The Rockefeller University Press
References Catterall (2023072704554038800_bib10) 1987; 8
Dewar (2023072704554038800_bib14) 1985; 107
Kuo (2023072704554038800_bib22) 1998; 54
Wang (2023072704554038800_bib58) 2001; 59
Catterall (2023072704554038800_bib11) 2012; 590
Naylor (2023072704554038800_bib31) 2016; 35
Pancrazio (2023072704554038800_bib34) 1998; 284
Lipkind (2023072704554038800_bib26) 2005; 68
Tikhonov (2023072704554038800_bib48) 2012; 82
Lipkind (2023072704554038800_bib25) 2000; 39
Hille (2023072704554038800_bib18) 1977; 69
Quan (2023072704554038800_bib39) 1996; 70
Unverferth (2023072704554038800_bib52) 1998; 41
Yamagishi (2023072704554038800_bib65) 2009; 76
Pless (2023072704554038800_bib36) 2011; 2
Liu (2023072704554038800_bib28) 2003; 44
Wu (2023072704554038800_bib64) 2016; 537
Khodorov (2023072704554038800_bib20) 1981; 37
Tikhonov (2023072704554038800_bib49) 2006; 580
Wright (2023072704554038800_bib62) 1998; 54
Zhou (2023072704554038800_bib71) 2001; 414
Tikhonov (2023072704554038800_bib47) 2007; 93
Wang (2023072704554038800_bib53) 1994; 103
Tang (2023072704554038800_bib45) 2014; 505
McNulty (2023072704554038800_bib29) 2007; 581
Hebert (2023072704554038800_bib17) 1994; 45
Porter (2023072704554038800_bib37) 2012
Tsang (2023072704554038800_bib51) 2005; 67
Wang (2023072704554038800_bib56) 2004; 554
O’Leary (2023072704554038800_bib32) 2002; 541
Wang (2023072704554038800_bib54) 2014; 85
Qu (2023072704554038800_bib38) 1995; 92
Li (2023072704554038800_bib24) 1999; 55
Ragsdale (2023072704554038800_bib40) 1994; 265
Ragsdale (2023072704554038800_bib41) 1996; 93
Brooks (2023072704554038800_bib6) 1985; 83
Bruhova (2023072704554038800_bib8) 2008; 74
Zhang (2023072704554038800_bib69) 2012; 486
Garden (2023072704554038800_bib16) 2010; 24
Tikhonov (2023072704554038800_bib50) 2015; 467
Li (2023072704554038800_bib23) 1987; 84
Weiner (2023072704554038800_bib61) 1986; 7
Wang (2023072704554038800_bib59) 2006; 69
Weiner (2023072704554038800_bib60) 1984; 106
Catterall (2023072704554038800_bib12) 2015; 88
Wu (2023072704554038800_bib63) 2015; 350
Anger (2023072704554038800_bib2) 2001; 44
Dick (2023072704554038800_bib15) 2007; 8
Scheib (2023072704554038800_bib42) 2006; 12
Payandeh (2023072704554038800_bib35) 2011; 475
Hille (2023072704554038800_bib19) 2001
Yarov-Yarovoy (2023072704554038800_bib68) 2002; 277
O’Reilly (2023072704554038800_bib33) 2012; 7
Ahern (2023072704554038800_bib1) 2008; 102
Catterall (2023072704554038800_bib9) 1980; 20
Yang (2023072704554038800_bib66) 2012; 3
Chen (2023072704554038800_bib13) 2010; 66
Wang (2023072704554038800_bib55) 1997; 435
Korkosh (2023072704554038800_bib21) 2016; 780
Mike (2023072704554038800_bib30) 2010; 3
Tikhonov (2023072704554038800_bib46) 2005; 579
Browne (2023072704554038800_bib7) 2009; 284
Bagnéris (2023072704554038800_bib3) 2014; 111
Boiteux (2023072704554038800_bib5) 2014; 111
Wang (2023072704554038800_bib57) 2000; 79
Sunami (2023072704554038800_bib44) 1997; 94
Zhorov (2023072704554038800_bib70) 2013; 34
Lipkind (2023072704554038800_bib27) 2010; 78
Shrivastava (2023072704554038800_bib43) 2000; 78
Bernèche (2023072704554038800_bib4) 2001; 414
Yarov-Yarovoy (2023072704554038800_bib67) 2001; 276
28289068 - J Gen Physiol. 2017 Apr 3;149(4):405
References_xml – volume: 69
  start-page: 497
  year: 1977
  ident: 2023072704554038800_bib18
  article-title: Local anesthetics: Hydrophilic and hydrophobic pathways for the drug-receptor reaction
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.69.4.497
– volume: 54
  start-page: 712
  year: 1998
  ident: 2023072704554038800_bib22
  article-title: A common anticonvulsant binding site for phenytoin, carbamazepine, and lamotrigine in neuronal Na+ channels
  publication-title: Mol. Pharmacol.
  doi: 10.1016/S0026-895X(24)13073-8
– volume: 70
  start-page: 194
  year: 1996
  ident: 2023072704554038800_bib39
  article-title: Use-dependent inhibition of Na+ currents by benzocaine homologs
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(96)79563-2
– volume: 76
  start-page: 861
  year: 2009
  ident: 2023072704554038800_bib65
  article-title: Novel molecular determinants in the pore region of sodium channels regulate local anesthetic binding
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.109.055863
– volume: 68
  start-page: 1611
  year: 2005
  ident: 2023072704554038800_bib26
  article-title: Molecular modeling of local anesthetic drug binding by voltage-gated sodium channels
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.105.014803
– volume: 7
  start-page: e41667
  year: 2012
  ident: 2023072704554038800_bib33
  article-title: Bisphenol A binds to the local anesthetic receptor site to block the human cardiac sodium channel
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0041667
– volume: 88
  start-page: 141
  year: 2015
  ident: 2023072704554038800_bib12
  article-title: Structural basis for pharmacology of voltage-gated sodium and calcium channels
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.114.097659
– volume: 284
  start-page: 208
  year: 1998
  ident: 2023072704554038800_bib34
  article-title: Inhibition of neuronal Na+ channels by antidepressant drugs
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1016/S0022-3565(24)37206-4
– volume: 78
  start-page: 557
  year: 2000
  ident: 2023072704554038800_bib43
  article-title: Simulations of ion permeation through a potassium channel: Molecular dynamics of KcsA in a phospholipid bilayer
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(00)76616-1
– volume: 34
  start-page: 154
  year: 2013
  ident: 2023072704554038800_bib70
  article-title: Ligand action on sodium, potassium, and calcium channels: Role of permeant ions
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2013.01.002
– volume: 94
  start-page: 14126
  year: 1997
  ident: 2023072704554038800_bib44
  article-title: Sodium channel selectivity filter regulates antiarrhythmic drug binding
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.94.25.14126
– volume: 93
  start-page: 9270
  year: 1996
  ident: 2023072704554038800_bib41
  article-title: Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.93.17.9270
– volume: 277
  start-page: 35393
  year: 2002
  ident: 2023072704554038800_bib68
  article-title: Role of amino acid residues in transmembrane segments IS6 and IIS6 of the Na+ channel alpha subunit in voltage-dependent gating and drug block
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M206126200
– volume: 414
  start-page: 73
  year: 2001
  ident: 2023072704554038800_bib4
  article-title: Energetics of ion conduction through the K+ channel
  publication-title: Nature.
  doi: 10.1038/35102067
– volume: 66
  start-page: 12
  year: 2010
  ident: 2023072704554038800_bib13
  article-title: MolProbity: All-atom structure validation for macromolecular crystallography
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444909042073
– volume: 580
  start-page: 6027
  year: 2006
  ident: 2023072704554038800_bib49
  article-title: Atomic determinants of state-dependent block of sodium channels by charged local anesthetics and benzocaine
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2006.10.035
– volume: 590
  start-page: 2577
  year: 2012
  ident: 2023072704554038800_bib11
  article-title: Voltage-gated sodium channels at 60: Structure, function and pathophysiology
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2011.224204
– volume: 55
  start-page: 134
  year: 1999
  ident: 2023072704554038800_bib24
  article-title: A molecular basis for the different local anesthetic affinities of resting versus open and inactivated states of the sodium channel
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.55.1.134
– volume: 84
  start-page: 6611
  year: 1987
  ident: 2023072704554038800_bib23
  article-title: Monte Carlo-minimization approach to the multiple-minima problem in protein folding
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.84.19.6611
– volume: 579
  start-page: 4207
  year: 2005
  ident: 2023072704554038800_bib46
  article-title: Sodium channel activators: Model of binding inside the pore and a possible mechanism of action
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2005.07.017
– volume: 8
  start-page: 315
  year: 2007
  ident: 2023072704554038800_bib15
  article-title: Sodium channel blockade may contribute to the analgesic efficacy of antidepressants
  publication-title: J. Pain.
  doi: 10.1016/j.jpain.2006.10.001
– volume: 111
  start-page: 8428
  year: 2014
  ident: 2023072704554038800_bib3
  article-title: Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1406855111
– volume: 79
  start-page: 1379
  year: 2000
  ident: 2023072704554038800_bib57
  article-title: Residues in Na(+) channel D3-S6 segment modulate both batrachotoxin and local anesthetic affinities
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(00)76390-9
– volume: 486
  start-page: 130
  year: 2012
  ident: 2023072704554038800_bib69
  article-title: Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel
  publication-title: Nature.
  doi: 10.1038/nature11054
– start-page: 663
  volume-title: Handbook of Clinical Neurology. Epilepsy, Part II.
  year: 2012
  ident: 2023072704554038800_bib37
  article-title: Mechanisms of action of antiseizure drugs
– volume: 541
  start-page: 701
  year: 2002
  ident: 2023072704554038800_bib32
  article-title: Cocaine binds to a common site on open and inactivated human heart (Na(v)1.5) sodium channels
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2001.016139
– volume: 467
  start-page: 253
  year: 2015
  ident: 2023072704554038800_bib50
  article-title: State-dependent inter-repeat contacts of exceptionally conserved asparagines in the inner helices of sodium and calcium channels
  publication-title: Pflugers Arch.
  doi: 10.1007/s00424-014-1508-0
– volume: 284
  start-page: 10523
  year: 2009
  ident: 2023072704554038800_bib7
  article-title: Structural determinants of drugs acting on the Nav1.8 channel
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M807569200
– volume: 24
  start-page: 91
  year: 2010
  ident: 2023072704554038800_bib16
  article-title: Docking flexible ligands in proteins with a solvent exposure- and distance-dependent dielectric function
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/s10822-009-9317-9
– volume: 505
  start-page: 56
  year: 2014
  ident: 2023072704554038800_bib45
  article-title: Structural basis for Ca2+ selectivity of a voltage-gated calcium channel
  publication-title: Nature.
  doi: 10.1038/nature12775
– volume: 554
  start-page: 621
  year: 2004
  ident: 2023072704554038800_bib56
  article-title: Mexiletine block of wild-type and inactivation-deficient human skeletal muscle hNav1.4 Na+ channels
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2003.054973
– volume: 85
  start-page: 692
  year: 2014
  ident: 2023072704554038800_bib54
  article-title: Block of human cardiac sodium channels by lacosamide: Evidence for slow drug binding along the activation pathway
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.113.091173
– volume: 103
  start-page: 501
  year: 1994
  ident: 2023072704554038800_bib53
  article-title: Binding of benzocaine in batrachotoxin-modified Na+ channels. State-dependent interactions
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.103.3.501
– volume: 780
  start-page: 188
  year: 2016
  ident: 2023072704554038800_bib21
  article-title: Modeling interactions between blocking and permeant cations in the NavMs channel
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2016.03.048
– volume: 3
  start-page: 129
  year: 2010
  ident: 2023072704554038800_bib30
  article-title: The enigmatic drug binding site for sodium channel inhibitors
  publication-title: Curr. Mol. Pharmacol.
  doi: 10.2174/1874467211003030129
– volume: 82
  start-page: 97
  year: 2012
  ident: 2023072704554038800_bib48
  article-title: Architecture and pore block of eukaryotic voltage-gated sodium channels in view of NavAb bacterial sodium channel structure
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.112.078212
– volume: 107
  start-page: 3902
  year: 1985
  ident: 2023072704554038800_bib14
  article-title: Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical model
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00299a024
– volume: 78
  start-page: 631
  year: 2010
  ident: 2023072704554038800_bib27
  article-title: Molecular model of anticonvulsant drug binding to the voltage-gated sodium channel inner pore
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.110.064683
– volume: 41
  start-page: 63
  year: 1998
  ident: 2023072704554038800_bib52
  article-title: Synthesis, anticonvulsant activity, and structure-activity relationships of sodium channel blocking 3-aminopyrroles
  publication-title: J. Med. Chem.
  doi: 10.1021/jm970327j
– volume: 44
  start-page: 115
  year: 2001
  ident: 2023072704554038800_bib2
  article-title: Medicinal chemistry of neuronal voltage-gated sodium channel blockers
  publication-title: J. Med. Chem.
  doi: 10.1021/jm000155h
– volume: 39
  start-page: 8161
  year: 2000
  ident: 2023072704554038800_bib25
  article-title: KcsA crystal structure as framework for a molecular model of the Na(+) channel pore
  publication-title: Biochemistry.
  doi: 10.1021/bi000486w
– volume: 8
  start-page: 57
  year: 1987
  ident: 2023072704554038800_bib10
  article-title: Common modes of drug action on Na+ channels: local anesthetics, antiarrhythmics and anticonvulsants
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/0165-6147(87)90011-3
– volume: 37
  start-page: 49
  year: 1981
  ident: 2023072704554038800_bib20
  article-title: Sodium inactivation and drug-induced immobilization of the gating charge in nerve membrane
  publication-title: Prog. Biophys. Mol. Biol.
  doi: 10.1016/0079-6107(82)90020-7
– volume: 475
  start-page: 353
  year: 2011
  ident: 2023072704554038800_bib35
  article-title: The crystal structure of a voltage-gated sodium channel
  publication-title: Nature.
  doi: 10.1038/nature10238
– volume: 265
  start-page: 1724
  year: 1994
  ident: 2023072704554038800_bib40
  article-title: Molecular determinants of state-dependent block of Na+ channels by local anesthetics
  publication-title: Science.
  doi: 10.1126/science.8085162
– volume: 93
  start-page: 1557
  year: 2007
  ident: 2023072704554038800_bib47
  article-title: Sodium channels: Ionic model of slow inactivation and state-dependent drug binding
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.100248
– volume: 92
  start-page: 11839
  year: 1995
  ident: 2023072704554038800_bib38
  article-title: Molecular determinants of drug access to the receptor site for antiarrhythmic drugs in the cardiac Na+ channel
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.92.25.11839
– volume: 45
  start-page: 1055
  year: 1994
  ident: 2023072704554038800_bib17
  article-title: Block of the rat brain IIA sodium channel alpha subunit by the neuroprotective drug riluzole
  publication-title: Mol. Pharmacol.
  doi: 10.1016/S0026-895X(25)10187-9
– volume: 69
  start-page: 788
  year: 2006
  ident: 2023072704554038800_bib59
  article-title: How batrachotoxin modifies the sodium channel permeation pathway: Computer modeling and site-directed mutagenesis
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.105.018200
– volume: 44
  start-page: 413
  year: 2003
  ident: 2023072704554038800_bib28
  article-title: Differential interactions of lamotrigine and related drugs with transmembrane segment IVS6 of voltage-gated sodium channels
  publication-title: Neuropharmacology.
  doi: 10.1016/S0028-3908(02)00400-8
– volume: 2
  start-page: 351
  year: 2011
  ident: 2023072704554038800_bib36
  article-title: Molecular basis for class Ib anti-arrhythmic inhibition of cardiac sodium channels
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1351
– volume: 102
  start-page: 86
  year: 2008
  ident: 2023072704554038800_bib1
  article-title: Electrostatic contributions of aromatic residues in the local anesthetic receptor of voltage-gated sodium channels
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.107.160663
– volume: 7
  start-page: 230
  year: 1986
  ident: 2023072704554038800_bib61
  article-title: An all atom force field for simulations of proteins and nucleic acids
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540070216
– volume: 54
  start-page: 733
  year: 1998
  ident: 2023072704554038800_bib62
  article-title: Lysine point mutations in Na+ channel D4-S6 reduce inactivated channel block by local anesthetics
  publication-title: Mol. Pharmacol.
  doi: 10.1016/S0026-895X(24)13075-1
– volume: 83
  start-page: 5897
  year: 1985
  ident: 2023072704554038800_bib6
  article-title: Structural and energetic effects of truncating long ranged interactions in ionic and polar fluids
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.449621
– volume: 106
  start-page: 765
  year: 1984
  ident: 2023072704554038800_bib60
  article-title: A new force field for molecular mechanical simulation of nucleic acids and proteins
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00315a051
– volume: 12
  start-page: 813
  year: 2006
  ident: 2023072704554038800_bib42
  article-title: Modeling the pore structure of voltage-gated sodium channels in closed, open, and fast-inactivated conformation reveals details of site 1 toxin and local anesthetic binding
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-005-0066-y
– volume: 435
  start-page: 293
  year: 1997
  ident: 2023072704554038800_bib55
  article-title: A common local anesthetic receptor for benzocaine and etidocaine in voltage-gated mu1 Na+ channels
  publication-title: Pflugers Arch.
  doi: 10.1007/s004240050515
– volume: 111
  start-page: 13057
  year: 2014
  ident: 2023072704554038800_bib5
  article-title: Local anesthetic and antiepileptic drug access and binding to a bacterial voltage-gated sodium channel
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1408710111
– volume: 67
  start-page: 424
  year: 2005
  ident: 2023072704554038800_bib51
  article-title: A multifunctional aromatic residue in the external pore vestibule of Na+ channels contributes to the local anesthetic receptor
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.67.2
– volume: 537
  start-page: 191
  year: 2016
  ident: 2023072704554038800_bib64
  article-title: Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution
  publication-title: Nature.
  doi: 10.1038/nature19321
– volume: 414
  start-page: 43
  year: 2001
  ident: 2023072704554038800_bib71
  article-title: Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution
  publication-title: Nature.
  doi: 10.1038/35102009
– volume-title: Ion Channels of Excitable Membranes.
  year: 2001
  ident: 2023072704554038800_bib19
– volume: 3
  start-page: 1186
  year: 2012
  ident: 2023072704554038800_bib66
  article-title: Structural modelling and mutant cycle analysis predict pharmacoresponsiveness of a Na(V)1.7 mutant channel
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2184
– volume: 276
  start-page: 20
  year: 2001
  ident: 2023072704554038800_bib67
  article-title: Molecular determinants of voltage-dependent gating and binding of pore-blocking drugs in transmembrane segment IIIS6 of the Na(+) channel alpha subunit
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M006992200
– volume: 59
  start-page: 1100
  year: 2001
  ident: 2023072704554038800_bib58
  article-title: Disparate role of Na(+) channel D2-S6 residues in batrachotoxin and local anesthetic action
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.59.5.1100
– volume: 350
  start-page: aad2395
  year: 2015
  ident: 2023072704554038800_bib63
  article-title: Structure of the voltage-gated calcium channel Cav1.1 complex
  publication-title: Science.
  doi: 10.1126/science.aad2395
– volume: 20
  start-page: 15
  year: 1980
  ident: 2023072704554038800_bib9
  article-title: Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev.pa.20.040180.000311
– volume: 74
  start-page: 1033
  year: 2008
  ident: 2023072704554038800_bib8
  article-title: Access and binding of local anesthetics in the closed sodium channel
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.108.049759
– volume: 581
  start-page: 741
  year: 2007
  ident: 2023072704554038800_bib29
  article-title: Charge at the lidocaine binding site residue Phe-1759 affects permeation in human cardiac voltage-gated sodium channels
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2007.130161
– volume: 35
  start-page: 820
  year: 2016
  ident: 2023072704554038800_bib31
  article-title: Molecular basis of ion permeability in a voltage-gated sodium channel
  publication-title: EMBO J.
  doi: 10.15252/embj.201593285
– reference: 28289068 - J Gen Physiol. 2017 Apr 3;149(4):405
SSID ssj0000520
Score 2.4966245
Snippet Local anesthetics, antiarrhythmics, and anticonvulsants include both charged and electroneutral compounds that block voltage-gated sodium channels. Prior...
A number of different drugs block sodium channels, but their mechanism of block is unclear. Tikhonov and Zhorov combine homology modeling with ligand docking...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 465
SubjectTerms Acetamides - pharmacology
Anesthetics, Local - pharmacology
Animals
Anti-Arrhythmia Agents - pharmacology
Anticonvulsants - pharmacology
Benzhydryl Compounds - pharmacology
Binding Sites
Bisphenol A
Carbamazepine - pharmacology
Cocaine - pharmacology
Humans
Lacosamide
Lamotrigine
Lidocaine - analogs & derivatives
Lidocaine - pharmacology
Ligands
Molecular Docking Simulation
NAV1.4 Voltage-Gated Sodium Channel - chemistry
NAV1.4 Voltage-Gated Sodium Channel - metabolism
Phenols - pharmacology
Phenytoin - pharmacology
Piperazines - pharmacology
Protein Binding
Pyrimidines - pharmacology
Quinidine - pharmacology
Sodium
Sodium Channel Blockers - pharmacology
Triazines - pharmacology
Title Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants
URI https://www.ncbi.nlm.nih.gov/pubmed/28258204
https://www.proquest.com/docview/1890086391
https://www.proquest.com/docview/1874444268
https://pubmed.ncbi.nlm.nih.gov/PMC5379917
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgvPCCgHHpNpCR0F66lMax4-RxQ8CENIREJ_UBKXIcZ63WJqhNJ5Vfzzlx6ibdkAZ9iCrbufk7Of5snwsh7wMdq8xn2lNSGI_7OvKiMICJq2EGprhBLCL0d774Fp5f8q9jMd7u4NfeJVU60L_v9Cv5H1ShDHBFL9l_QNZdFArgP-ALR0AYjvfC-MKg3y6muQDKtyyz6Wpee_IWZoYW6foayWU9WvUVqDTgelVjFwT9OVWLxWRdTeauKKuL0Q59NVuqJsbThrlufchq9nplw1XblZHO0vxoej0pi_LGajN4uv7ZYLs8XS5szVkJ2qX_Y9BedYCRDI1VgrYmZZgUxSbIHJhGeaJ1orSRM512tRFJGzHiLV3JQ9EadrnN3HJLowMlRI1-hbFFgZ36oc3C042cvTOiOTvDeoc9EgmcnrjTH5JHDOYUmO7iy3hrD4QGQZvQ8vhiTUBWOP1D5-5dAnNrVrJrXNtiK6On5EkDFD21MvOMPDDFc7J_WqiqnK_pMf3uYNsnP50Y0TKnVoxoI0a0FiOarmktRrQlRid0R4iwIKM7IvSCXH7-NPp47jVJNzwNXK7yIsWG3FciRBdloVUoNNNCZSlQ7yBjBghvmg5DxgxQRQk9wnyTRiqNcpMGUsrgJdkrysK8JjT2A21UNMxNlnOhRBrnITcmMrmOjeTDHjnZ9GSim4j0mBhlltyJW48cu-a_bCiWvzU82sCSNF_rMvGjGKfvQez3yDtXDboUN8ig88oVtpEcfgwv8cqi6O6EPt7AlnmPyA6-rgHGae_WFNNJHa9dBBJmYfLgvs9_SB5vP7kjslctVuYNUN8qfVuL7B9jO7Dt
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+sodium+channel+block+by+local+anesthetics%2C+antiarrhythmics%2C+and+anticonvulsants&rft.jtitle=The+Journal+of+general+physiology&rft.au=Tikhonov%2C+Denis+B.&rft.au=Zhorov%2C+Boris+S.&rft.date=2017-04-03&rft.issn=0022-1295&rft.eissn=1540-7748&rft.volume=149&rft.issue=4&rft.spage=465&rft.epage=481&rft_id=info:doi/10.1085%2Fjgp.201611668&rft.externalDBID=n%2Fa&rft.externalDocID=10_1085_jgp_201611668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1295&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1295&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1295&client=summon