A collaborative neurodynamic approach to global and combinatorial optimization
In this paper, a collaborative neurodynamic optimization approach is proposed for global and combinatorial optimization. First, a combinatorial optimization problem is reformulated as a global optimization problem. Second, a neurodynamic optimization model based on an augmented Lagrangian function i...
Saved in:
Published in | Neural networks Vol. 114; pp. 15 - 27 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a collaborative neurodynamic optimization approach is proposed for global and combinatorial optimization. First, a combinatorial optimization problem is reformulated as a global optimization problem. Second, a neurodynamic optimization model based on an augmented Lagrangian function is proposed and its states are proven to be asymptotically stable at a strict local minimum in the presence of nonconvexity in objective function or constraints. In addition, multiple neurodynamic optimization models are employed to search for global optimal solutions collaboratively and particle swarm optimization (PSO) is used to optimize their initial states. The proposed approach is shown to be globally convergent to global optimal solutions as substantiated for solving benchmark problems. |
---|---|
AbstractList | In this paper, a collaborative neurodynamic optimization approach is proposed for global and combinatorial optimization. First, a combinatorial optimization problem is reformulated as a global optimization problem. Second, a neurodynamic optimization model based on an augmented Lagrangian function is proposed and its states are proven to be asymptotically stable at a strict local minimum in the presence of nonconvexity in objective function or constraints. In addition, multiple neurodynamic optimization models are employed to search for global optimal solutions collaboratively and particle swarm optimization (PSO) is used to optimize their initial states. The proposed approach is shown to be globally convergent to global optimal solutions as substantiated for solving benchmark problems. In this paper, a collaborative neurodynamic optimization approach is proposed for global and combinatorial optimization. First, a combinatorial optimization problem is reformulated as a global optimization problem. Second, a neurodynamic optimization model based on an augmented Lagrangian function is proposed and its states are proven to be asymptotically stable at a strict local minimum in the presence of nonconvexity in objective function or constraints. In addition, multiple neurodynamic optimization models are employed to search for global optimal solutions collaboratively and particle swarm optimization (PSO) is used to optimize their initial states. The proposed approach is shown to be globally convergent to global optimal solutions as substantiated for solving benchmark problems.In this paper, a collaborative neurodynamic optimization approach is proposed for global and combinatorial optimization. First, a combinatorial optimization problem is reformulated as a global optimization problem. Second, a neurodynamic optimization model based on an augmented Lagrangian function is proposed and its states are proven to be asymptotically stable at a strict local minimum in the presence of nonconvexity in objective function or constraints. In addition, multiple neurodynamic optimization models are employed to search for global optimal solutions collaboratively and particle swarm optimization (PSO) is used to optimize their initial states. The proposed approach is shown to be globally convergent to global optimal solutions as substantiated for solving benchmark problems. |
Author | Wang, Jun Che, Hangjun |
Author_xml | – sequence: 1 givenname: Hangjun surname: Che fullname: Che, Hangjun email: hjche2-c@my.city.edu.hk organization: Department of Computer Science, City University of Hong Kong, Hong Kong – sequence: 2 givenname: Jun orcidid: 0000-0002-1305-5735 surname: Wang fullname: Wang, Jun email: jwang.cs@cityu.edu.hk organization: Department of Computer Science, City University of Hong Kong, Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30831379$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMFO3DAURa2KqgzT_gFCWbJJeHY8jtMFEkJQkEbtpl1bjv0CHiX21PYgwdfj6cCmi3Zl6emeK99zQo588EjIKYWGAhUXm8bjzmNuGNC-AdYAsA9kQWXX16yT7IgsQPZtLUDCMTlJaQMAQvL2EzluQba07foF-X5VmTBNeghRZ_eEVSmNwT57PTtT6e02Bm0eqxyqhykMeqq0t4WYB-d1DtGVS9hmN7uXggf_mXwc9ZTwy9u7JL9ub35e39XrH9_ur6_WteF0lWvJbKc7CXQEynnbCcH5gJJracAOZiX7lRVi7MTYM9RGCCmFaMeO03FgaMd2Sc4PveV_v3eYsppdMliGeAy7pBiVksGKlp1LcvYW3Q0zWrWNbtbxWb07KIGvh4CJIaWIozIu_1mTo3aToqD2wtVGHYSrvXAFTBXhBeZ_we_9_8EuDxgWSU8Oo0rGoTdoXUSTlQ3u3wWvLuacww |
CitedBy_id | crossref_primary_10_1109_TNNLS_2024_3350335 crossref_primary_10_1016_j_neunet_2023_05_054 crossref_primary_10_1109_TNNLS_2021_3085314 crossref_primary_10_1016_j_sigpro_2020_107774 crossref_primary_10_1109_TSMC_2022_3221937 crossref_primary_10_1109_TETCI_2024_3369667 crossref_primary_10_1016_j_knosys_2022_109026 crossref_primary_10_1007_s00500_024_09890_x crossref_primary_10_1007_s40747_021_00605_5 crossref_primary_10_1109_TCYB_2021_3102941 crossref_primary_10_1016_j_neunet_2021_12_001 crossref_primary_10_1109_TNNLS_2021_3116382 crossref_primary_10_1016_j_neunet_2023_08_014 crossref_primary_10_1088_1402_4896_ace8cf crossref_primary_10_1109_TNNLS_2023_3263975 crossref_primary_10_1109_TSUSC_2023_3325268 crossref_primary_10_1016_j_neunet_2021_02_006 crossref_primary_10_1016_j_neunet_2022_06_006 crossref_primary_10_3390_en15249486 crossref_primary_10_1109_TSMC_2023_3331260 crossref_primary_10_1109_TCYB_2024_3474714 crossref_primary_10_1016_j_neunet_2024_106548 crossref_primary_10_1016_j_sysconle_2024_106007 crossref_primary_10_1109_TCYB_2023_3289712 crossref_primary_10_1109_JAS_2024_124935 crossref_primary_10_1162_neco_a_01294 crossref_primary_10_1155_2022_3902107 crossref_primary_10_1016_j_engappai_2024_109778 crossref_primary_10_1007_s00521_022_07752_x crossref_primary_10_1016_j_asoc_2024_112044 crossref_primary_10_1007_s11075_021_01075_z crossref_primary_10_1155_2022_3345037 crossref_primary_10_1007_s11063_022_10901_x crossref_primary_10_1109_TCYB_2021_3090204 crossref_primary_10_1109_TNNLS_2022_3212593 crossref_primary_10_1109_TNNLS_2022_3213167 crossref_primary_10_1109_TCYB_2024_3398585 crossref_primary_10_1109_TCYB_2024_3525413 crossref_primary_10_1109_TNNLS_2019_2918984 crossref_primary_10_1007_s00521_022_08166_5 crossref_primary_10_1109_TII_2024_3383908 crossref_primary_10_1016_j_neunet_2021_10_007 crossref_primary_10_1016_j_knosys_2022_109593 crossref_primary_10_1016_j_neunet_2022_06_023 crossref_primary_10_1016_j_asoc_2024_112156 crossref_primary_10_1016_j_neunet_2024_106525 crossref_primary_10_3390_math12010151 crossref_primary_10_1088_1742_6596_2517_1_012010 crossref_primary_10_1002_nme_7377 crossref_primary_10_1109_TNNLS_2022_3160645 crossref_primary_10_1016_j_neunet_2023_05_003 crossref_primary_10_1007_s11277_020_07717_0 crossref_primary_10_1016_j_neucom_2025_130023 crossref_primary_10_1109_TNNLS_2021_3125457 crossref_primary_10_1016_j_cnsns_2024_107999 crossref_primary_10_1109_TNNLS_2021_3055825 crossref_primary_10_1109_TSMC_2023_3247633 crossref_primary_10_1109_TNNLS_2020_2973760 crossref_primary_10_1109_TNNLS_2021_3068500 crossref_primary_10_1016_j_neucom_2024_129156 crossref_primary_10_1155_2022_8077277 crossref_primary_10_1016_j_ins_2024_121775 crossref_primary_10_1016_j_energy_2021_120965 crossref_primary_10_1016_j_neunet_2024_107027 crossref_primary_10_1109_TETCI_2024_3405370 crossref_primary_10_1109_TSG_2023_3305326 crossref_primary_10_1016_j_neunet_2021_01_004 crossref_primary_10_1155_2022_7665954 crossref_primary_10_1109_TNSE_2024_3401748 crossref_primary_10_1007_s12559_020_09762_0 crossref_primary_10_1109_TII_2022_3180080 crossref_primary_10_1155_2022_4134864 crossref_primary_10_1016_j_neunet_2021_11_013 crossref_primary_10_1016_j_neunet_2021_04_038 crossref_primary_10_1109_TFUZZ_2022_3191087 crossref_primary_10_3934_mbe_2023556 crossref_primary_10_1016_j_neunet_2024_106348 crossref_primary_10_1016_j_neunet_2023_10_022 crossref_primary_10_1016_j_neunet_2019_10_008 crossref_primary_10_1109_TNNLS_2021_3082528 crossref_primary_10_1155_2022_1973777 crossref_primary_10_2478_amns_2021_2_00263 crossref_primary_10_1016_j_matcom_2023_12_032 crossref_primary_10_1155_2022_5813577 crossref_primary_10_1109_TETCI_2024_3369482 crossref_primary_10_1109_TNNLS_2023_3245812 crossref_primary_10_1016_j_neucom_2021_06_097 crossref_primary_10_1109_TNNLS_2020_3027471 crossref_primary_10_1016_j_neunet_2023_10_011 crossref_primary_10_1016_j_neunet_2022_09_013 crossref_primary_10_1016_j_neucom_2024_128489 crossref_primary_10_1016_j_neunet_2024_106791 crossref_primary_10_1016_j_neunet_2024_107121 crossref_primary_10_1007_s11063_023_11344_8 crossref_primary_10_1016_j_neunet_2022_03_033 crossref_primary_10_1109_JAS_2022_105524 crossref_primary_10_1016_j_neunet_2023_06_003 crossref_primary_10_1016_j_jfranklin_2023_11_041 crossref_primary_10_1016_j_patcog_2022_109254 crossref_primary_10_1016_j_neunet_2023_02_011 crossref_primary_10_1109_TMECH_2020_3016757 crossref_primary_10_1155_2022_1480173 crossref_primary_10_1016_j_neunet_2022_07_018 |
Cites_doi | 10.1109/TNNLS.2013.2244908 10.1109/TNNLS.2016.2595489 10.1109/TNNLS.2018.2806481 10.1162/089976604322860730 10.1109/TPAMI.2016.2541146 10.1109/TNNLS.2016.2524619 10.1287/ijoc.1060.0175 10.1109/CVPR.2015.7298759 10.1109/TSP.2016.2591510 10.1109/TSMCB.2007.903706 10.1016/j.neunet.2014.03.006 10.1016/j.neunet.2013.11.007 10.1016/0377-2217(84)90093-6 10.1109/TNNLS.2013.2275948 10.1109/81.995659 10.1109/TNNLS.2015.2425301 10.1109/TNNLS.2015.2481006 10.1109/TSMCB.2011.2140395 10.1109/TNNLS.2017.2652478 10.1137/030602770 10.1109/TCS.1986.1085953 10.1126/science.3755256 10.1109/TCYB.2016.2546965 10.1109/TNN.2008.2000273 10.1023/A:1004611224835 10.1016/j.neunet.2016.04.010 10.1109/LGRS.2013.2280025 10.1109/TNNLS.2018.2884788 10.1016/j.neunet.2018.03.003 10.1109/TPAMI.2003.1240111 10.1109/TNNLS.2013.2275732 10.1137/S1052623400378742 10.1109/TNNLS.2015.2500618 10.1109/4235.985692 10.1109/TNN.2006.879774 10.1109/TCSI.2004.830694 10.1109/TNNLS.2016.2538288 10.1109/82.160169 10.1109/TNN.2004.824252 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.neunet.2019.02.002 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1879-2782 |
EndPage | 27 |
ExternalDocumentID | 30831379 10_1016_j_neunet_2019_02_002 S0893608019300425 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61673330 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Research Grants Council of the Hong Kong Special Administrative Region of China grantid: 11208517; 11202318 – fundername: Chinese Academy of Sciences, China grantid: GJHZ1849 funderid: http://dx.doi.org/10.13039/501100005196 |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c415t-82d7a7801f0144376644be84a8c0dbc5895d66f76f92eac6688663f741fb2edf3 |
IEDL.DBID | .~1 |
ISSN | 0893-6080 1879-2782 |
IngestDate | Sun Aug 24 02:52:19 EDT 2025 Thu Apr 03 06:57:42 EDT 2025 Tue Jul 01 01:24:33 EDT 2025 Thu Apr 24 22:57:25 EDT 2025 Fri Feb 23 02:28:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Global optimization Collaborative neurodynamic approach Augmented Lagrangian function Combinatorial optimization |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-82d7a7801f0144376644be84a8c0dbc5895d66f76f92eac6688663f741fb2edf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1305-5735 |
PMID | 30831379 |
PQID | 2188205108 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2188205108 pubmed_primary_30831379 crossref_citationtrail_10_1016_j_neunet_2019_02_002 crossref_primary_10_1016_j_neunet_2019_02_002 elsevier_sciencedirect_doi_10_1016_j_neunet_2019_02_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Keuchel, Schnorr, Schellewald, Cremers (b16) 2003; 25 Bazaraa, Sherali, Shetty (b2) 2013 Xia, Wang (b36) 2000; 106 Leung, Wang (b20) 2018; 29 Yan, Wang (b41) 2014; 25 Liu, Wang (b25) 2016; 27 D.P. (b8) 2014 Kinderlehrer, Stampacchia (b17) 1980 Xia, Wang (b37) 2004; 15 Xia (b33) 2004; 16 Floudas, Pardalos, Adjiman, Esposito, Gumus, Harding, Schweiger (b9) 2013 Hu, Wang (b14) 2007; 37 Tank, Hopfield (b29) 1986; 33 Burkard (b3) 1984; 15 Xia, Leung, Wang (b35) 2002; 49 Che, Li, He, Huang (b4) 2016; 80 Che, Wang (b6) 2018 Huang (b15) 2005 Audet, Dennis (b1) 2002; 13 Liu, Wang (b23) 2013; 24 Yan, Fan, Wang (b40) 2017; 28 Yan, J., Zhang, C., Zha, H., Liu, W., Yang, X., & Chu, S. M. (2015). Discrete hyper-graph matching. In Qin, Le, Wang (b27) 2017; 28 Liu, Wang (b24) 2015; 26 Hu, Wang (b13) 2007 Le, Wang (b19) 2017; 28 Li, Yan, Wang (b21) 2014; 50 Wang, Shen, Anton, Torr (b32) 2017; 39 (pp. 1520–1528). Che, Wang (b5) 2018; 103 Liu, Wang (b22) 2011; 41 Vandaele, Gillis, Lei, Zhong, Dhillon (b31) 2016; 64 Yang, Liu, Wang (b44) 2017; 29 Sun, Li, McKinnon (b28) 2005; 15 Ugray, Lasdon, Plummer, Glover, Kelly, Rafael (b30) 2007; 19 Gan, Wu, Wang, Zhang, Zhang (b10) 2014; 11 Xia, Feng, Wang (b34) 2008; 19 Hu, Wang (b12) 2006; 17 Niu, Zhou, Tian, Qi, Zhang (b26) 2017; 47 Yan, Wang, Li (b42) 2014; 55 Hopfield, Tank (b11) 1986; 233 Clerc, Kennedy (b7) 2002; 6 Zhang, Constantinides (b45) 1992; 39 Le, Wang (b18) 2014; 25 Xia, Wang (b38) 2004; 51 Xia, Wang (b39) 2016; 27 Kinderlehrer (10.1016/j.neunet.2019.02.002_b17) 1980 Yang (10.1016/j.neunet.2019.02.002_b44) 2017; 29 Burkard (10.1016/j.neunet.2019.02.002_b3) 1984; 15 Clerc (10.1016/j.neunet.2019.02.002_b7) 2002; 6 Niu (10.1016/j.neunet.2019.02.002_b26) 2017; 47 Huang (10.1016/j.neunet.2019.02.002_b15) 2005 Hu (10.1016/j.neunet.2019.02.002_b13) 2007 Liu (10.1016/j.neunet.2019.02.002_b22) 2011; 41 10.1016/j.neunet.2019.02.002_b43 Che (10.1016/j.neunet.2019.02.002_b6) 2018 D.P. (10.1016/j.neunet.2019.02.002_b8) 2014 Floudas (10.1016/j.neunet.2019.02.002_b9) 2013 Tank (10.1016/j.neunet.2019.02.002_b29) 1986; 33 Keuchel (10.1016/j.neunet.2019.02.002_b16) 2003; 25 Xia (10.1016/j.neunet.2019.02.002_b36) 2000; 106 Wang (10.1016/j.neunet.2019.02.002_b32) 2017; 39 Xia (10.1016/j.neunet.2019.02.002_b37) 2004; 15 Li (10.1016/j.neunet.2019.02.002_b21) 2014; 50 Xia (10.1016/j.neunet.2019.02.002_b34) 2008; 19 Yan (10.1016/j.neunet.2019.02.002_b41) 2014; 25 Sun (10.1016/j.neunet.2019.02.002_b28) 2005; 15 Yan (10.1016/j.neunet.2019.02.002_b40) 2017; 28 Hu (10.1016/j.neunet.2019.02.002_b14) 2007; 37 Audet (10.1016/j.neunet.2019.02.002_b1) 2002; 13 Le (10.1016/j.neunet.2019.02.002_b18) 2014; 25 Gan (10.1016/j.neunet.2019.02.002_b10) 2014; 11 Hopfield (10.1016/j.neunet.2019.02.002_b11) 1986; 233 Bazaraa (10.1016/j.neunet.2019.02.002_b2) 2013 Le (10.1016/j.neunet.2019.02.002_b19) 2017; 28 Xia (10.1016/j.neunet.2019.02.002_b35) 2002; 49 Zhang (10.1016/j.neunet.2019.02.002_b45) 1992; 39 Liu (10.1016/j.neunet.2019.02.002_b25) 2016; 27 Qin (10.1016/j.neunet.2019.02.002_b27) 2017; 28 Ugray (10.1016/j.neunet.2019.02.002_b30) 2007; 19 Che (10.1016/j.neunet.2019.02.002_b4) 2016; 80 Liu (10.1016/j.neunet.2019.02.002_b23) 2013; 24 Liu (10.1016/j.neunet.2019.02.002_b24) 2015; 26 Xia (10.1016/j.neunet.2019.02.002_b39) 2016; 27 Xia (10.1016/j.neunet.2019.02.002_b33) 2004; 16 Vandaele (10.1016/j.neunet.2019.02.002_b31) 2016; 64 Che (10.1016/j.neunet.2019.02.002_b5) 2018; 103 Leung (10.1016/j.neunet.2019.02.002_b20) 2018; 29 Xia (10.1016/j.neunet.2019.02.002_b38) 2004; 51 Yan (10.1016/j.neunet.2019.02.002_b42) 2014; 55 Hu (10.1016/j.neunet.2019.02.002_b12) 2006; 17 |
References_xml | – volume: 15 start-page: 318 year: 2004 end-page: 328 ident: b37 article-title: A general projection neural network for solving monotone variational inequalities and related optimization problems publication-title: IEEE Transactions on Neural Networks – year: 2013 ident: b9 article-title: Handbook of test problems in local and global optimization – volume: 47 start-page: 1423 year: 2017 end-page: 1433 ident: b26 article-title: Nonsmooth penalized clustering via publication-title: IEEE Transactions on Cybernetics – volume: 33 start-page: 533 year: 1986 end-page: 541 ident: b29 article-title: Simple’neural’optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit publication-title: IEEE Transactions on Circuits and Systems – volume: 11 start-page: 853 year: 2014 end-page: 857 ident: b10 article-title: Unsupervised SAR image segmentation based on triplet Markov fields with graph cuts publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 25 start-page: 1364 year: 2003 end-page: 1379 ident: b16 article-title: Binary partitioning, perceptual grouping, and restoration with semidefinite programming publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 64 start-page: 5571 year: 2016 end-page: 5584 ident: b31 article-title: Efficient and non-convex coordinate descent for symmetric nonnegative matrix factorization publication-title: IEEE Transactions on Signal Processing – volume: 29 start-page: 981 year: 2017 end-page: 992 ident: b44 article-title: A collaborative neurodynamic approach to multiple-objective distributed optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 28 start-page: 2580 year: 2017 end-page: 2591 ident: b27 article-title: A neurodynamic optimization approach to bilevel quadratic programming publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 233 start-page: 625 year: 1986 end-page: 633 ident: b11 article-title: Computing with neural circuits: A model publication-title: Science – year: 1980 ident: b17 article-title: An Introduction To Variational Inequalities and their Applications – volume: 15 start-page: 1128 year: 2005 end-page: 1146 ident: b28 article-title: On saddle points of augmented Lagrangians for constrained nonconvex optimization publication-title: SIAM Journal on Optimization – year: 2018 ident: b6 article-title: A two-timescale duplex neurodynamic approach to biconvex optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 103 start-page: 63 year: 2018 end-page: 71 ident: b5 article-title: A nonnegative matrix factorization algorithm based on adiscrete-time projection neural network publication-title: Neural Networks – volume: 19 start-page: 1340 year: 2008 end-page: 1353 ident: b34 article-title: A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints publication-title: IEEE Transactions on Neural Networks – volume: 106 start-page: 129 year: 2000 end-page: 150 ident: b36 article-title: On the stability of globally projected dynamical systems publication-title: Journal of Optimization Theory and Applications – volume: 41 start-page: 1323 year: 2011 end-page: 1333 ident: b22 article-title: A one-layer recurrent neural network for constrained nonsmooth optimization constraints publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) – volume: 39 start-page: 470 year: 2017 end-page: 485 ident: b32 article-title: Large-scale binary quadratic optimization using semidefinite relaxation and applications publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 25 start-page: 383 year: 2014 end-page: 393 ident: b18 article-title: Robust pole assignment for synthesizing feedback control systems using recurrent neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 16 start-page: 863 year: 2004 end-page: 883 ident: b33 article-title: An extended projection neural network for constrained optimization constraints publication-title: Neural Computation – start-page: 194 year: 2007 end-page: 203 ident: b13 article-title: Convergence of a recurrent neural network for nonconvex optimization based on an augmented lagrangian function publication-title: International symposium on neural networks – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: b7 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Transactions on Evolutionary Computation – volume: 37 start-page: 1414 year: 2007 end-page: 1421 ident: b14 article-title: Design of general projection neural networks for solving monotone linear variational inequalities and linear and quadratic optimization problems publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) – start-page: 4129 year: 2005 end-page: 4133 ident: b15 article-title: Lagrange-type neural networks for nonlinear programming problems with inequality constraints publication-title: 44th IEEE conference on decision and control, and the European control conference – volume: 24 start-page: 812 year: 2013 end-page: 824 ident: b23 article-title: A one-layer projection neural network for nonsmooth optimization subject to linear equalities and bound constraints publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 26 start-page: 2891 year: 2015 end-page: 2900 ident: b24 article-title: A projection neural network for constrained quadratic minimax optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 27 start-page: 214 year: 2016 end-page: 224 ident: b39 article-title: A bi-projection neural network for solving constrained quadratic optimization problems publication-title: IEEE Transactions on Neural Networks – volume: 15 start-page: 283 year: 1984 end-page: 289 ident: b3 article-title: Quadratic assignment problems publication-title: European Journal of Operational Research – volume: 29 start-page: 5738 year: 2018 end-page: 5748 ident: b20 article-title: A collaborative neurodynamic approach to multiobjective optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 17 start-page: 1487 year: 2006 end-page: 1499 ident: b12 article-title: Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network publication-title: IEEE Transactions on Neural Networks – volume: 28 start-page: 620 year: 2017 end-page: 629 ident: b19 article-title: A two-time-scale neurodynamic approach to constrained minimax optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 50 start-page: 79 year: 2014 end-page: 89 ident: b21 article-title: A one-layer recurrent neural network for constrained nonsmooth invex optimization publication-title: Neural Networks – volume: 39 start-page: 441 year: 1992 end-page: 452 ident: b45 article-title: Lagrange programming neural networks publication-title: IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing – year: 2014 ident: b8 article-title: Constrained optimization and lagrange multiplier methods – volume: 19 start-page: 328 year: 2007 end-page: 340 ident: b30 article-title: Scatter search and local NLP solvers: A multistart framework for global optimization publication-title: INFORMS Journal on computing – volume: 80 start-page: 110 year: 2016 end-page: 117 ident: b4 article-title: A recurrent neural network for adaptive beamforming and array correction publication-title: Neural Networks – volume: 27 start-page: 698 year: 2016 end-page: 707 ident: b25 article-title: -Minimization algorithms for sparse signal reconstruction based on a projection neural. network publication-title: IEEE Transactions on Neural Networks and Learning Systems – start-page: 155 year: 2013 end-page: 173 ident: b2 article-title: Nonlinear programming: Theory and algorithms – volume: 25 start-page: 457 year: 2014 end-page: 469 ident: b41 article-title: Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems – reference: Yan, J., Zhang, C., Zha, H., Liu, W., Yang, X., & Chu, S. M. (2015). Discrete hyper-graph matching. In – reference: (pp. 1520–1528). – volume: 49 start-page: 447 year: 2002 end-page: 458 ident: b35 article-title: A projection neural network and its application to constrained optimization problems publication-title: IEEE Transactions on Circuits and Systems I – volume: 55 start-page: 20 year: 2014 end-page: 29 ident: b42 article-title: A collective neurodynamic optimization approach to bound-constrained nonconvex optimization publication-title: Neural Networks – volume: 51 start-page: 1385 year: 2004 end-page: 1394 ident: b38 article-title: A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints publication-title: IEEE Transactions on Circuits and Systems. I. Regular Papers – volume: 13 start-page: 889 year: 2002 end-page: 903 ident: b1 article-title: Analysis of generalized pattern searches publication-title: SIAM Journal on Optimization – volume: 28 start-page: 1206 year: 2017 end-page: 1215 ident: b40 article-title: A collective neurodynamic approach to constrained global optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 24 start-page: 812 issue: 5 year: 2013 ident: 10.1016/j.neunet.2019.02.002_b23 article-title: A one-layer projection neural network for nonsmooth optimization subject to linear equalities and bound constraints publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2013.2244908 – volume: 28 start-page: 2580 issue: 11 year: 2017 ident: 10.1016/j.neunet.2019.02.002_b27 article-title: A neurodynamic optimization approach to bilevel quadratic programming publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2016.2595489 – volume: 29 start-page: 5738 issue: 11 year: 2018 ident: 10.1016/j.neunet.2019.02.002_b20 article-title: A collaborative neurodynamic approach to multiobjective optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2018.2806481 – volume: 16 start-page: 863 issue: 4 year: 2004 ident: 10.1016/j.neunet.2019.02.002_b33 article-title: An extended projection neural network for constrained optimization constraints publication-title: Neural Computation doi: 10.1162/089976604322860730 – year: 2014 ident: 10.1016/j.neunet.2019.02.002_b8 – volume: 39 start-page: 470 issue: 3 year: 2017 ident: 10.1016/j.neunet.2019.02.002_b32 article-title: Large-scale binary quadratic optimization using semidefinite relaxation and applications publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2016.2541146 – volume: 28 start-page: 1206 issue: 5 year: 2017 ident: 10.1016/j.neunet.2019.02.002_b40 article-title: A collective neurodynamic approach to constrained global optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2016.2524619 – volume: 19 start-page: 328 issue: 3 year: 2007 ident: 10.1016/j.neunet.2019.02.002_b30 article-title: Scatter search and local NLP solvers: A multistart framework for global optimization publication-title: INFORMS Journal on computing doi: 10.1287/ijoc.1060.0175 – ident: 10.1016/j.neunet.2019.02.002_b43 doi: 10.1109/CVPR.2015.7298759 – volume: 64 start-page: 5571 issue: 21 year: 2016 ident: 10.1016/j.neunet.2019.02.002_b31 article-title: Efficient and non-convex coordinate descent for symmetric nonnegative matrix factorization publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2016.2591510 – start-page: 155 year: 2013 ident: 10.1016/j.neunet.2019.02.002_b2 – volume: 37 start-page: 1414 issue: 5 year: 2007 ident: 10.1016/j.neunet.2019.02.002_b14 article-title: Design of general projection neural networks for solving monotone linear variational inequalities and linear and quadratic optimization problems publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2007.903706 – year: 1980 ident: 10.1016/j.neunet.2019.02.002_b17 – volume: 55 start-page: 20 year: 2014 ident: 10.1016/j.neunet.2019.02.002_b42 article-title: A collective neurodynamic optimization approach to bound-constrained nonconvex optimization publication-title: Neural Networks doi: 10.1016/j.neunet.2014.03.006 – volume: 50 start-page: 79 year: 2014 ident: 10.1016/j.neunet.2019.02.002_b21 article-title: A one-layer recurrent neural network for constrained nonsmooth invex optimization publication-title: Neural Networks doi: 10.1016/j.neunet.2013.11.007 – volume: 15 start-page: 283 issue: 3 year: 1984 ident: 10.1016/j.neunet.2019.02.002_b3 article-title: Quadratic assignment problems publication-title: European Journal of Operational Research doi: 10.1016/0377-2217(84)90093-6 – volume: 25 start-page: 457 issue: 3 year: 2014 ident: 10.1016/j.neunet.2019.02.002_b41 article-title: Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2013.2275948 – volume: 49 start-page: 447 issue: 4 year: 2002 ident: 10.1016/j.neunet.2019.02.002_b35 article-title: A projection neural network and its application to constrained optimization problems publication-title: IEEE Transactions on Circuits and Systems I doi: 10.1109/81.995659 – volume: 26 start-page: 2891 issue: 11 year: 2015 ident: 10.1016/j.neunet.2019.02.002_b24 article-title: A projection neural network for constrained quadratic minimax optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2015.2425301 – volume: 27 start-page: 698 issue: 3 year: 2016 ident: 10.1016/j.neunet.2019.02.002_b25 article-title: L1-Minimization algorithms for sparse signal reconstruction based on a projection neural. network publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2015.2481006 – volume: 41 start-page: 1323 issue: 5 year: 2011 ident: 10.1016/j.neunet.2019.02.002_b22 article-title: A one-layer recurrent neural network for constrained nonsmooth optimization constraints publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2011.2140395 – volume: 29 start-page: 981 issue: 4 year: 2017 ident: 10.1016/j.neunet.2019.02.002_b44 article-title: A collaborative neurodynamic approach to multiple-objective distributed optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2017.2652478 – volume: 15 start-page: 1128 issue: 4 year: 2005 ident: 10.1016/j.neunet.2019.02.002_b28 article-title: On saddle points of augmented Lagrangians for constrained nonconvex optimization publication-title: SIAM Journal on Optimization doi: 10.1137/030602770 – volume: 33 start-page: 533 issue: 5 year: 1986 ident: 10.1016/j.neunet.2019.02.002_b29 article-title: Simple’neural’optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit publication-title: IEEE Transactions on Circuits and Systems doi: 10.1109/TCS.1986.1085953 – volume: 233 start-page: 625 issue: 4764 year: 1986 ident: 10.1016/j.neunet.2019.02.002_b11 article-title: Computing with neural circuits: A model publication-title: Science doi: 10.1126/science.3755256 – year: 2013 ident: 10.1016/j.neunet.2019.02.002_b9 – volume: 47 start-page: 1423 issue: 6 year: 2017 ident: 10.1016/j.neunet.2019.02.002_b26 article-title: Nonsmooth penalized clustering via ℓp regularized sparse regression publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2016.2546965 – volume: 19 start-page: 1340 issue: 8 year: 2008 ident: 10.1016/j.neunet.2019.02.002_b34 article-title: A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2008.2000273 – volume: 106 start-page: 129 issue: 1 year: 2000 ident: 10.1016/j.neunet.2019.02.002_b36 article-title: On the stability of globally projected dynamical systems publication-title: Journal of Optimization Theory and Applications doi: 10.1023/A:1004611224835 – volume: 80 start-page: 110 year: 2016 ident: 10.1016/j.neunet.2019.02.002_b4 article-title: A recurrent neural network for adaptive beamforming and array correction publication-title: Neural Networks doi: 10.1016/j.neunet.2016.04.010 – volume: 11 start-page: 853 issue: 4 year: 2014 ident: 10.1016/j.neunet.2019.02.002_b10 article-title: Unsupervised SAR image segmentation based on triplet Markov fields with graph cuts publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2013.2280025 – start-page: 194 year: 2007 ident: 10.1016/j.neunet.2019.02.002_b13 article-title: Convergence of a recurrent neural network for nonconvex optimization based on an augmented lagrangian function – year: 2018 ident: 10.1016/j.neunet.2019.02.002_b6 article-title: A two-timescale duplex neurodynamic approach to biconvex optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2018.2884788 – volume: 103 start-page: 63 year: 2018 ident: 10.1016/j.neunet.2019.02.002_b5 article-title: A nonnegative matrix factorization algorithm based on adiscrete-time projection neural network publication-title: Neural Networks doi: 10.1016/j.neunet.2018.03.003 – volume: 25 start-page: 1364 issue: 11 year: 2003 ident: 10.1016/j.neunet.2019.02.002_b16 article-title: Binary partitioning, perceptual grouping, and restoration with semidefinite programming publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2003.1240111 – volume: 25 start-page: 383 issue: 2 year: 2014 ident: 10.1016/j.neunet.2019.02.002_b18 article-title: Robust pole assignment for synthesizing feedback control systems using recurrent neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2013.2275732 – volume: 13 start-page: 889 issue: 3 year: 2002 ident: 10.1016/j.neunet.2019.02.002_b1 article-title: Analysis of generalized pattern searches publication-title: SIAM Journal on Optimization doi: 10.1137/S1052623400378742 – volume: 27 start-page: 214 issue: 2 year: 2016 ident: 10.1016/j.neunet.2019.02.002_b39 article-title: A bi-projection neural network for solving constrained quadratic optimization problems publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNNLS.2015.2500618 – volume: 6 start-page: 58 issue: 1 year: 2002 ident: 10.1016/j.neunet.2019.02.002_b7 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.985692 – volume: 17 start-page: 1487 issue: 6 year: 2006 ident: 10.1016/j.neunet.2019.02.002_b12 article-title: Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2006.879774 – volume: 51 start-page: 1385 issue: 7 year: 2004 ident: 10.1016/j.neunet.2019.02.002_b38 article-title: A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints publication-title: IEEE Transactions on Circuits and Systems. I. Regular Papers doi: 10.1109/TCSI.2004.830694 – volume: 28 start-page: 620 issue: 3 year: 2017 ident: 10.1016/j.neunet.2019.02.002_b19 article-title: A two-time-scale neurodynamic approach to constrained minimax optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2016.2538288 – start-page: 4129 year: 2005 ident: 10.1016/j.neunet.2019.02.002_b15 article-title: Lagrange-type neural networks for nonlinear programming problems with inequality constraints – volume: 39 start-page: 441 issue: 7 year: 1992 ident: 10.1016/j.neunet.2019.02.002_b45 article-title: Lagrange programming neural networks publication-title: IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing doi: 10.1109/82.160169 – volume: 15 start-page: 318 issue: 2 year: 2004 ident: 10.1016/j.neunet.2019.02.002_b37 article-title: A general projection neural network for solving monotone variational inequalities and related optimization problems publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2004.824252 |
SSID | ssj0006843 |
Score | 2.575542 |
Snippet | In this paper, a collaborative neurodynamic optimization approach is proposed for global and combinatorial optimization. First, a combinatorial optimization... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15 |
SubjectTerms | Augmented Lagrangian function Collaborative neurodynamic approach Combinatorial optimization Global optimization |
Title | A collaborative neurodynamic approach to global and combinatorial optimization |
URI | https://dx.doi.org/10.1016/j.neunet.2019.02.002 https://www.ncbi.nlm.nih.gov/pubmed/30831379 https://www.proquest.com/docview/2188205108 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4ftRHieA1tt3dZLPHUixVsRct9BaSTRYqdrdo69Hf7mST-DiUgsddEhJmJt98IfNA6JpTDV4gMcT0dEoSRRVRQLMJZYWMdSRVXrcDehyz0SS5n9JpAw1CLowNq_TY7zC9Rmv_p-Ol2VnMZp2nLrhaBoQHKEhtejaDPUmtld98_oR5MO4i52AwsaND-lwd41WaVWlsRGUvc5U7o3XuaR39rN3QcA_teP6I-26L-6hhygO0G3ozYH9UD9G4j3-p-MPgunCldv3ncagkjpcVdiVBsCw1zJjDRdlew8EqcQVoMvdpmkdoMrx9HoyI751AcnDJS8IjncoUhFPYKxOgCPAeZXgied7VKqc8o5qxImVFFgH2MsY5cI8C-EWhIqOL-Bg1y6o0pwizqFdQW8hN2zc7k0kqdRaDZ6dwto1OWigOIhO5Lyxu-1u8ihBB9iKcoIUVtOhGAgTdQuR71sIV1tgwPg3aEH8MRAD2b5h5FZQn4OzYBxFZmmr1LoDeAAECVOItdOK0-r2X2LZgi9Ps7N_rnqNt--Xiyi5Qc_m2MpfAYJaqXZtoG2317x5G4y-LnvAJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbsIwEB1ROLSX7gtdXalXC0hixzkiVARluRQkblYSOxJVCaiFfn_HsYPaA6rUa5JRrPH4zbM8fgPwJJjCLBBoqlsqpEHCEpogzaaMZ7GvvDhJi3ZAozHvTYOXGZtVoFPehTFllQ77LaYXaO2eNJw3G6v5vPHaxFTLkfAgBSlCbw9qRp2KVaHW7g964y0gc2GL5_B7agzKG3RFmVeuN7k2RZWtyIp3ersy1C4GWmSi7jEcOgpJ2naUJ1DR-Skcle0ZiFutZzBukx-z_KVJoV2pbAt6UoqJk_WSWFUQEucKLRa4VzY7cQxMskRAWbibmucw7T5POj3q2ifQFLPymgpPhXGI_snMrgmBBKlPokUQi7SpkpSJiCnOs5BnkYfwy7kQSD8ypBhZ4mmV-RdQzZe5vgLCvVbGjJabMsd2OopZrCIfkzvD5a1VUAe_dJlMnba4aXHxLssisjdpHS2No2XTk-joOtCt1cpqa_zxfVjOhvwVIxLh_w_Lx3LyJC4fcyYS53q5-ZTIcJADITCJOlzaWd2OxTdd2Pwwuv73fx9gvzcZDeWwPx7cwIF5Y8vMbqG6_tjoOyQ06-TeBew3yDHyug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+collaborative+neurodynamic+approach+to+global+and+combinatorial+optimization&rft.jtitle=Neural+networks&rft.au=Che%2C+Hangjun&rft.au=Wang%2C+Jun&rft.date=2019-06-01&rft.eissn=1879-2782&rft.volume=114&rft.spage=15&rft_id=info:doi/10.1016%2Fj.neunet.2019.02.002&rft_id=info%3Apmid%2F30831379&rft.externalDocID=30831379 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |