A collaborative neurodynamic approach to global and combinatorial optimization

In this paper, a collaborative neurodynamic optimization approach is proposed for global and combinatorial optimization. First, a combinatorial optimization problem is reformulated as a global optimization problem. Second, a neurodynamic optimization model based on an augmented Lagrangian function i...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 114; pp. 15 - 27
Main Authors Che, Hangjun, Wang, Jun
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a collaborative neurodynamic optimization approach is proposed for global and combinatorial optimization. First, a combinatorial optimization problem is reformulated as a global optimization problem. Second, a neurodynamic optimization model based on an augmented Lagrangian function is proposed and its states are proven to be asymptotically stable at a strict local minimum in the presence of nonconvexity in objective function or constraints. In addition, multiple neurodynamic optimization models are employed to search for global optimal solutions collaboratively and particle swarm optimization (PSO) is used to optimize their initial states. The proposed approach is shown to be globally convergent to global optimal solutions as substantiated for solving benchmark problems.
AbstractList In this paper, a collaborative neurodynamic optimization approach is proposed for global and combinatorial optimization. First, a combinatorial optimization problem is reformulated as a global optimization problem. Second, a neurodynamic optimization model based on an augmented Lagrangian function is proposed and its states are proven to be asymptotically stable at a strict local minimum in the presence of nonconvexity in objective function or constraints. In addition, multiple neurodynamic optimization models are employed to search for global optimal solutions collaboratively and particle swarm optimization (PSO) is used to optimize their initial states. The proposed approach is shown to be globally convergent to global optimal solutions as substantiated for solving benchmark problems.
In this paper, a collaborative neurodynamic optimization approach is proposed for global and combinatorial optimization. First, a combinatorial optimization problem is reformulated as a global optimization problem. Second, a neurodynamic optimization model based on an augmented Lagrangian function is proposed and its states are proven to be asymptotically stable at a strict local minimum in the presence of nonconvexity in objective function or constraints. In addition, multiple neurodynamic optimization models are employed to search for global optimal solutions collaboratively and particle swarm optimization (PSO) is used to optimize their initial states. The proposed approach is shown to be globally convergent to global optimal solutions as substantiated for solving benchmark problems.In this paper, a collaborative neurodynamic optimization approach is proposed for global and combinatorial optimization. First, a combinatorial optimization problem is reformulated as a global optimization problem. Second, a neurodynamic optimization model based on an augmented Lagrangian function is proposed and its states are proven to be asymptotically stable at a strict local minimum in the presence of nonconvexity in objective function or constraints. In addition, multiple neurodynamic optimization models are employed to search for global optimal solutions collaboratively and particle swarm optimization (PSO) is used to optimize their initial states. The proposed approach is shown to be globally convergent to global optimal solutions as substantiated for solving benchmark problems.
Author Wang, Jun
Che, Hangjun
Author_xml – sequence: 1
  givenname: Hangjun
  surname: Che
  fullname: Che, Hangjun
  email: hjche2-c@my.city.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 2
  givenname: Jun
  orcidid: 0000-0002-1305-5735
  surname: Wang
  fullname: Wang, Jun
  email: jwang.cs@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30831379$$D View this record in MEDLINE/PubMed
BookMark eNqFkMFO3DAURa2KqgzT_gFCWbJJeHY8jtMFEkJQkEbtpl1bjv0CHiX21PYgwdfj6cCmi3Zl6emeK99zQo588EjIKYWGAhUXm8bjzmNuGNC-AdYAsA9kQWXX16yT7IgsQPZtLUDCMTlJaQMAQvL2EzluQba07foF-X5VmTBNeghRZ_eEVSmNwT57PTtT6e02Bm0eqxyqhykMeqq0t4WYB-d1DtGVS9hmN7uXggf_mXwc9ZTwy9u7JL9ub35e39XrH9_ur6_WteF0lWvJbKc7CXQEynnbCcH5gJJracAOZiX7lRVi7MTYM9RGCCmFaMeO03FgaMd2Sc4PveV_v3eYsppdMliGeAy7pBiVksGKlp1LcvYW3Q0zWrWNbtbxWb07KIGvh4CJIaWIozIu_1mTo3aToqD2wtVGHYSrvXAFTBXhBeZ_we_9_8EuDxgWSU8Oo0rGoTdoXUSTlQ3u3wWvLuacww
CitedBy_id crossref_primary_10_1109_TNNLS_2024_3350335
crossref_primary_10_1016_j_neunet_2023_05_054
crossref_primary_10_1109_TNNLS_2021_3085314
crossref_primary_10_1016_j_sigpro_2020_107774
crossref_primary_10_1109_TSMC_2022_3221937
crossref_primary_10_1109_TETCI_2024_3369667
crossref_primary_10_1016_j_knosys_2022_109026
crossref_primary_10_1007_s00500_024_09890_x
crossref_primary_10_1007_s40747_021_00605_5
crossref_primary_10_1109_TCYB_2021_3102941
crossref_primary_10_1016_j_neunet_2021_12_001
crossref_primary_10_1109_TNNLS_2021_3116382
crossref_primary_10_1016_j_neunet_2023_08_014
crossref_primary_10_1088_1402_4896_ace8cf
crossref_primary_10_1109_TNNLS_2023_3263975
crossref_primary_10_1109_TSUSC_2023_3325268
crossref_primary_10_1016_j_neunet_2021_02_006
crossref_primary_10_1016_j_neunet_2022_06_006
crossref_primary_10_3390_en15249486
crossref_primary_10_1109_TSMC_2023_3331260
crossref_primary_10_1109_TCYB_2024_3474714
crossref_primary_10_1016_j_neunet_2024_106548
crossref_primary_10_1016_j_sysconle_2024_106007
crossref_primary_10_1109_TCYB_2023_3289712
crossref_primary_10_1109_JAS_2024_124935
crossref_primary_10_1162_neco_a_01294
crossref_primary_10_1155_2022_3902107
crossref_primary_10_1016_j_engappai_2024_109778
crossref_primary_10_1007_s00521_022_07752_x
crossref_primary_10_1016_j_asoc_2024_112044
crossref_primary_10_1007_s11075_021_01075_z
crossref_primary_10_1155_2022_3345037
crossref_primary_10_1007_s11063_022_10901_x
crossref_primary_10_1109_TCYB_2021_3090204
crossref_primary_10_1109_TNNLS_2022_3212593
crossref_primary_10_1109_TNNLS_2022_3213167
crossref_primary_10_1109_TCYB_2024_3398585
crossref_primary_10_1109_TCYB_2024_3525413
crossref_primary_10_1109_TNNLS_2019_2918984
crossref_primary_10_1007_s00521_022_08166_5
crossref_primary_10_1109_TII_2024_3383908
crossref_primary_10_1016_j_neunet_2021_10_007
crossref_primary_10_1016_j_knosys_2022_109593
crossref_primary_10_1016_j_neunet_2022_06_023
crossref_primary_10_1016_j_asoc_2024_112156
crossref_primary_10_1016_j_neunet_2024_106525
crossref_primary_10_3390_math12010151
crossref_primary_10_1088_1742_6596_2517_1_012010
crossref_primary_10_1002_nme_7377
crossref_primary_10_1109_TNNLS_2022_3160645
crossref_primary_10_1016_j_neunet_2023_05_003
crossref_primary_10_1007_s11277_020_07717_0
crossref_primary_10_1016_j_neucom_2025_130023
crossref_primary_10_1109_TNNLS_2021_3125457
crossref_primary_10_1016_j_cnsns_2024_107999
crossref_primary_10_1109_TNNLS_2021_3055825
crossref_primary_10_1109_TSMC_2023_3247633
crossref_primary_10_1109_TNNLS_2020_2973760
crossref_primary_10_1109_TNNLS_2021_3068500
crossref_primary_10_1016_j_neucom_2024_129156
crossref_primary_10_1155_2022_8077277
crossref_primary_10_1016_j_ins_2024_121775
crossref_primary_10_1016_j_energy_2021_120965
crossref_primary_10_1016_j_neunet_2024_107027
crossref_primary_10_1109_TETCI_2024_3405370
crossref_primary_10_1109_TSG_2023_3305326
crossref_primary_10_1016_j_neunet_2021_01_004
crossref_primary_10_1155_2022_7665954
crossref_primary_10_1109_TNSE_2024_3401748
crossref_primary_10_1007_s12559_020_09762_0
crossref_primary_10_1109_TII_2022_3180080
crossref_primary_10_1155_2022_4134864
crossref_primary_10_1016_j_neunet_2021_11_013
crossref_primary_10_1016_j_neunet_2021_04_038
crossref_primary_10_1109_TFUZZ_2022_3191087
crossref_primary_10_3934_mbe_2023556
crossref_primary_10_1016_j_neunet_2024_106348
crossref_primary_10_1016_j_neunet_2023_10_022
crossref_primary_10_1016_j_neunet_2019_10_008
crossref_primary_10_1109_TNNLS_2021_3082528
crossref_primary_10_1155_2022_1973777
crossref_primary_10_2478_amns_2021_2_00263
crossref_primary_10_1016_j_matcom_2023_12_032
crossref_primary_10_1155_2022_5813577
crossref_primary_10_1109_TETCI_2024_3369482
crossref_primary_10_1109_TNNLS_2023_3245812
crossref_primary_10_1016_j_neucom_2021_06_097
crossref_primary_10_1109_TNNLS_2020_3027471
crossref_primary_10_1016_j_neunet_2023_10_011
crossref_primary_10_1016_j_neunet_2022_09_013
crossref_primary_10_1016_j_neucom_2024_128489
crossref_primary_10_1016_j_neunet_2024_106791
crossref_primary_10_1016_j_neunet_2024_107121
crossref_primary_10_1007_s11063_023_11344_8
crossref_primary_10_1016_j_neunet_2022_03_033
crossref_primary_10_1109_JAS_2022_105524
crossref_primary_10_1016_j_neunet_2023_06_003
crossref_primary_10_1016_j_jfranklin_2023_11_041
crossref_primary_10_1016_j_patcog_2022_109254
crossref_primary_10_1016_j_neunet_2023_02_011
crossref_primary_10_1109_TMECH_2020_3016757
crossref_primary_10_1155_2022_1480173
crossref_primary_10_1016_j_neunet_2022_07_018
Cites_doi 10.1109/TNNLS.2013.2244908
10.1109/TNNLS.2016.2595489
10.1109/TNNLS.2018.2806481
10.1162/089976604322860730
10.1109/TPAMI.2016.2541146
10.1109/TNNLS.2016.2524619
10.1287/ijoc.1060.0175
10.1109/CVPR.2015.7298759
10.1109/TSP.2016.2591510
10.1109/TSMCB.2007.903706
10.1016/j.neunet.2014.03.006
10.1016/j.neunet.2013.11.007
10.1016/0377-2217(84)90093-6
10.1109/TNNLS.2013.2275948
10.1109/81.995659
10.1109/TNNLS.2015.2425301
10.1109/TNNLS.2015.2481006
10.1109/TSMCB.2011.2140395
10.1109/TNNLS.2017.2652478
10.1137/030602770
10.1109/TCS.1986.1085953
10.1126/science.3755256
10.1109/TCYB.2016.2546965
10.1109/TNN.2008.2000273
10.1023/A:1004611224835
10.1016/j.neunet.2016.04.010
10.1109/LGRS.2013.2280025
10.1109/TNNLS.2018.2884788
10.1016/j.neunet.2018.03.003
10.1109/TPAMI.2003.1240111
10.1109/TNNLS.2013.2275732
10.1137/S1052623400378742
10.1109/TNNLS.2015.2500618
10.1109/4235.985692
10.1109/TNN.2006.879774
10.1109/TCSI.2004.830694
10.1109/TNNLS.2016.2538288
10.1109/82.160169
10.1109/TNN.2004.824252
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.neunet.2019.02.002
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 27
ExternalDocumentID 30831379
10_1016_j_neunet_2019_02_002
S0893608019300425
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61673330
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Research Grants Council of the Hong Kong Special Administrative Region of China
  grantid: 11208517; 11202318
– fundername: Chinese Academy of Sciences, China
  grantid: GJHZ1849
  funderid: http://dx.doi.org/10.13039/501100005196
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c415t-82d7a7801f0144376644be84a8c0dbc5895d66f76f92eac6688663f741fb2edf3
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Sun Aug 24 02:52:19 EDT 2025
Thu Apr 03 06:57:42 EDT 2025
Tue Jul 01 01:24:33 EDT 2025
Thu Apr 24 22:57:25 EDT 2025
Fri Feb 23 02:28:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Global optimization
Collaborative neurodynamic approach
Augmented Lagrangian function
Combinatorial optimization
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-82d7a7801f0144376644be84a8c0dbc5895d66f76f92eac6688663f741fb2edf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1305-5735
PMID 30831379
PQID 2188205108
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2188205108
pubmed_primary_30831379
crossref_citationtrail_10_1016_j_neunet_2019_02_002
crossref_primary_10_1016_j_neunet_2019_02_002
elsevier_sciencedirect_doi_10_1016_j_neunet_2019_02_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Keuchel, Schnorr, Schellewald, Cremers (b16) 2003; 25
Bazaraa, Sherali, Shetty (b2) 2013
Xia, Wang (b36) 2000; 106
Leung, Wang (b20) 2018; 29
Yan, Wang (b41) 2014; 25
Liu, Wang (b25) 2016; 27
D.P. (b8) 2014
Kinderlehrer, Stampacchia (b17) 1980
Xia, Wang (b37) 2004; 15
Xia (b33) 2004; 16
Floudas, Pardalos, Adjiman, Esposito, Gumus, Harding, Schweiger (b9) 2013
Hu, Wang (b14) 2007; 37
Tank, Hopfield (b29) 1986; 33
Burkard (b3) 1984; 15
Xia, Leung, Wang (b35) 2002; 49
Che, Li, He, Huang (b4) 2016; 80
Che, Wang (b6) 2018
Huang (b15) 2005
Audet, Dennis (b1) 2002; 13
Liu, Wang (b23) 2013; 24
Yan, Fan, Wang (b40) 2017; 28
Yan, J., Zhang, C., Zha, H., Liu, W., Yang, X., & Chu, S. M. (2015). Discrete hyper-graph matching. In
Qin, Le, Wang (b27) 2017; 28
Liu, Wang (b24) 2015; 26
Hu, Wang (b13) 2007
Le, Wang (b19) 2017; 28
Li, Yan, Wang (b21) 2014; 50
Wang, Shen, Anton, Torr (b32) 2017; 39
(pp. 1520–1528).
Che, Wang (b5) 2018; 103
Liu, Wang (b22) 2011; 41
Vandaele, Gillis, Lei, Zhong, Dhillon (b31) 2016; 64
Yang, Liu, Wang (b44) 2017; 29
Sun, Li, McKinnon (b28) 2005; 15
Ugray, Lasdon, Plummer, Glover, Kelly, Rafael (b30) 2007; 19
Gan, Wu, Wang, Zhang, Zhang (b10) 2014; 11
Xia, Feng, Wang (b34) 2008; 19
Hu, Wang (b12) 2006; 17
Niu, Zhou, Tian, Qi, Zhang (b26) 2017; 47
Yan, Wang, Li (b42) 2014; 55
Hopfield, Tank (b11) 1986; 233
Clerc, Kennedy (b7) 2002; 6
Zhang, Constantinides (b45) 1992; 39
Le, Wang (b18) 2014; 25
Xia, Wang (b38) 2004; 51
Xia, Wang (b39) 2016; 27
Kinderlehrer (10.1016/j.neunet.2019.02.002_b17) 1980
Yang (10.1016/j.neunet.2019.02.002_b44) 2017; 29
Burkard (10.1016/j.neunet.2019.02.002_b3) 1984; 15
Clerc (10.1016/j.neunet.2019.02.002_b7) 2002; 6
Niu (10.1016/j.neunet.2019.02.002_b26) 2017; 47
Huang (10.1016/j.neunet.2019.02.002_b15) 2005
Hu (10.1016/j.neunet.2019.02.002_b13) 2007
Liu (10.1016/j.neunet.2019.02.002_b22) 2011; 41
10.1016/j.neunet.2019.02.002_b43
Che (10.1016/j.neunet.2019.02.002_b6) 2018
D.P. (10.1016/j.neunet.2019.02.002_b8) 2014
Floudas (10.1016/j.neunet.2019.02.002_b9) 2013
Tank (10.1016/j.neunet.2019.02.002_b29) 1986; 33
Keuchel (10.1016/j.neunet.2019.02.002_b16) 2003; 25
Xia (10.1016/j.neunet.2019.02.002_b36) 2000; 106
Wang (10.1016/j.neunet.2019.02.002_b32) 2017; 39
Xia (10.1016/j.neunet.2019.02.002_b37) 2004; 15
Li (10.1016/j.neunet.2019.02.002_b21) 2014; 50
Xia (10.1016/j.neunet.2019.02.002_b34) 2008; 19
Yan (10.1016/j.neunet.2019.02.002_b41) 2014; 25
Sun (10.1016/j.neunet.2019.02.002_b28) 2005; 15
Yan (10.1016/j.neunet.2019.02.002_b40) 2017; 28
Hu (10.1016/j.neunet.2019.02.002_b14) 2007; 37
Audet (10.1016/j.neunet.2019.02.002_b1) 2002; 13
Le (10.1016/j.neunet.2019.02.002_b18) 2014; 25
Gan (10.1016/j.neunet.2019.02.002_b10) 2014; 11
Hopfield (10.1016/j.neunet.2019.02.002_b11) 1986; 233
Bazaraa (10.1016/j.neunet.2019.02.002_b2) 2013
Le (10.1016/j.neunet.2019.02.002_b19) 2017; 28
Xia (10.1016/j.neunet.2019.02.002_b35) 2002; 49
Zhang (10.1016/j.neunet.2019.02.002_b45) 1992; 39
Liu (10.1016/j.neunet.2019.02.002_b25) 2016; 27
Qin (10.1016/j.neunet.2019.02.002_b27) 2017; 28
Ugray (10.1016/j.neunet.2019.02.002_b30) 2007; 19
Che (10.1016/j.neunet.2019.02.002_b4) 2016; 80
Liu (10.1016/j.neunet.2019.02.002_b23) 2013; 24
Liu (10.1016/j.neunet.2019.02.002_b24) 2015; 26
Xia (10.1016/j.neunet.2019.02.002_b39) 2016; 27
Xia (10.1016/j.neunet.2019.02.002_b33) 2004; 16
Vandaele (10.1016/j.neunet.2019.02.002_b31) 2016; 64
Che (10.1016/j.neunet.2019.02.002_b5) 2018; 103
Leung (10.1016/j.neunet.2019.02.002_b20) 2018; 29
Xia (10.1016/j.neunet.2019.02.002_b38) 2004; 51
Yan (10.1016/j.neunet.2019.02.002_b42) 2014; 55
Hu (10.1016/j.neunet.2019.02.002_b12) 2006; 17
References_xml – volume: 15
  start-page: 318
  year: 2004
  end-page: 328
  ident: b37
  article-title: A general projection neural network for solving monotone variational inequalities and related optimization problems
  publication-title: IEEE Transactions on Neural Networks
– year: 2013
  ident: b9
  article-title: Handbook of test problems in local and global optimization
– volume: 47
  start-page: 1423
  year: 2017
  end-page: 1433
  ident: b26
  article-title: Nonsmooth penalized clustering via
  publication-title: IEEE Transactions on Cybernetics
– volume: 33
  start-page: 533
  year: 1986
  end-page: 541
  ident: b29
  article-title: Simple’neural’optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit
  publication-title: IEEE Transactions on Circuits and Systems
– volume: 11
  start-page: 853
  year: 2014
  end-page: 857
  ident: b10
  article-title: Unsupervised SAR image segmentation based on triplet Markov fields with graph cuts
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 25
  start-page: 1364
  year: 2003
  end-page: 1379
  ident: b16
  article-title: Binary partitioning, perceptual grouping, and restoration with semidefinite programming
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 64
  start-page: 5571
  year: 2016
  end-page: 5584
  ident: b31
  article-title: Efficient and non-convex coordinate descent for symmetric nonnegative matrix factorization
  publication-title: IEEE Transactions on Signal Processing
– volume: 29
  start-page: 981
  year: 2017
  end-page: 992
  ident: b44
  article-title: A collaborative neurodynamic approach to multiple-objective distributed optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 28
  start-page: 2580
  year: 2017
  end-page: 2591
  ident: b27
  article-title: A neurodynamic optimization approach to bilevel quadratic programming
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 233
  start-page: 625
  year: 1986
  end-page: 633
  ident: b11
  article-title: Computing with neural circuits: A model
  publication-title: Science
– year: 1980
  ident: b17
  article-title: An Introduction To Variational Inequalities and their Applications
– volume: 15
  start-page: 1128
  year: 2005
  end-page: 1146
  ident: b28
  article-title: On saddle points of augmented Lagrangians for constrained nonconvex optimization
  publication-title: SIAM Journal on Optimization
– year: 2018
  ident: b6
  article-title: A two-timescale duplex neurodynamic approach to biconvex optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 103
  start-page: 63
  year: 2018
  end-page: 71
  ident: b5
  article-title: A nonnegative matrix factorization algorithm based on adiscrete-time projection neural network
  publication-title: Neural Networks
– volume: 19
  start-page: 1340
  year: 2008
  end-page: 1353
  ident: b34
  article-title: A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints
  publication-title: IEEE Transactions on Neural Networks
– volume: 106
  start-page: 129
  year: 2000
  end-page: 150
  ident: b36
  article-title: On the stability of globally projected dynamical systems
  publication-title: Journal of Optimization Theory and Applications
– volume: 41
  start-page: 1323
  year: 2011
  end-page: 1333
  ident: b22
  article-title: A one-layer recurrent neural network for constrained nonsmooth optimization constraints
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
– volume: 39
  start-page: 470
  year: 2017
  end-page: 485
  ident: b32
  article-title: Large-scale binary quadratic optimization using semidefinite relaxation and applications
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 25
  start-page: 383
  year: 2014
  end-page: 393
  ident: b18
  article-title: Robust pole assignment for synthesizing feedback control systems using recurrent neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 16
  start-page: 863
  year: 2004
  end-page: 883
  ident: b33
  article-title: An extended projection neural network for constrained optimization constraints
  publication-title: Neural Computation
– start-page: 194
  year: 2007
  end-page: 203
  ident: b13
  article-title: Convergence of a recurrent neural network for nonconvex optimization based on an augmented lagrangian function
  publication-title: International symposium on neural networks
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: b7
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 37
  start-page: 1414
  year: 2007
  end-page: 1421
  ident: b14
  article-title: Design of general projection neural networks for solving monotone linear variational inequalities and linear and quadratic optimization problems
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
– start-page: 4129
  year: 2005
  end-page: 4133
  ident: b15
  article-title: Lagrange-type neural networks for nonlinear programming problems with inequality constraints
  publication-title: 44th IEEE conference on decision and control, and the European control conference
– volume: 24
  start-page: 812
  year: 2013
  end-page: 824
  ident: b23
  article-title: A one-layer projection neural network for nonsmooth optimization subject to linear equalities and bound constraints
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 26
  start-page: 2891
  year: 2015
  end-page: 2900
  ident: b24
  article-title: A projection neural network for constrained quadratic minimax optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 27
  start-page: 214
  year: 2016
  end-page: 224
  ident: b39
  article-title: A bi-projection neural network for solving constrained quadratic optimization problems
  publication-title: IEEE Transactions on Neural Networks
– volume: 15
  start-page: 283
  year: 1984
  end-page: 289
  ident: b3
  article-title: Quadratic assignment problems
  publication-title: European Journal of Operational Research
– volume: 29
  start-page: 5738
  year: 2018
  end-page: 5748
  ident: b20
  article-title: A collaborative neurodynamic approach to multiobjective optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 17
  start-page: 1487
  year: 2006
  end-page: 1499
  ident: b12
  article-title: Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network
  publication-title: IEEE Transactions on Neural Networks
– volume: 28
  start-page: 620
  year: 2017
  end-page: 629
  ident: b19
  article-title: A two-time-scale neurodynamic approach to constrained minimax optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 50
  start-page: 79
  year: 2014
  end-page: 89
  ident: b21
  article-title: A one-layer recurrent neural network for constrained nonsmooth invex optimization
  publication-title: Neural Networks
– volume: 39
  start-page: 441
  year: 1992
  end-page: 452
  ident: b45
  article-title: Lagrange programming neural networks
  publication-title: IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing
– year: 2014
  ident: b8
  article-title: Constrained optimization and lagrange multiplier methods
– volume: 19
  start-page: 328
  year: 2007
  end-page: 340
  ident: b30
  article-title: Scatter search and local NLP solvers: A multistart framework for global optimization
  publication-title: INFORMS Journal on computing
– volume: 80
  start-page: 110
  year: 2016
  end-page: 117
  ident: b4
  article-title: A recurrent neural network for adaptive beamforming and array correction
  publication-title: Neural Networks
– volume: 27
  start-page: 698
  year: 2016
  end-page: 707
  ident: b25
  article-title: -Minimization algorithms for sparse signal reconstruction based on a projection neural. network
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– start-page: 155
  year: 2013
  end-page: 173
  ident: b2
  article-title: Nonlinear programming: Theory and algorithms
– volume: 25
  start-page: 457
  year: 2014
  end-page: 469
  ident: b41
  article-title: Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: Yan, J., Zhang, C., Zha, H., Liu, W., Yang, X., & Chu, S. M. (2015). Discrete hyper-graph matching. In
– reference: (pp. 1520–1528).
– volume: 49
  start-page: 447
  year: 2002
  end-page: 458
  ident: b35
  article-title: A projection neural network and its application to constrained optimization problems
  publication-title: IEEE Transactions on Circuits and Systems I
– volume: 55
  start-page: 20
  year: 2014
  end-page: 29
  ident: b42
  article-title: A collective neurodynamic optimization approach to bound-constrained nonconvex optimization
  publication-title: Neural Networks
– volume: 51
  start-page: 1385
  year: 2004
  end-page: 1394
  ident: b38
  article-title: A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints
  publication-title: IEEE Transactions on Circuits and Systems. I. Regular Papers
– volume: 13
  start-page: 889
  year: 2002
  end-page: 903
  ident: b1
  article-title: Analysis of generalized pattern searches
  publication-title: SIAM Journal on Optimization
– volume: 28
  start-page: 1206
  year: 2017
  end-page: 1215
  ident: b40
  article-title: A collective neurodynamic approach to constrained global optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 24
  start-page: 812
  issue: 5
  year: 2013
  ident: 10.1016/j.neunet.2019.02.002_b23
  article-title: A one-layer projection neural network for nonsmooth optimization subject to linear equalities and bound constraints
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2013.2244908
– volume: 28
  start-page: 2580
  issue: 11
  year: 2017
  ident: 10.1016/j.neunet.2019.02.002_b27
  article-title: A neurodynamic optimization approach to bilevel quadratic programming
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2595489
– volume: 29
  start-page: 5738
  issue: 11
  year: 2018
  ident: 10.1016/j.neunet.2019.02.002_b20
  article-title: A collaborative neurodynamic approach to multiobjective optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2806481
– volume: 16
  start-page: 863
  issue: 4
  year: 2004
  ident: 10.1016/j.neunet.2019.02.002_b33
  article-title: An extended projection neural network for constrained optimization constraints
  publication-title: Neural Computation
  doi: 10.1162/089976604322860730
– year: 2014
  ident: 10.1016/j.neunet.2019.02.002_b8
– volume: 39
  start-page: 470
  issue: 3
  year: 2017
  ident: 10.1016/j.neunet.2019.02.002_b32
  article-title: Large-scale binary quadratic optimization using semidefinite relaxation and applications
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2016.2541146
– volume: 28
  start-page: 1206
  issue: 5
  year: 2017
  ident: 10.1016/j.neunet.2019.02.002_b40
  article-title: A collective neurodynamic approach to constrained global optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2524619
– volume: 19
  start-page: 328
  issue: 3
  year: 2007
  ident: 10.1016/j.neunet.2019.02.002_b30
  article-title: Scatter search and local NLP solvers: A multistart framework for global optimization
  publication-title: INFORMS Journal on computing
  doi: 10.1287/ijoc.1060.0175
– ident: 10.1016/j.neunet.2019.02.002_b43
  doi: 10.1109/CVPR.2015.7298759
– volume: 64
  start-page: 5571
  issue: 21
  year: 2016
  ident: 10.1016/j.neunet.2019.02.002_b31
  article-title: Efficient and non-convex coordinate descent for symmetric nonnegative matrix factorization
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2016.2591510
– start-page: 155
  year: 2013
  ident: 10.1016/j.neunet.2019.02.002_b2
– volume: 37
  start-page: 1414
  issue: 5
  year: 2007
  ident: 10.1016/j.neunet.2019.02.002_b14
  article-title: Design of general projection neural networks for solving monotone linear variational inequalities and linear and quadratic optimization problems
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2007.903706
– year: 1980
  ident: 10.1016/j.neunet.2019.02.002_b17
– volume: 55
  start-page: 20
  year: 2014
  ident: 10.1016/j.neunet.2019.02.002_b42
  article-title: A collective neurodynamic optimization approach to bound-constrained nonconvex optimization
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.03.006
– volume: 50
  start-page: 79
  year: 2014
  ident: 10.1016/j.neunet.2019.02.002_b21
  article-title: A one-layer recurrent neural network for constrained nonsmooth invex optimization
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2013.11.007
– volume: 15
  start-page: 283
  issue: 3
  year: 1984
  ident: 10.1016/j.neunet.2019.02.002_b3
  article-title: Quadratic assignment problems
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(84)90093-6
– volume: 25
  start-page: 457
  issue: 3
  year: 2014
  ident: 10.1016/j.neunet.2019.02.002_b41
  article-title: Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2013.2275948
– volume: 49
  start-page: 447
  issue: 4
  year: 2002
  ident: 10.1016/j.neunet.2019.02.002_b35
  article-title: A projection neural network and its application to constrained optimization problems
  publication-title: IEEE Transactions on Circuits and Systems I
  doi: 10.1109/81.995659
– volume: 26
  start-page: 2891
  issue: 11
  year: 2015
  ident: 10.1016/j.neunet.2019.02.002_b24
  article-title: A projection neural network for constrained quadratic minimax optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2425301
– volume: 27
  start-page: 698
  issue: 3
  year: 2016
  ident: 10.1016/j.neunet.2019.02.002_b25
  article-title: L1-Minimization algorithms for sparse signal reconstruction based on a projection neural. network
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2481006
– volume: 41
  start-page: 1323
  issue: 5
  year: 2011
  ident: 10.1016/j.neunet.2019.02.002_b22
  article-title: A one-layer recurrent neural network for constrained nonsmooth optimization constraints
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2011.2140395
– volume: 29
  start-page: 981
  issue: 4
  year: 2017
  ident: 10.1016/j.neunet.2019.02.002_b44
  article-title: A collaborative neurodynamic approach to multiple-objective distributed optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2017.2652478
– volume: 15
  start-page: 1128
  issue: 4
  year: 2005
  ident: 10.1016/j.neunet.2019.02.002_b28
  article-title: On saddle points of augmented Lagrangians for constrained nonconvex optimization
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/030602770
– volume: 33
  start-page: 533
  issue: 5
  year: 1986
  ident: 10.1016/j.neunet.2019.02.002_b29
  article-title: Simple’neural’optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit
  publication-title: IEEE Transactions on Circuits and Systems
  doi: 10.1109/TCS.1986.1085953
– volume: 233
  start-page: 625
  issue: 4764
  year: 1986
  ident: 10.1016/j.neunet.2019.02.002_b11
  article-title: Computing with neural circuits: A model
  publication-title: Science
  doi: 10.1126/science.3755256
– year: 2013
  ident: 10.1016/j.neunet.2019.02.002_b9
– volume: 47
  start-page: 1423
  issue: 6
  year: 2017
  ident: 10.1016/j.neunet.2019.02.002_b26
  article-title: Nonsmooth penalized clustering via ℓp regularized sparse regression
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2016.2546965
– volume: 19
  start-page: 1340
  issue: 8
  year: 2008
  ident: 10.1016/j.neunet.2019.02.002_b34
  article-title: A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2008.2000273
– volume: 106
  start-page: 129
  issue: 1
  year: 2000
  ident: 10.1016/j.neunet.2019.02.002_b36
  article-title: On the stability of globally projected dynamical systems
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1023/A:1004611224835
– volume: 80
  start-page: 110
  year: 2016
  ident: 10.1016/j.neunet.2019.02.002_b4
  article-title: A recurrent neural network for adaptive beamforming and array correction
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2016.04.010
– volume: 11
  start-page: 853
  issue: 4
  year: 2014
  ident: 10.1016/j.neunet.2019.02.002_b10
  article-title: Unsupervised SAR image segmentation based on triplet Markov fields with graph cuts
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2013.2280025
– start-page: 194
  year: 2007
  ident: 10.1016/j.neunet.2019.02.002_b13
  article-title: Convergence of a recurrent neural network for nonconvex optimization based on an augmented lagrangian function
– year: 2018
  ident: 10.1016/j.neunet.2019.02.002_b6
  article-title: A two-timescale duplex neurodynamic approach to biconvex optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2884788
– volume: 103
  start-page: 63
  year: 2018
  ident: 10.1016/j.neunet.2019.02.002_b5
  article-title: A nonnegative matrix factorization algorithm based on adiscrete-time projection neural network
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.03.003
– volume: 25
  start-page: 1364
  issue: 11
  year: 2003
  ident: 10.1016/j.neunet.2019.02.002_b16
  article-title: Binary partitioning, perceptual grouping, and restoration with semidefinite programming
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2003.1240111
– volume: 25
  start-page: 383
  issue: 2
  year: 2014
  ident: 10.1016/j.neunet.2019.02.002_b18
  article-title: Robust pole assignment for synthesizing feedback control systems using recurrent neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2013.2275732
– volume: 13
  start-page: 889
  issue: 3
  year: 2002
  ident: 10.1016/j.neunet.2019.02.002_b1
  article-title: Analysis of generalized pattern searches
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/S1052623400378742
– volume: 27
  start-page: 214
  issue: 2
  year: 2016
  ident: 10.1016/j.neunet.2019.02.002_b39
  article-title: A bi-projection neural network for solving constrained quadratic optimization problems
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNNLS.2015.2500618
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  ident: 10.1016/j.neunet.2019.02.002_b7
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.985692
– volume: 17
  start-page: 1487
  issue: 6
  year: 2006
  ident: 10.1016/j.neunet.2019.02.002_b12
  article-title: Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2006.879774
– volume: 51
  start-page: 1385
  issue: 7
  year: 2004
  ident: 10.1016/j.neunet.2019.02.002_b38
  article-title: A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints
  publication-title: IEEE Transactions on Circuits and Systems. I. Regular Papers
  doi: 10.1109/TCSI.2004.830694
– volume: 28
  start-page: 620
  issue: 3
  year: 2017
  ident: 10.1016/j.neunet.2019.02.002_b19
  article-title: A two-time-scale neurodynamic approach to constrained minimax optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2538288
– start-page: 4129
  year: 2005
  ident: 10.1016/j.neunet.2019.02.002_b15
  article-title: Lagrange-type neural networks for nonlinear programming problems with inequality constraints
– volume: 39
  start-page: 441
  issue: 7
  year: 1992
  ident: 10.1016/j.neunet.2019.02.002_b45
  article-title: Lagrange programming neural networks
  publication-title: IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing
  doi: 10.1109/82.160169
– volume: 15
  start-page: 318
  issue: 2
  year: 2004
  ident: 10.1016/j.neunet.2019.02.002_b37
  article-title: A general projection neural network for solving monotone variational inequalities and related optimization problems
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2004.824252
SSID ssj0006843
Score 2.575542
Snippet In this paper, a collaborative neurodynamic optimization approach is proposed for global and combinatorial optimization. First, a combinatorial optimization...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15
SubjectTerms Augmented Lagrangian function
Collaborative neurodynamic approach
Combinatorial optimization
Global optimization
Title A collaborative neurodynamic approach to global and combinatorial optimization
URI https://dx.doi.org/10.1016/j.neunet.2019.02.002
https://www.ncbi.nlm.nih.gov/pubmed/30831379
https://www.proquest.com/docview/2188205108
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4ftRHieA1tt3dZLPHUixVsRct9BaSTRYqdrdo69Hf7mST-DiUgsddEhJmJt98IfNA6JpTDV4gMcT0dEoSRRVRQLMJZYWMdSRVXrcDehyz0SS5n9JpAw1CLowNq_TY7zC9Rmv_p-Ol2VnMZp2nLrhaBoQHKEhtejaDPUmtld98_oR5MO4i52AwsaND-lwd41WaVWlsRGUvc5U7o3XuaR39rN3QcA_teP6I-26L-6hhygO0G3ozYH9UD9G4j3-p-MPgunCldv3ncagkjpcVdiVBsCw1zJjDRdlew8EqcQVoMvdpmkdoMrx9HoyI751AcnDJS8IjncoUhFPYKxOgCPAeZXgied7VKqc8o5qxImVFFgH2MsY5cI8C-EWhIqOL-Bg1y6o0pwizqFdQW8hN2zc7k0kqdRaDZ6dwto1OWigOIhO5Lyxu-1u8ihBB9iKcoIUVtOhGAgTdQuR71sIV1tgwPg3aEH8MRAD2b5h5FZQn4OzYBxFZmmr1LoDeAAECVOItdOK0-r2X2LZgi9Ps7N_rnqNt--Xiyi5Qc_m2MpfAYJaqXZtoG2317x5G4y-LnvAJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbsIwEB1ROLSX7gtdXalXC0hixzkiVARluRQkblYSOxJVCaiFfn_HsYPaA6rUa5JRrPH4zbM8fgPwJJjCLBBoqlsqpEHCEpogzaaMZ7GvvDhJi3ZAozHvTYOXGZtVoFPehTFllQ77LaYXaO2eNJw3G6v5vPHaxFTLkfAgBSlCbw9qRp2KVaHW7g964y0gc2GL5_B7agzKG3RFmVeuN7k2RZWtyIp3ersy1C4GWmSi7jEcOgpJ2naUJ1DR-Skcle0ZiFutZzBukx-z_KVJoV2pbAt6UoqJk_WSWFUQEucKLRa4VzY7cQxMskRAWbibmucw7T5POj3q2ifQFLPymgpPhXGI_snMrgmBBKlPokUQi7SpkpSJiCnOs5BnkYfwy7kQSD8ypBhZ4mmV-RdQzZe5vgLCvVbGjJabMsd2OopZrCIfkzvD5a1VUAe_dJlMnba4aXHxLssisjdpHS2No2XTk-joOtCt1cpqa_zxfVjOhvwVIxLh_w_Lx3LyJC4fcyYS53q5-ZTIcJADITCJOlzaWd2OxTdd2Pwwuv73fx9gvzcZDeWwPx7cwIF5Y8vMbqG6_tjoOyQ06-TeBew3yDHyug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+collaborative+neurodynamic+approach+to+global+and+combinatorial+optimization&rft.jtitle=Neural+networks&rft.au=Che%2C+Hangjun&rft.au=Wang%2C+Jun&rft.date=2019-06-01&rft.eissn=1879-2782&rft.volume=114&rft.spage=15&rft_id=info:doi/10.1016%2Fj.neunet.2019.02.002&rft_id=info%3Apmid%2F30831379&rft.externalDocID=30831379
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon