Chromosome assembly of large and complex genomes using multiple references
Despite the rapid development of sequencing technologies, the assembly of mammalian-scale genomes into complete chromosomes remains one of the most challenging problems in bioinformatics. To help address this difficulty, we developed Ragout 2, a reference-assisted assembly tool that works for large...
Saved in:
Published in | Genome research Vol. 28; no. 11; pp. 1720 - 1732 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite the rapid development of sequencing technologies, the assembly of mammalian-scale genomes into complete chromosomes remains one of the most challenging problems in bioinformatics. To help address this difficulty, we developed Ragout 2, a reference-assisted assembly tool that works for large and complex genomes. By taking one or more target assemblies (generated from an NGS assembler) and one or multiple related reference genomes, Ragout 2 infers the evolutionary relationships between the genomes and builds the final assemblies using a genome rearrangement approach. By using Ragout 2, we transformed NGS assemblies of 16 laboratory mouse strains into sets of complete chromosomes, leaving <5% of sequence unlocalized per set. Various benchmarks, including PCR testing and realigning of long Pacific Biosciences (PacBio) reads, suggest only a small number of structural errors in the final assemblies, comparable with direct assembly approaches. We applied Ragout 2 to the
Mus caroli
and
Mus pahari
genomes, which exhibit karyotype-scale variations compared with other genomes from the
Muridae
family. Chromosome painting maps confirmed most large-scale rearrangements that Ragout 2 detected. We applied Ragout 2 to improve draft sequences of three ape genomes that have recently been published. Ragout 2 transformed three sets of contigs (generated using PacBio reads only) into chromosome-scale assemblies with accuracy comparable to chromosome assemblies generated in the original study using BioNano maps, Hi-C, BAC clones, and FISH. |
---|---|
AbstractList | Despite the rapid development of sequencing technologies, the assembly of mammalian-scale genomes into complete chromosomes remains one of the most challenging problems in bioinformatics. To help address this difficulty, we developed Ragout 2, a reference-assisted assembly tool that works for large and complex genomes. By taking one or more target assemblies (generated from an NGS assembler) and one or multiple related reference genomes, Ragout 2 infers the evolutionary relationships between the genomes and builds the final assemblies using a genome rearrangement approach. By using Ragout 2, we transformed NGS assemblies of 16 laboratory mouse strains into sets of complete chromosomes, leaving <5% of sequence unlocalized per set. Various benchmarks, including PCR testing and realigning of long Pacific Biosciences (PacBio) reads, suggest only a small number of structural errors in the final assemblies, comparable with direct assembly approaches. We applied Ragout 2 to the Mus caroli and Mus pahari genomes, which exhibit karyotype-scale variations compared with other genomes from the Muridae family. Chromosome painting maps confirmed most large-scale rearrangements that Ragout 2 detected. We applied Ragout 2 to improve draft sequences of three ape genomes that have recently been published. Ragout 2 transformed three sets of contigs (generated using PacBio reads only) into chromosome-scale assemblies with accuracy comparable to chromosome assemblies generated in the original study using BioNano maps, Hi-C, BAC clones, and FISH.Despite the rapid development of sequencing technologies, the assembly of mammalian-scale genomes into complete chromosomes remains one of the most challenging problems in bioinformatics. To help address this difficulty, we developed Ragout 2, a reference-assisted assembly tool that works for large and complex genomes. By taking one or more target assemblies (generated from an NGS assembler) and one or multiple related reference genomes, Ragout 2 infers the evolutionary relationships between the genomes and builds the final assemblies using a genome rearrangement approach. By using Ragout 2, we transformed NGS assemblies of 16 laboratory mouse strains into sets of complete chromosomes, leaving <5% of sequence unlocalized per set. Various benchmarks, including PCR testing and realigning of long Pacific Biosciences (PacBio) reads, suggest only a small number of structural errors in the final assemblies, comparable with direct assembly approaches. We applied Ragout 2 to the Mus caroli and Mus pahari genomes, which exhibit karyotype-scale variations compared with other genomes from the Muridae family. Chromosome painting maps confirmed most large-scale rearrangements that Ragout 2 detected. We applied Ragout 2 to improve draft sequences of three ape genomes that have recently been published. Ragout 2 transformed three sets of contigs (generated using PacBio reads only) into chromosome-scale assemblies with accuracy comparable to chromosome assemblies generated in the original study using BioNano maps, Hi-C, BAC clones, and FISH. Despite the rapid development of sequencing technologies, the assembly of mammalian-scale genomes into complete chromosomes remains one of the most challenging problems in bioinformatics. To help address this difficulty, we developed Ragout 2, a reference-assisted assembly tool that works for large and complex genomes. By taking one or more target assemblies (generated from an NGS assembler) and one or multiple related reference genomes, Ragout 2 infers the evolutionary relationships between the genomes and builds the final assemblies using a genome rearrangement approach. By using Ragout 2, we transformed NGS assemblies of 16 laboratory mouse strains into sets of complete chromosomes, leaving <5% of sequence unlocalized per set. Various benchmarks, including PCR testing and realigning of long Pacific Biosciences (PacBio) reads, suggest only a small number of structural errors in the final assemblies, comparable with direct assembly approaches. We applied Ragout 2 to the Mus caroli and Mus pahari genomes, which exhibit karyotype-scale variations compared with other genomes from the Muridae family. Chromosome painting maps confirmed most large-scale rearrangements that Ragout 2 detected. We applied Ragout 2 to improve draft sequences of three ape genomes that have recently been published. Ragout 2 transformed three sets of contigs (generated using PacBio reads only) into chromosome-scale assemblies with accuracy comparable to chromosome assemblies generated in the original study using BioNano maps, Hi-C, BAC clones, and FISH. Despite the rapid development of sequencing technologies, the assembly of mammalian-scale genomes into complete chromosomes remains one of the most challenging problems in bioinformatics. To help address this difficulty, we developed Ragout 2, a reference-assisted assembly tool that works for large and complex genomes. By taking one or more target assemblies (generated from an NGS assembler) and one or multiple related reference genomes, Ragout 2 infers the evolutionary relationships between the genomes and builds the final assemblies using a genome rearrangement approach. By using Ragout 2, we transformed NGS assemblies of 16 laboratory mouse strains into sets of complete chromosomes, leaving <5% of sequence unlocalized per set. Various benchmarks, including PCR testing and realigning of long Pacific Biosciences (PacBio) reads, suggest only a small number of structural errors in the final assemblies, comparable with direct assembly approaches. We applied Ragout 2 to the Mus caroli and Mus pahari genomes, which exhibit karyotype-scale variations compared with other genomes from the Muridae family. Chromosome painting maps confirmed most large-scale rearrangements that Ragout 2 detected. We applied Ragout 2 to improve draft sequences of three ape genomes that have recently been published. Ragout 2 transformed three sets of contigs (generated using PacBio reads only) into chromosome-scale assemblies with accuracy comparable to chromosome assemblies generated in the original study using BioNano maps, Hi-C, BAC clones, and FISH. Despite the rapid development of sequencing technologies, the assembly of mammalian-scale genomes into complete chromosomes remains one of the most challenging problems in bioinformatics. To help address this difficulty, we developed Ragout 2, a reference-assisted assembly tool that works for large and complex genomes. By taking one or more target assemblies (generated from an NGS assembler) and one or multiple related reference genomes, Ragout 2 infers the evolutionary relationships between the genomes and builds the final assemblies using a genome rearrangement approach. By using Ragout 2, we transformed NGS assemblies of 16 laboratory mouse strains into sets of complete chromosomes, leaving <5% of sequence unlocalized per set. Various benchmarks, including PCR testing and realigning of long Pacific Biosciences (PacBio) reads, suggest only a small number of structural errors in the final assemblies, comparable with direct assembly approaches. We applied Ragout 2 to the and genomes, which exhibit karyotype-scale variations compared with other genomes from the family. Chromosome painting maps confirmed most large-scale rearrangements that Ragout 2 detected. We applied Ragout 2 to improve draft sequences of three ape genomes that have recently been published. Ragout 2 transformed three sets of contigs (generated using PacBio reads only) into chromosome-scale assemblies with accuracy comparable to chromosome assemblies generated in the original study using BioNano maps, Hi-C, BAC clones, and FISH. |
Author | Raney, Brian J. Armstrong, Joel Yang, Fengtang Odom, Duncan Flicek, Paul Dunn, Matthew Paten, Benedict Kolmogorov, Mikhail Streeter, Ian Keane, Thomas M. Thybert, David Pham, Son |
AuthorAffiliation | 8 BioTuring Incorporated, San Diego, California 92121, USA 5 Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE Cambridge, United Kingdom 6 School of Life Sciences, University of Nottingham, Nottingham NG7 2NR, United Kingdom 2 Center for Biomolecular Science and Engineering, University of California, Santa Cruz, California 95064, USA 3 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom 7 Earlham Institute, Norwich Research Park, Norwich NR4 7UG, United Kingdom 1 Department of Computer Science and Engineering, University of California, San Diego, California 92093, USA 4 Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom |
AuthorAffiliation_xml | – name: 1 Department of Computer Science and Engineering, University of California, San Diego, California 92093, USA – name: 4 Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom – name: 2 Center for Biomolecular Science and Engineering, University of California, Santa Cruz, California 95064, USA – name: 8 BioTuring Incorporated, San Diego, California 92121, USA – name: 3 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom – name: 6 School of Life Sciences, University of Nottingham, Nottingham NG7 2NR, United Kingdom – name: 7 Earlham Institute, Norwich Research Park, Norwich NR4 7UG, United Kingdom – name: 5 Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE Cambridge, United Kingdom |
Author_xml | – sequence: 1 givenname: Mikhail surname: Kolmogorov fullname: Kolmogorov, Mikhail – sequence: 2 givenname: Joel surname: Armstrong fullname: Armstrong, Joel – sequence: 3 givenname: Brian J. surname: Raney fullname: Raney, Brian J. – sequence: 4 givenname: Ian surname: Streeter fullname: Streeter, Ian – sequence: 5 givenname: Matthew surname: Dunn fullname: Dunn, Matthew – sequence: 6 givenname: Fengtang surname: Yang fullname: Yang, Fengtang – sequence: 7 givenname: Duncan surname: Odom fullname: Odom, Duncan – sequence: 8 givenname: Paul surname: Flicek fullname: Flicek, Paul – sequence: 9 givenname: Thomas M. surname: Keane fullname: Keane, Thomas M. – sequence: 10 givenname: David surname: Thybert fullname: Thybert, David – sequence: 11 givenname: Benedict surname: Paten fullname: Paten, Benedict – sequence: 12 givenname: Son surname: Pham fullname: Pham, Son |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30341161$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctLxDAQxoMovo9epeDFSzVp-spFkMUnghc9h2wyrZE0WZNW3P_ekVVR8ZLMTH7z8c1kh6z74IGQA0ZPGKPstI8nBa-LhmParpFtVpUir8parGNM2zYXtGJbZCelZ0opL9t2k2xxDBir2Ta5nT3FMIQUBshUSjDM3TILXeZU7LHiTabDsHDwlvXgEUrZlKzvs2Fyo8V6FqGDCF5D2iMbnXIJ9j_vXfJ4efEwu87v7q9uZud3uS5ZNeaNMVoIVZumNFR3wI1QquRVY8QchOCqa5ighTLM6HnRKSaM4rSq8IC66gzfJWcr3cU0H8Bo8GNUTi6iHVRcyqCs_P3i7ZPsw6usC5y55Chw_CkQw8sEaZSDTRqcUx7ClGTBCt7gdrhA9OgP-hym6HE8pHiNPpFE6vCno28rX2tGgK8AHUNKuDKp7ahGGz4MWicZlR-fKfsoV5-JaYtd-Z-uL-H_-XdLt6G8 |
CitedBy_id | crossref_primary_10_1016_j_fgb_2020_103485 crossref_primary_10_1073_pnas_2319506121 crossref_primary_10_1128_MRA_00308_20 crossref_primary_10_1093_gigascience_giaa034 crossref_primary_10_1186_s12915_022_01412_1 crossref_primary_10_1038_s41437_019_0226_y crossref_primary_10_1093_bioinformatics_btad024 crossref_primary_10_1093_nar_gkad1170 crossref_primary_10_1371_journal_pgen_1009541 crossref_primary_10_1128_mra_01350_22 crossref_primary_10_21055_0370_1069_2024_2_122_131 crossref_primary_10_1038_s41467_020_19777_8 crossref_primary_10_1186_s12864_024_10901_2 crossref_primary_10_1093_gbe_evab171 crossref_primary_10_3390_cimb43030156 crossref_primary_10_1016_j_celrep_2023_113233 crossref_primary_10_1128_MRA_00966_20 crossref_primary_10_1093_g3journal_jkab010 crossref_primary_10_1186_s12915_019_0728_3 crossref_primary_10_1016_j_tplants_2019_05_003 crossref_primary_10_1371_journal_pone_0273959 crossref_primary_10_1093_molbev_msaa173 crossref_primary_10_1093_g3journal_jkac138 crossref_primary_10_1016_j_crmicr_2023_100180 crossref_primary_10_1371_journal_pgen_1010914 crossref_primary_10_1093_gbe_evaa255 crossref_primary_10_1093_g3journal_jkab083 crossref_primary_10_1093_gbe_evae215 crossref_primary_10_1016_j_ygeno_2022_110441 crossref_primary_10_1038_s41588_018_0223_8 crossref_primary_10_1038_s41588_020_00771_1 crossref_primary_10_1093_g3journal_jkae190 crossref_primary_10_1111_evo_14337 crossref_primary_10_1093_gbe_evae055 crossref_primary_10_3390_pathogens12010008 crossref_primary_10_3390_microorganisms11030651 crossref_primary_10_1007_s10126_023_10248_x crossref_primary_10_1128_mSphere_00153_20 crossref_primary_10_3390_d11090144 crossref_primary_10_1128_MRA_00530_20 crossref_primary_10_1016_j_cub_2021_10_052 crossref_primary_10_1093_bib_bbab033 crossref_primary_10_1093_bioinformatics_btaa253 crossref_primary_10_1016_j_jplph_2021_153411 crossref_primary_10_1371_journal_pcbi_1008325 crossref_primary_10_3390_dna4030016 crossref_primary_10_3390_ijms21218128 crossref_primary_10_1016_j_celrep_2022_111839 crossref_primary_10_1111_1755_0998_13749 crossref_primary_10_3390_genes10040259 crossref_primary_10_1002_ece3_9994 crossref_primary_10_1099_mgen_0_000963 crossref_primary_10_21307_jofnem_2020_003 crossref_primary_10_1016_j_cbd_2025_101493 crossref_primary_10_1093_bib_bbad169 crossref_primary_10_1146_annurev_animal_020518_115344 crossref_primary_10_1093_bib_bbab022 crossref_primary_10_1016_j_tplants_2019_10_012 crossref_primary_10_1038_s41467_024_49025_2 crossref_primary_10_1111_1755_0998_13312 crossref_primary_10_1016_j_isci_2022_105647 crossref_primary_10_1128_MRA_00107_21 crossref_primary_10_3389_fmicb_2021_628622 crossref_primary_10_1128_MRA_01108_19 crossref_primary_10_1186_s13059_019_1829_6 crossref_primary_10_1038_s41467_022_28605_0 crossref_primary_10_1093_nar_gkac301 crossref_primary_10_1016_j_jhin_2023_09_019 crossref_primary_10_1128_jcm_00628_24 crossref_primary_10_1021_acs_jafc_0c01647 |
Cites_doi | 10.1093/bioinformatics/btu280 10.1038/ng.1028 10.1093/bioinformatics/btp356 10.1093/bioinformatics/btq465 10.1101/gr.7337908 10.1126/science.1058040 10.1101/gr.757503 10.1007/978-3-319-56970-3_5 10.1101/gr.131383.111 10.1126/science.1253451 10.1093/bioinformatics/btu259 10.1016/j.mib.2014.11.014 10.1038/nature10842 10.1186/2047-217X-1-18 10.1073/pnas.1330369100 10.1126/science.aar6343 10.1186/gb-2009-10-8-r88 10.1101/gr.123356.111 10.1073/pnas.1932072100 10.1101/gr.089532.108 10.1099/ijs.0.01472-0 10.1073/pnas.1220349110 10.1186/s13059-015-0837-4 10.1101/gr.082784.108 10.1101/gr.193474.115 10.1093/bioinformatics/btm153 10.1101/gr.126953.111 10.1073/pnas.1017351108 10.1186/1471-2164-15-180 10.1101/gr.6380007 10.1186/gb-2012-13-3-r18 10.1007/s00439-012-1165-3 10.1038/35057062 10.1007/978-3-642-40453-5_17 10.1101/gr.234096.117 10.1093/bioinformatics/btp324 10.1093/nar/gkw290 10.1038/nbt.4060 10.1038/nature13907 10.1186/1471-2164-15-S6-S6 10.1093/bioinformatics/17.suppl_1.S165 10.1007/978-3-642-12683-3_28 10.1089/cmb.2011.0151 10.1101/gr.074492.107 10.1093/bioinformatics/btt128 10.1186/2047-217X-2-10 10.1371/journal.pbio.1000112 10.1038/s41588-018-0223-8 10.1089/cmb.2011.0114 10.1371/journal.pgen.1005954 |
ContentType | Journal Article |
Copyright | 2018 Kolmogorov et al.; Published by Cold Spring Harbor Laboratory Press. Copyright Cold Spring Harbor Laboratory Press Nov 2018 2018 |
Copyright_xml | – notice: 2018 Kolmogorov et al.; Published by Cold Spring Harbor Laboratory Press. – notice: Copyright Cold Spring Harbor Laboratory Press Nov 2018 – notice: 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 8FD FR3 P64 RC3 7X8 5PM |
DOI | 10.1101/gr.236273.118 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
DocumentTitleAlternate | Kolmogorov et al |
EISSN | 1549-5469 |
EndPage | 1732 |
ExternalDocumentID | PMC6211643 30341161 10_1101_gr_236273_118 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Cancer Research UK grantid: 20412 – fundername: Wellcome Trust grantid: 202878/Z/16/Z – fundername: NHLBI NIH HHS grantid: U01 HL137183 – fundername: NHGRI NIH HHS grantid: U41 HG007234 – fundername: Medical Research Council grantid: MR/R017565/1 – fundername: Wellcome Trust grantid: WT202878/B/16/Z – fundername: Wellcome Trust grantid: WT098051 – fundername: Wellcome Trust grantid: WT108749/Z/15/Z – fundername: NHGRI NIH HHS grantid: U54 HG007990 – fundername: ; grantid: WT108749/Z/15/Z; WT098051; WT202878/B/16/Z – fundername: European Community's Seventh Framework Programme grantid: FP7/2010-2014; 244356 – fundername: European Union's Seventh Framework Programme grantid: FP7/2007–2013; HEALTH-F4-2010-241504 – fundername: ; grantid: DT06172015 – fundername: ; grantid: U41HG007234 – fundername: ; grantid: 3U54HG007990; 1U01HL137183; 5U41HG007234 – fundername: European Molecular Biology Laboratory |
GroupedDBID | --- .GJ 18M 29H 2WC 39C 4.4 53G 5GY 5RE 5VS AAFWJ AAYOK AAYXX AAZTW ABDIX ABDNZ ACGFO ACLKE ACYGS ADBBV ADNWM AEILP AENEX AHPUY AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE IH2 K-O KQ8 MV1 R.V RCX RHI RNS RPM RXW SJN TAE TR2 VH1 W8F WOQ YKV ZCG ZGI ZXP CGR CUY CVF ECM EIF NPM 7TM 8FD FR3 P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c415t-7ddc99a6d74d0cfe3d9aa4357d9be993af71902ad1dcb2fa19da3055a30e65fd3 |
ISSN | 1088-9051 1549-5469 |
IngestDate | Thu Aug 21 14:14:50 EDT 2025 Thu Jul 10 17:36:04 EDT 2025 Fri Jul 25 06:08:43 EDT 2025 Mon Jul 21 06:08:11 EDT 2025 Tue Jul 01 02:20:43 EDT 2025 Thu Apr 24 23:05:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | 2018 Kolmogorov et al.; Published by Cold Spring Harbor Laboratory Press. This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c415t-7ddc99a6d74d0cfe3d9aa4357d9be993af71902ad1dcb2fa19da3055a30e65fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6211643 |
PMID | 30341161 |
PQID | 2136902371 |
PQPubID | 2049132 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6211643 proquest_miscellaneous_2123716139 proquest_journals_2136902371 pubmed_primary_30341161 crossref_citationtrail_10_1101_gr_236273_118 crossref_primary_10_1101_gr_236273_118 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-00 20181101 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Genome research |
PublicationTitleAlternate | Genome Res |
PublicationYear | 2018 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 2021111811175314000_28.11.1720.12 2021111811175314000_28.11.1720.11 2021111811175314000_28.11.1720.10 2021111811175314000_28.11.1720.16 2021111811175314000_28.11.1720.15 2021111811175314000_28.11.1720.14 2021111811175314000_28.11.1720.13 (2021111811175314000_28.11.1720.28) 2014; 15 2021111811175314000_28.11.1720.52 2021111811175314000_28.11.1720.51 (2021111811175314000_28.11.1720.7) 2015; 16 2021111811175314000_28.11.1720.50 2021111811175314000_28.11.1720.19 2021111811175314000_28.11.1720.18 (2021111811175314000_28.11.1720.17) 2014; 5 2021111811175314000_28.11.1720.23 2021111811175314000_28.11.1720.22 2021111811175314000_28.11.1720.21 2021111811175314000_28.11.1720.20 2021111811175314000_28.11.1720.27 2021111811175314000_28.11.1720.26 2021111811175314000_28.11.1720.25 2021111811175314000_28.11.1720.24 (2021111811175314000_28.11.1720.49) 2016; 12 2021111811175314000_28.11.1720.29 2021111811175314000_28.11.1720.34 2021111811175314000_28.11.1720.33 2021111811175314000_28.11.1720.32 2021111811175314000_28.11.1720.31 2021111811175314000_28.11.1720.38 2021111811175314000_28.11.1720.37 2021111811175314000_28.11.1720.36 2021111811175314000_28.11.1720.35 2021111811175314000_28.11.1720.30 2021111811175314000_28.11.1720.1 2021111811175314000_28.11.1720.4 2021111811175314000_28.11.1720.5 2021111811175314000_28.11.1720.2 2021111811175314000_28.11.1720.3 2021111811175314000_28.11.1720.39 2021111811175314000_28.11.1720.9 2021111811175314000_28.11.1720.6 2021111811175314000_28.11.1720.45 2021111811175314000_28.11.1720.44 2021111811175314000_28.11.1720.43 2021111811175314000_28.11.1720.42 2021111811175314000_28.11.1720.48 2021111811175314000_28.11.1720.47 2021111811175314000_28.11.1720.46 2021111811175314000_28.11.1720.41 2021111811175314000_28.11.1720.40 (2021111811175314000_28.11.1720.8) 2011; 40 |
References_xml | – ident: 2021111811175314000_28.11.1720.20 doi: 10.1093/bioinformatics/btu280 – ident: 2021111811175314000_28.11.1720.13 doi: 10.1038/ng.1028 – ident: 2021111811175314000_28.11.1720.41 doi: 10.1093/bioinformatics/btp356 – ident: 2021111811175314000_28.11.1720.35 doi: 10.1093/bioinformatics/btq465 – ident: 2021111811175314000_28.11.1720.4 doi: 10.1101/gr.7337908 – ident: 2021111811175314000_28.11.1720.48 doi: 10.1126/science.1058040 – ident: 2021111811175314000_28.11.1720.37 doi: 10.1101/gr.757503 – ident: 2021111811175314000_28.11.1720.14 doi: 10.1007/978-3-319-56970-3_5 – volume: 5 start-page: 192 year: 2014 ident: 2021111811175314000_28.11.1720.17 article-title: Identification of structural variation in mouse genomes publication-title: Front Genet – ident: 2021111811175314000_28.11.1720.43 doi: 10.1101/gr.131383.111 – ident: 2021111811175314000_28.11.1720.16 doi: 10.1126/science.1253451 – ident: 2021111811175314000_28.11.1720.9 doi: 10.1093/bioinformatics/btu259 – ident: 2021111811175314000_28.11.1720.21 doi: 10.1016/j.mib.2014.11.014 – ident: 2021111811175314000_28.11.1720.44 doi: 10.1038/nature10842 – ident: 2021111811175314000_28.11.1720.29 doi: 10.1186/2047-217X-1-18 – ident: 2021111811175314000_28.11.1720.36 doi: 10.1073/pnas.1330369100 – ident: 2021111811175314000_28.11.1720.22 doi: 10.1126/science.aar6343 – ident: 2021111811175314000_28.11.1720.10 doi: 10.1186/gb-2009-10-8-r88 – ident: 2021111811175314000_28.11.1720.33 doi: 10.1101/gr.123356.111 – ident: 2021111811175314000_28.11.1720.18 doi: 10.1073/pnas.1932072100 – ident: 2021111811175314000_28.11.1720.46 doi: 10.1101/gr.089532.108 – ident: 2021111811175314000_28.11.1720.42 doi: 10.1099/ijs.0.01472-0 – ident: 2021111811175314000_28.11.1720.19 doi: 10.1073/pnas.1220349110 – volume: 16 start-page: 277 year: 2015 ident: 2021111811175314000_28.11.1720.7 article-title: Genomic legacy of the African cheetah, Acinonyx jubatus publication-title: Genome Biol doi: 10.1186/s13059-015-0837-4 – ident: 2021111811175314000_28.11.1720.1 doi: 10.1101/gr.082784.108 – ident: 2021111811175314000_28.11.1720.39 doi: 10.1101/gr.193474.115 – ident: 2021111811175314000_28.11.1720.40 doi: 10.1093/bioinformatics/btm153 – ident: 2021111811175314000_28.11.1720.45 doi: 10.1101/gr.126953.111 – volume: 40 start-page: D84 year: 2011 ident: 2021111811175314000_28.11.1720.8 article-title: Ensembl 2012 publication-title: Nucleic Acids Res – ident: 2021111811175314000_28.11.1720.11 doi: 10.1073/pnas.1017351108 – ident: 2021111811175314000_28.11.1720.50 doi: 10.1186/1471-2164-15-180 – ident: 2021111811175314000_28.11.1720.38 doi: 10.1101/gr.6380007 – ident: 2021111811175314000_28.11.1720.51 doi: 10.1186/gb-2012-13-3-r18 – ident: 2021111811175314000_28.11.1720.3 doi: 10.1007/s00439-012-1165-3 – ident: 2021111811175314000_28.11.1720.23 doi: 10.1038/35057062 – ident: 2021111811175314000_28.11.1720.31 doi: 10.1007/978-3-642-40453-5_17 – ident: 2021111811175314000_28.11.1720.47 doi: 10.1101/gr.234096.117 – ident: 2021111811175314000_28.11.1720.25 doi: 10.1093/bioinformatics/btp324 – ident: 2021111811175314000_28.11.1720.24 doi: 10.1093/nar/gkw290 – ident: 2021111811175314000_28.11.1720.15 doi: 10.1038/nbt.4060 – ident: 2021111811175314000_28.11.1720.5 doi: 10.1038/nature13907 – volume: 15 start-page: S6 year: 2014 ident: 2021111811175314000_28.11.1720.28 article-title: What is the difference between the breakpoint graph and the de Bruijn graph? publication-title: BMC Genomics doi: 10.1186/1471-2164-15-S6-S6 – ident: 2021111811175314000_28.11.1720.32 doi: 10.1093/bioinformatics/17.suppl_1.S165 – ident: 2021111811175314000_28.11.1720.34 doi: 10.1007/978-3-642-12683-3_28 – ident: 2021111811175314000_28.11.1720.30 doi: 10.1089/cmb.2011.0151 – ident: 2021111811175314000_28.11.1720.52 doi: 10.1101/gr.074492.107 – ident: 2021111811175314000_28.11.1720.12 doi: 10.1093/bioinformatics/btt128 – ident: 2021111811175314000_28.11.1720.2 doi: 10.1186/2047-217X-2-10 – ident: 2021111811175314000_28.11.1720.6 doi: 10.1371/journal.pbio.1000112 – ident: 2021111811175314000_28.11.1720.26 doi: 10.1038/s41588-018-0223-8 – ident: 2021111811175314000_28.11.1720.27 doi: 10.1089/cmb.2011.0114 – volume: 12 start-page: e1005954 year: 2016 ident: 2021111811175314000_28.11.1720.49 article-title: Chromosomal-level assembly of the Asian seabass genome using long sequence reads and multi-layered scaffolding publication-title: PLoS Genet doi: 10.1371/journal.pgen.1005954 |
SSID | ssj0003488 |
Score | 2.5370128 |
Snippet | Despite the rapid development of sequencing technologies, the assembly of mammalian-scale genomes into complete chromosomes remains one of the most challenging... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1720 |
SubjectTerms | Animals Bioinformatics Chromosomes Contig Mapping - methods Contig Mapping - standards Gene mapping Genomes Karyotypes Method Mice Reference Standards Whole Genome Sequencing - methods Whole Genome Sequencing - standards |
Title | Chromosome assembly of large and complex genomes using multiple references |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30341161 https://www.proquest.com/docview/2136902371 https://www.proquest.com/docview/2123716139 https://pubmed.ncbi.nlm.nih.gov/PMC6211643 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCLEXBBuXwEBGQnsZKbXj3B63sbEbQ0Kt1LfIiZ0Ora2ntEXAr-fYcZwUijR4iVLbdSKfL_ZnnxtCb1mf5UIEwofVj_osFpGf0CLyBZEJTcuyJFz7Dn-6jE6G7GwUjtpsm8a7ZJH3ip9r_Ur-R6pQBnLVXrL_IFnXKRTAPcgXriBhuN5Kxjqy7VTN1VTuAQeW03xi9OUTbd3dOKzdTOR3nSdZ6ahMS3My4IwIXY6ReZejfjSN92wYIHdcfK4mUzVWlfpWm9tfX3XMMwAvc32obs17pav4wq052UGlp5JWCWW04TVeTi1C7eEDSawXXme-ZKkfsjrbSk-uKbOTLE26YCKdKRMYVH_9XG5yCIyrHoVFNg6gIGkXrUZRf_k5Ox5eXGSDo9HgLrpHYbOg81h8OD1363HATPZR91ou0ip5v9L5KjP5Y7vxu9Vsh4YMHqGHdv-A92swPEZ35GwLbe_P-EJNf-BdbCx6japkC90_aO4eHDZ5_bbRWYsa3KAGqxIb1GBADbaowRY12KAGN6jBLWqeoOHx0eDwxLcZNfwCiNrCj4Uo0pRHImaiX5QyECnnQJhjkeYSmCovYyCIlAsiipyWnKSC65BwcJFRWIrgKdqYqZl8jjCDTnLKYY3KOQtDmeSkjIMi5gVQeh5xD71rRjMrbLh5nfVkkpltZ59k4yqrBx9-Jh7adc1v6jgrf2u404gms5_iPKMkiOC9g5h46I2rhnHV2i_AuVrqNroe2GvqoWe1JN2TgMcxAnUeildk7BroIOyrNbOvVyYYe0Thjyx4cYvnvkSb7Te0gzYW1VK-Akq7yF8bxP4CCDWlUQ |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chromosome+assembly+of+large+and+complex+genomes+using+multiple+references&rft.jtitle=Genome+research&rft.au=Kolmogorov%2C+Mikhail&rft.au=Armstrong%2C+Joel&rft.au=Raney%2C+Brian+J&rft.au=Streeter%2C+Ian&rft.date=2018-11-01&rft.issn=1549-5469&rft.eissn=1549-5469&rft.volume=28&rft.issue=11&rft.spage=1720&rft_id=info:doi/10.1101%2Fgr.236273.118&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon |