Chromosome assembly of large and complex genomes using multiple references

Despite the rapid development of sequencing technologies, the assembly of mammalian-scale genomes into complete chromosomes remains one of the most challenging problems in bioinformatics. To help address this difficulty, we developed Ragout 2, a reference-assisted assembly tool that works for large...

Full description

Saved in:
Bibliographic Details
Published inGenome research Vol. 28; no. 11; pp. 1720 - 1732
Main Authors Kolmogorov, Mikhail, Armstrong, Joel, Raney, Brian J., Streeter, Ian, Dunn, Matthew, Yang, Fengtang, Odom, Duncan, Flicek, Paul, Keane, Thomas M., Thybert, David, Paten, Benedict, Pham, Son
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite the rapid development of sequencing technologies, the assembly of mammalian-scale genomes into complete chromosomes remains one of the most challenging problems in bioinformatics. To help address this difficulty, we developed Ragout 2, a reference-assisted assembly tool that works for large and complex genomes. By taking one or more target assemblies (generated from an NGS assembler) and one or multiple related reference genomes, Ragout 2 infers the evolutionary relationships between the genomes and builds the final assemblies using a genome rearrangement approach. By using Ragout 2, we transformed NGS assemblies of 16 laboratory mouse strains into sets of complete chromosomes, leaving <5% of sequence unlocalized per set. Various benchmarks, including PCR testing and realigning of long Pacific Biosciences (PacBio) reads, suggest only a small number of structural errors in the final assemblies, comparable with direct assembly approaches. We applied Ragout 2 to the Mus caroli and Mus pahari genomes, which exhibit karyotype-scale variations compared with other genomes from the Muridae family. Chromosome painting maps confirmed most large-scale rearrangements that Ragout 2 detected. We applied Ragout 2 to improve draft sequences of three ape genomes that have recently been published. Ragout 2 transformed three sets of contigs (generated using PacBio reads only) into chromosome-scale assemblies with accuracy comparable to chromosome assemblies generated in the original study using BioNano maps, Hi-C, BAC clones, and FISH.
AbstractList Despite the rapid development of sequencing technologies, the assembly of mammalian-scale genomes into complete chromosomes remains one of the most challenging problems in bioinformatics. To help address this difficulty, we developed Ragout 2, a reference-assisted assembly tool that works for large and complex genomes. By taking one or more target assemblies (generated from an NGS assembler) and one or multiple related reference genomes, Ragout 2 infers the evolutionary relationships between the genomes and builds the final assemblies using a genome rearrangement approach. By using Ragout 2, we transformed NGS assemblies of 16 laboratory mouse strains into sets of complete chromosomes, leaving <5% of sequence unlocalized per set. Various benchmarks, including PCR testing and realigning of long Pacific Biosciences (PacBio) reads, suggest only a small number of structural errors in the final assemblies, comparable with direct assembly approaches. We applied Ragout 2 to the Mus caroli and Mus pahari genomes, which exhibit karyotype-scale variations compared with other genomes from the Muridae family. Chromosome painting maps confirmed most large-scale rearrangements that Ragout 2 detected. We applied Ragout 2 to improve draft sequences of three ape genomes that have recently been published. Ragout 2 transformed three sets of contigs (generated using PacBio reads only) into chromosome-scale assemblies with accuracy comparable to chromosome assemblies generated in the original study using BioNano maps, Hi-C, BAC clones, and FISH.Despite the rapid development of sequencing technologies, the assembly of mammalian-scale genomes into complete chromosomes remains one of the most challenging problems in bioinformatics. To help address this difficulty, we developed Ragout 2, a reference-assisted assembly tool that works for large and complex genomes. By taking one or more target assemblies (generated from an NGS assembler) and one or multiple related reference genomes, Ragout 2 infers the evolutionary relationships between the genomes and builds the final assemblies using a genome rearrangement approach. By using Ragout 2, we transformed NGS assemblies of 16 laboratory mouse strains into sets of complete chromosomes, leaving <5% of sequence unlocalized per set. Various benchmarks, including PCR testing and realigning of long Pacific Biosciences (PacBio) reads, suggest only a small number of structural errors in the final assemblies, comparable with direct assembly approaches. We applied Ragout 2 to the Mus caroli and Mus pahari genomes, which exhibit karyotype-scale variations compared with other genomes from the Muridae family. Chromosome painting maps confirmed most large-scale rearrangements that Ragout 2 detected. We applied Ragout 2 to improve draft sequences of three ape genomes that have recently been published. Ragout 2 transformed three sets of contigs (generated using PacBio reads only) into chromosome-scale assemblies with accuracy comparable to chromosome assemblies generated in the original study using BioNano maps, Hi-C, BAC clones, and FISH.
Despite the rapid development of sequencing technologies, the assembly of mammalian-scale genomes into complete chromosomes remains one of the most challenging problems in bioinformatics. To help address this difficulty, we developed Ragout 2, a reference-assisted assembly tool that works for large and complex genomes. By taking one or more target assemblies (generated from an NGS assembler) and one or multiple related reference genomes, Ragout 2 infers the evolutionary relationships between the genomes and builds the final assemblies using a genome rearrangement approach. By using Ragout 2, we transformed NGS assemblies of 16 laboratory mouse strains into sets of complete chromosomes, leaving <5% of sequence unlocalized per set. Various benchmarks, including PCR testing and realigning of long Pacific Biosciences (PacBio) reads, suggest only a small number of structural errors in the final assemblies, comparable with direct assembly approaches. We applied Ragout 2 to the Mus caroli and Mus pahari genomes, which exhibit karyotype-scale variations compared with other genomes from the Muridae family. Chromosome painting maps confirmed most large-scale rearrangements that Ragout 2 detected. We applied Ragout 2 to improve draft sequences of three ape genomes that have recently been published. Ragout 2 transformed three sets of contigs (generated using PacBio reads only) into chromosome-scale assemblies with accuracy comparable to chromosome assemblies generated in the original study using BioNano maps, Hi-C, BAC clones, and FISH.
Despite the rapid development of sequencing technologies, the assembly of mammalian-scale genomes into complete chromosomes remains one of the most challenging problems in bioinformatics. To help address this difficulty, we developed Ragout 2, a reference-assisted assembly tool that works for large and complex genomes. By taking one or more target assemblies (generated from an NGS assembler) and one or multiple related reference genomes, Ragout 2 infers the evolutionary relationships between the genomes and builds the final assemblies using a genome rearrangement approach. By using Ragout 2, we transformed NGS assemblies of 16 laboratory mouse strains into sets of complete chromosomes, leaving <5% of sequence unlocalized per set. Various benchmarks, including PCR testing and realigning of long Pacific Biosciences (PacBio) reads, suggest only a small number of structural errors in the final assemblies, comparable with direct assembly approaches. We applied Ragout 2 to the Mus caroli and Mus pahari genomes, which exhibit karyotype-scale variations compared with other genomes from the Muridae family. Chromosome painting maps confirmed most large-scale rearrangements that Ragout 2 detected. We applied Ragout 2 to improve draft sequences of three ape genomes that have recently been published. Ragout 2 transformed three sets of contigs (generated using PacBio reads only) into chromosome-scale assemblies with accuracy comparable to chromosome assemblies generated in the original study using BioNano maps, Hi-C, BAC clones, and FISH.
Despite the rapid development of sequencing technologies, the assembly of mammalian-scale genomes into complete chromosomes remains one of the most challenging problems in bioinformatics. To help address this difficulty, we developed Ragout 2, a reference-assisted assembly tool that works for large and complex genomes. By taking one or more target assemblies (generated from an NGS assembler) and one or multiple related reference genomes, Ragout 2 infers the evolutionary relationships between the genomes and builds the final assemblies using a genome rearrangement approach. By using Ragout 2, we transformed NGS assemblies of 16 laboratory mouse strains into sets of complete chromosomes, leaving <5% of sequence unlocalized per set. Various benchmarks, including PCR testing and realigning of long Pacific Biosciences (PacBio) reads, suggest only a small number of structural errors in the final assemblies, comparable with direct assembly approaches. We applied Ragout 2 to the and genomes, which exhibit karyotype-scale variations compared with other genomes from the family. Chromosome painting maps confirmed most large-scale rearrangements that Ragout 2 detected. We applied Ragout 2 to improve draft sequences of three ape genomes that have recently been published. Ragout 2 transformed three sets of contigs (generated using PacBio reads only) into chromosome-scale assemblies with accuracy comparable to chromosome assemblies generated in the original study using BioNano maps, Hi-C, BAC clones, and FISH.
Author Raney, Brian J.
Armstrong, Joel
Yang, Fengtang
Odom, Duncan
Flicek, Paul
Dunn, Matthew
Paten, Benedict
Kolmogorov, Mikhail
Streeter, Ian
Keane, Thomas M.
Thybert, David
Pham, Son
AuthorAffiliation 8 BioTuring Incorporated, San Diego, California 92121, USA
5 Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE Cambridge, United Kingdom
6 School of Life Sciences, University of Nottingham, Nottingham NG7 2NR, United Kingdom
2 Center for Biomolecular Science and Engineering, University of California, Santa Cruz, California 95064, USA
3 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
7 Earlham Institute, Norwich Research Park, Norwich NR4 7UG, United Kingdom
1 Department of Computer Science and Engineering, University of California, San Diego, California 92093, USA
4 Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
AuthorAffiliation_xml – name: 1 Department of Computer Science and Engineering, University of California, San Diego, California 92093, USA
– name: 4 Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
– name: 2 Center for Biomolecular Science and Engineering, University of California, Santa Cruz, California 95064, USA
– name: 8 BioTuring Incorporated, San Diego, California 92121, USA
– name: 3 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
– name: 6 School of Life Sciences, University of Nottingham, Nottingham NG7 2NR, United Kingdom
– name: 7 Earlham Institute, Norwich Research Park, Norwich NR4 7UG, United Kingdom
– name: 5 Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE Cambridge, United Kingdom
Author_xml – sequence: 1
  givenname: Mikhail
  surname: Kolmogorov
  fullname: Kolmogorov, Mikhail
– sequence: 2
  givenname: Joel
  surname: Armstrong
  fullname: Armstrong, Joel
– sequence: 3
  givenname: Brian J.
  surname: Raney
  fullname: Raney, Brian J.
– sequence: 4
  givenname: Ian
  surname: Streeter
  fullname: Streeter, Ian
– sequence: 5
  givenname: Matthew
  surname: Dunn
  fullname: Dunn, Matthew
– sequence: 6
  givenname: Fengtang
  surname: Yang
  fullname: Yang, Fengtang
– sequence: 7
  givenname: Duncan
  surname: Odom
  fullname: Odom, Duncan
– sequence: 8
  givenname: Paul
  surname: Flicek
  fullname: Flicek, Paul
– sequence: 9
  givenname: Thomas M.
  surname: Keane
  fullname: Keane, Thomas M.
– sequence: 10
  givenname: David
  surname: Thybert
  fullname: Thybert, David
– sequence: 11
  givenname: Benedict
  surname: Paten
  fullname: Paten, Benedict
– sequence: 12
  givenname: Son
  surname: Pham
  fullname: Pham, Son
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30341161$$D View this record in MEDLINE/PubMed
BookMark eNptkctLxDAQxoMovo9epeDFSzVp-spFkMUnghc9h2wyrZE0WZNW3P_ekVVR8ZLMTH7z8c1kh6z74IGQA0ZPGKPstI8nBa-LhmParpFtVpUir8parGNM2zYXtGJbZCelZ0opL9t2k2xxDBir2Ta5nT3FMIQUBshUSjDM3TILXeZU7LHiTabDsHDwlvXgEUrZlKzvs2Fyo8V6FqGDCF5D2iMbnXIJ9j_vXfJ4efEwu87v7q9uZud3uS5ZNeaNMVoIVZumNFR3wI1QquRVY8QchOCqa5ighTLM6HnRKSaM4rSq8IC66gzfJWcr3cU0H8Bo8GNUTi6iHVRcyqCs_P3i7ZPsw6usC5y55Chw_CkQw8sEaZSDTRqcUx7ClGTBCt7gdrhA9OgP-hym6HE8pHiNPpFE6vCno28rX2tGgK8AHUNKuDKp7ahGGz4MWicZlR-fKfsoV5-JaYtd-Z-uL-H_-XdLt6G8
CitedBy_id crossref_primary_10_1016_j_fgb_2020_103485
crossref_primary_10_1073_pnas_2319506121
crossref_primary_10_1128_MRA_00308_20
crossref_primary_10_1093_gigascience_giaa034
crossref_primary_10_1186_s12915_022_01412_1
crossref_primary_10_1038_s41437_019_0226_y
crossref_primary_10_1093_bioinformatics_btad024
crossref_primary_10_1093_nar_gkad1170
crossref_primary_10_1371_journal_pgen_1009541
crossref_primary_10_1128_mra_01350_22
crossref_primary_10_21055_0370_1069_2024_2_122_131
crossref_primary_10_1038_s41467_020_19777_8
crossref_primary_10_1186_s12864_024_10901_2
crossref_primary_10_1093_gbe_evab171
crossref_primary_10_3390_cimb43030156
crossref_primary_10_1016_j_celrep_2023_113233
crossref_primary_10_1128_MRA_00966_20
crossref_primary_10_1093_g3journal_jkab010
crossref_primary_10_1186_s12915_019_0728_3
crossref_primary_10_1016_j_tplants_2019_05_003
crossref_primary_10_1371_journal_pone_0273959
crossref_primary_10_1093_molbev_msaa173
crossref_primary_10_1093_g3journal_jkac138
crossref_primary_10_1016_j_crmicr_2023_100180
crossref_primary_10_1371_journal_pgen_1010914
crossref_primary_10_1093_gbe_evaa255
crossref_primary_10_1093_g3journal_jkab083
crossref_primary_10_1093_gbe_evae215
crossref_primary_10_1016_j_ygeno_2022_110441
crossref_primary_10_1038_s41588_018_0223_8
crossref_primary_10_1038_s41588_020_00771_1
crossref_primary_10_1093_g3journal_jkae190
crossref_primary_10_1111_evo_14337
crossref_primary_10_1093_gbe_evae055
crossref_primary_10_3390_pathogens12010008
crossref_primary_10_3390_microorganisms11030651
crossref_primary_10_1007_s10126_023_10248_x
crossref_primary_10_1128_mSphere_00153_20
crossref_primary_10_3390_d11090144
crossref_primary_10_1128_MRA_00530_20
crossref_primary_10_1016_j_cub_2021_10_052
crossref_primary_10_1093_bib_bbab033
crossref_primary_10_1093_bioinformatics_btaa253
crossref_primary_10_1016_j_jplph_2021_153411
crossref_primary_10_1371_journal_pcbi_1008325
crossref_primary_10_3390_dna4030016
crossref_primary_10_3390_ijms21218128
crossref_primary_10_1016_j_celrep_2022_111839
crossref_primary_10_1111_1755_0998_13749
crossref_primary_10_3390_genes10040259
crossref_primary_10_1002_ece3_9994
crossref_primary_10_1099_mgen_0_000963
crossref_primary_10_21307_jofnem_2020_003
crossref_primary_10_1016_j_cbd_2025_101493
crossref_primary_10_1093_bib_bbad169
crossref_primary_10_1146_annurev_animal_020518_115344
crossref_primary_10_1093_bib_bbab022
crossref_primary_10_1016_j_tplants_2019_10_012
crossref_primary_10_1038_s41467_024_49025_2
crossref_primary_10_1111_1755_0998_13312
crossref_primary_10_1016_j_isci_2022_105647
crossref_primary_10_1128_MRA_00107_21
crossref_primary_10_3389_fmicb_2021_628622
crossref_primary_10_1128_MRA_01108_19
crossref_primary_10_1186_s13059_019_1829_6
crossref_primary_10_1038_s41467_022_28605_0
crossref_primary_10_1093_nar_gkac301
crossref_primary_10_1016_j_jhin_2023_09_019
crossref_primary_10_1128_jcm_00628_24
crossref_primary_10_1021_acs_jafc_0c01647
Cites_doi 10.1093/bioinformatics/btu280
10.1038/ng.1028
10.1093/bioinformatics/btp356
10.1093/bioinformatics/btq465
10.1101/gr.7337908
10.1126/science.1058040
10.1101/gr.757503
10.1007/978-3-319-56970-3_5
10.1101/gr.131383.111
10.1126/science.1253451
10.1093/bioinformatics/btu259
10.1016/j.mib.2014.11.014
10.1038/nature10842
10.1186/2047-217X-1-18
10.1073/pnas.1330369100
10.1126/science.aar6343
10.1186/gb-2009-10-8-r88
10.1101/gr.123356.111
10.1073/pnas.1932072100
10.1101/gr.089532.108
10.1099/ijs.0.01472-0
10.1073/pnas.1220349110
10.1186/s13059-015-0837-4
10.1101/gr.082784.108
10.1101/gr.193474.115
10.1093/bioinformatics/btm153
10.1101/gr.126953.111
10.1073/pnas.1017351108
10.1186/1471-2164-15-180
10.1101/gr.6380007
10.1186/gb-2012-13-3-r18
10.1007/s00439-012-1165-3
10.1038/35057062
10.1007/978-3-642-40453-5_17
10.1101/gr.234096.117
10.1093/bioinformatics/btp324
10.1093/nar/gkw290
10.1038/nbt.4060
10.1038/nature13907
10.1186/1471-2164-15-S6-S6
10.1093/bioinformatics/17.suppl_1.S165
10.1007/978-3-642-12683-3_28
10.1089/cmb.2011.0151
10.1101/gr.074492.107
10.1093/bioinformatics/btt128
10.1186/2047-217X-2-10
10.1371/journal.pbio.1000112
10.1038/s41588-018-0223-8
10.1089/cmb.2011.0114
10.1371/journal.pgen.1005954
ContentType Journal Article
Copyright 2018 Kolmogorov et al.; Published by Cold Spring Harbor Laboratory Press.
Copyright Cold Spring Harbor Laboratory Press Nov 2018
2018
Copyright_xml – notice: 2018 Kolmogorov et al.; Published by Cold Spring Harbor Laboratory Press.
– notice: Copyright Cold Spring Harbor Laboratory Press Nov 2018
– notice: 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
8FD
FR3
P64
RC3
7X8
5PM
DOI 10.1101/gr.236273.118
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Genetics Abstracts
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
DocumentTitleAlternate Kolmogorov et al
EISSN 1549-5469
EndPage 1732
ExternalDocumentID PMC6211643
30341161
10_1101_gr_236273_118
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Cancer Research UK
  grantid: 20412
– fundername: Wellcome Trust
  grantid: 202878/Z/16/Z
– fundername: NHLBI NIH HHS
  grantid: U01 HL137183
– fundername: NHGRI NIH HHS
  grantid: U41 HG007234
– fundername: Medical Research Council
  grantid: MR/R017565/1
– fundername: Wellcome Trust
  grantid: WT202878/B/16/Z
– fundername: Wellcome Trust
  grantid: WT098051
– fundername: Wellcome Trust
  grantid: WT108749/Z/15/Z
– fundername: NHGRI NIH HHS
  grantid: U54 HG007990
– fundername: ;
  grantid: WT108749/Z/15/Z; WT098051; WT202878/B/16/Z
– fundername: European Community's Seventh Framework Programme
  grantid: FP7/2010-2014; 244356
– fundername: European Union's Seventh Framework Programme
  grantid: FP7/2007–2013; HEALTH-F4-2010-241504
– fundername: ;
  grantid: DT06172015
– fundername: ;
  grantid: U41HG007234
– fundername: ;
  grantid: 3U54HG007990; 1U01HL137183; 5U41HG007234
– fundername: European Molecular Biology Laboratory
GroupedDBID ---
.GJ
18M
29H
2WC
39C
4.4
53G
5GY
5RE
5VS
AAFWJ
AAYOK
AAYXX
AAZTW
ABDIX
ABDNZ
ACGFO
ACLKE
ACYGS
ADBBV
ADNWM
AEILP
AENEX
AHPUY
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
IH2
K-O
KQ8
MV1
R.V
RCX
RHI
RNS
RPM
RXW
SJN
TAE
TR2
VH1
W8F
WOQ
YKV
ZCG
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7TM
8FD
FR3
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c415t-7ddc99a6d74d0cfe3d9aa4357d9be993af71902ad1dcb2fa19da3055a30e65fd3
ISSN 1088-9051
1549-5469
IngestDate Thu Aug 21 14:14:50 EDT 2025
Thu Jul 10 17:36:04 EDT 2025
Fri Jul 25 06:08:43 EDT 2025
Mon Jul 21 06:08:11 EDT 2025
Tue Jul 01 02:20:43 EDT 2025
Thu Apr 24 23:05:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License 2018 Kolmogorov et al.; Published by Cold Spring Harbor Laboratory Press.
This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c415t-7ddc99a6d74d0cfe3d9aa4357d9be993af71902ad1dcb2fa19da3055a30e65fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6211643
PMID 30341161
PQID 2136902371
PQPubID 2049132
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6211643
proquest_miscellaneous_2123716139
proquest_journals_2136902371
pubmed_primary_30341161
crossref_citationtrail_10_1101_gr_236273_118
crossref_primary_10_1101_gr_236273_118
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Genome research
PublicationTitleAlternate Genome Res
PublicationYear 2018
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 2021111811175314000_28.11.1720.12
2021111811175314000_28.11.1720.11
2021111811175314000_28.11.1720.10
2021111811175314000_28.11.1720.16
2021111811175314000_28.11.1720.15
2021111811175314000_28.11.1720.14
2021111811175314000_28.11.1720.13
(2021111811175314000_28.11.1720.28) 2014; 15
2021111811175314000_28.11.1720.52
2021111811175314000_28.11.1720.51
(2021111811175314000_28.11.1720.7) 2015; 16
2021111811175314000_28.11.1720.50
2021111811175314000_28.11.1720.19
2021111811175314000_28.11.1720.18
(2021111811175314000_28.11.1720.17) 2014; 5
2021111811175314000_28.11.1720.23
2021111811175314000_28.11.1720.22
2021111811175314000_28.11.1720.21
2021111811175314000_28.11.1720.20
2021111811175314000_28.11.1720.27
2021111811175314000_28.11.1720.26
2021111811175314000_28.11.1720.25
2021111811175314000_28.11.1720.24
(2021111811175314000_28.11.1720.49) 2016; 12
2021111811175314000_28.11.1720.29
2021111811175314000_28.11.1720.34
2021111811175314000_28.11.1720.33
2021111811175314000_28.11.1720.32
2021111811175314000_28.11.1720.31
2021111811175314000_28.11.1720.38
2021111811175314000_28.11.1720.37
2021111811175314000_28.11.1720.36
2021111811175314000_28.11.1720.35
2021111811175314000_28.11.1720.30
2021111811175314000_28.11.1720.1
2021111811175314000_28.11.1720.4
2021111811175314000_28.11.1720.5
2021111811175314000_28.11.1720.2
2021111811175314000_28.11.1720.3
2021111811175314000_28.11.1720.39
2021111811175314000_28.11.1720.9
2021111811175314000_28.11.1720.6
2021111811175314000_28.11.1720.45
2021111811175314000_28.11.1720.44
2021111811175314000_28.11.1720.43
2021111811175314000_28.11.1720.42
2021111811175314000_28.11.1720.48
2021111811175314000_28.11.1720.47
2021111811175314000_28.11.1720.46
2021111811175314000_28.11.1720.41
2021111811175314000_28.11.1720.40
(2021111811175314000_28.11.1720.8) 2011; 40
References_xml – ident: 2021111811175314000_28.11.1720.20
  doi: 10.1093/bioinformatics/btu280
– ident: 2021111811175314000_28.11.1720.13
  doi: 10.1038/ng.1028
– ident: 2021111811175314000_28.11.1720.41
  doi: 10.1093/bioinformatics/btp356
– ident: 2021111811175314000_28.11.1720.35
  doi: 10.1093/bioinformatics/btq465
– ident: 2021111811175314000_28.11.1720.4
  doi: 10.1101/gr.7337908
– ident: 2021111811175314000_28.11.1720.48
  doi: 10.1126/science.1058040
– ident: 2021111811175314000_28.11.1720.37
  doi: 10.1101/gr.757503
– ident: 2021111811175314000_28.11.1720.14
  doi: 10.1007/978-3-319-56970-3_5
– volume: 5
  start-page: 192
  year: 2014
  ident: 2021111811175314000_28.11.1720.17
  article-title: Identification of structural variation in mouse genomes
  publication-title: Front Genet
– ident: 2021111811175314000_28.11.1720.43
  doi: 10.1101/gr.131383.111
– ident: 2021111811175314000_28.11.1720.16
  doi: 10.1126/science.1253451
– ident: 2021111811175314000_28.11.1720.9
  doi: 10.1093/bioinformatics/btu259
– ident: 2021111811175314000_28.11.1720.21
  doi: 10.1016/j.mib.2014.11.014
– ident: 2021111811175314000_28.11.1720.44
  doi: 10.1038/nature10842
– ident: 2021111811175314000_28.11.1720.29
  doi: 10.1186/2047-217X-1-18
– ident: 2021111811175314000_28.11.1720.36
  doi: 10.1073/pnas.1330369100
– ident: 2021111811175314000_28.11.1720.22
  doi: 10.1126/science.aar6343
– ident: 2021111811175314000_28.11.1720.10
  doi: 10.1186/gb-2009-10-8-r88
– ident: 2021111811175314000_28.11.1720.33
  doi: 10.1101/gr.123356.111
– ident: 2021111811175314000_28.11.1720.18
  doi: 10.1073/pnas.1932072100
– ident: 2021111811175314000_28.11.1720.46
  doi: 10.1101/gr.089532.108
– ident: 2021111811175314000_28.11.1720.42
  doi: 10.1099/ijs.0.01472-0
– ident: 2021111811175314000_28.11.1720.19
  doi: 10.1073/pnas.1220349110
– volume: 16
  start-page: 277
  year: 2015
  ident: 2021111811175314000_28.11.1720.7
  article-title: Genomic legacy of the African cheetah, Acinonyx jubatus
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0837-4
– ident: 2021111811175314000_28.11.1720.1
  doi: 10.1101/gr.082784.108
– ident: 2021111811175314000_28.11.1720.39
  doi: 10.1101/gr.193474.115
– ident: 2021111811175314000_28.11.1720.40
  doi: 10.1093/bioinformatics/btm153
– ident: 2021111811175314000_28.11.1720.45
  doi: 10.1101/gr.126953.111
– volume: 40
  start-page: D84
  year: 2011
  ident: 2021111811175314000_28.11.1720.8
  article-title: Ensembl 2012
  publication-title: Nucleic Acids Res
– ident: 2021111811175314000_28.11.1720.11
  doi: 10.1073/pnas.1017351108
– ident: 2021111811175314000_28.11.1720.50
  doi: 10.1186/1471-2164-15-180
– ident: 2021111811175314000_28.11.1720.38
  doi: 10.1101/gr.6380007
– ident: 2021111811175314000_28.11.1720.51
  doi: 10.1186/gb-2012-13-3-r18
– ident: 2021111811175314000_28.11.1720.3
  doi: 10.1007/s00439-012-1165-3
– ident: 2021111811175314000_28.11.1720.23
  doi: 10.1038/35057062
– ident: 2021111811175314000_28.11.1720.31
  doi: 10.1007/978-3-642-40453-5_17
– ident: 2021111811175314000_28.11.1720.47
  doi: 10.1101/gr.234096.117
– ident: 2021111811175314000_28.11.1720.25
  doi: 10.1093/bioinformatics/btp324
– ident: 2021111811175314000_28.11.1720.24
  doi: 10.1093/nar/gkw290
– ident: 2021111811175314000_28.11.1720.15
  doi: 10.1038/nbt.4060
– ident: 2021111811175314000_28.11.1720.5
  doi: 10.1038/nature13907
– volume: 15
  start-page: S6
  year: 2014
  ident: 2021111811175314000_28.11.1720.28
  article-title: What is the difference between the breakpoint graph and the de Bruijn graph?
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-S6-S6
– ident: 2021111811175314000_28.11.1720.32
  doi: 10.1093/bioinformatics/17.suppl_1.S165
– ident: 2021111811175314000_28.11.1720.34
  doi: 10.1007/978-3-642-12683-3_28
– ident: 2021111811175314000_28.11.1720.30
  doi: 10.1089/cmb.2011.0151
– ident: 2021111811175314000_28.11.1720.52
  doi: 10.1101/gr.074492.107
– ident: 2021111811175314000_28.11.1720.12
  doi: 10.1093/bioinformatics/btt128
– ident: 2021111811175314000_28.11.1720.2
  doi: 10.1186/2047-217X-2-10
– ident: 2021111811175314000_28.11.1720.6
  doi: 10.1371/journal.pbio.1000112
– ident: 2021111811175314000_28.11.1720.26
  doi: 10.1038/s41588-018-0223-8
– ident: 2021111811175314000_28.11.1720.27
  doi: 10.1089/cmb.2011.0114
– volume: 12
  start-page: e1005954
  year: 2016
  ident: 2021111811175314000_28.11.1720.49
  article-title: Chromosomal-level assembly of the Asian seabass genome using long sequence reads and multi-layered scaffolding
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1005954
SSID ssj0003488
Score 2.5370128
Snippet Despite the rapid development of sequencing technologies, the assembly of mammalian-scale genomes into complete chromosomes remains one of the most challenging...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1720
SubjectTerms Animals
Bioinformatics
Chromosomes
Contig Mapping - methods
Contig Mapping - standards
Gene mapping
Genomes
Karyotypes
Method
Mice
Reference Standards
Whole Genome Sequencing - methods
Whole Genome Sequencing - standards
Title Chromosome assembly of large and complex genomes using multiple references
URI https://www.ncbi.nlm.nih.gov/pubmed/30341161
https://www.proquest.com/docview/2136902371
https://www.proquest.com/docview/2123716139
https://pubmed.ncbi.nlm.nih.gov/PMC6211643
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCLEXBBuXwEBGQnsZKbXj3B63sbEbQ0Kt1LfIiZ0Ora2ntEXAr-fYcZwUijR4iVLbdSKfL_ZnnxtCb1mf5UIEwofVj_osFpGf0CLyBZEJTcuyJFz7Dn-6jE6G7GwUjtpsm8a7ZJH3ip9r_Ur-R6pQBnLVXrL_IFnXKRTAPcgXriBhuN5Kxjqy7VTN1VTuAQeW03xi9OUTbd3dOKzdTOR3nSdZ6ahMS3My4IwIXY6ReZejfjSN92wYIHdcfK4mUzVWlfpWm9tfX3XMMwAvc32obs17pav4wq052UGlp5JWCWW04TVeTi1C7eEDSawXXme-ZKkfsjrbSk-uKbOTLE26YCKdKRMYVH_9XG5yCIyrHoVFNg6gIGkXrUZRf_k5Ox5eXGSDo9HgLrpHYbOg81h8OD1363HATPZR91ou0ip5v9L5KjP5Y7vxu9Vsh4YMHqGHdv-A92swPEZ35GwLbe_P-EJNf-BdbCx6japkC90_aO4eHDZ5_bbRWYsa3KAGqxIb1GBADbaowRY12KAGN6jBLWqeoOHx0eDwxLcZNfwCiNrCj4Uo0pRHImaiX5QyECnnQJhjkeYSmCovYyCIlAsiipyWnKSC65BwcJFRWIrgKdqYqZl8jjCDTnLKYY3KOQtDmeSkjIMi5gVQeh5xD71rRjMrbLh5nfVkkpltZ59k4yqrBx9-Jh7adc1v6jgrf2u404gms5_iPKMkiOC9g5h46I2rhnHV2i_AuVrqNroe2GvqoWe1JN2TgMcxAnUeildk7BroIOyrNbOvVyYYe0Thjyx4cYvnvkSb7Te0gzYW1VK-Akq7yF8bxP4CCDWlUQ
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chromosome+assembly+of+large+and+complex+genomes+using+multiple+references&rft.jtitle=Genome+research&rft.au=Kolmogorov%2C+Mikhail&rft.au=Armstrong%2C+Joel&rft.au=Raney%2C+Brian+J&rft.au=Streeter%2C+Ian&rft.date=2018-11-01&rft.issn=1549-5469&rft.eissn=1549-5469&rft.volume=28&rft.issue=11&rft.spage=1720&rft_id=info:doi/10.1101%2Fgr.236273.118&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon