A nitrogen-doped CoP nanoarray over 3D porous Co foam as an efficient bifunctional electrocatalyst for overall water splitting
An efficient and stable overall water splitting electrocatalyst is extremely crucial in hydrogen fuel generation. Herein, a nitrogen-doped CoP nanorod array over 3D porous Co foam (CoP-N/Co foam) is proposed as a bifunctional high-performance catalyst for the water splitting reaction. It can afford...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 7; no. 21; pp. 13242 - 13248 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
28.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An efficient and stable overall water splitting electrocatalyst is extremely crucial in hydrogen fuel generation. Herein, a nitrogen-doped CoP nanorod array over 3D porous Co foam (CoP-N/Co foam) is proposed as a bifunctional high-performance catalyst for the water splitting reaction. It can afford a current density of 50 mA cm
−2
with an overpotential of 100 mV for the hydrogen evolution reaction and 260 mV for the oxygen evolution reaction; as a bifunctional catalyst for overall water-splitting, to reach a current density of 50 mA cm
−2
, the CoP-N/Co foam|CoP-N/Co foam catalyst system requires a cell voltage of 1.61 V, significantly lower than the value of 1.78 V required for the RuO
2
/Co foam|Pt/C/Co foam electrode system assembled using the state-of-the-art commercial catalysts, and also outperforming most of the analogous catalysts reported recently. This electrolyzer can retain a current density of 50 mA cm
−2
over 25 h of continuous operation without obvious performance degradation. Even under strongly corrosive and high oxidation potential conditions, the morphology and structure of the N-CoP nanorods strongly coupled with the Co foam were well retained after the electrocatalytic process. In order to deeply understand the catalytic contribution from doping and the morphology and support effects, Co foam, P-doped Co foam, CoP/Co foam and CoP-N/Co foam as catalysts were comparatively evaluated by spectroscopic and electrochemical techniques. It is found that simple doping of non-metallic nitrogen into CoP can greatly increase its catalytic activity, stability, kinetics and catalytic efficiency for water splitting both in the anode and cathode reaction. The present work provides an efficient approach for performance enhancements of metal phosphide catalysts and a promising electrode for energy-efficient water electrolysis.
A nitrogen-doped CoP nanoarray over 3D porous Co foam is proposed as a robust bifunctional catalyst for the hydrogen evolution reaction and oxygen evolution reaction in the overall water-splitting reaction. |
---|---|
AbstractList | An efficient and stable overall water splitting electrocatalyst is extremely crucial in hydrogen fuel generation. Herein, a nitrogen-doped CoP nanorod array over 3D porous Co foam (CoP–N/Co foam) is proposed as a bifunctional high-performance catalyst for the water splitting reaction. It can afford a current density of 50 mA cm
−2
with an overpotential of 100 mV for the hydrogen evolution reaction and 260 mV for the oxygen evolution reaction; as a bifunctional catalyst for overall water-splitting, to reach a current density of 50 mA cm
−2
, the CoP–N/Co foam‖CoP–N/Co foam catalyst system requires a cell voltage of 1.61 V, significantly lower than the value of 1.78 V required for the RuO
2
/Co foam‖Pt/C/Co foam electrode system assembled using the state-of-the-art commercial catalysts, and also outperforming most of the analogous catalysts reported recently. This electrolyzer can retain a current density of 50 mA cm
−2
over 25 h of continuous operation without obvious performance degradation. Even under strongly corrosive and high oxidation potential conditions, the morphology and structure of the N–CoP nanorods strongly coupled with the Co foam were well retained after the electrocatalytic process. In order to deeply understand the catalytic contribution from doping and the morphology and support effects, Co foam, P-doped Co foam, CoP/Co foam and CoP–N/Co foam as catalysts were comparatively evaluated by spectroscopic and electrochemical techniques. It is found that simple doping of non-metallic nitrogen into CoP can greatly increase its catalytic activity, stability, kinetics and catalytic efficiency for water splitting both in the anode and cathode reaction. The present work provides an efficient approach for performance enhancements of metal phosphide catalysts and a promising electrode for energy-efficient water electrolysis. An efficient and stable overall water splitting electrocatalyst is extremely crucial in hydrogen fuel generation. Herein, a nitrogen-doped CoP nanorod array over 3D porous Co foam (CoP–N/Co foam) is proposed as a bifunctional high-performance catalyst for the water splitting reaction. It can afford a current density of 50 mA cm⁻² with an overpotential of 100 mV for the hydrogen evolution reaction and 260 mV for the oxygen evolution reaction; as a bifunctional catalyst for overall water-splitting, to reach a current density of 50 mA cm⁻², the CoP–N/Co foam‖CoP–N/Co foam catalyst system requires a cell voltage of 1.61 V, significantly lower than the value of 1.78 V required for the RuO₂/Co foam‖Pt/C/Co foam electrode system assembled using the state-of-the-art commercial catalysts, and also outperforming most of the analogous catalysts reported recently. This electrolyzer can retain a current density of 50 mA cm⁻² over 25 h of continuous operation without obvious performance degradation. Even under strongly corrosive and high oxidation potential conditions, the morphology and structure of the N–CoP nanorods strongly coupled with the Co foam were well retained after the electrocatalytic process. In order to deeply understand the catalytic contribution from doping and the morphology and support effects, Co foam, P-doped Co foam, CoP/Co foam and CoP–N/Co foam as catalysts were comparatively evaluated by spectroscopic and electrochemical techniques. It is found that simple doping of non-metallic nitrogen into CoP can greatly increase its catalytic activity, stability, kinetics and catalytic efficiency for water splitting both in the anode and cathode reaction. The present work provides an efficient approach for performance enhancements of metal phosphide catalysts and a promising electrode for energy-efficient water electrolysis. An efficient and stable overall water splitting electrocatalyst is extremely crucial in hydrogen fuel generation. Herein, a nitrogen-doped CoP nanorod array over 3D porous Co foam (CoP-N/Co foam) is proposed as a bifunctional high-performance catalyst for the water splitting reaction. It can afford a current density of 50 mA cm −2 with an overpotential of 100 mV for the hydrogen evolution reaction and 260 mV for the oxygen evolution reaction; as a bifunctional catalyst for overall water-splitting, to reach a current density of 50 mA cm −2 , the CoP-N/Co foam|CoP-N/Co foam catalyst system requires a cell voltage of 1.61 V, significantly lower than the value of 1.78 V required for the RuO 2 /Co foam|Pt/C/Co foam electrode system assembled using the state-of-the-art commercial catalysts, and also outperforming most of the analogous catalysts reported recently. This electrolyzer can retain a current density of 50 mA cm −2 over 25 h of continuous operation without obvious performance degradation. Even under strongly corrosive and high oxidation potential conditions, the morphology and structure of the N-CoP nanorods strongly coupled with the Co foam were well retained after the electrocatalytic process. In order to deeply understand the catalytic contribution from doping and the morphology and support effects, Co foam, P-doped Co foam, CoP/Co foam and CoP-N/Co foam as catalysts were comparatively evaluated by spectroscopic and electrochemical techniques. It is found that simple doping of non-metallic nitrogen into CoP can greatly increase its catalytic activity, stability, kinetics and catalytic efficiency for water splitting both in the anode and cathode reaction. The present work provides an efficient approach for performance enhancements of metal phosphide catalysts and a promising electrode for energy-efficient water electrolysis. A nitrogen-doped CoP nanoarray over 3D porous Co foam is proposed as a robust bifunctional catalyst for the hydrogen evolution reaction and oxygen evolution reaction in the overall water-splitting reaction. |
Author | Xue, Huaiguo Yu, Xu Liu, Zong Feng, Ligang |
AuthorAffiliation | Yangzhou University School of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: Yangzhou University – name: School of Chemistry and Chemical Engineering |
Author_xml | – sequence: 1 givenname: Zong surname: Liu fullname: Liu, Zong – sequence: 2 givenname: Xu surname: Yu fullname: Yu, Xu – sequence: 3 givenname: Huaiguo surname: Xue fullname: Xue, Huaiguo – sequence: 4 givenname: Ligang surname: Feng fullname: Feng, Ligang |
BookMark | eNp9kUtLxDAUhYMo-Ny4F-JOhGqaNrZZDuMTBV3outxJbySaSWqSUWbjbzfjiIKI2SRwzvku92STrDrvkJDdkh2VrJLHSiZgFWfl8wrZ4Eywoqnlyer3u23XyU6MTyyflrETKTfI-4g6k4J_RFf0fsCejv0ddeA8hABz6l8x0OqUDj74Wcwi1R6mFCIFR1Frowy6RCdGz5xKxjuwFC2qjFSQwM5jyonwyQFr6RukDIyDNSkZ97hN1jTYiDtf9xZ5OD-7H18WN7cXV-PRTaHqUqSiUdhq0UKDvMlDgaGe1A3U2AspeI-lUKrhupZ1mdevpBaiBzkBPeFcMhDVFjlYcofgX2YYUzc1UaG14DDv1XHelC0XbbWwHi6tKvgYA-puCGYKYd6VrFv03I3l_eiz5-tsZr_MyiRY9JACGPt3ZG8ZCVF9o3--Luv7_-nd0OvqA6lvmVw |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2021_05_151 crossref_primary_10_1016_j_mtchem_2023_101530 crossref_primary_10_1021_acssuschemeng_0c04551 crossref_primary_10_1021_acs_inorgchem_3c03826 crossref_primary_10_1021_acssuschemeng_2c06999 crossref_primary_10_1039_D1TA05648D crossref_primary_10_1016_j_jcis_2020_02_073 crossref_primary_10_1039_D1TA03809E crossref_primary_10_1039_D4CC05348F crossref_primary_10_1007_s11581_021_04290_9 crossref_primary_10_1039_C9CC08698F crossref_primary_10_1002_cssc_201902920 crossref_primary_10_1016_j_nanoms_2022_04_003 crossref_primary_10_1016_j_ccr_2021_214209 crossref_primary_10_3390_ma13143119 crossref_primary_10_1002_cjoc_202300441 crossref_primary_10_1016_j_electacta_2020_136822 crossref_primary_10_1016_j_apcatb_2021_120488 crossref_primary_10_1021_acs_jpcc_0c04625 crossref_primary_10_1016_j_ijhydene_2021_08_132 crossref_primary_10_1016_j_ijhydene_2023_10_066 crossref_primary_10_1039_D3TA07019K crossref_primary_10_1021_acs_energyfuels_2c03124 crossref_primary_10_1039_D3YA00035D crossref_primary_10_1016_j_surfin_2025_105775 crossref_primary_10_1016_j_jwpe_2024_106062 crossref_primary_10_1016_j_electacta_2022_140484 crossref_primary_10_1016_j_ijhydene_2025_02_234 crossref_primary_10_1016_j_jpowsour_2020_227837 crossref_primary_10_1016_j_jechem_2023_06_022 crossref_primary_10_1016_j_ijhydene_2022_12_184 crossref_primary_10_1016_j_apcatb_2021_120494 crossref_primary_10_1002_asia_202000734 crossref_primary_10_1021_acsami_3c16507 crossref_primary_10_1016_j_jcat_2021_04_003 crossref_primary_10_3390_nano9121676 crossref_primary_10_1016_j_ijhydene_2020_10_071 crossref_primary_10_1039_D3NJ01301D crossref_primary_10_1039_D1SE00318F crossref_primary_10_1016_j_cej_2023_145133 crossref_primary_10_1016_j_cej_2020_125481 crossref_primary_10_1039_D0NR00007H crossref_primary_10_1016_j_cej_2023_147425 crossref_primary_10_1039_D0TA04388E crossref_primary_10_1021_acsomega_3c04347 crossref_primary_10_1016_j_jallcom_2022_163855 crossref_primary_10_1039_D2TA06866D crossref_primary_10_1016_S1872_2067_21_63855_X crossref_primary_10_1016_j_cej_2020_126803 crossref_primary_10_1016_j_apsusc_2020_145715 crossref_primary_10_1016_j_jallcom_2022_166683 crossref_primary_10_1002_smll_202302866 crossref_primary_10_1016_j_ijhydene_2023_09_304 crossref_primary_10_1002_cnma_202000010 crossref_primary_10_1039_D2SE01720B crossref_primary_10_1016_j_cej_2019_123034 crossref_primary_10_1039_D1TA01014J crossref_primary_10_1016_j_jallcom_2021_160054 crossref_primary_10_1039_D0TA10500G crossref_primary_10_1016_j_electacta_2022_141075 crossref_primary_10_1016_j_jpowsour_2020_228621 crossref_primary_10_3390_molecules28166101 crossref_primary_10_1021_acs_energyfuels_0c03084 crossref_primary_10_1039_D1EE02798K crossref_primary_10_1007_s12274_022_4702_y crossref_primary_10_1039_D1NR07398B crossref_primary_10_1021_acsami_1c17448 crossref_primary_10_3390_catal11060659 crossref_primary_10_1039_D1CY02238E crossref_primary_10_3390_molecules27238206 crossref_primary_10_1002_cssc_202002103 crossref_primary_10_1002_celc_202001105 crossref_primary_10_3390_nano12071098 crossref_primary_10_1002_admi_202400597 crossref_primary_10_1088_1361_6528_ac1c25 crossref_primary_10_1002_cctc_202301420 crossref_primary_10_1039_C9CC05540A crossref_primary_10_1016_j_cej_2020_125660 crossref_primary_10_1039_D2QI01168A crossref_primary_10_1021_acsami_1c14987 crossref_primary_10_1016_j_cej_2021_131576 crossref_primary_10_1016_j_electacta_2023_143202 crossref_primary_10_1016_j_matlet_2020_128351 crossref_primary_10_1016_j_apcatb_2020_119281 crossref_primary_10_1016_j_ijhydene_2024_12_398 crossref_primary_10_2139_ssrn_4183141 crossref_primary_10_1016_j_poly_2020_114871 crossref_primary_10_1016_j_ijhydene_2021_07_236 crossref_primary_10_1007_s11595_024_3013_4 crossref_primary_10_1039_D4RA02063D crossref_primary_10_1016_j_electacta_2019_06_136 crossref_primary_10_1016_j_jcis_2019_12_010 crossref_primary_10_1002_chem_201902659 crossref_primary_10_1002_chem_202101560 crossref_primary_10_1021_acs_inorgchem_1c00295 crossref_primary_10_1016_j_colsurfa_2024_133629 crossref_primary_10_1016_j_diamond_2024_111189 crossref_primary_10_1002_adfm_202104951 crossref_primary_10_1007_s11581_023_05213_6 crossref_primary_10_1016_j_cej_2024_150429 crossref_primary_10_1016_j_ijhydene_2021_03_113 crossref_primary_10_1016_j_carbon_2021_06_029 crossref_primary_10_1016_j_jechem_2022_10_046 crossref_primary_10_1002_asia_202000419 crossref_primary_10_1016_j_jpowsour_2023_233382 crossref_primary_10_1002_tcr_202300088 crossref_primary_10_1021_acs_inorgchem_9b02524 crossref_primary_10_1039_C9CC04429A crossref_primary_10_1016_j_electacta_2023_143335 crossref_primary_10_1016_j_cej_2024_154211 crossref_primary_10_1016_j_jelechem_2022_116650 crossref_primary_10_1016_j_jpowsour_2019_227406 crossref_primary_10_1016_j_ijhydene_2022_01_211 crossref_primary_10_1016_j_jallcom_2019_153161 crossref_primary_10_1016_j_cej_2020_126371 crossref_primary_10_1016_j_jcis_2022_05_110 crossref_primary_10_1016_j_ijhydene_2023_08_161 crossref_primary_10_1016_j_electacta_2019_134656 crossref_primary_10_1016_j_ijhydene_2023_10_256 crossref_primary_10_1016_j_apsusc_2023_156456 crossref_primary_10_1002_slct_202200291 crossref_primary_10_1016_j_ijhydene_2024_05_370 crossref_primary_10_1002_celc_201901420 crossref_primary_10_1021_acssuschemeng_0c02636 crossref_primary_10_1039_D0NR01386B crossref_primary_10_1039_D2DT00037G crossref_primary_10_1039_D2QM00931E crossref_primary_10_1002_smll_202405056 crossref_primary_10_1016_j_jelechem_2024_118223 crossref_primary_10_1016_j_jallcom_2023_171201 crossref_primary_10_1016_j_cej_2021_131190 crossref_primary_10_1002_elan_202060110 crossref_primary_10_1039_C9CC09187D crossref_primary_10_1039_D0TA10596A crossref_primary_10_1021_acssuschemeng_0c06547 crossref_primary_10_1016_j_cej_2020_125500 crossref_primary_10_1016_j_ijhydene_2022_02_152 crossref_primary_10_1016_j_mtphys_2020_100292 crossref_primary_10_1016_j_cej_2020_125507 crossref_primary_10_1016_j_materresbull_2021_111638 crossref_primary_10_1039_D2DT01494G crossref_primary_10_1016_j_gee_2020_11_023 crossref_primary_10_1016_j_apsusc_2021_151247 crossref_primary_10_1021_acsmaterialslett_4c00248 crossref_primary_10_1002_admi_202101483 crossref_primary_10_1016_j_jechem_2022_11_054 crossref_primary_10_1016_j_ijhydene_2021_10_117 crossref_primary_10_1016_j_jallcom_2019_153185 crossref_primary_10_1016_j_cej_2022_141056 crossref_primary_10_1016_j_ijhydene_2020_06_291 |
Cites_doi | 10.1039/C8NR05587D 10.1002/cssc.201801103 10.1039/C7SC04569G 10.1039/C8TA09240K 10.1002/anie.201710859 10.1016/j.jpowsour.2018.04.090 10.1039/C8CY01105B 10.1039/C8CC08251K 10.1002/adma.201500894 10.1002/anie.201403946 10.1021/acsnano.7b01946 10.1021/acs.jpcc.7b12643 10.1021/acsenergylett.8b00908 10.1039/C7TA10933D 10.1039/C8CC03223H 10.1016/j.nanoen.2016.04.011 10.1021/acscatal.7b00587 10.1039/C8CC09993F 10.1021/acsenergylett.7b00638 10.1002/anie.201501616 10.1002/anie.201808929 10.1002/cssc.201801250 10.1016/j.nanoen.2018.03.034 10.1038/srep13801 10.1016/j.jpowsour.2019.03.089 10.1002/advs.201800949 10.1002/celc.201600563 10.1002/sia.740040204 10.1039/c4cp00482e 10.1039/C7TA01776F 10.1039/C7NR01017F 10.1039/C7CS00306D 10.1039/C6SC05167G 10.1016/j.nanoen.2018.08.064 10.1038/nmat4938 10.1002/aenm.201802615 10.1002/adma.201805541 10.1021/acs.nanolett.6b02805 10.1021/acsenergylett.8b00514 10.1039/C8TA08577C 10.1039/C4CS00470A 10.1016/j.nanoen.2017.10.009 10.1039/C6TA06761A |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1039/c9ta03201k |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 13248 |
ExternalDocumentID | 10_1039_C9TA03201K c9ta03201k |
GroupedDBID | 0-7 0R 705 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGSTE ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- EJD GNO HZ H~N IPNFZ J3I JG O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF 7S9 L.6 |
ID | FETCH-LOGICAL-c415t-7ce8f58a7e27effa0efb47a4ed5952de15cc72f494120139f55da9bafb2290a53 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 15:37:19 EDT 2025 Thu Apr 24 23:11:24 EDT 2025 Tue Jul 01 03:14:03 EDT 2025 Sat Jan 08 03:27:10 EST 2022 Wed Nov 11 00:29:02 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c415t-7ce8f58a7e27effa0efb47a4ed5952de15cc72f494120139f55da9bafb2290a53 |
Notes | 10.1039/c9ta03201k Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9879-0773 |
PQID | 2271825835 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1039_C9TA03201K rsc_primary_c9ta03201k proquest_miscellaneous_2271825835 crossref_citationtrail_10_1039_C9TA03201K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190528 |
PublicationDateYYYYMMDD | 2019-05-28 |
PublicationDate_xml | – month: 5 year: 2019 text: 20190528 day: 28 |
PublicationDecade | 2010 |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2019 |
References | Shinagawa (C9TA03201K-(cit28)/*[position()=1]) 2015; 5 Zhou (C9TA03201K-(cit20)/*[position()=1]) 2017; 41 Yuan (C9TA03201K-(cit18)/*[position()=1]) 2017; 5 Zhu (C9TA03201K-(cit35)/*[position()=1]) 2018; 6 Li (C9TA03201K-(cit19)/*[position()=1]) 2017; 8 Wang (C9TA03201K-(cit24)/*[position()=1]) 2017; 11 Ray (C9TA03201K-(cit42)/*[position()=1]) 2018; 6 Xue (C9TA03201K-(cit43)/*[position()=1]) 2018; 54 Pei (C9TA03201K-(cit38)/*[position()=1]) 2019; 424 Lin (C9TA03201K-(cit12)/*[position()=1]) 2018; 6 Lai (C9TA03201K-(cit27)/*[position()=1]) 2019; 31 Jothi (C9TA03201K-(cit31)/*[position()=1]) 2018; 8 Swift (C9TA03201K-(cit26)/*[position()=1]) 1982; 4 Liu (C9TA03201K-(cit37)/*[position()=1]) 2017; 2 Wu (C9TA03201K-(cit23)/*[position()=1]) 2018; 57 Liu (C9TA03201K-(cit13)/*[position()=1]) 2018; 10 Cao (C9TA03201K-(cit11)/*[position()=1]) 2018; 5 Zhang (C9TA03201K-(cit14)/*[position()=1]) 2018; 9 Busch (C9TA03201K-(cit39)/*[position()=1]) 2016; 29 Yang (C9TA03201K-(cit16)/*[position()=1]) 2018; 54 Guan (C9TA03201K-(cit21)/*[position()=1]) 2018; 48 Liu (C9TA03201K-(cit6)/*[position()=1]) 2018; 11 Wang (C9TA03201K-(cit33)/*[position()=1]) 2018; 57 Li (C9TA03201K-(cit22)/*[position()=1]) 2018; 8 Yang (C9TA03201K-(cit4)/*[position()=1]) 2019; 55 Zhang (C9TA03201K-(cit34)/*[position()=1]) 2018; 3 Yang (C9TA03201K-(cit25)/*[position()=1]) 2017; 7 Feng (C9TA03201K-(cit2)/*[position()=1]) 2017; 4 Jiang (C9TA03201K-(cit8)/*[position()=1]) 2015; 54 Wang (C9TA03201K-(cit7)/*[position()=1]) 2018; 11 Li (C9TA03201K-(cit32)/*[position()=1]) 2017; 9 Feng (C9TA03201K-(cit10)/*[position()=1]) 2014; 16 Anjum (C9TA03201K-(cit30)/*[position()=1]) 2018; 53 Oh (C9TA03201K-(cit15)/*[position()=1]) 2016; 4 Ma (C9TA03201K-(cit36)/*[position()=1]) 2014; 53 Abroshan (C9TA03201K-(cit41)/*[position()=1]) 2018; 122 Fabbri (C9TA03201K-(cit1)/*[position()=1]) 2017; 16 Li (C9TA03201K-(cit5)/*[position()=1]) 2017; 46 Jiao (C9TA03201K-(cit3)/*[position()=1]) 2015; 44 Yang (C9TA03201K-(cit9)/*[position()=1]) 2015; 27 Xu (C9TA03201K-(cit40)/*[position()=1]) 2016; 16 Fu (C9TA03201K-(cit29)/*[position()=1]) 2018; 3 Yang (C9TA03201K-(cit17)/*[position()=1]) 2018; 392 |
References_xml | – volume: 10 start-page: 16911 year: 2018 ident: C9TA03201K-(cit13)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR05587D – volume: 11 start-page: 2724 year: 2018 ident: C9TA03201K-(cit7)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201801103 – volume: 9 start-page: 1375 year: 2018 ident: C9TA03201K-(cit14)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC04569G – volume: 6 start-page: 24479 year: 2018 ident: C9TA03201K-(cit12)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09240K – volume: 57 start-page: 2600 year: 2018 ident: C9TA03201K-(cit33)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201710859 – volume: 392 start-page: 23 year: 2018 ident: C9TA03201K-(cit17)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.090 – volume: 8 start-page: 4407 year: 2018 ident: C9TA03201K-(cit22)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY01105B – volume: 54 start-page: 13151 year: 2018 ident: C9TA03201K-(cit16)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC08251K – volume: 27 start-page: 3175 year: 2015 ident: C9TA03201K-(cit9)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201500894 – volume: 53 start-page: 7281 year: 2014 ident: C9TA03201K-(cit36)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201403946 – volume: 11 start-page: 4358 year: 2017 ident: C9TA03201K-(cit24)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b01946 – volume: 122 start-page: 4783 year: 2018 ident: C9TA03201K-(cit41)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b12643 – volume: 3 start-page: 1744 year: 2018 ident: C9TA03201K-(cit29)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00908 – volume: 6 start-page: 4466 year: 2018 ident: C9TA03201K-(cit42)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10933D – volume: 54 start-page: 6204 year: 2018 ident: C9TA03201K-(cit43)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC03223H – volume: 29 start-page: 126 year: 2016 ident: C9TA03201K-(cit39)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.011 – volume: 7 start-page: 3824 year: 2017 ident: C9TA03201K-(cit25)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b00587 – volume: 55 start-page: 1490 year: 2019 ident: C9TA03201K-(cit4)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC09993F – volume: 2 start-page: 2257 year: 2017 ident: C9TA03201K-(cit37)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00638 – volume: 54 start-page: 6251 year: 2015 ident: C9TA03201K-(cit8)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201501616 – volume: 57 start-page: 15445 year: 2018 ident: C9TA03201K-(cit23)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201808929 – volume: 11 start-page: 2703 year: 2018 ident: C9TA03201K-(cit6)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201801250 – volume: 48 start-page: 73 year: 2018 ident: C9TA03201K-(cit21)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.034 – volume: 5 start-page: 13801 year: 2015 ident: C9TA03201K-(cit28)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep13801 – volume: 424 start-page: 131 year: 2019 ident: C9TA03201K-(cit38)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.03.089 – volume: 5 start-page: 1800949 year: 2018 ident: C9TA03201K-(cit11)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201800949 – volume: 4 start-page: 20 year: 2017 ident: C9TA03201K-(cit2)/*[position()=1] publication-title: ChemElectroChem doi: 10.1002/celc.201600563 – volume: 4 start-page: 47 year: 1982 ident: C9TA03201K-(cit26)/*[position()=1] publication-title: Surf. Interface Anal. doi: 10.1002/sia.740040204 – volume: 16 start-page: 5917 year: 2014 ident: C9TA03201K-(cit10)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c4cp00482e – volume: 5 start-page: 10561 year: 2017 ident: C9TA03201K-(cit18)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01776F – volume: 9 start-page: 5677 year: 2017 ident: C9TA03201K-(cit32)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR01017F – volume: 46 start-page: 6124 year: 2017 ident: C9TA03201K-(cit5)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00306D – volume: 8 start-page: 2952 year: 2017 ident: C9TA03201K-(cit19)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C6SC05167G – volume: 53 start-page: 286 year: 2018 ident: C9TA03201K-(cit30)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.064 – volume: 16 start-page: 925 year: 2017 ident: C9TA03201K-(cit1)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4938 – volume: 8 start-page: 1802615 year: 2018 ident: C9TA03201K-(cit31)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802615 – volume: 31 start-page: 1805541 year: 2019 ident: C9TA03201K-(cit27)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201805541 – volume: 16 start-page: 5902 year: 2016 ident: C9TA03201K-(cit40)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b02805 – volume: 3 start-page: 1360 year: 2018 ident: C9TA03201K-(cit34)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00514 – volume: 6 start-page: 24277 year: 2018 ident: C9TA03201K-(cit35)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08577C – volume: 44 start-page: 2060 year: 2015 ident: C9TA03201K-(cit3)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00470A – volume: 41 start-page: 583 year: 2017 ident: C9TA03201K-(cit20)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.10.009 – volume: 4 start-page: 18272 year: 2016 ident: C9TA03201K-(cit15)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06761A |
SSID | ssj0000800699 |
Score | 2.5985155 |
Snippet | An efficient and stable overall water splitting electrocatalyst is extremely crucial in hydrogen fuel generation. Herein, a nitrogen-doped CoP nanorod array... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13242 |
SubjectTerms | anodes catalysts catalytic activity cathodes cobalt electric potential difference electrochemistry electrolysis energy efficiency foams fuels hydrogen hydrogen production nanorods nitrogen oxidation oxygen production phosphides phosphorus spectroscopy |
Title | A nitrogen-doped CoP nanoarray over 3D porous Co foam as an efficient bifunctional electrocatalyst for overall water splitting |
URI | https://www.proquest.com/docview/2271825835 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb5swFLfS9rIdpn1VS_chT9tlQnSAcQhHlHXKtmzaIZVyQwbsKuoKEQFN7aF_4P6qvWcw0C6TuuWAgo1twfv5-fn5fRDyFnhe6irYlnAWctsHAcQWEzWB6S5CJ8MIdDpOwddvk_mp_3nFV6PRr4HVUl0lx-nVTr-S_6EqlAFd0Uv2HyjbdQoF8B_oC1egMFzvROPIgglZFlBvZ8UGdbXFdysXeSHKUlxaaJ1pMUzEUKKh66ywVCEuMLMMTGqpY0egJUCyxsWt1Qm2aXG0VudyW2krROwHT7B_CoyouAWxVRtL_0WuvcCn8N2t1CSTO7aixi_I1Og4443XoVbcGy8uNNTtdPyLda2PTop2KJ0-DEtWtblf1VofO6_F-qwuerG2YWCL9Zlo27Z6DXSl4sZPXLM_z-EORjptiuSwrMmBa_h3MIBp423dMmMXhcXByo73053LhsMw6uosXEaYT9790i-OxiDg1prZWTLqM3wWxn3bPXLgwZYFeO5BdLL8tOg0fiibT3RC0-7VTLxcFr7vO7gpIfXbnr3S5KTRss_yIXnQEpdGDQIfkZHMH5P7g1CWT8h1RG9ikQIWaYdFihii7ANtsAiVFLFIxZaKnHZYpEMs0ltYhBYlbbFINRZph8Wn5PTjyXI2t9vcHnYKImNlB6mcKj4VgfQCGEQ4UiV-IHyZ8ZB7mXR5mgae8kPf9XCXojjPRJgIlWCCAsHZIdnPi1w-I5RnzHcwTh1LUp-xKfyUizGOYDmaKEeNyTvzPeO0DXyP-Vd-xH8Sb0zedM9umnAvO596bcgSwzzCIzaRS_h6seeBrOdx2NaMySHQq-skDSuhG5-PydHuiniTqaM7jf-c3OtnzAuyX5W1fAmycZW8akH3G5deu84 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nitrogen-doped+CoP+nanoarray+over+3D+porous+Co+foam+as+an+efficient+bifunctional+electrocatalyst+for+overall+water+splitting&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Liu%2C+Zong&rft.au=Yu%2C+Xu&rft.au=Xue%2C+Huaiguo&rft.au=Feng%2C+Ligang&rft.date=2019-05-28&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=7&rft.issue=21&rft.spage=13242&rft.epage=13248&rft_id=info:doi/10.1039%2FC9TA03201K&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9TA03201K |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |