A nitrogen-doped CoP nanoarray over 3D porous Co foam as an efficient bifunctional electrocatalyst for overall water splitting

An efficient and stable overall water splitting electrocatalyst is extremely crucial in hydrogen fuel generation. Herein, a nitrogen-doped CoP nanorod array over 3D porous Co foam (CoP-N/Co foam) is proposed as a bifunctional high-performance catalyst for the water splitting reaction. It can afford...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 7; no. 21; pp. 13242 - 13248
Main Authors Liu, Zong, Yu, Xu, Xue, Huaiguo, Feng, Ligang
Format Journal Article
LanguageEnglish
Published 28.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An efficient and stable overall water splitting electrocatalyst is extremely crucial in hydrogen fuel generation. Herein, a nitrogen-doped CoP nanorod array over 3D porous Co foam (CoP-N/Co foam) is proposed as a bifunctional high-performance catalyst for the water splitting reaction. It can afford a current density of 50 mA cm −2 with an overpotential of 100 mV for the hydrogen evolution reaction and 260 mV for the oxygen evolution reaction; as a bifunctional catalyst for overall water-splitting, to reach a current density of 50 mA cm −2 , the CoP-N/Co foam|CoP-N/Co foam catalyst system requires a cell voltage of 1.61 V, significantly lower than the value of 1.78 V required for the RuO 2 /Co foam|Pt/C/Co foam electrode system assembled using the state-of-the-art commercial catalysts, and also outperforming most of the analogous catalysts reported recently. This electrolyzer can retain a current density of 50 mA cm −2 over 25 h of continuous operation without obvious performance degradation. Even under strongly corrosive and high oxidation potential conditions, the morphology and structure of the N-CoP nanorods strongly coupled with the Co foam were well retained after the electrocatalytic process. In order to deeply understand the catalytic contribution from doping and the morphology and support effects, Co foam, P-doped Co foam, CoP/Co foam and CoP-N/Co foam as catalysts were comparatively evaluated by spectroscopic and electrochemical techniques. It is found that simple doping of non-metallic nitrogen into CoP can greatly increase its catalytic activity, stability, kinetics and catalytic efficiency for water splitting both in the anode and cathode reaction. The present work provides an efficient approach for performance enhancements of metal phosphide catalysts and a promising electrode for energy-efficient water electrolysis. A nitrogen-doped CoP nanoarray over 3D porous Co foam is proposed as a robust bifunctional catalyst for the hydrogen evolution reaction and oxygen evolution reaction in the overall water-splitting reaction.
AbstractList An efficient and stable overall water splitting electrocatalyst is extremely crucial in hydrogen fuel generation. Herein, a nitrogen-doped CoP nanorod array over 3D porous Co foam (CoP–N/Co foam) is proposed as a bifunctional high-performance catalyst for the water splitting reaction. It can afford a current density of 50 mA cm −2 with an overpotential of 100 mV for the hydrogen evolution reaction and 260 mV for the oxygen evolution reaction; as a bifunctional catalyst for overall water-splitting, to reach a current density of 50 mA cm −2 , the CoP–N/Co foam‖CoP–N/Co foam catalyst system requires a cell voltage of 1.61 V, significantly lower than the value of 1.78 V required for the RuO 2 /Co foam‖Pt/C/Co foam electrode system assembled using the state-of-the-art commercial catalysts, and also outperforming most of the analogous catalysts reported recently. This electrolyzer can retain a current density of 50 mA cm −2 over 25 h of continuous operation without obvious performance degradation. Even under strongly corrosive and high oxidation potential conditions, the morphology and structure of the N–CoP nanorods strongly coupled with the Co foam were well retained after the electrocatalytic process. In order to deeply understand the catalytic contribution from doping and the morphology and support effects, Co foam, P-doped Co foam, CoP/Co foam and CoP–N/Co foam as catalysts were comparatively evaluated by spectroscopic and electrochemical techniques. It is found that simple doping of non-metallic nitrogen into CoP can greatly increase its catalytic activity, stability, kinetics and catalytic efficiency for water splitting both in the anode and cathode reaction. The present work provides an efficient approach for performance enhancements of metal phosphide catalysts and a promising electrode for energy-efficient water electrolysis.
An efficient and stable overall water splitting electrocatalyst is extremely crucial in hydrogen fuel generation. Herein, a nitrogen-doped CoP nanorod array over 3D porous Co foam (CoP–N/Co foam) is proposed as a bifunctional high-performance catalyst for the water splitting reaction. It can afford a current density of 50 mA cm⁻² with an overpotential of 100 mV for the hydrogen evolution reaction and 260 mV for the oxygen evolution reaction; as a bifunctional catalyst for overall water-splitting, to reach a current density of 50 mA cm⁻², the CoP–N/Co foam‖CoP–N/Co foam catalyst system requires a cell voltage of 1.61 V, significantly lower than the value of 1.78 V required for the RuO₂/Co foam‖Pt/C/Co foam electrode system assembled using the state-of-the-art commercial catalysts, and also outperforming most of the analogous catalysts reported recently. This electrolyzer can retain a current density of 50 mA cm⁻² over 25 h of continuous operation without obvious performance degradation. Even under strongly corrosive and high oxidation potential conditions, the morphology and structure of the N–CoP nanorods strongly coupled with the Co foam were well retained after the electrocatalytic process. In order to deeply understand the catalytic contribution from doping and the morphology and support effects, Co foam, P-doped Co foam, CoP/Co foam and CoP–N/Co foam as catalysts were comparatively evaluated by spectroscopic and electrochemical techniques. It is found that simple doping of non-metallic nitrogen into CoP can greatly increase its catalytic activity, stability, kinetics and catalytic efficiency for water splitting both in the anode and cathode reaction. The present work provides an efficient approach for performance enhancements of metal phosphide catalysts and a promising electrode for energy-efficient water electrolysis.
An efficient and stable overall water splitting electrocatalyst is extremely crucial in hydrogen fuel generation. Herein, a nitrogen-doped CoP nanorod array over 3D porous Co foam (CoP-N/Co foam) is proposed as a bifunctional high-performance catalyst for the water splitting reaction. It can afford a current density of 50 mA cm −2 with an overpotential of 100 mV for the hydrogen evolution reaction and 260 mV for the oxygen evolution reaction; as a bifunctional catalyst for overall water-splitting, to reach a current density of 50 mA cm −2 , the CoP-N/Co foam|CoP-N/Co foam catalyst system requires a cell voltage of 1.61 V, significantly lower than the value of 1.78 V required for the RuO 2 /Co foam|Pt/C/Co foam electrode system assembled using the state-of-the-art commercial catalysts, and also outperforming most of the analogous catalysts reported recently. This electrolyzer can retain a current density of 50 mA cm −2 over 25 h of continuous operation without obvious performance degradation. Even under strongly corrosive and high oxidation potential conditions, the morphology and structure of the N-CoP nanorods strongly coupled with the Co foam were well retained after the electrocatalytic process. In order to deeply understand the catalytic contribution from doping and the morphology and support effects, Co foam, P-doped Co foam, CoP/Co foam and CoP-N/Co foam as catalysts were comparatively evaluated by spectroscopic and electrochemical techniques. It is found that simple doping of non-metallic nitrogen into CoP can greatly increase its catalytic activity, stability, kinetics and catalytic efficiency for water splitting both in the anode and cathode reaction. The present work provides an efficient approach for performance enhancements of metal phosphide catalysts and a promising electrode for energy-efficient water electrolysis. A nitrogen-doped CoP nanoarray over 3D porous Co foam is proposed as a robust bifunctional catalyst for the hydrogen evolution reaction and oxygen evolution reaction in the overall water-splitting reaction.
Author Xue, Huaiguo
Yu, Xu
Liu, Zong
Feng, Ligang
AuthorAffiliation Yangzhou University
School of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: Yangzhou University
– name: School of Chemistry and Chemical Engineering
Author_xml – sequence: 1
  givenname: Zong
  surname: Liu
  fullname: Liu, Zong
– sequence: 2
  givenname: Xu
  surname: Yu
  fullname: Yu, Xu
– sequence: 3
  givenname: Huaiguo
  surname: Xue
  fullname: Xue, Huaiguo
– sequence: 4
  givenname: Ligang
  surname: Feng
  fullname: Feng, Ligang
BookMark eNp9kUtLxDAUhYMo-Ny4F-JOhGqaNrZZDuMTBV3outxJbySaSWqSUWbjbzfjiIKI2SRwzvku92STrDrvkJDdkh2VrJLHSiZgFWfl8wrZ4Eywoqnlyer3u23XyU6MTyyflrETKTfI-4g6k4J_RFf0fsCejv0ddeA8hABz6l8x0OqUDj74Wcwi1R6mFCIFR1Frowy6RCdGz5xKxjuwFC2qjFSQwM5jyonwyQFr6RukDIyDNSkZ97hN1jTYiDtf9xZ5OD-7H18WN7cXV-PRTaHqUqSiUdhq0UKDvMlDgaGe1A3U2AspeI-lUKrhupZ1mdevpBaiBzkBPeFcMhDVFjlYcofgX2YYUzc1UaG14DDv1XHelC0XbbWwHi6tKvgYA-puCGYKYd6VrFv03I3l_eiz5-tsZr_MyiRY9JACGPt3ZG8ZCVF9o3--Luv7_-nd0OvqA6lvmVw
CitedBy_id crossref_primary_10_1016_j_ijhydene_2021_05_151
crossref_primary_10_1016_j_mtchem_2023_101530
crossref_primary_10_1021_acssuschemeng_0c04551
crossref_primary_10_1021_acs_inorgchem_3c03826
crossref_primary_10_1021_acssuschemeng_2c06999
crossref_primary_10_1039_D1TA05648D
crossref_primary_10_1016_j_jcis_2020_02_073
crossref_primary_10_1039_D1TA03809E
crossref_primary_10_1039_D4CC05348F
crossref_primary_10_1007_s11581_021_04290_9
crossref_primary_10_1039_C9CC08698F
crossref_primary_10_1002_cssc_201902920
crossref_primary_10_1016_j_nanoms_2022_04_003
crossref_primary_10_1016_j_ccr_2021_214209
crossref_primary_10_3390_ma13143119
crossref_primary_10_1002_cjoc_202300441
crossref_primary_10_1016_j_electacta_2020_136822
crossref_primary_10_1016_j_apcatb_2021_120488
crossref_primary_10_1021_acs_jpcc_0c04625
crossref_primary_10_1016_j_ijhydene_2021_08_132
crossref_primary_10_1016_j_ijhydene_2023_10_066
crossref_primary_10_1039_D3TA07019K
crossref_primary_10_1021_acs_energyfuels_2c03124
crossref_primary_10_1039_D3YA00035D
crossref_primary_10_1016_j_surfin_2025_105775
crossref_primary_10_1016_j_jwpe_2024_106062
crossref_primary_10_1016_j_electacta_2022_140484
crossref_primary_10_1016_j_ijhydene_2025_02_234
crossref_primary_10_1016_j_jpowsour_2020_227837
crossref_primary_10_1016_j_jechem_2023_06_022
crossref_primary_10_1016_j_ijhydene_2022_12_184
crossref_primary_10_1016_j_apcatb_2021_120494
crossref_primary_10_1002_asia_202000734
crossref_primary_10_1021_acsami_3c16507
crossref_primary_10_1016_j_jcat_2021_04_003
crossref_primary_10_3390_nano9121676
crossref_primary_10_1016_j_ijhydene_2020_10_071
crossref_primary_10_1039_D3NJ01301D
crossref_primary_10_1039_D1SE00318F
crossref_primary_10_1016_j_cej_2023_145133
crossref_primary_10_1016_j_cej_2020_125481
crossref_primary_10_1039_D0NR00007H
crossref_primary_10_1016_j_cej_2023_147425
crossref_primary_10_1039_D0TA04388E
crossref_primary_10_1021_acsomega_3c04347
crossref_primary_10_1016_j_jallcom_2022_163855
crossref_primary_10_1039_D2TA06866D
crossref_primary_10_1016_S1872_2067_21_63855_X
crossref_primary_10_1016_j_cej_2020_126803
crossref_primary_10_1016_j_apsusc_2020_145715
crossref_primary_10_1016_j_jallcom_2022_166683
crossref_primary_10_1002_smll_202302866
crossref_primary_10_1016_j_ijhydene_2023_09_304
crossref_primary_10_1002_cnma_202000010
crossref_primary_10_1039_D2SE01720B
crossref_primary_10_1016_j_cej_2019_123034
crossref_primary_10_1039_D1TA01014J
crossref_primary_10_1016_j_jallcom_2021_160054
crossref_primary_10_1039_D0TA10500G
crossref_primary_10_1016_j_electacta_2022_141075
crossref_primary_10_1016_j_jpowsour_2020_228621
crossref_primary_10_3390_molecules28166101
crossref_primary_10_1021_acs_energyfuels_0c03084
crossref_primary_10_1039_D1EE02798K
crossref_primary_10_1007_s12274_022_4702_y
crossref_primary_10_1039_D1NR07398B
crossref_primary_10_1021_acsami_1c17448
crossref_primary_10_3390_catal11060659
crossref_primary_10_1039_D1CY02238E
crossref_primary_10_3390_molecules27238206
crossref_primary_10_1002_cssc_202002103
crossref_primary_10_1002_celc_202001105
crossref_primary_10_3390_nano12071098
crossref_primary_10_1002_admi_202400597
crossref_primary_10_1088_1361_6528_ac1c25
crossref_primary_10_1002_cctc_202301420
crossref_primary_10_1039_C9CC05540A
crossref_primary_10_1016_j_cej_2020_125660
crossref_primary_10_1039_D2QI01168A
crossref_primary_10_1021_acsami_1c14987
crossref_primary_10_1016_j_cej_2021_131576
crossref_primary_10_1016_j_electacta_2023_143202
crossref_primary_10_1016_j_matlet_2020_128351
crossref_primary_10_1016_j_apcatb_2020_119281
crossref_primary_10_1016_j_ijhydene_2024_12_398
crossref_primary_10_2139_ssrn_4183141
crossref_primary_10_1016_j_poly_2020_114871
crossref_primary_10_1016_j_ijhydene_2021_07_236
crossref_primary_10_1007_s11595_024_3013_4
crossref_primary_10_1039_D4RA02063D
crossref_primary_10_1016_j_electacta_2019_06_136
crossref_primary_10_1016_j_jcis_2019_12_010
crossref_primary_10_1002_chem_201902659
crossref_primary_10_1002_chem_202101560
crossref_primary_10_1021_acs_inorgchem_1c00295
crossref_primary_10_1016_j_colsurfa_2024_133629
crossref_primary_10_1016_j_diamond_2024_111189
crossref_primary_10_1002_adfm_202104951
crossref_primary_10_1007_s11581_023_05213_6
crossref_primary_10_1016_j_cej_2024_150429
crossref_primary_10_1016_j_ijhydene_2021_03_113
crossref_primary_10_1016_j_carbon_2021_06_029
crossref_primary_10_1016_j_jechem_2022_10_046
crossref_primary_10_1002_asia_202000419
crossref_primary_10_1016_j_jpowsour_2023_233382
crossref_primary_10_1002_tcr_202300088
crossref_primary_10_1021_acs_inorgchem_9b02524
crossref_primary_10_1039_C9CC04429A
crossref_primary_10_1016_j_electacta_2023_143335
crossref_primary_10_1016_j_cej_2024_154211
crossref_primary_10_1016_j_jelechem_2022_116650
crossref_primary_10_1016_j_jpowsour_2019_227406
crossref_primary_10_1016_j_ijhydene_2022_01_211
crossref_primary_10_1016_j_jallcom_2019_153161
crossref_primary_10_1016_j_cej_2020_126371
crossref_primary_10_1016_j_jcis_2022_05_110
crossref_primary_10_1016_j_ijhydene_2023_08_161
crossref_primary_10_1016_j_electacta_2019_134656
crossref_primary_10_1016_j_ijhydene_2023_10_256
crossref_primary_10_1016_j_apsusc_2023_156456
crossref_primary_10_1002_slct_202200291
crossref_primary_10_1016_j_ijhydene_2024_05_370
crossref_primary_10_1002_celc_201901420
crossref_primary_10_1021_acssuschemeng_0c02636
crossref_primary_10_1039_D0NR01386B
crossref_primary_10_1039_D2DT00037G
crossref_primary_10_1039_D2QM00931E
crossref_primary_10_1002_smll_202405056
crossref_primary_10_1016_j_jelechem_2024_118223
crossref_primary_10_1016_j_jallcom_2023_171201
crossref_primary_10_1016_j_cej_2021_131190
crossref_primary_10_1002_elan_202060110
crossref_primary_10_1039_C9CC09187D
crossref_primary_10_1039_D0TA10596A
crossref_primary_10_1021_acssuschemeng_0c06547
crossref_primary_10_1016_j_cej_2020_125500
crossref_primary_10_1016_j_ijhydene_2022_02_152
crossref_primary_10_1016_j_mtphys_2020_100292
crossref_primary_10_1016_j_cej_2020_125507
crossref_primary_10_1016_j_materresbull_2021_111638
crossref_primary_10_1039_D2DT01494G
crossref_primary_10_1016_j_gee_2020_11_023
crossref_primary_10_1016_j_apsusc_2021_151247
crossref_primary_10_1021_acsmaterialslett_4c00248
crossref_primary_10_1002_admi_202101483
crossref_primary_10_1016_j_jechem_2022_11_054
crossref_primary_10_1016_j_ijhydene_2021_10_117
crossref_primary_10_1016_j_jallcom_2019_153185
crossref_primary_10_1016_j_cej_2022_141056
crossref_primary_10_1016_j_ijhydene_2020_06_291
Cites_doi 10.1039/C8NR05587D
10.1002/cssc.201801103
10.1039/C7SC04569G
10.1039/C8TA09240K
10.1002/anie.201710859
10.1016/j.jpowsour.2018.04.090
10.1039/C8CY01105B
10.1039/C8CC08251K
10.1002/adma.201500894
10.1002/anie.201403946
10.1021/acsnano.7b01946
10.1021/acs.jpcc.7b12643
10.1021/acsenergylett.8b00908
10.1039/C7TA10933D
10.1039/C8CC03223H
10.1016/j.nanoen.2016.04.011
10.1021/acscatal.7b00587
10.1039/C8CC09993F
10.1021/acsenergylett.7b00638
10.1002/anie.201501616
10.1002/anie.201808929
10.1002/cssc.201801250
10.1016/j.nanoen.2018.03.034
10.1038/srep13801
10.1016/j.jpowsour.2019.03.089
10.1002/advs.201800949
10.1002/celc.201600563
10.1002/sia.740040204
10.1039/c4cp00482e
10.1039/C7TA01776F
10.1039/C7NR01017F
10.1039/C7CS00306D
10.1039/C6SC05167G
10.1016/j.nanoen.2018.08.064
10.1038/nmat4938
10.1002/aenm.201802615
10.1002/adma.201805541
10.1021/acs.nanolett.6b02805
10.1021/acsenergylett.8b00514
10.1039/C8TA08577C
10.1039/C4CS00470A
10.1016/j.nanoen.2017.10.009
10.1039/C6TA06761A
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1039/c9ta03201k
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 13248
ExternalDocumentID 10_1039_C9TA03201K
c9ta03201k
GroupedDBID 0-7
0R
705
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
EJD
GNO
HZ
H~N
IPNFZ
J3I
JG
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7S9
L.6
ID FETCH-LOGICAL-c415t-7ce8f58a7e27effa0efb47a4ed5952de15cc72f494120139f55da9bafb2290a53
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 15:37:19 EDT 2025
Thu Apr 24 23:11:24 EDT 2025
Tue Jul 01 03:14:03 EDT 2025
Sat Jan 08 03:27:10 EST 2022
Wed Nov 11 00:29:02 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c415t-7ce8f58a7e27effa0efb47a4ed5952de15cc72f494120139f55da9bafb2290a53
Notes 10.1039/c9ta03201k
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9879-0773
PQID 2271825835
PQPubID 24069
PageCount 7
ParticipantIDs crossref_primary_10_1039_C9TA03201K
rsc_primary_c9ta03201k
proquest_miscellaneous_2271825835
crossref_citationtrail_10_1039_C9TA03201K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190528
PublicationDateYYYYMMDD 2019-05-28
PublicationDate_xml – month: 5
  year: 2019
  text: 20190528
  day: 28
PublicationDecade 2010
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2019
References Shinagawa (C9TA03201K-(cit28)/*[position()=1]) 2015; 5
Zhou (C9TA03201K-(cit20)/*[position()=1]) 2017; 41
Yuan (C9TA03201K-(cit18)/*[position()=1]) 2017; 5
Zhu (C9TA03201K-(cit35)/*[position()=1]) 2018; 6
Li (C9TA03201K-(cit19)/*[position()=1]) 2017; 8
Wang (C9TA03201K-(cit24)/*[position()=1]) 2017; 11
Ray (C9TA03201K-(cit42)/*[position()=1]) 2018; 6
Xue (C9TA03201K-(cit43)/*[position()=1]) 2018; 54
Pei (C9TA03201K-(cit38)/*[position()=1]) 2019; 424
Lin (C9TA03201K-(cit12)/*[position()=1]) 2018; 6
Lai (C9TA03201K-(cit27)/*[position()=1]) 2019; 31
Jothi (C9TA03201K-(cit31)/*[position()=1]) 2018; 8
Swift (C9TA03201K-(cit26)/*[position()=1]) 1982; 4
Liu (C9TA03201K-(cit37)/*[position()=1]) 2017; 2
Wu (C9TA03201K-(cit23)/*[position()=1]) 2018; 57
Liu (C9TA03201K-(cit13)/*[position()=1]) 2018; 10
Cao (C9TA03201K-(cit11)/*[position()=1]) 2018; 5
Zhang (C9TA03201K-(cit14)/*[position()=1]) 2018; 9
Busch (C9TA03201K-(cit39)/*[position()=1]) 2016; 29
Yang (C9TA03201K-(cit16)/*[position()=1]) 2018; 54
Guan (C9TA03201K-(cit21)/*[position()=1]) 2018; 48
Liu (C9TA03201K-(cit6)/*[position()=1]) 2018; 11
Wang (C9TA03201K-(cit33)/*[position()=1]) 2018; 57
Li (C9TA03201K-(cit22)/*[position()=1]) 2018; 8
Yang (C9TA03201K-(cit4)/*[position()=1]) 2019; 55
Zhang (C9TA03201K-(cit34)/*[position()=1]) 2018; 3
Yang (C9TA03201K-(cit25)/*[position()=1]) 2017; 7
Feng (C9TA03201K-(cit2)/*[position()=1]) 2017; 4
Jiang (C9TA03201K-(cit8)/*[position()=1]) 2015; 54
Wang (C9TA03201K-(cit7)/*[position()=1]) 2018; 11
Li (C9TA03201K-(cit32)/*[position()=1]) 2017; 9
Feng (C9TA03201K-(cit10)/*[position()=1]) 2014; 16
Anjum (C9TA03201K-(cit30)/*[position()=1]) 2018; 53
Oh (C9TA03201K-(cit15)/*[position()=1]) 2016; 4
Ma (C9TA03201K-(cit36)/*[position()=1]) 2014; 53
Abroshan (C9TA03201K-(cit41)/*[position()=1]) 2018; 122
Fabbri (C9TA03201K-(cit1)/*[position()=1]) 2017; 16
Li (C9TA03201K-(cit5)/*[position()=1]) 2017; 46
Jiao (C9TA03201K-(cit3)/*[position()=1]) 2015; 44
Yang (C9TA03201K-(cit9)/*[position()=1]) 2015; 27
Xu (C9TA03201K-(cit40)/*[position()=1]) 2016; 16
Fu (C9TA03201K-(cit29)/*[position()=1]) 2018; 3
Yang (C9TA03201K-(cit17)/*[position()=1]) 2018; 392
References_xml – volume: 10
  start-page: 16911
  year: 2018
  ident: C9TA03201K-(cit13)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR05587D
– volume: 11
  start-page: 2724
  year: 2018
  ident: C9TA03201K-(cit7)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201801103
– volume: 9
  start-page: 1375
  year: 2018
  ident: C9TA03201K-(cit14)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC04569G
– volume: 6
  start-page: 24479
  year: 2018
  ident: C9TA03201K-(cit12)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09240K
– volume: 57
  start-page: 2600
  year: 2018
  ident: C9TA03201K-(cit33)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201710859
– volume: 392
  start-page: 23
  year: 2018
  ident: C9TA03201K-(cit17)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.04.090
– volume: 8
  start-page: 4407
  year: 2018
  ident: C9TA03201K-(cit22)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C8CY01105B
– volume: 54
  start-page: 13151
  year: 2018
  ident: C9TA03201K-(cit16)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC08251K
– volume: 27
  start-page: 3175
  year: 2015
  ident: C9TA03201K-(cit9)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500894
– volume: 53
  start-page: 7281
  year: 2014
  ident: C9TA03201K-(cit36)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201403946
– volume: 11
  start-page: 4358
  year: 2017
  ident: C9TA03201K-(cit24)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01946
– volume: 122
  start-page: 4783
  year: 2018
  ident: C9TA03201K-(cit41)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b12643
– volume: 3
  start-page: 1744
  year: 2018
  ident: C9TA03201K-(cit29)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00908
– volume: 6
  start-page: 4466
  year: 2018
  ident: C9TA03201K-(cit42)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10933D
– volume: 54
  start-page: 6204
  year: 2018
  ident: C9TA03201K-(cit43)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC03223H
– volume: 29
  start-page: 126
  year: 2016
  ident: C9TA03201K-(cit39)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.011
– volume: 7
  start-page: 3824
  year: 2017
  ident: C9TA03201K-(cit25)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00587
– volume: 55
  start-page: 1490
  year: 2019
  ident: C9TA03201K-(cit4)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC09993F
– volume: 2
  start-page: 2257
  year: 2017
  ident: C9TA03201K-(cit37)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00638
– volume: 54
  start-page: 6251
  year: 2015
  ident: C9TA03201K-(cit8)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201501616
– volume: 57
  start-page: 15445
  year: 2018
  ident: C9TA03201K-(cit23)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201808929
– volume: 11
  start-page: 2703
  year: 2018
  ident: C9TA03201K-(cit6)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201801250
– volume: 48
  start-page: 73
  year: 2018
  ident: C9TA03201K-(cit21)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.034
– volume: 5
  start-page: 13801
  year: 2015
  ident: C9TA03201K-(cit28)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep13801
– volume: 424
  start-page: 131
  year: 2019
  ident: C9TA03201K-(cit38)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.03.089
– volume: 5
  start-page: 1800949
  year: 2018
  ident: C9TA03201K-(cit11)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800949
– volume: 4
  start-page: 20
  year: 2017
  ident: C9TA03201K-(cit2)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201600563
– volume: 4
  start-page: 47
  year: 1982
  ident: C9TA03201K-(cit26)/*[position()=1]
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.740040204
– volume: 16
  start-page: 5917
  year: 2014
  ident: C9TA03201K-(cit10)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c4cp00482e
– volume: 5
  start-page: 10561
  year: 2017
  ident: C9TA03201K-(cit18)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01776F
– volume: 9
  start-page: 5677
  year: 2017
  ident: C9TA03201K-(cit32)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR01017F
– volume: 46
  start-page: 6124
  year: 2017
  ident: C9TA03201K-(cit5)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00306D
– volume: 8
  start-page: 2952
  year: 2017
  ident: C9TA03201K-(cit19)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC05167G
– volume: 53
  start-page: 286
  year: 2018
  ident: C9TA03201K-(cit30)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.064
– volume: 16
  start-page: 925
  year: 2017
  ident: C9TA03201K-(cit1)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4938
– volume: 8
  start-page: 1802615
  year: 2018
  ident: C9TA03201K-(cit31)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802615
– volume: 31
  start-page: 1805541
  year: 2019
  ident: C9TA03201K-(cit27)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805541
– volume: 16
  start-page: 5902
  year: 2016
  ident: C9TA03201K-(cit40)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b02805
– volume: 3
  start-page: 1360
  year: 2018
  ident: C9TA03201K-(cit34)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00514
– volume: 6
  start-page: 24277
  year: 2018
  ident: C9TA03201K-(cit35)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08577C
– volume: 44
  start-page: 2060
  year: 2015
  ident: C9TA03201K-(cit3)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00470A
– volume: 41
  start-page: 583
  year: 2017
  ident: C9TA03201K-(cit20)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.10.009
– volume: 4
  start-page: 18272
  year: 2016
  ident: C9TA03201K-(cit15)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06761A
SSID ssj0000800699
Score 2.5985155
Snippet An efficient and stable overall water splitting electrocatalyst is extremely crucial in hydrogen fuel generation. Herein, a nitrogen-doped CoP nanorod array...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13242
SubjectTerms anodes
catalysts
catalytic activity
cathodes
cobalt
electric potential difference
electrochemistry
electrolysis
energy efficiency
foams
fuels
hydrogen
hydrogen production
nanorods
nitrogen
oxidation
oxygen production
phosphides
phosphorus
spectroscopy
Title A nitrogen-doped CoP nanoarray over 3D porous Co foam as an efficient bifunctional electrocatalyst for overall water splitting
URI https://www.proquest.com/docview/2271825835
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb5swFLfS9rIdpn1VS_chT9tlQnSAcQhHlHXKtmzaIZVyQwbsKuoKEQFN7aF_4P6qvWcw0C6TuuWAgo1twfv5-fn5fRDyFnhe6irYlnAWctsHAcQWEzWB6S5CJ8MIdDpOwddvk_mp_3nFV6PRr4HVUl0lx-nVTr-S_6EqlAFd0Uv2HyjbdQoF8B_oC1egMFzvROPIgglZFlBvZ8UGdbXFdysXeSHKUlxaaJ1pMUzEUKKh66ywVCEuMLMMTGqpY0egJUCyxsWt1Qm2aXG0VudyW2krROwHT7B_CoyouAWxVRtL_0WuvcCn8N2t1CSTO7aixi_I1Og4443XoVbcGy8uNNTtdPyLda2PTop2KJ0-DEtWtblf1VofO6_F-qwuerG2YWCL9Zlo27Z6DXSl4sZPXLM_z-EORjptiuSwrMmBa_h3MIBp423dMmMXhcXByo73053LhsMw6uosXEaYT9790i-OxiDg1prZWTLqM3wWxn3bPXLgwZYFeO5BdLL8tOg0fiibT3RC0-7VTLxcFr7vO7gpIfXbnr3S5KTRss_yIXnQEpdGDQIfkZHMH5P7g1CWT8h1RG9ikQIWaYdFihii7ANtsAiVFLFIxZaKnHZYpEMs0ltYhBYlbbFINRZph8Wn5PTjyXI2t9vcHnYKImNlB6mcKj4VgfQCGEQ4UiV-IHyZ8ZB7mXR5mgae8kPf9XCXojjPRJgIlWCCAsHZIdnPi1w-I5RnzHcwTh1LUp-xKfyUizGOYDmaKEeNyTvzPeO0DXyP-Vd-xH8Sb0zedM9umnAvO596bcgSwzzCIzaRS_h6seeBrOdx2NaMySHQq-skDSuhG5-PydHuiniTqaM7jf-c3OtnzAuyX5W1fAmycZW8akH3G5deu84
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nitrogen-doped+CoP+nanoarray+over+3D+porous+Co+foam+as+an+efficient+bifunctional+electrocatalyst+for+overall+water+splitting&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Liu%2C+Zong&rft.au=Yu%2C+Xu&rft.au=Xue%2C+Huaiguo&rft.au=Feng%2C+Ligang&rft.date=2019-05-28&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=7&rft.issue=21&rft.spage=13242&rft.epage=13248&rft_id=info:doi/10.1039%2FC9TA03201K&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9TA03201K
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon