Pharmacologically Aware Phage Therapy: Pharmacodynamic and Pharmacokinetic Obstacles to Phage Antibacterial Action in Animal and Human Bodies
The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite that long history, the growing international crisis of resistance to standard antibiotics, abundant anecdotal evidence of efficacy, and one...
Saved in:
Published in | Microbiology and molecular biology reviews Vol. 83; no. 4 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite that long history, the growing international crisis of resistance to standard antibiotics, abundant anecdotal evidence of efficacy, and one successful modern clinical trial of efficacy, this phage therapy is not yet a mainstream approach in medicine.
The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite that long history, the growing international crisis of resistance to standard antibiotics, abundant anecdotal evidence of efficacy, and one successful modern clinical trial of efficacy, this phage therapy is not yet a mainstream approach in medicine. One explanation for why phage therapy has not been subject to more widespread implementation is that phage therapy research, both preclinical and clinical, can be insufficiently pharmacologically aware. Consequently, here we consider the pharmacological obstacles to phage therapy effectiveness, with phages in phage therapy explicitly being considered to serve as drug equivalents. The study of pharmacology has traditionally been differentiated into pharmacokinetic and pharmacodynamic aspects. We therefore separately consider the difficulties that phages as virions can have in traveling through body compartments toward reaching their target bacteria (pharmacokinetics) and the difficulties that phages can have in exerting antibacterial activity once they have reached those bacteria (pharmacodynamics). The latter difficulties, at least in part, are functions of phage host range and bacterial resistance to phages. Given the apparently low toxicity of phages and the minimal side effects of phage therapy as practiced, phage therapy should be successful so long as phages can reach the targeted bacteria in sufficiently high numbers, adsorb, and then kill those bacteria. Greater awareness of what obstacles to this success generally or specifically can exist, as documented in this review, should aid in the further development of phage therapy toward wider use. |
---|---|
AbstractList | The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite that long history, the growing international crisis of resistance to standard antibiotics, abundant anecdotal evidence of efficacy, and one successful modern clinical trial of efficacy, this phage therapy is not yet a mainstream approach in medicine.
The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite that long history, the growing international crisis of resistance to standard antibiotics, abundant anecdotal evidence of efficacy, and one successful modern clinical trial of efficacy, this phage therapy is not yet a mainstream approach in medicine. One explanation for why phage therapy has not been subject to more widespread implementation is that phage therapy research, both preclinical and clinical, can be insufficiently pharmacologically aware. Consequently, here we consider the pharmacological obstacles to phage therapy effectiveness, with phages in phage therapy explicitly being considered to serve as drug equivalents. The study of pharmacology has traditionally been differentiated into pharmacokinetic and pharmacodynamic aspects. We therefore separately consider the difficulties that phages as virions can have in traveling through body compartments toward reaching their target bacteria (pharmacokinetics) and the difficulties that phages can have in exerting antibacterial activity once they have reached those bacteria (pharmacodynamics). The latter difficulties, at least in part, are functions of phage host range and bacterial resistance to phages. Given the apparently low toxicity of phages and the minimal side effects of phage therapy as practiced, phage therapy should be successful so long as phages can reach the targeted bacteria in sufficiently high numbers, adsorb, and then kill those bacteria. Greater awareness of what obstacles to this success generally or specifically can exist, as documented in this review, should aid in the further development of phage therapy toward wider use. The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite that long history, the growing international crisis of resistance to standard antibiotics, abundant anecdotal evidence of efficacy, and one successful modern clinical trial of efficacy, this phage therapy is not yet a mainstream approach in medicine. One explanation for why phage therapy has not been subject to more widespread implementation is that phage therapy research, both preclinical and clinical, can be insufficiently pharmacologically aware. Consequently, here we consider the pharmacological obstacles to phage therapy effectiveness, with phages in phage therapy explicitly being considered to serve as drug equivalents. The study of pharmacology has traditionally been differentiated into pharmacokinetic and pharmacodynamic aspects. We therefore separately consider the difficulties that phages as virions can have in traveling through body compartments toward reaching their target bacteria (pharmacokinetics) and the difficulties that phages can have in exerting antibacterial activity once they have reached those bacteria (pharmacodynamics). The latter difficulties, at least in part, are functions of phage host range and bacterial resistance to phages. Given the apparently low toxicity of phages and the minimal side effects of phage therapy as practiced, phage therapy should be successful so long as phages can reach the targeted bacteria in sufficiently high numbers, adsorb, and then kill those bacteria. Greater awareness of what obstacles to this success generally or specifically can exist, as documented in this review, should aid in the further development of phage therapy toward wider use.The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite that long history, the growing international crisis of resistance to standard antibiotics, abundant anecdotal evidence of efficacy, and one successful modern clinical trial of efficacy, this phage therapy is not yet a mainstream approach in medicine. One explanation for why phage therapy has not been subject to more widespread implementation is that phage therapy research, both preclinical and clinical, can be insufficiently pharmacologically aware. Consequently, here we consider the pharmacological obstacles to phage therapy effectiveness, with phages in phage therapy explicitly being considered to serve as drug equivalents. The study of pharmacology has traditionally been differentiated into pharmacokinetic and pharmacodynamic aspects. We therefore separately consider the difficulties that phages as virions can have in traveling through body compartments toward reaching their target bacteria (pharmacokinetics) and the difficulties that phages can have in exerting antibacterial activity once they have reached those bacteria (pharmacodynamics). The latter difficulties, at least in part, are functions of phage host range and bacterial resistance to phages. Given the apparently low toxicity of phages and the minimal side effects of phage therapy as practiced, phage therapy should be successful so long as phages can reach the targeted bacteria in sufficiently high numbers, adsorb, and then kill those bacteria. Greater awareness of what obstacles to this success generally or specifically can exist, as documented in this review, should aid in the further development of phage therapy toward wider use. The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite that long history, the growing international crisis of resistance to standard antibiotics, abundant anecdotal evidence of efficacy, and one successful modern clinical trial of efficacy, this phage therapy is not yet a mainstream approach in medicine. One explanation for why phage therapy has not been subject to more widespread implementation is that phage therapy research, both preclinical and clinical, can be insufficiently pharmacologically aware. Consequently, here we consider the pharmacological obstacles to phage therapy effectiveness, with phages in phage therapy explicitly being considered to serve as drug equivalents. The study of pharmacology has traditionally been differentiated into pharmacokinetic and pharmacodynamic aspects. We therefore separately consider the difficulties that phages as virions can have in traveling through body compartments toward reaching their target bacteria (pharmacokinetics) and the difficulties that phages can have in exerting antibacterial activity once they have reached those bacteria (pharmacodynamics). The latter difficulties, at least in part, are functions of phage host range and bacterial resistance to phages. Given the apparently low toxicity of phages and the minimal side effects of phage therapy as practiced, phage therapy should be successful so long as phages can reach the targeted bacteria in sufficiently high numbers, adsorb, and then kill those bacteria. Greater awareness of what obstacles to this success generally or specifically can exist, as documented in this review, should aid in the further development of phage therapy toward wider use. |
Author | Abedon, Stephen T. Dąbrowska, Krystyna |
Author_xml | – sequence: 1 givenname: Krystyna surname: Dąbrowska fullname: Dąbrowska, Krystyna organization: Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland – sequence: 2 givenname: Stephen T. surname: Abedon fullname: Abedon, Stephen T. organization: Department of Microbiology, The Ohio State University, Mansfield, Ohio, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31666296$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kl9vFCEUxYmpsX_00VcziS--TAVmgMEHk22j1qRNjanPhGXu7FIZWIHR7IfwO8u024028QXIuT9OzoV7jA588IDQS4JPCaHd26urs6-nGGNCayKfoCOCZVczxsTB3ZnWlAh6iI5Tui1Uy6R8hg4bwjmnkh-h31_WOo7aBBdW1mjnttXil45QFX0F1c0aot5s31UPWL_1erSm0r7fa9-th1y062XK2jhIVQ67-wuf7VKbDNFqVy1MtsFX1hfdjkWYXS6mUfvqLPQW0nP0dNAuwYvdfoK-ffxwc35RX15_-ny-uKxNS1iuOXSkIyCXAveGi7JqbIjkfTew1mAmGBCOCe9YPwDGdBACemPE0AnSY9w3J-j9ve9mWo6lBD5H7dQmllRxq4K26t-Kt2u1Cj8V7yiVEheDNzuDGH5MkLIabTLgnPYQpqRoQ7AgLRa8oK8fobdhir60N1MNZm2JWqhXfyfaR3n4qQLU94CJIaUIwx4hWM2ToOZJUHeToIgsfPOINzbr-f1LQ9b959Yfs7K4HQ |
CitedBy_id | crossref_primary_10_22159_ijcpr_2023v15i5_3056 crossref_primary_10_25199_2408_9613_2022_9_1_6_11 crossref_primary_10_1016_j_micpath_2023_106218 crossref_primary_10_2217_fvl_2021_0089 crossref_primary_10_1099_jmm_0_001646 crossref_primary_10_1128_spectrum_01882_23 crossref_primary_10_3390_ddc2030034 crossref_primary_10_3390_microorganisms11092222 crossref_primary_10_1371_journal_ppat_1012361 crossref_primary_10_3389_fcimb_2022_941867 crossref_primary_10_1172_JCI187996 crossref_primary_10_1038_s41467_024_49710_2 crossref_primary_10_1016_j_isci_2022_104121 crossref_primary_10_3389_fmicb_2020_549084 crossref_primary_10_3389_fimmu_2021_639570 crossref_primary_10_1016_j_tim_2021_04_007 crossref_primary_10_1093_jacamr_dlae104 crossref_primary_10_1128_aem_01353_24 crossref_primary_10_25199_2408_9613_2023_10_3_22_32 crossref_primary_10_1093_cid_ciad497 crossref_primary_10_1128_cmr_00044_24 crossref_primary_10_1128_mBio_01966_21 crossref_primary_10_3390_v14020342 crossref_primary_10_3390_ph16121638 crossref_primary_10_3389_fmed_2024_1432703 crossref_primary_10_1016_j_jgar_2020_06_020 crossref_primary_10_1038_s41522_024_00552_2 crossref_primary_10_1128_spectrum_01393_21 crossref_primary_10_3390_v13081543 crossref_primary_10_1021_acsnano_2c00048 crossref_primary_10_3390_ijms21103715 crossref_primary_10_1002_cpt_2214 crossref_primary_10_1016_j_isci_2023_108032 crossref_primary_10_1007_s12223_023_01046_y crossref_primary_10_1002_smll_202307111 crossref_primary_10_1016_j_cmi_2023_01_021 crossref_primary_10_1093_cid_ciad480 crossref_primary_10_1111_1751_7915_13697 crossref_primary_10_1186_s12866_021_02197_z crossref_primary_10_3390_microorganisms10040717 crossref_primary_10_3390_v12101076 crossref_primary_10_1089_phage_2022_0012 crossref_primary_10_1128_spectrum_01736_21 crossref_primary_10_1016_j_jcf_2025_03_001 crossref_primary_10_1016_j_tim_2020_05_021 crossref_primary_10_1016_j_isci_2021_102287 crossref_primary_10_1016_j_celrep_2022_110825 crossref_primary_10_2217_fvl_2022_0229 crossref_primary_10_1007_s11356_024_32535_3 crossref_primary_10_1089_phage_2022_0019 crossref_primary_10_1093_cid_ciad516 crossref_primary_10_22207_JPAM_18_1_49 crossref_primary_10_3389_fmicb_2021_638094 crossref_primary_10_1016_j_ccell_2021_08_006 crossref_primary_10_1016_j_cell_2022_11_017 crossref_primary_10_1093_femsre_fuad042 crossref_primary_10_1002_jor_25432 crossref_primary_10_1515_cmb_2024_0018 crossref_primary_10_1016_j_biopha_2022_113122 crossref_primary_10_1371_journal_pbio_3002119 crossref_primary_10_1128_aac_02071_21 crossref_primary_10_1016_j_foodchem_2025_142833 crossref_primary_10_1016_j_virol_2024_110209 crossref_primary_10_1007_s13205_024_04101_8 crossref_primary_10_1080_08927014_2021_1955866 crossref_primary_10_1183_16000617_0121_2022 crossref_primary_10_3390_v13122414 crossref_primary_10_1128_msphere_00702_23 crossref_primary_10_1186_s13568_025_01837_1 crossref_primary_10_1099_jgv_0_001819 crossref_primary_10_1111_prd_12363 crossref_primary_10_1128_spectrum_01602_22 crossref_primary_10_3389_fvets_2023_1160350 crossref_primary_10_3390_v13020334 crossref_primary_10_1016_j_injury_2024_111847 crossref_primary_10_1128_jvi_01359_23 crossref_primary_10_1016_j_jddst_2023_105155 crossref_primary_10_1371_journal_pbio_3000877 crossref_primary_10_21518_2079_701X_2021_6_83_91 crossref_primary_10_1093_ve_veac086 crossref_primary_10_1016_j_tim_2020_10_014 crossref_primary_10_1097_MRM_0000000000000424 crossref_primary_10_3390_v13071268 crossref_primary_10_3390_ph15020186 crossref_primary_10_3390_antibiotics12020245 crossref_primary_10_1080_22221751_2023_2217947 crossref_primary_10_1007_s40259_021_00480_z crossref_primary_10_1093_jpids_piab012 crossref_primary_10_2478_aoas_2020_0098 crossref_primary_10_1021_acsinfecdis_0c00358 crossref_primary_10_3390_idr16060092 crossref_primary_10_15252_emmm_202012435 crossref_primary_10_2478_ahem_2021_0050 crossref_primary_10_1038_s41423_020_00532_4 crossref_primary_10_3389_fphar_2021_699054 crossref_primary_10_3390_v15010014 crossref_primary_10_25199_2408_9613_2023_10_2_6_14 crossref_primary_10_1186_s12941_023_00567_1 crossref_primary_10_1016_j_clinthera_2020_07_014 crossref_primary_10_1016_j_chroma_2025_465890 crossref_primary_10_1016_j_copbio_2020_11_012 crossref_primary_10_3390_ph14101019 crossref_primary_10_1016_j_heliyon_2024_e40076 crossref_primary_10_3389_fmicb_2022_943279 crossref_primary_10_1371_journal_pone_0301292 crossref_primary_10_3390_v14040688 crossref_primary_10_1016_j_jconrel_2023_10_029 crossref_primary_10_3390_antibiotics10020175 crossref_primary_10_3390_antibiotics11091256 crossref_primary_10_3390_pharmaceutics15061602 crossref_primary_10_1172_jci_insight_181309 crossref_primary_10_2174_1574893618666221214091824 |
Cites_doi | 10.1093/femsle/fnw047 10.1093/femspd/ftz011 10.1128/aac.47.1.43-47.2003 10.1007/s00203-007-0216-y 10.1126/science.aau8816 10.4049/jimmunol.90.5.782 10.1038/380364a0 10.1073/pnas.241655998 10.1371/journal.pone.0158213 10.3389/fmicb.2014.00618 10.2174/138920110790725401 10.1086/648478 10.1007/s12223-018-0622-3 10.1371/journal.pone.0209390 10.1073/pnas.1616457114 10.1385/IR:33:2:103 10.1038/nrmicro3096 10.1007/BF02880095 10.1080/21597081.2015.1050153 10.1128/AAC.04627-14 10.4049/jimmunol.94.4.544 10.1007/s12275-011-1512-4 10.1038/s41591-019-0437-z 10.1126/science.125.3251.742 10.1007/978-1-4939-6958-6_10 10.1128/AAC.01596-13 10.3390/v11040343 10.1016/j.micinf.2014.02.011 10.1038/ni.3126 10.1038/nrmicro.2017.120 10.1128/AEM.02386-14 10.3181/00379727-109-27146 10.1586/ern.09.99 10.1086/374001 10.1016/B978-0-12-387044-5.00001-7 10.2174/138920110790725311 10.1016/j.ijmm.2014.02.007 10.1016/j.virusres.2005.05.014 10.3389/fmicb.2016.01112 10.1111/1462-2920.13284 10.1007/s11095-014-1617-7 10.1016/j.jtbi.2017.06.037 10.1136/gutjnl-2018-317503 10.1002/(SICI)1097-4598(199904)22:4<460::AID-MUS6>3.0.CO;2-L 10.2174/138920110790725410 10.1016/j.ijpharm.2018.12.004 10.1371/journal.pntd.0002183 10.4049/jimmunol.158.2.842 10.3390/antibiotics7020035 10.3390/v10060323 10.1099/jmm.0.2008/002873-0 10.1016/j.femsre.2003.08.001 10.1038/205474a0 10.1084/jem.115.3.655 10.2174/1874364101509010167 10.1128/aac.39.10.2210 10.3389/fmicb.2017.00467 10.4161/bact.1.2.14590 10.1016/j.virusres.2015.10.025 10.1007/978-1-4939-7395-8_14 10.3389/fmicb.2016.01515 10.1038/nrmicro2315 10.18632/oncotarget.16723 10.1038/246221a0 10.1038/srep41441 10.3382/ps.2008-00378 10.2217/fmb.13.47 10.1098/rspb.2006.3640 10.4155/tde.11.64 10.1016/j.virol.2013.05.022 10.1038/nrmicro822 10.1111/j.1462-2920.2011.02644.x 10.1128/AEM.00812-15 10.1128/AAC.06330-11 10.4161/viru.24498 10.2174/138920110790725348 10.1128/microbiolspec.BAD-0003-2016 10.1016/B978-0-12-394438-2.00001-3 10.4161/bact.19274 10.1007/15695_2018_110 10.1016/j.tibtech.2007.09.004 10.1093/jac/dku173 10.1079/9781845939847.0134 10.1177/0897190013499523 10.1016/j.jbiotec.2008.01.021 10.1128/JVI.01340-15 10.1146/annurev-virology-031413-085500 10.1016/j.vetmic.2016.03.016 10.1007/978-1-4939-7604-1_11 10.1128/AAC.01513-06 10.1007/bf02878898 10.1093/jac/26.1.29 10.1093/ps/81.10.1486 10.1006/viro.2001.1254 10.1080/21597081.2015.1020260 10.2217/fmb-2016-0133 10.1016/0378-1135(92)90114-9 10.1038/nature11234 10.1016/j.biomaterials.2011.03.031 10.1007/978-1-4939-7343-9_15 10.1371/journal.ppat.1000253 10.1079/9781845939847.0076 10.1016/j.vetmic.2013.10.021 10.3390/v7082845 10.1007/s12223-011-0039-8 10.1016/j.virol.2012.09.002 10.3181/00379727-98-24112 10.1073/pnas.0913667107 10.1128/AAC.00954-17 10.1513/pats.200903-014AW 10.20953/1729-9225-2017-1-35-40 10.1016/S1096-4959(02)00168-9 10.1002/bit.25571 10.3390/v10070351 10.1016/j.jviromet.2003.11.012 10.1111/j.1469-0691.2005.01340.x 10.1038/nbt1340 10.1086/381972 10.1038/ja.2017.30 10.1186/s13054-016-1320-7 10.1099/00221287-133-5-1127 10.1038/srep14802 10.1126/science.257.5073.1064 10.3389/fonc.2013.00216 10.1016/B978-0-12-800098-4.00005-2 10.3181/00379727-111-27691 10.2217/fmb.14.126 10.1086/651135 10.1016/B978-0-12-394805-2.00001-4 10.1007/s00253-018-9471-x 10.1080/17425247.2017.1252329 10.3390/v11010010 10.1637/8406-071008-Reg.1 10.1111/j.2042-7158.2011.01324.x 10.3389/fmicb.2016.01352 10.3389/fmicb.2016.01357 10.1111/j.1751-7915.2008.00028.x 10.1089/jamp.2015.1233 10.4315/0362-028X-73.7.1304 10.2217/fmb.15.28 10.3390/v11010018 10.1111/j.1749-4486.2009.01973.x 10.1128/AEM.00526-16 10.1016/j.chom.2014.08.014 10.3949/ccjm.85gr.18005 10.1099/00221287-143-1-179 10.3390/v10040178 10.1016/j.chom.2017.06.018 10.1073/pnas.93.8.3188 10.1007/s00705-018-3723-z 10.1002/adma.201200454 10.1007/s00203-010-0559-7 10.1007/s00726-011-0979-y 10.3390/ph12010035 10.1017/CBO9780511541483.017 10.1016/j.addr.2018.06.018 10.1111/j.1574-695X.2002.tb00555.x 10.1093/femsle/fnv242 10.1155/2015/752930 10.1093/ofid/ofy269 10.1186/s13054-017-1709-y 10.1038/nm0202-121 10.1007/s00253-004-1585-7 10.1099/00221287-128-2-307 10.1177/1534734619835115 10.1186/s13073-016-0294-z 10.1093/jac/38.5.819 10.1093/jac/27.5.639 10.1016/B978-0-12-394438-2.00003-7 10.2217/fmb.11.124 10.1016/j.ebiom.2015.12.023 10.1128/AEM.00049-07 10.2174/156720181303160520193946 10.1128/CDLI.5.3.294-298.1998 10.1073/pnas.072027199 10.1016/j.drudis.2016.05.007 10.1016/j.chom.2015.04.006 10.1128/aem.66.4.1416-1422.2000 10.1038/nature25979 10.1006/jtbi.2000.2198 10.1128/AAC.02388-13 10.2174/138920110790725429 10.1155/2014/581639 10.1128/AAC.01028-06 10.1007/s12223-018-0636-x 10.1099/jmm.0.029744-0 10.1085/jgp.48.1.73 10.1016/j.virol.2009.07.020 10.1016/j.drudis.2009.03.006 10.12968/jowc.2016.25.7.S27 10.2217/fmb.16.11 10.3382/ps.2009-00528 10.1016/j.copbio.2005.03.007 10.1186/s13073-016-0307-y 10.1086/649227 10.1093/infdis/jiv029 10.1042/bj0750139 10.1371/journal.pone.0153777 10.1093/infdis/jiu059 10.2217/fmb-2016-0156 10.1128/AAC.48.7.2558-2569.2004 10.1007/s12223-011-0096-z 10.1128/iai.70.11.6251-6262.2002 10.1099/00221287-129-7-2217 10.1093/emph/eoy005 10.3181/00379727-118-29778 10.1093/infdis/116.4.523 10.1128/AAC.49.7.2874-2878.2005 10.1084/jem.118.1.13 10.1111/1751-7915.13414 10.1089/sur.2018.135 10.1155/2014/621316 10.1016/B978-0-12-394621-8.00014-5 10.1126/science.1176667 10.1007/s00705-007-0031-4 10.3390/ph10020043 10.1111/1462-2920.13574 10.1128/MMBR.00069-15 10.1093/jac/48.3.425 10.1007/s00253-019-09629-x 10.4049/jimmunol.76.3.209 10.1038/s41396-019-0349-4 10.4049/jimmunol.76.3.200 10.1073/pnas.1313839110 10.3389/fcimb.2018.00376 10.1016/s0092-8674(03)00276-9 10.4049/jimmunol.83.2.167 10.1128/iai.31.2.650-659.1981 10.1007/bf00679856 10.1128/JVI.02043-14 10.1038/s41598-017-08336-9 10.1128/AEM.71.8.4872-4874.2005 10.1128/aem.69.6.3192-3202.2003 10.3354/dao037033 10.1084/jem.78.3.161 10.1067/mcp.2000.109520 10.1371/journal.pone.0116571 10.1079/9781845939847.0256 10.1016/S0065-2164(10)70007-1 10.1002/med.21572 10.1093/ps/82.7.1108 10.1099/00221287-129-8-2659 10.1016/j.cis.2017.05.014 10.3389/fmicb.2018.01832 10.4161/bact.1.2.15845 10.1016/j.chom.2019.01.014 10.1016/j.virol.2009.03.009 10.1637/8091-082007-Reg 10.1128/mBio.00362-12 10.1086/315739 10.1079/9781845939847.0168 10.1007/s00705-005-0641-7 10.1016/S1473-3099(15)00466-1 10.1637/7041 10.1172/JCI106756 10.1007/978-1-4939-7395-8_18 10.1099/00221287-133-5-1111 10.1007/s11095-010-0313-5 10.1128/mBio.01874-17 10.4049/jimmunol.94.6.833 10.4161/21597073.2014.964081 10.1006/mthe.2000.0110 10.1038/nrmicro2853 10.1371/journal.pone.0122672 10.4161/bact.18609 |
ContentType | Journal Article |
Copyright | Copyright © 2019 American Society for Microbiology. Copyright American Society for Microbiology Dec 2019 Copyright © 2019 American Society for Microbiology. 2019 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2019 American Society for Microbiology. – notice: Copyright American Society for Microbiology Dec 2019 – notice: Copyright © 2019 American Society for Microbiology. 2019 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1128/MMBR.00012-19 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Phage Therapy |
EISSN | 1098-5557 |
ExternalDocumentID | PMC6822990 31666296 10_1128_MMBR_00012_19 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: ; grantid: UMO-2012/05/E/NZ6/03314; UMO-2018/29/B/NZ6/01659 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 18M 29M 2KS 2WC 39C 4.4 5RE 5VS 85S AAGFI AAIKC AAMNW AAYXX ABPPZ ACGFO ACGOD ACIWK ACNCT ACPRK ADBBV AENEX AFRAH AGHSJ AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW CITATION CJ0 CS3 D0L DIK DU5 E3Z EBS EJD F5P GX1 H13 HF~ HYE HZ~ KQ8 L7B O9- OMK P2P PQQKQ RHI RNS RPM RSF RXW TAE TR2 W8F WH7 WOQ X7M YNT YQT ~02 CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c415t-6e8181e9b70dc6770da0c196d8f54c0575e1601685dfe002f77edcc7f871d00d3 |
ISSN | 1092-2172 1098-5557 |
IngestDate | Thu Aug 21 17:31:37 EDT 2025 Fri Jul 11 01:55:37 EDT 2025 Mon Jun 30 08:30:42 EDT 2025 Mon Jul 21 05:47:59 EDT 2025 Thu Apr 24 23:11:34 EDT 2025 Tue Jul 01 04:14:26 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | bacteriophage therapy phage resistance spectrum of activity phage circulation phage clearance phage movement |
Language | English |
License | Copyright © 2019 American Society for Microbiology. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c415t-6e8181e9b70dc6770da0c196d8f54c0575e1601685dfe002f77edcc7f871d00d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Citation Dąbrowska K, Abedon ST. 2019. Pharmacologically aware phage therapy: pharmacodynamic and pharmacokinetic obstacles to phage antibacterial action in animal and human bodies. Microbiol Mol Biol Rev 83:e00012-19. https://doi.org/10.1128/MMBR.00012-19. |
OpenAccessLink | https://mmbr.asm.org/content/mmbr/83/4/e00012-19.full.pdf |
PMID | 31666296 |
PQID | 2313054601 |
PQPubID | 42367 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6822990 proquest_miscellaneous_2310714076 proquest_journals_2313054601 pubmed_primary_31666296 crossref_primary_10_1128_MMBR_00012_19 crossref_citationtrail_10_1128_MMBR_00012_19 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Microbiology and molecular biology reviews |
PublicationTitleAlternate | Microbiol Mol Biol Rev |
PublicationYear | 2019 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_232_2 e_1_3_2_255_2 e_1_3_2_278_2 e_1_3_2_195_2 e_1_3_2_217_2 e_1_3_2_172_2 e_1_3_2_62_2 e_1_3_2_85_2 Keller R (e_1_3_2_138_2) 1959; 83 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_100_2 e_1_3_2_123_2 e_1_3_2_146_2 e_1_3_2_281_2 e_1_3_2_108_2 e_1_3_2_220_2 e_1_3_2_243_2 e_1_3_2_266_2 e_1_3_2_7_2 e_1_3_2_161_2 e_1_3_2_184_2 e_1_3_2_228_2 e_1_3_2_73_2 e_1_3_2_205_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_96_2 e_1_3_2_35_2 e_1_3_2_112_2 e_1_3_2_135_2 e_1_3_2_158_2 Perepanova TS (e_1_3_2_230_2) 1995; 1995 e_1_3_2_50_2 e_1_3_2_196_2 e_1_3_2_48_2 e_1_3_2_210_2 e_1_3_2_256_2 e_1_3_2_279_2 e_1_3_2_194_2 e_1_3_2_233_2 e_1_3_2_40_2 e_1_3_2_86_2 e_1_3_2_218_2 e_1_3_2_171_2 Lobocka M (e_1_3_2_275_2) 2014 e_1_3_2_63_2 e_1_3_2_25_2 e_1_3_2_145_2 e_1_3_2_168_2 e_1_3_2_122_2 e_1_3_2_282_2 e_1_3_2_107_2 e_1_3_2_267_2 e_1_3_2_59_2 e_1_3_2_6_2 Weber-Dabrowska B (e_1_3_2_150_2) 1987; 35 e_1_3_2_206_2 e_1_3_2_229_2 e_1_3_2_183_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_97_2 e_1_3_2_134_2 e_1_3_2_157_2 e_1_3_2_111_2 e_1_3_2_270_2 e_1_3_2_119_2 Carlson K (e_1_3_2_103_2) 1994 Mukerjee S (e_1_3_2_198_2) 1962; 22 e_1_3_2_211_2 e_1_3_2_234_2 e_1_3_2_151_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_219_2 e_1_3_2_125_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_102_2 e_1_3_2_163_2 e_1_3_2_186_2 e_1_3_2_283_2 Monsur KA (e_1_3_2_169_2) 1970; 42 e_1_3_2_268_2 e_1_3_2_18_2 e_1_3_2_222_2 e_1_3_2_245_2 e_1_3_2_207_2 e_1_3_2_140_2 e_1_3_2_10_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_79_2 e_1_3_2_56_2 Bradley SG (e_1_3_2_147_2) 1963; 90 e_1_3_2_114_2 e_1_3_2_137_2 e_1_3_2_94_2 e_1_3_2_71_2 e_1_3_2_152_2 e_1_3_2_175_2 Bogovazova GG (e_1_3_2_141_2) 1991; 1991 e_1_3_2_271_2 e_1_3_2_258_2 e_1_3_2_235_2 e_1_3_2_273_2 e_1_3_2_212_2 e_1_3_2_173_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_69_2 e_1_3_2_46_2 e_1_3_2_61_2 e_1_3_2_101_2 e_1_3_2_185_2 e_1_3_2_109_2 Kucharewicz-Krukowska A (e_1_3_2_257_2) 1987; 35 e_1_3_2_269_2 e_1_3_2_19_2 Prasad Y (e_1_3_2_124_2) 2011; 32 e_1_3_2_246_2 e_1_3_2_284_2 e_1_3_2_200_2 e_1_3_2_223_2 e_1_3_2_162_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 Chanda PK (e_1_3_2_221_2) 1975; 19 e_1_3_2_4_2 e_1_3_2_208_2 e_1_3_2_113_2 e_1_3_2_159_2 Bogovazova GG (e_1_3_2_142_2) 1992; 1992 Pagava KI (e_1_3_2_160_2) 2011; 2011 e_1_3_2_136_2 e_1_3_2_72_2 e_1_3_2_174_2 e_1_3_2_197_2 e_1_3_2_272_2 e_1_3_2_28_2 Inchley CJ (e_1_3_2_130_2) 1969; 5 e_1_3_2_191_2 e_1_3_2_213_2 e_1_3_2_236_2 e_1_3_2_251_2 e_1_3_2_274_2 Nelstrop AE (e_1_3_2_129_2) 1968; 14 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_259_2 e_1_3_2_66_2 e_1_3_2_89_2 Taylor RP (e_1_3_2_132_2) 1997; 158 e_1_3_2_165_2 e_1_3_2_188_2 e_1_3_2_81_2 e_1_3_2_127_2 e_1_3_2_16_2 e_1_3_2_39_2 e_1_3_2_224_2 e_1_3_2_247_2 e_1_3_2_262_2 e_1_3_2_285_2 e_1_3_2_201_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_180_2 e_1_3_2_3_2 e_1_3_2_77_2 e_1_3_2_209_2 e_1_3_2_92_2 e_1_3_2_131_2 e_1_3_2_154_2 e_1_3_2_177_2 Jerne NK (e_1_3_2_261_2) 1956; 76 Hoffmann M (e_1_3_2_148_2) 1965; 198 e_1_3_2_250_2 e_1_3_2_116_2 e_1_3_2_139_2 Jerne NK (e_1_3_2_260_2) 1956; 76 e_1_3_2_190_2 e_1_3_2_29_2 e_1_3_2_214_2 e_1_3_2_252_2 e_1_3_2_21_2 e_1_3_2_237_2 e_1_3_2_44_2 e_1_3_2_67_2 e_1_3_2_126_2 e_1_3_2_82_2 e_1_3_2_187_2 e_1_3_2_164_2 e_1_3_2_149_2 e_1_3_2_17_2 e_1_3_2_240_2 e_1_3_2_202_2 e_1_3_2_225_2 e_1_3_2_263_2 e_1_3_2_32_2 e_1_3_2_248_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_2_2 Schultz I (e_1_3_2_227_2) 1965; 94 e_1_3_2_93_2 e_1_3_2_115_2 e_1_3_2_176_2 e_1_3_2_70_2 e_1_3_2_153_2 e_1_3_2_199_2 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_193_2 Kantoch M (e_1_3_2_244_2) 1961; 9 e_1_3_2_253_2 e_1_3_2_276_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_215_2 e_1_3_2_238_2 e_1_3_2_170_2 e_1_3_2_167_2 e_1_3_2_121_2 e_1_3_2_144_2 Wang J (e_1_3_2_264_2) 2006; 17 e_1_3_2_106_2 Uhr JW (e_1_3_2_128_2) 1965; 94 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_241_2 e_1_3_2_203_2 e_1_3_2_75_2 e_1_3_2_182_2 e_1_3_2_249_2 e_1_3_2_52_2 e_1_3_2_226_2 Chanishvili NA (e_1_3_2_104_2) 2012 e_1_3_2_14_2 e_1_3_2_98_2 e_1_3_2_156_2 e_1_3_2_179_2 e_1_3_2_110_2 e_1_3_2_133_2 e_1_3_2_90_2 e_1_3_2_118_2 e_1_3_2_27_2 e_1_3_2_231_2 e_1_3_2_277_2 e_1_3_2_192_2 e_1_3_2_254_2 e_1_3_2_65_2 e_1_3_2_239_2 e_1_3_2_42_2 e_1_3_2_216_2 e_1_3_2_88_2 e_1_3_2_189_2 e_1_3_2_120_2 e_1_3_2_166_2 e_1_3_2_80_2 e_1_3_2_143_2 e_1_3_2_280_2 e_1_3_2_105_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_265_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_99_2 e_1_3_2_204_2 e_1_3_2_181_2 e_1_3_2_91_2 e_1_3_2_178_2 e_1_3_2_155_2 e_1_3_2_117_2 Muir WR (e_1_3_2_242_2) 1960; 10 |
References_xml | – volume: 2011 start-page: 101 year: 2011 ident: e_1_3_2_160_2 article-title: What happens when the child gets bacteriophage per os? publication-title: Georgian Med News – ident: e_1_3_2_77_2 doi: 10.1093/femsle/fnw047 – ident: e_1_3_2_194_2 doi: 10.1093/femspd/ftz011 – ident: e_1_3_2_234_2 doi: 10.1128/aac.47.1.43-47.2003 – ident: e_1_3_2_201_2 doi: 10.1007/s00203-007-0216-y – ident: e_1_3_2_39_2 doi: 10.1126/science.aau8816 – volume: 90 start-page: 782 year: 1963 ident: e_1_3_2_147_2 article-title: Production of neutralizing antibody by mice injected with actinophage publication-title: J Immunol doi: 10.4049/jimmunol.90.5.782 – ident: e_1_3_2_209_2 doi: 10.1038/380364a0 – ident: e_1_3_2_211_2 doi: 10.1073/pnas.241655998 – ident: e_1_3_2_243_2 doi: 10.1371/journal.pone.0158213 – ident: e_1_3_2_277_2 doi: 10.3389/fmicb.2014.00618 – ident: e_1_3_2_8_2 doi: 10.2174/138920110790725401 – ident: e_1_3_2_204_2 doi: 10.1086/648478 – ident: e_1_3_2_192_2 doi: 10.1007/s12223-018-0622-3 – ident: e_1_3_2_191_2 doi: 10.1371/journal.pone.0209390 – ident: e_1_3_2_226_2 doi: 10.1073/pnas.1616457114 – ident: e_1_3_2_245_2 doi: 10.1385/IR:33:2:103 – ident: e_1_3_2_85_2 doi: 10.1038/nrmicro3096 – ident: e_1_3_2_131_2 doi: 10.1007/BF02880095 – ident: e_1_3_2_86_2 doi: 10.1080/21597081.2015.1050153 – ident: e_1_3_2_238_2 doi: 10.1128/AAC.04627-14 – volume: 94 start-page: 544 year: 1965 ident: e_1_3_2_128_2 article-title: Intracellular distribution and degradation of bacteriophage in mammalian tissues publication-title: J Immunol doi: 10.4049/jimmunol.94.4.544 – volume: 198 start-page: 371 year: 1965 ident: e_1_3_2_148_2 article-title: Animal experiments on the mucosal passage and absorption viremia of T3 phages after oral, tracheal and rectal administration publication-title: Zentralbl Bakteriol Orig – ident: e_1_3_2_199_2 doi: 10.1007/s12275-011-1512-4 – ident: e_1_3_2_66_2 doi: 10.1038/s41591-019-0437-z – ident: e_1_3_2_137_2 doi: 10.1126/science.125.3251.742 – ident: e_1_3_2_70_2 doi: 10.1007/978-1-4939-6958-6_10 – ident: e_1_3_2_182_2 doi: 10.1128/AAC.01596-13 – ident: e_1_3_2_283_2 doi: 10.3390/v11040343 – ident: e_1_3_2_119_2 doi: 10.1016/j.micinf.2014.02.011 – ident: e_1_3_2_172_2 doi: 10.1038/ni.3126 – ident: e_1_3_2_87_2 doi: 10.1038/nrmicro.2017.120 – ident: e_1_3_2_162_2 doi: 10.1128/AEM.02386-14 – ident: e_1_3_2_146_2 doi: 10.3181/00379727-109-27146 – ident: e_1_3_2_206_2 doi: 10.1586/ern.09.99 – ident: e_1_3_2_115_2 doi: 10.1086/374001 – ident: e_1_3_2_90_2 doi: 10.1016/B978-0-12-387044-5.00001-7 – ident: e_1_3_2_274_2 doi: 10.2174/138920110790725311 – ident: e_1_3_2_163_2 doi: 10.1016/j.ijmm.2014.02.007 – ident: e_1_3_2_251_2 doi: 10.1016/j.virusres.2005.05.014 – ident: e_1_3_2_52_2 doi: 10.3389/fmicb.2016.01112 – ident: e_1_3_2_44_2 doi: 10.1111/1462-2920.13284 – ident: e_1_3_2_273_2 doi: 10.1007/s11095-014-1617-7 – ident: e_1_3_2_111_2 doi: 10.1016/j.jtbi.2017.06.037 – volume: 19 start-page: 197 year: 1975 ident: e_1_3_2_221_2 article-title: Properties of the cholera phage PL 163/10 publication-title: Acta Virol – ident: e_1_3_2_32_2 doi: 10.1136/gutjnl-2018-317503 – ident: e_1_3_2_203_2 doi: 10.1002/(SICI)1097-4598(199904)22:4<460::AID-MUS6>3.0.CO;2-L – volume: 1992 start-page: 30 year: 1992 ident: e_1_3_2_142_2 article-title: Immunobiological properties and therapeutic effectiveness of preparations from Klebsiella bacteriophages publication-title: Zh Mikrobiol Epidemiol Immunobiol – ident: e_1_3_2_89_2 doi: 10.2174/138920110790725410 – ident: e_1_3_2_197_2 doi: 10.1016/j.ijpharm.2018.12.004 – ident: e_1_3_2_125_2 doi: 10.1371/journal.pntd.0002183 – volume: 158 start-page: 842 year: 1997 ident: e_1_3_2_132_2 article-title: Bispecific monoclonal antibody complexes bound to primate erythrocyte complement receptor 1 facilitate virus clearance in a monkey model publication-title: J Immunol doi: 10.4049/jimmunol.158.2.842 – ident: e_1_3_2_22_2 doi: 10.3390/antibiotics7020035 – ident: e_1_3_2_99_2 doi: 10.3390/v10060323 – ident: e_1_3_2_143_2 doi: 10.1099/jmm.0.2008/002873-0 – ident: e_1_3_2_190_2 doi: 10.1016/j.femsre.2003.08.001 – ident: e_1_3_2_140_2 doi: 10.1038/205474a0 – ident: e_1_3_2_252_2 doi: 10.1084/jem.115.3.655 – ident: e_1_3_2_107_2 doi: 10.2174/1874364101509010167 – ident: e_1_3_2_237_2 doi: 10.1128/aac.39.10.2210 – ident: e_1_3_2_168_2 doi: 10.3389/fmicb.2017.00467 – ident: e_1_3_2_26_2 doi: 10.4161/bact.1.2.14590 – ident: e_1_3_2_229_2 doi: 10.1016/j.virusres.2015.10.025 – ident: e_1_3_2_65_2 doi: 10.1007/978-1-4939-7395-8_14 – ident: e_1_3_2_19_2 doi: 10.3389/fmicb.2016.01515 – ident: e_1_3_2_81_2 doi: 10.1038/nrmicro2315 – ident: e_1_3_2_100_2 doi: 10.18632/oncotarget.16723 – ident: e_1_3_2_120_2 doi: 10.1038/246221a0 – ident: e_1_3_2_166_2 doi: 10.1038/srep41441 – ident: e_1_3_2_159_2 doi: 10.3382/ps.2008-00378 – ident: e_1_3_2_97_2 doi: 10.2217/fmb.13.47 – ident: e_1_3_2_93_2 doi: 10.1098/rspb.2006.3640 – ident: e_1_3_2_10_2 doi: 10.4155/tde.11.64 – ident: e_1_3_2_43_2 doi: 10.1016/j.virol.2013.05.022 – ident: e_1_3_2_48_2 doi: 10.1038/nrmicro822 – ident: e_1_3_2_108_2 doi: 10.1111/j.1462-2920.2011.02644.x – ident: e_1_3_2_268_2 doi: 10.1128/AEM.00812-15 – ident: e_1_3_2_117_2 doi: 10.1128/AAC.06330-11 – ident: e_1_3_2_75_2 doi: 10.4161/viru.24498 – ident: e_1_3_2_266_2 doi: 10.2174/138920110790725348 – ident: e_1_3_2_20_2 doi: 10.1128/microbiolspec.BAD-0003-2016 – ident: e_1_3_2_13_2 doi: 10.1016/B978-0-12-394438-2.00001-3 – ident: e_1_3_2_106_2 doi: 10.4161/bact.19274 – ident: e_1_3_2_60_2 doi: 10.1007/15695_2018_110 – ident: e_1_3_2_101_2 doi: 10.1016/j.tibtech.2007.09.004 – ident: e_1_3_2_16_2 doi: 10.1093/jac/dku173 – ident: e_1_3_2_105_2 doi: 10.1079/9781845939847.0134 – ident: e_1_3_2_35_2 doi: 10.1177/0897190013499523 – ident: e_1_3_2_213_2 doi: 10.1016/j.jbiotec.2008.01.021 – ident: e_1_3_2_56_2 doi: 10.1128/JVI.01340-15 – ident: e_1_3_2_82_2 doi: 10.1146/annurev-virology-031413-085500 – ident: e_1_3_2_185_2 doi: 10.1016/j.vetmic.2016.03.016 – ident: e_1_3_2_21_2 doi: 10.1007/978-1-4939-7604-1_11 – ident: e_1_3_2_126_2 doi: 10.1128/AAC.01513-06 – ident: e_1_3_2_247_2 doi: 10.1007/bf02878898 – ident: e_1_3_2_235_2 doi: 10.1093/jac/26.1.29 – ident: e_1_3_2_179_2 doi: 10.1093/ps/81.10.1486 – ident: e_1_3_2_233_2 doi: 10.1006/viro.2001.1254 – ident: e_1_3_2_17_2 doi: 10.1080/21597081.2015.1020260 – ident: e_1_3_2_112_2 doi: 10.2217/fmb-2016-0133 – ident: e_1_3_2_151_2 doi: 10.1016/0378-1135(92)90114-9 – volume: 5 start-page: 173 year: 1969 ident: e_1_3_2_130_2 article-title: The activity of mouse Kupffer cells following intravenous injection of T4 bacteriophage publication-title: Clin Exp Immunol – ident: e_1_3_2_28_2 doi: 10.1038/nature11234 – ident: e_1_3_2_216_2 doi: 10.1016/j.biomaterials.2011.03.031 – ident: e_1_3_2_285_2 doi: 10.1007/978-1-4939-7343-9_15 – ident: e_1_3_2_92_2 doi: 10.1371/journal.ppat.1000253 – ident: e_1_3_2_102_2 doi: 10.1079/9781845939847.0076 – ident: e_1_3_2_279_2 doi: 10.1016/j.vetmic.2013.10.021 – ident: e_1_3_2_109_2 doi: 10.3390/v7082845 – start-page: 427 volume-title: Molecular biology of bacteriophage T4 year: 1994 ident: e_1_3_2_103_2 – ident: e_1_3_2_165_2 doi: 10.1007/s12223-011-0039-8 – ident: e_1_3_2_42_2 doi: 10.1016/j.virol.2012.09.002 – ident: e_1_3_2_145_2 doi: 10.3181/00379727-98-24112 – ident: e_1_3_2_225_2 doi: 10.1073/pnas.0913667107 – ident: e_1_3_2_62_2 doi: 10.1128/AAC.00954-17 – ident: e_1_3_2_214_2 doi: 10.1513/pats.200903-014AW – volume-title: Phage therapy: current research and applications year: 2014 ident: e_1_3_2_275_2 – ident: e_1_3_2_265_2 doi: 10.20953/1729-9225-2017-1-35-40 – ident: e_1_3_2_53_2 doi: 10.1016/S1096-4959(02)00168-9 – ident: e_1_3_2_72_2 doi: 10.1002/bit.25571 – ident: e_1_3_2_83_2 doi: 10.3390/v10070351 – ident: e_1_3_2_154_2 doi: 10.1016/j.jviromet.2003.11.012 – ident: e_1_3_2_116_2 doi: 10.1111/j.1469-0691.2005.01340.x – ident: e_1_3_2_241_2 doi: 10.1038/nbt1340 – ident: e_1_3_2_271_2 doi: 10.1086/381972 – ident: e_1_3_2_5_2 doi: 10.1038/ja.2017.30 – ident: e_1_3_2_2_2 doi: 10.1186/s13054-016-1320-7 – ident: e_1_3_2_255_2 doi: 10.1099/00221287-133-5-1127 – ident: e_1_3_2_51_2 doi: 10.1038/srep14802 – ident: e_1_3_2_4_2 doi: 10.1126/science.257.5073.1064 – ident: e_1_3_2_218_2 doi: 10.3389/fonc.2013.00216 – ident: e_1_3_2_14_2 doi: 10.1016/B978-0-12-800098-4.00005-2 – ident: e_1_3_2_253_2 doi: 10.3181/00379727-111-27691 – ident: e_1_3_2_208_2 doi: 10.2217/fmb.14.126 – ident: e_1_3_2_180_2 doi: 10.1086/651135 – ident: e_1_3_2_96_2 doi: 10.1016/B978-0-12-394805-2.00001-4 – ident: e_1_3_2_193_2 doi: 10.1007/s00253-018-9471-x – ident: e_1_3_2_176_2 doi: 10.1080/17425247.2017.1252329 – ident: e_1_3_2_267_2 doi: 10.3390/v11010010 – ident: e_1_3_2_157_2 doi: 10.1637/8406-071008-Reg.1 – ident: e_1_3_2_12_2 doi: 10.1111/j.2042-7158.2011.01324.x – ident: e_1_3_2_79_2 doi: 10.3389/fmicb.2016.01352 – ident: e_1_3_2_30_2 doi: 10.3389/fmicb.2016.01357 – volume: 22 start-page: 73 year: 1962 ident: e_1_3_2_198_2 article-title: Localization of cholera bacterio-phage after intravenous injection publication-title: Ann Biochem Exp Med – ident: e_1_3_2_133_2 doi: 10.1111/j.1751-7915.2008.00028.x – ident: e_1_3_2_184_2 doi: 10.1089/jamp.2015.1233 – ident: e_1_3_2_269_2 doi: 10.4315/0362-028X-73.7.1304 – ident: e_1_3_2_281_2 doi: 10.2217/fmb.15.28 – ident: e_1_3_2_282_2 doi: 10.3390/v11010018 – ident: e_1_3_2_58_2 doi: 10.1111/j.1749-4486.2009.01973.x – ident: e_1_3_2_186_2 doi: 10.1128/AEM.00526-16 – ident: e_1_3_2_29_2 doi: 10.1016/j.chom.2014.08.014 – ident: e_1_3_2_38_2 doi: 10.3949/ccjm.85gr.18005 – ident: e_1_3_2_94_2 doi: 10.1099/00221287-143-1-179 – ident: e_1_3_2_84_2 doi: 10.3390/v10040178 – ident: e_1_3_2_110_2 doi: 10.1016/j.chom.2017.06.018 – ident: e_1_3_2_248_2 doi: 10.1073/pnas.93.8.3188 – ident: e_1_3_2_57_2 doi: 10.1007/s00705-018-3723-z – ident: e_1_3_2_210_2 doi: 10.1002/adma.201200454 – ident: e_1_3_2_215_2 doi: 10.1007/s00203-010-0559-7 – ident: e_1_3_2_217_2 doi: 10.1007/s00726-011-0979-y – ident: e_1_3_2_78_2 doi: 10.3390/ph12010035 – ident: e_1_3_2_76_2 doi: 10.1017/CBO9780511541483.017 – volume: 9 start-page: 261 year: 1961 ident: e_1_3_2_244_2 article-title: The role of phagocytes in virus infections publication-title: Arch Immunol Ther Exp (Warsz) – ident: e_1_3_2_23_2 doi: 10.1016/j.addr.2018.06.018 – ident: e_1_3_2_263_2 doi: 10.1111/j.1574-695X.2002.tb00555.x – ident: e_1_3_2_136_2 doi: 10.1093/femsle/fnv242 – ident: e_1_3_2_183_2 doi: 10.1155/2015/752930 – volume: 10 start-page: 339 year: 1960 ident: e_1_3_2_242_2 article-title: Staphylococcal bacteriophage in experimental infection in mice publication-title: Surg Forum – volume: 1995 start-page: 14 year: 1995 ident: e_1_3_2_230_2 article-title: The efficacy of bacteriophage preparations in treating inflammatory urologic diseases publication-title: Urol Nefrol (Mosk) – ident: e_1_3_2_64_2 doi: 10.1093/ofid/ofy269 – ident: e_1_3_2_135_2 doi: 10.1186/s13054-017-1709-y – ident: e_1_3_2_212_2 doi: 10.1038/nm0202-121 – ident: e_1_3_2_224_2 doi: 10.1007/s00253-004-1585-7 – ident: e_1_3_2_121_2 doi: 10.1099/00221287-128-2-307 – ident: e_1_3_2_25_2 doi: 10.1177/1534734619835115 – ident: e_1_3_2_37_2 doi: 10.1186/s13073-016-0294-z – ident: e_1_3_2_239_2 doi: 10.1093/jac/38.5.819 – ident: e_1_3_2_240_2 doi: 10.1093/jac/27.5.639 – ident: e_1_3_2_59_2 doi: 10.1016/B978-0-12-394438-2.00003-7 – ident: e_1_3_2_73_2 doi: 10.2217/fmb.11.124 – ident: e_1_3_2_45_2 doi: 10.1016/j.ebiom.2015.12.023 – ident: e_1_3_2_280_2 doi: 10.1128/AEM.00049-07 – ident: e_1_3_2_18_2 doi: 10.2174/156720181303160520193946 – ident: e_1_3_2_122_2 doi: 10.1128/CDLI.5.3.294-298.1998 – ident: e_1_3_2_207_2 doi: 10.1073/pnas.072027199 – ident: e_1_3_2_173_2 doi: 10.1016/j.drudis.2016.05.007 – ident: e_1_3_2_36_2 doi: 10.1016/j.chom.2015.04.006 – ident: e_1_3_2_152_2 doi: 10.1128/aem.66.4.1416-1422.2000 – ident: e_1_3_2_34_2 doi: 10.1038/nature25979 – ident: e_1_3_2_88_2 doi: 10.1006/jtbi.2000.2198 – ident: e_1_3_2_118_2 doi: 10.1128/AAC.02388-13 – ident: e_1_3_2_91_2 doi: 10.2174/138920110790725429 – ident: e_1_3_2_50_2 doi: 10.1155/2014/581639 – ident: e_1_3_2_127_2 doi: 10.1128/AAC.01028-06 – ident: e_1_3_2_195_2 doi: 10.1007/s12223-018-0636-x – ident: e_1_3_2_231_2 doi: 10.1099/jmm.0.029744-0 – ident: e_1_3_2_220_2 doi: 10.1085/jgp.48.1.73 – ident: e_1_3_2_276_2 doi: 10.1016/j.virol.2009.07.020 – ident: e_1_3_2_7_2 doi: 10.1016/j.drudis.2009.03.006 – ident: e_1_3_2_61_2 doi: 10.12968/jowc.2016.25.7.S27 – ident: e_1_3_2_187_2 doi: 10.2217/fmb.16.11 – ident: e_1_3_2_256_2 doi: 10.3382/ps.2009-00528 – ident: e_1_3_2_55_2 doi: 10.1016/j.copbio.2005.03.007 – volume-title: Literature review of the practical application of bacteriophage research year: 2012 ident: e_1_3_2_104_2 – ident: e_1_3_2_31_2 doi: 10.1186/s13073-016-0307-y – ident: e_1_3_2_178_2 doi: 10.1086/649227 – ident: e_1_3_2_177_2 doi: 10.1093/infdis/jiv029 – ident: e_1_3_2_219_2 doi: 10.1042/bj0750139 – volume: 42 start-page: 723 year: 1970 ident: e_1_3_2_169_2 article-title: Effect of massive doses of bacteriophage on excretion of vibrios, duration of diarrhoea and output of stools in acute cases of cholera publication-title: Bull World Health Organ – ident: e_1_3_2_270_2 doi: 10.1371/journal.pone.0153777 – ident: e_1_3_2_144_2 doi: 10.1093/infdis/jiu059 – ident: e_1_3_2_262_2 doi: 10.2217/fmb-2016-0156 – ident: e_1_3_2_153_2 doi: 10.1128/AAC.48.7.2558-2569.2004 – ident: e_1_3_2_161_2 doi: 10.1007/s12223-011-0096-z – volume: 17 start-page: 309 year: 2006 ident: e_1_3_2_264_2 article-title: Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa publication-title: Int J Mol Med – ident: e_1_3_2_200_2 doi: 10.1128/iai.70.11.6251-6262.2002 – ident: e_1_3_2_222_2 doi: 10.1099/00221287-129-7-2217 – ident: e_1_3_2_63_2 doi: 10.1093/emph/eoy005 – volume: 32 start-page: 161 year: 2011 ident: e_1_3_2_124_2 article-title: Lytic bacteriophages specific to Flavobacterium columnare rescue catfish, Clarias batrachus (Linn.) from columnaris disease publication-title: J Environ Biol – ident: e_1_3_2_228_2 doi: 10.3181/00379727-118-29778 – ident: e_1_3_2_149_2 doi: 10.1093/infdis/116.4.523 – ident: e_1_3_2_155_2 doi: 10.1128/AAC.49.7.2874-2878.2005 – ident: e_1_3_2_139_2 doi: 10.1084/jem.118.1.13 – volume: 35 start-page: 563 year: 1987 ident: e_1_3_2_150_2 article-title: Studies on bacteriophage penetration in patients subjected to phage therapy publication-title: Arch Immunol Ther Exp (Warsz) – ident: e_1_3_2_250_2 doi: 10.1111/1751-7915.13414 – ident: e_1_3_2_196_2 doi: 10.1089/sur.2018.135 – ident: e_1_3_2_15_2 doi: 10.1155/2014/621316 – ident: e_1_3_2_74_2 doi: 10.1016/B978-0-12-394621-8.00014-5 – volume: 14 start-page: 325 year: 1968 ident: e_1_3_2_129_2 article-title: Studies on phagocytosis. I. Antigen clearance studies in rabbits publication-title: Immunology – ident: e_1_3_2_33_2 doi: 10.1126/science.1176667 – ident: e_1_3_2_202_2 doi: 10.1007/s00705-007-0031-4 – ident: e_1_3_2_68_2 doi: 10.3390/ph10020043 – ident: e_1_3_2_46_2 doi: 10.1111/1462-2920.13574 – ident: e_1_3_2_188_2 doi: 10.1128/MMBR.00069-15 – ident: e_1_3_2_236_2 doi: 10.1093/jac/48.3.425 – ident: e_1_3_2_80_2 doi: 10.1007/s00253-019-09629-x – volume: 35 start-page: 553 year: 1987 ident: e_1_3_2_257_2 article-title: Immunogenic effect of bacteriophage in patients subjected to phage therapy publication-title: Arch Immunol Ther Exp (Warsz) – volume: 76 start-page: 209 year: 1956 ident: e_1_3_2_260_2 article-title: The presence in normal serum of specific antibody against bacteriophage T4 and its increase during the earliest stages of immunization publication-title: J Immunol doi: 10.4049/jimmunol.76.3.209 – ident: e_1_3_2_40_2 doi: 10.1038/s41396-019-0349-4 – volume: 76 start-page: 200 year: 1956 ident: e_1_3_2_261_2 article-title: The development of the phage-inactivating properties of serum during the course of specific immunization of an animal: reversible and irreversible inactivation publication-title: J Immunol doi: 10.4049/jimmunol.76.3.200 – ident: e_1_3_2_174_2 doi: 10.1073/pnas.1313839110 – ident: e_1_3_2_3_2 doi: 10.3389/fcimb.2018.00376 – ident: e_1_3_2_54_2 doi: 10.1016/s0092-8674(03)00276-9 – volume: 83 start-page: 167 year: 1959 ident: e_1_3_2_138_2 article-title: Studies on the factors concerned in the disappearance of bacteriophage particles from the animal body publication-title: J Immunol doi: 10.4049/jimmunol.83.2.167 – ident: e_1_3_2_254_2 doi: 10.1128/iai.31.2.650-659.1981 – ident: e_1_3_2_164_2 doi: 10.1007/bf00679856 – ident: e_1_3_2_246_2 doi: 10.1128/JVI.02043-14 – ident: e_1_3_2_69_2 doi: 10.1038/s41598-017-08336-9 – ident: e_1_3_2_189_2 doi: 10.1128/AEM.71.8.4872-4874.2005 – ident: e_1_3_2_223_2 doi: 10.1128/aem.69.6.3192-3202.2003 – ident: e_1_3_2_114_2 doi: 10.3354/dao037033 – ident: e_1_3_2_205_2 doi: 10.1084/jem.78.3.161 – ident: e_1_3_2_47_2 doi: 10.1067/mcp.2000.109520 – ident: e_1_3_2_181_2 doi: 10.1371/journal.pone.0116571 – ident: e_1_3_2_67_2 doi: 10.1079/9781845939847.0256 – ident: e_1_3_2_41_2 doi: 10.1016/S0065-2164(10)70007-1 – ident: e_1_3_2_175_2 doi: 10.1002/med.21572 – ident: e_1_3_2_123_2 doi: 10.1093/ps/82.7.1108 – ident: e_1_3_2_113_2 doi: 10.1099/00221287-129-8-2659 – ident: e_1_3_2_167_2 doi: 10.1016/j.cis.2017.05.014 – ident: e_1_3_2_232_2 doi: 10.3389/fmicb.2018.01832 – ident: e_1_3_2_9_2 doi: 10.4161/bact.1.2.15845 – ident: e_1_3_2_24_2 doi: 10.1016/j.chom.2019.01.014 – ident: e_1_3_2_158_2 doi: 10.1016/j.virol.2009.03.009 – ident: e_1_3_2_156_2 doi: 10.1637/8091-082007-Reg – ident: e_1_3_2_95_2 doi: 10.1128/mBio.00362-12 – ident: e_1_3_2_258_2 doi: 10.1086/315739 – ident: e_1_3_2_272_2 doi: 10.1079/9781845939847.0168 – volume: 1991 start-page: 5 year: 1991 ident: e_1_3_2_141_2 article-title: The efficacy of Klebsiella pneumoniae bacteriophage in the therapy of experimental Klebsiella infection publication-title: Zh Mikrobiol Epidemiol Immunobiol – ident: e_1_3_2_49_2 doi: 10.1007/s00705-005-0641-7 – ident: e_1_3_2_6_2 doi: 10.1016/S1473-3099(15)00466-1 – ident: e_1_3_2_259_2 doi: 10.1637/7041 – ident: e_1_3_2_134_2 doi: 10.1172/JCI106756 – ident: e_1_3_2_284_2 doi: 10.1007/978-1-4939-7395-8_18 – ident: e_1_3_2_171_2 doi: 10.1099/00221287-133-5-1111 – ident: e_1_3_2_11_2 doi: 10.1007/s11095-010-0313-5 – ident: e_1_3_2_170_2 doi: 10.1128/mBio.01874-17 – volume: 94 start-page: 833 year: 1965 ident: e_1_3_2_227_2 article-title: Relationship between blood clearance and viruria after intravenous injection of mice and rats with bacteriophage and polioviruses publication-title: J Immunol doi: 10.4049/jimmunol.94.6.833 – ident: e_1_3_2_278_2 doi: 10.4161/21597073.2014.964081 – ident: e_1_3_2_249_2 doi: 10.1006/mthe.2000.0110 – ident: e_1_3_2_27_2 doi: 10.1038/nrmicro2853 – ident: e_1_3_2_71_2 doi: 10.1371/journal.pone.0122672 – ident: e_1_3_2_98_2 doi: 10.4161/bact.18609 |
SSID | ssj0004599 |
Score | 2.6129756 |
SecondaryResourceType | review_article |
Snippet | The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Animals Antibacterial activity Antibiotics Bacteria Bacteria - virology Bacterial diseases Bacterial infections Bacterial Infections - therapy Bacterial Infections - virology Bacteriophages - growth & development Bacteriophages - physiology Barriers Host range Host Specificity Humans Phage Therapy - methods Phages Pharmacodynamics Pharmacokinetics Pharmacology Review Side effects Therapy Toxicity Virions |
Title | Pharmacologically Aware Phage Therapy: Pharmacodynamic and Pharmacokinetic Obstacles to Phage Antibacterial Action in Animal and Human Bodies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31666296 https://www.proquest.com/docview/2313054601 https://www.proquest.com/docview/2310714076 https://pubmed.ncbi.nlm.nih.gov/PMC6822990 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7DiuCLeHd0lQjiy9ix94tvXVFWZVRkFvatTC7VsrutzHRYxv-gv9lzkjQ77Y6w-hLKSdqGnK_JOc3Jdwh5njAB677IHLnwhRNGbuCkZeA7LPE8yXgWC0WmM_sUHx6FH46j49Ho91bU0rplU_5z57mS_9EqyECveEr2HzRrHwoCuAb9QgkahvJKOv5ywTuNY326meTnGMkF8m8SgymQMAB9_q6h0Pnn9REBIzsBOxNZWz8zMBQxRg7NUf2EvG4rpumcUZO8C4zM6-rMcAzoTYCDxgYjdtmhqgHD01mXh3fSSQ0RqjWllV0bsWVzvjrRB9WWm1W7qe3CkTNpUo-Y2LTJfLr918LLtiJA9ETrZr6DybH0OtTJUieKNGF1NzvrNDcGheHuSd_Hgwyz2cHXqfqx5phJuEeuPVj0bCiicoL8tMDb9U58gSyy13xwO5SL_v7jFvu8ykdq-95xtvrpq97b-zbOJcdlGH-7ZdDMb5GbxhOhuYbVbTKS9R1yXecm3dwlvy6BiypwUQUNasD1mg6gRUHXdAAtaqFF28bc34MW1dCiVU01tNRTFLSohtY9cvTu7fzNoWNydzgcTMLWiSVYgp7MWOIKHidQLlwOs71Iyyjk6CRID5mA0kiUElblMklgPHhSggMvXFcE98le3dTyIaEikqXMFoKXmJuo5FnAA5-nPotSmYBHPiYvu9EuuCG2x_wqp8VO3Y7JC9v8h2Z0-VvD_U51hfnoVwW4Q7BChtD1MXlmq2FKxn22RS2btWqDxwLdBLr2QGvavinAbXo_g5qkhwHbAOne-zV19V3RvseYmyFzH121_4_JjYsvb5_stcu1fAIWdMueKlj_AUxbymg |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pharmacologically+Aware+Phage+Therapy%3A+Pharmacodynamic+and+Pharmacokinetic+Obstacles+to+Phage+Antibacterial+Action+in+Animal+and+Human+Bodies&rft.jtitle=Microbiology+and+molecular+biology+reviews&rft.au=D%C4%85browska%2C+Krystyna&rft.au=Abedon%2C+Stephen+T.&rft.date=2019-12-01&rft.issn=1092-2172&rft.eissn=1098-5557&rft.volume=83&rft.issue=4&rft_id=info:doi/10.1128%2FMMBR.00012-19&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_MMBR_00012_19 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1092-2172&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1092-2172&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1092-2172&client=summon |