Pharmacologically Aware Phage Therapy: Pharmacodynamic and Pharmacokinetic Obstacles to Phage Antibacterial Action in Animal and Human Bodies

The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite that long history, the growing international crisis of resistance to standard antibiotics, abundant anecdotal evidence of efficacy, and one...

Full description

Saved in:
Bibliographic Details
Published inMicrobiology and molecular biology reviews Vol. 83; no. 4
Main Authors Dąbrowska, Krystyna, Abedon, Stephen T.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite that long history, the growing international crisis of resistance to standard antibiotics, abundant anecdotal evidence of efficacy, and one successful modern clinical trial of efficacy, this phage therapy is not yet a mainstream approach in medicine. The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite that long history, the growing international crisis of resistance to standard antibiotics, abundant anecdotal evidence of efficacy, and one successful modern clinical trial of efficacy, this phage therapy is not yet a mainstream approach in medicine. One explanation for why phage therapy has not been subject to more widespread implementation is that phage therapy research, both preclinical and clinical, can be insufficiently pharmacologically aware. Consequently, here we consider the pharmacological obstacles to phage therapy effectiveness, with phages in phage therapy explicitly being considered to serve as drug equivalents. The study of pharmacology has traditionally been differentiated into pharmacokinetic and pharmacodynamic aspects. We therefore separately consider the difficulties that phages as virions can have in traveling through body compartments toward reaching their target bacteria (pharmacokinetics) and the difficulties that phages can have in exerting antibacterial activity once they have reached those bacteria (pharmacodynamics). The latter difficulties, at least in part, are functions of phage host range and bacterial resistance to phages. Given the apparently low toxicity of phages and the minimal side effects of phage therapy as practiced, phage therapy should be successful so long as phages can reach the targeted bacteria in sufficiently high numbers, adsorb, and then kill those bacteria. Greater awareness of what obstacles to this success generally or specifically can exist, as documented in this review, should aid in the further development of phage therapy toward wider use.
AbstractList The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite that long history, the growing international crisis of resistance to standard antibiotics, abundant anecdotal evidence of efficacy, and one successful modern clinical trial of efficacy, this phage therapy is not yet a mainstream approach in medicine. The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite that long history, the growing international crisis of resistance to standard antibiotics, abundant anecdotal evidence of efficacy, and one successful modern clinical trial of efficacy, this phage therapy is not yet a mainstream approach in medicine. One explanation for why phage therapy has not been subject to more widespread implementation is that phage therapy research, both preclinical and clinical, can be insufficiently pharmacologically aware. Consequently, here we consider the pharmacological obstacles to phage therapy effectiveness, with phages in phage therapy explicitly being considered to serve as drug equivalents. The study of pharmacology has traditionally been differentiated into pharmacokinetic and pharmacodynamic aspects. We therefore separately consider the difficulties that phages as virions can have in traveling through body compartments toward reaching their target bacteria (pharmacokinetics) and the difficulties that phages can have in exerting antibacterial activity once they have reached those bacteria (pharmacodynamics). The latter difficulties, at least in part, are functions of phage host range and bacterial resistance to phages. Given the apparently low toxicity of phages and the minimal side effects of phage therapy as practiced, phage therapy should be successful so long as phages can reach the targeted bacteria in sufficiently high numbers, adsorb, and then kill those bacteria. Greater awareness of what obstacles to this success generally or specifically can exist, as documented in this review, should aid in the further development of phage therapy toward wider use.
The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite that long history, the growing international crisis of resistance to standard antibiotics, abundant anecdotal evidence of efficacy, and one successful modern clinical trial of efficacy, this phage therapy is not yet a mainstream approach in medicine. One explanation for why phage therapy has not been subject to more widespread implementation is that phage therapy research, both preclinical and clinical, can be insufficiently pharmacologically aware. Consequently, here we consider the pharmacological obstacles to phage therapy effectiveness, with phages in phage therapy explicitly being considered to serve as drug equivalents. The study of pharmacology has traditionally been differentiated into pharmacokinetic and pharmacodynamic aspects. We therefore separately consider the difficulties that phages as virions can have in traveling through body compartments toward reaching their target bacteria (pharmacokinetics) and the difficulties that phages can have in exerting antibacterial activity once they have reached those bacteria (pharmacodynamics). The latter difficulties, at least in part, are functions of phage host range and bacterial resistance to phages. Given the apparently low toxicity of phages and the minimal side effects of phage therapy as practiced, phage therapy should be successful so long as phages can reach the targeted bacteria in sufficiently high numbers, adsorb, and then kill those bacteria. Greater awareness of what obstacles to this success generally or specifically can exist, as documented in this review, should aid in the further development of phage therapy toward wider use.The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite that long history, the growing international crisis of resistance to standard antibiotics, abundant anecdotal evidence of efficacy, and one successful modern clinical trial of efficacy, this phage therapy is not yet a mainstream approach in medicine. One explanation for why phage therapy has not been subject to more widespread implementation is that phage therapy research, both preclinical and clinical, can be insufficiently pharmacologically aware. Consequently, here we consider the pharmacological obstacles to phage therapy effectiveness, with phages in phage therapy explicitly being considered to serve as drug equivalents. The study of pharmacology has traditionally been differentiated into pharmacokinetic and pharmacodynamic aspects. We therefore separately consider the difficulties that phages as virions can have in traveling through body compartments toward reaching their target bacteria (pharmacokinetics) and the difficulties that phages can have in exerting antibacterial activity once they have reached those bacteria (pharmacodynamics). The latter difficulties, at least in part, are functions of phage host range and bacterial resistance to phages. Given the apparently low toxicity of phages and the minimal side effects of phage therapy as practiced, phage therapy should be successful so long as phages can reach the targeted bacteria in sufficiently high numbers, adsorb, and then kill those bacteria. Greater awareness of what obstacles to this success generally or specifically can exist, as documented in this review, should aid in the further development of phage therapy toward wider use.
The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite that long history, the growing international crisis of resistance to standard antibiotics, abundant anecdotal evidence of efficacy, and one successful modern clinical trial of efficacy, this phage therapy is not yet a mainstream approach in medicine. One explanation for why phage therapy has not been subject to more widespread implementation is that phage therapy research, both preclinical and clinical, can be insufficiently pharmacologically aware. Consequently, here we consider the pharmacological obstacles to phage therapy effectiveness, with phages in phage therapy explicitly being considered to serve as drug equivalents. The study of pharmacology has traditionally been differentiated into pharmacokinetic and pharmacodynamic aspects. We therefore separately consider the difficulties that phages as virions can have in traveling through body compartments toward reaching their target bacteria (pharmacokinetics) and the difficulties that phages can have in exerting antibacterial activity once they have reached those bacteria (pharmacodynamics). The latter difficulties, at least in part, are functions of phage host range and bacterial resistance to phages. Given the apparently low toxicity of phages and the minimal side effects of phage therapy as practiced, phage therapy should be successful so long as phages can reach the targeted bacteria in sufficiently high numbers, adsorb, and then kill those bacteria. Greater awareness of what obstacles to this success generally or specifically can exist, as documented in this review, should aid in the further development of phage therapy toward wider use.
Author Abedon, Stephen T.
Dąbrowska, Krystyna
Author_xml – sequence: 1
  givenname: Krystyna
  surname: Dąbrowska
  fullname: Dąbrowska, Krystyna
  organization: Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
– sequence: 2
  givenname: Stephen T.
  surname: Abedon
  fullname: Abedon, Stephen T.
  organization: Department of Microbiology, The Ohio State University, Mansfield, Ohio, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31666296$$D View this record in MEDLINE/PubMed
BookMark eNp1kl9vFCEUxYmpsX_00VcziS--TAVmgMEHk22j1qRNjanPhGXu7FIZWIHR7IfwO8u024028QXIuT9OzoV7jA588IDQS4JPCaHd26urs6-nGGNCayKfoCOCZVczxsTB3ZnWlAh6iI5Tui1Uy6R8hg4bwjmnkh-h31_WOo7aBBdW1mjnttXil45QFX0F1c0aot5s31UPWL_1erSm0r7fa9-th1y062XK2jhIVQ67-wuf7VKbDNFqVy1MtsFX1hfdjkWYXS6mUfvqLPQW0nP0dNAuwYvdfoK-ffxwc35RX15_-ny-uKxNS1iuOXSkIyCXAveGi7JqbIjkfTew1mAmGBCOCe9YPwDGdBACemPE0AnSY9w3J-j9ve9mWo6lBD5H7dQmllRxq4K26t-Kt2u1Cj8V7yiVEheDNzuDGH5MkLIabTLgnPYQpqRoQ7AgLRa8oK8fobdhir60N1MNZm2JWqhXfyfaR3n4qQLU94CJIaUIwx4hWM2ToOZJUHeToIgsfPOINzbr-f1LQ9b959Yfs7K4HQ
CitedBy_id crossref_primary_10_22159_ijcpr_2023v15i5_3056
crossref_primary_10_25199_2408_9613_2022_9_1_6_11
crossref_primary_10_1016_j_micpath_2023_106218
crossref_primary_10_2217_fvl_2021_0089
crossref_primary_10_1099_jmm_0_001646
crossref_primary_10_1128_spectrum_01882_23
crossref_primary_10_3390_ddc2030034
crossref_primary_10_3390_microorganisms11092222
crossref_primary_10_1371_journal_ppat_1012361
crossref_primary_10_3389_fcimb_2022_941867
crossref_primary_10_1172_JCI187996
crossref_primary_10_1038_s41467_024_49710_2
crossref_primary_10_1016_j_isci_2022_104121
crossref_primary_10_3389_fmicb_2020_549084
crossref_primary_10_3389_fimmu_2021_639570
crossref_primary_10_1016_j_tim_2021_04_007
crossref_primary_10_1093_jacamr_dlae104
crossref_primary_10_1128_aem_01353_24
crossref_primary_10_25199_2408_9613_2023_10_3_22_32
crossref_primary_10_1093_cid_ciad497
crossref_primary_10_1128_cmr_00044_24
crossref_primary_10_1128_mBio_01966_21
crossref_primary_10_3390_v14020342
crossref_primary_10_3390_ph16121638
crossref_primary_10_3389_fmed_2024_1432703
crossref_primary_10_1016_j_jgar_2020_06_020
crossref_primary_10_1038_s41522_024_00552_2
crossref_primary_10_1128_spectrum_01393_21
crossref_primary_10_3390_v13081543
crossref_primary_10_1021_acsnano_2c00048
crossref_primary_10_3390_ijms21103715
crossref_primary_10_1002_cpt_2214
crossref_primary_10_1016_j_isci_2023_108032
crossref_primary_10_1007_s12223_023_01046_y
crossref_primary_10_1002_smll_202307111
crossref_primary_10_1016_j_cmi_2023_01_021
crossref_primary_10_1093_cid_ciad480
crossref_primary_10_1111_1751_7915_13697
crossref_primary_10_1186_s12866_021_02197_z
crossref_primary_10_3390_microorganisms10040717
crossref_primary_10_3390_v12101076
crossref_primary_10_1089_phage_2022_0012
crossref_primary_10_1128_spectrum_01736_21
crossref_primary_10_1016_j_jcf_2025_03_001
crossref_primary_10_1016_j_tim_2020_05_021
crossref_primary_10_1016_j_isci_2021_102287
crossref_primary_10_1016_j_celrep_2022_110825
crossref_primary_10_2217_fvl_2022_0229
crossref_primary_10_1007_s11356_024_32535_3
crossref_primary_10_1089_phage_2022_0019
crossref_primary_10_1093_cid_ciad516
crossref_primary_10_22207_JPAM_18_1_49
crossref_primary_10_3389_fmicb_2021_638094
crossref_primary_10_1016_j_ccell_2021_08_006
crossref_primary_10_1016_j_cell_2022_11_017
crossref_primary_10_1093_femsre_fuad042
crossref_primary_10_1002_jor_25432
crossref_primary_10_1515_cmb_2024_0018
crossref_primary_10_1016_j_biopha_2022_113122
crossref_primary_10_1371_journal_pbio_3002119
crossref_primary_10_1128_aac_02071_21
crossref_primary_10_1016_j_foodchem_2025_142833
crossref_primary_10_1016_j_virol_2024_110209
crossref_primary_10_1007_s13205_024_04101_8
crossref_primary_10_1080_08927014_2021_1955866
crossref_primary_10_1183_16000617_0121_2022
crossref_primary_10_3390_v13122414
crossref_primary_10_1128_msphere_00702_23
crossref_primary_10_1186_s13568_025_01837_1
crossref_primary_10_1099_jgv_0_001819
crossref_primary_10_1111_prd_12363
crossref_primary_10_1128_spectrum_01602_22
crossref_primary_10_3389_fvets_2023_1160350
crossref_primary_10_3390_v13020334
crossref_primary_10_1016_j_injury_2024_111847
crossref_primary_10_1128_jvi_01359_23
crossref_primary_10_1016_j_jddst_2023_105155
crossref_primary_10_1371_journal_pbio_3000877
crossref_primary_10_21518_2079_701X_2021_6_83_91
crossref_primary_10_1093_ve_veac086
crossref_primary_10_1016_j_tim_2020_10_014
crossref_primary_10_1097_MRM_0000000000000424
crossref_primary_10_3390_v13071268
crossref_primary_10_3390_ph15020186
crossref_primary_10_3390_antibiotics12020245
crossref_primary_10_1080_22221751_2023_2217947
crossref_primary_10_1007_s40259_021_00480_z
crossref_primary_10_1093_jpids_piab012
crossref_primary_10_2478_aoas_2020_0098
crossref_primary_10_1021_acsinfecdis_0c00358
crossref_primary_10_3390_idr16060092
crossref_primary_10_15252_emmm_202012435
crossref_primary_10_2478_ahem_2021_0050
crossref_primary_10_1038_s41423_020_00532_4
crossref_primary_10_3389_fphar_2021_699054
crossref_primary_10_3390_v15010014
crossref_primary_10_25199_2408_9613_2023_10_2_6_14
crossref_primary_10_1186_s12941_023_00567_1
crossref_primary_10_1016_j_clinthera_2020_07_014
crossref_primary_10_1016_j_chroma_2025_465890
crossref_primary_10_1016_j_copbio_2020_11_012
crossref_primary_10_3390_ph14101019
crossref_primary_10_1016_j_heliyon_2024_e40076
crossref_primary_10_3389_fmicb_2022_943279
crossref_primary_10_1371_journal_pone_0301292
crossref_primary_10_3390_v14040688
crossref_primary_10_1016_j_jconrel_2023_10_029
crossref_primary_10_3390_antibiotics10020175
crossref_primary_10_3390_antibiotics11091256
crossref_primary_10_3390_pharmaceutics15061602
crossref_primary_10_1172_jci_insight_181309
crossref_primary_10_2174_1574893618666221214091824
Cites_doi 10.1093/femsle/fnw047
10.1093/femspd/ftz011
10.1128/aac.47.1.43-47.2003
10.1007/s00203-007-0216-y
10.1126/science.aau8816
10.4049/jimmunol.90.5.782
10.1038/380364a0
10.1073/pnas.241655998
10.1371/journal.pone.0158213
10.3389/fmicb.2014.00618
10.2174/138920110790725401
10.1086/648478
10.1007/s12223-018-0622-3
10.1371/journal.pone.0209390
10.1073/pnas.1616457114
10.1385/IR:33:2:103
10.1038/nrmicro3096
10.1007/BF02880095
10.1080/21597081.2015.1050153
10.1128/AAC.04627-14
10.4049/jimmunol.94.4.544
10.1007/s12275-011-1512-4
10.1038/s41591-019-0437-z
10.1126/science.125.3251.742
10.1007/978-1-4939-6958-6_10
10.1128/AAC.01596-13
10.3390/v11040343
10.1016/j.micinf.2014.02.011
10.1038/ni.3126
10.1038/nrmicro.2017.120
10.1128/AEM.02386-14
10.3181/00379727-109-27146
10.1586/ern.09.99
10.1086/374001
10.1016/B978-0-12-387044-5.00001-7
10.2174/138920110790725311
10.1016/j.ijmm.2014.02.007
10.1016/j.virusres.2005.05.014
10.3389/fmicb.2016.01112
10.1111/1462-2920.13284
10.1007/s11095-014-1617-7
10.1016/j.jtbi.2017.06.037
10.1136/gutjnl-2018-317503
10.1002/(SICI)1097-4598(199904)22:4<460::AID-MUS6>3.0.CO;2-L
10.2174/138920110790725410
10.1016/j.ijpharm.2018.12.004
10.1371/journal.pntd.0002183
10.4049/jimmunol.158.2.842
10.3390/antibiotics7020035
10.3390/v10060323
10.1099/jmm.0.2008/002873-0
10.1016/j.femsre.2003.08.001
10.1038/205474a0
10.1084/jem.115.3.655
10.2174/1874364101509010167
10.1128/aac.39.10.2210
10.3389/fmicb.2017.00467
10.4161/bact.1.2.14590
10.1016/j.virusres.2015.10.025
10.1007/978-1-4939-7395-8_14
10.3389/fmicb.2016.01515
10.1038/nrmicro2315
10.18632/oncotarget.16723
10.1038/246221a0
10.1038/srep41441
10.3382/ps.2008-00378
10.2217/fmb.13.47
10.1098/rspb.2006.3640
10.4155/tde.11.64
10.1016/j.virol.2013.05.022
10.1038/nrmicro822
10.1111/j.1462-2920.2011.02644.x
10.1128/AEM.00812-15
10.1128/AAC.06330-11
10.4161/viru.24498
10.2174/138920110790725348
10.1128/microbiolspec.BAD-0003-2016
10.1016/B978-0-12-394438-2.00001-3
10.4161/bact.19274
10.1007/15695_2018_110
10.1016/j.tibtech.2007.09.004
10.1093/jac/dku173
10.1079/9781845939847.0134
10.1177/0897190013499523
10.1016/j.jbiotec.2008.01.021
10.1128/JVI.01340-15
10.1146/annurev-virology-031413-085500
10.1016/j.vetmic.2016.03.016
10.1007/978-1-4939-7604-1_11
10.1128/AAC.01513-06
10.1007/bf02878898
10.1093/jac/26.1.29
10.1093/ps/81.10.1486
10.1006/viro.2001.1254
10.1080/21597081.2015.1020260
10.2217/fmb-2016-0133
10.1016/0378-1135(92)90114-9
10.1038/nature11234
10.1016/j.biomaterials.2011.03.031
10.1007/978-1-4939-7343-9_15
10.1371/journal.ppat.1000253
10.1079/9781845939847.0076
10.1016/j.vetmic.2013.10.021
10.3390/v7082845
10.1007/s12223-011-0039-8
10.1016/j.virol.2012.09.002
10.3181/00379727-98-24112
10.1073/pnas.0913667107
10.1128/AAC.00954-17
10.1513/pats.200903-014AW
10.20953/1729-9225-2017-1-35-40
10.1016/S1096-4959(02)00168-9
10.1002/bit.25571
10.3390/v10070351
10.1016/j.jviromet.2003.11.012
10.1111/j.1469-0691.2005.01340.x
10.1038/nbt1340
10.1086/381972
10.1038/ja.2017.30
10.1186/s13054-016-1320-7
10.1099/00221287-133-5-1127
10.1038/srep14802
10.1126/science.257.5073.1064
10.3389/fonc.2013.00216
10.1016/B978-0-12-800098-4.00005-2
10.3181/00379727-111-27691
10.2217/fmb.14.126
10.1086/651135
10.1016/B978-0-12-394805-2.00001-4
10.1007/s00253-018-9471-x
10.1080/17425247.2017.1252329
10.3390/v11010010
10.1637/8406-071008-Reg.1
10.1111/j.2042-7158.2011.01324.x
10.3389/fmicb.2016.01352
10.3389/fmicb.2016.01357
10.1111/j.1751-7915.2008.00028.x
10.1089/jamp.2015.1233
10.4315/0362-028X-73.7.1304
10.2217/fmb.15.28
10.3390/v11010018
10.1111/j.1749-4486.2009.01973.x
10.1128/AEM.00526-16
10.1016/j.chom.2014.08.014
10.3949/ccjm.85gr.18005
10.1099/00221287-143-1-179
10.3390/v10040178
10.1016/j.chom.2017.06.018
10.1073/pnas.93.8.3188
10.1007/s00705-018-3723-z
10.1002/adma.201200454
10.1007/s00203-010-0559-7
10.1007/s00726-011-0979-y
10.3390/ph12010035
10.1017/CBO9780511541483.017
10.1016/j.addr.2018.06.018
10.1111/j.1574-695X.2002.tb00555.x
10.1093/femsle/fnv242
10.1155/2015/752930
10.1093/ofid/ofy269
10.1186/s13054-017-1709-y
10.1038/nm0202-121
10.1007/s00253-004-1585-7
10.1099/00221287-128-2-307
10.1177/1534734619835115
10.1186/s13073-016-0294-z
10.1093/jac/38.5.819
10.1093/jac/27.5.639
10.1016/B978-0-12-394438-2.00003-7
10.2217/fmb.11.124
10.1016/j.ebiom.2015.12.023
10.1128/AEM.00049-07
10.2174/156720181303160520193946
10.1128/CDLI.5.3.294-298.1998
10.1073/pnas.072027199
10.1016/j.drudis.2016.05.007
10.1016/j.chom.2015.04.006
10.1128/aem.66.4.1416-1422.2000
10.1038/nature25979
10.1006/jtbi.2000.2198
10.1128/AAC.02388-13
10.2174/138920110790725429
10.1155/2014/581639
10.1128/AAC.01028-06
10.1007/s12223-018-0636-x
10.1099/jmm.0.029744-0
10.1085/jgp.48.1.73
10.1016/j.virol.2009.07.020
10.1016/j.drudis.2009.03.006
10.12968/jowc.2016.25.7.S27
10.2217/fmb.16.11
10.3382/ps.2009-00528
10.1016/j.copbio.2005.03.007
10.1186/s13073-016-0307-y
10.1086/649227
10.1093/infdis/jiv029
10.1042/bj0750139
10.1371/journal.pone.0153777
10.1093/infdis/jiu059
10.2217/fmb-2016-0156
10.1128/AAC.48.7.2558-2569.2004
10.1007/s12223-011-0096-z
10.1128/iai.70.11.6251-6262.2002
10.1099/00221287-129-7-2217
10.1093/emph/eoy005
10.3181/00379727-118-29778
10.1093/infdis/116.4.523
10.1128/AAC.49.7.2874-2878.2005
10.1084/jem.118.1.13
10.1111/1751-7915.13414
10.1089/sur.2018.135
10.1155/2014/621316
10.1016/B978-0-12-394621-8.00014-5
10.1126/science.1176667
10.1007/s00705-007-0031-4
10.3390/ph10020043
10.1111/1462-2920.13574
10.1128/MMBR.00069-15
10.1093/jac/48.3.425
10.1007/s00253-019-09629-x
10.4049/jimmunol.76.3.209
10.1038/s41396-019-0349-4
10.4049/jimmunol.76.3.200
10.1073/pnas.1313839110
10.3389/fcimb.2018.00376
10.1016/s0092-8674(03)00276-9
10.4049/jimmunol.83.2.167
10.1128/iai.31.2.650-659.1981
10.1007/bf00679856
10.1128/JVI.02043-14
10.1038/s41598-017-08336-9
10.1128/AEM.71.8.4872-4874.2005
10.1128/aem.69.6.3192-3202.2003
10.3354/dao037033
10.1084/jem.78.3.161
10.1067/mcp.2000.109520
10.1371/journal.pone.0116571
10.1079/9781845939847.0256
10.1016/S0065-2164(10)70007-1
10.1002/med.21572
10.1093/ps/82.7.1108
10.1099/00221287-129-8-2659
10.1016/j.cis.2017.05.014
10.3389/fmicb.2018.01832
10.4161/bact.1.2.15845
10.1016/j.chom.2019.01.014
10.1016/j.virol.2009.03.009
10.1637/8091-082007-Reg
10.1128/mBio.00362-12
10.1086/315739
10.1079/9781845939847.0168
10.1007/s00705-005-0641-7
10.1016/S1473-3099(15)00466-1
10.1637/7041
10.1172/JCI106756
10.1007/978-1-4939-7395-8_18
10.1099/00221287-133-5-1111
10.1007/s11095-010-0313-5
10.1128/mBio.01874-17
10.4049/jimmunol.94.6.833
10.4161/21597073.2014.964081
10.1006/mthe.2000.0110
10.1038/nrmicro2853
10.1371/journal.pone.0122672
10.4161/bact.18609
ContentType Journal Article
Copyright Copyright © 2019 American Society for Microbiology.
Copyright American Society for Microbiology Dec 2019
Copyright © 2019 American Society for Microbiology. 2019 American Society for Microbiology
Copyright_xml – notice: Copyright © 2019 American Society for Microbiology.
– notice: Copyright American Society for Microbiology Dec 2019
– notice: Copyright © 2019 American Society for Microbiology. 2019 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1128/MMBR.00012-19
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Phage Therapy
EISSN 1098-5557
ExternalDocumentID PMC6822990
31666296
10_1128_MMBR_00012_19
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: ;
  grantid: UMO-2012/05/E/NZ6/03314; UMO-2018/29/B/NZ6/01659
GroupedDBID ---
-DZ
-~X
.55
0R~
123
18M
29M
2KS
2WC
39C
4.4
5RE
5VS
85S
AAGFI
AAIKC
AAMNW
AAYXX
ABPPZ
ACGFO
ACGOD
ACIWK
ACNCT
ACPRK
ADBBV
AENEX
AFRAH
AGHSJ
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CITATION
CJ0
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HF~
HYE
HZ~
KQ8
L7B
O9-
OMK
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TR2
W8F
WH7
WOQ
X7M
YNT
YQT
~02
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c415t-6e8181e9b70dc6770da0c196d8f54c0575e1601685dfe002f77edcc7f871d00d3
ISSN 1092-2172
1098-5557
IngestDate Thu Aug 21 17:31:37 EDT 2025
Fri Jul 11 01:55:37 EDT 2025
Mon Jun 30 08:30:42 EDT 2025
Mon Jul 21 05:47:59 EDT 2025
Thu Apr 24 23:11:34 EDT 2025
Tue Jul 01 04:14:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords bacteriophage therapy
phage resistance
spectrum of activity
phage circulation
phage clearance
phage movement
Language English
License Copyright © 2019 American Society for Microbiology.
All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c415t-6e8181e9b70dc6770da0c196d8f54c0575e1601685dfe002f77edcc7f871d00d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Citation Dąbrowska K, Abedon ST. 2019. Pharmacologically aware phage therapy: pharmacodynamic and pharmacokinetic obstacles to phage antibacterial action in animal and human bodies. Microbiol Mol Biol Rev 83:e00012-19. https://doi.org/10.1128/MMBR.00012-19.
OpenAccessLink https://mmbr.asm.org/content/mmbr/83/4/e00012-19.full.pdf
PMID 31666296
PQID 2313054601
PQPubID 42367
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6822990
proquest_miscellaneous_2310714076
proquest_journals_2313054601
pubmed_primary_31666296
crossref_primary_10_1128_MMBR_00012_19
crossref_citationtrail_10_1128_MMBR_00012_19
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Microbiology and molecular biology reviews
PublicationTitleAlternate Microbiol Mol Biol Rev
PublicationYear 2019
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_232_2
e_1_3_2_255_2
e_1_3_2_278_2
e_1_3_2_195_2
e_1_3_2_217_2
e_1_3_2_172_2
e_1_3_2_62_2
e_1_3_2_85_2
Keller R (e_1_3_2_138_2) 1959; 83
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_100_2
e_1_3_2_123_2
e_1_3_2_146_2
e_1_3_2_281_2
e_1_3_2_108_2
e_1_3_2_220_2
e_1_3_2_243_2
e_1_3_2_266_2
e_1_3_2_7_2
e_1_3_2_161_2
e_1_3_2_184_2
e_1_3_2_228_2
e_1_3_2_73_2
e_1_3_2_205_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_35_2
e_1_3_2_112_2
e_1_3_2_135_2
e_1_3_2_158_2
Perepanova TS (e_1_3_2_230_2) 1995; 1995
e_1_3_2_50_2
e_1_3_2_196_2
e_1_3_2_48_2
e_1_3_2_210_2
e_1_3_2_256_2
e_1_3_2_279_2
e_1_3_2_194_2
e_1_3_2_233_2
e_1_3_2_40_2
e_1_3_2_86_2
e_1_3_2_218_2
e_1_3_2_171_2
Lobocka M (e_1_3_2_275_2) 2014
e_1_3_2_63_2
e_1_3_2_25_2
e_1_3_2_145_2
e_1_3_2_168_2
e_1_3_2_122_2
e_1_3_2_282_2
e_1_3_2_107_2
e_1_3_2_267_2
e_1_3_2_59_2
e_1_3_2_6_2
Weber-Dabrowska B (e_1_3_2_150_2) 1987; 35
e_1_3_2_206_2
e_1_3_2_229_2
e_1_3_2_183_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_97_2
e_1_3_2_134_2
e_1_3_2_157_2
e_1_3_2_111_2
e_1_3_2_270_2
e_1_3_2_119_2
Carlson K (e_1_3_2_103_2) 1994
Mukerjee S (e_1_3_2_198_2) 1962; 22
e_1_3_2_211_2
e_1_3_2_234_2
e_1_3_2_151_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_219_2
e_1_3_2_125_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_102_2
e_1_3_2_163_2
e_1_3_2_186_2
e_1_3_2_283_2
Monsur KA (e_1_3_2_169_2) 1970; 42
e_1_3_2_268_2
e_1_3_2_18_2
e_1_3_2_222_2
e_1_3_2_245_2
e_1_3_2_207_2
e_1_3_2_140_2
e_1_3_2_10_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_79_2
e_1_3_2_56_2
Bradley SG (e_1_3_2_147_2) 1963; 90
e_1_3_2_114_2
e_1_3_2_137_2
e_1_3_2_94_2
e_1_3_2_71_2
e_1_3_2_152_2
e_1_3_2_175_2
Bogovazova GG (e_1_3_2_141_2) 1991; 1991
e_1_3_2_271_2
e_1_3_2_258_2
e_1_3_2_235_2
e_1_3_2_273_2
e_1_3_2_212_2
e_1_3_2_173_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_46_2
e_1_3_2_61_2
e_1_3_2_101_2
e_1_3_2_185_2
e_1_3_2_109_2
Kucharewicz-Krukowska A (e_1_3_2_257_2) 1987; 35
e_1_3_2_269_2
e_1_3_2_19_2
Prasad Y (e_1_3_2_124_2) 2011; 32
e_1_3_2_246_2
e_1_3_2_284_2
e_1_3_2_200_2
e_1_3_2_223_2
e_1_3_2_162_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
Chanda PK (e_1_3_2_221_2) 1975; 19
e_1_3_2_4_2
e_1_3_2_208_2
e_1_3_2_113_2
e_1_3_2_159_2
Bogovazova GG (e_1_3_2_142_2) 1992; 1992
Pagava KI (e_1_3_2_160_2) 2011; 2011
e_1_3_2_136_2
e_1_3_2_72_2
e_1_3_2_174_2
e_1_3_2_197_2
e_1_3_2_272_2
e_1_3_2_28_2
Inchley CJ (e_1_3_2_130_2) 1969; 5
e_1_3_2_191_2
e_1_3_2_213_2
e_1_3_2_236_2
e_1_3_2_251_2
e_1_3_2_274_2
Nelstrop AE (e_1_3_2_129_2) 1968; 14
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_259_2
e_1_3_2_66_2
e_1_3_2_89_2
Taylor RP (e_1_3_2_132_2) 1997; 158
e_1_3_2_165_2
e_1_3_2_188_2
e_1_3_2_81_2
e_1_3_2_127_2
e_1_3_2_16_2
e_1_3_2_39_2
e_1_3_2_224_2
e_1_3_2_247_2
e_1_3_2_262_2
e_1_3_2_285_2
e_1_3_2_201_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_180_2
e_1_3_2_3_2
e_1_3_2_77_2
e_1_3_2_209_2
e_1_3_2_92_2
e_1_3_2_131_2
e_1_3_2_154_2
e_1_3_2_177_2
Jerne NK (e_1_3_2_261_2) 1956; 76
Hoffmann M (e_1_3_2_148_2) 1965; 198
e_1_3_2_250_2
e_1_3_2_116_2
e_1_3_2_139_2
Jerne NK (e_1_3_2_260_2) 1956; 76
e_1_3_2_190_2
e_1_3_2_29_2
e_1_3_2_214_2
e_1_3_2_252_2
e_1_3_2_21_2
e_1_3_2_237_2
e_1_3_2_44_2
e_1_3_2_67_2
e_1_3_2_126_2
e_1_3_2_82_2
e_1_3_2_187_2
e_1_3_2_164_2
e_1_3_2_149_2
e_1_3_2_17_2
e_1_3_2_240_2
e_1_3_2_202_2
e_1_3_2_225_2
e_1_3_2_263_2
e_1_3_2_32_2
e_1_3_2_248_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_2_2
Schultz I (e_1_3_2_227_2) 1965; 94
e_1_3_2_93_2
e_1_3_2_115_2
e_1_3_2_176_2
e_1_3_2_70_2
e_1_3_2_153_2
e_1_3_2_199_2
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_193_2
Kantoch M (e_1_3_2_244_2) 1961; 9
e_1_3_2_253_2
e_1_3_2_276_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_215_2
e_1_3_2_238_2
e_1_3_2_170_2
e_1_3_2_167_2
e_1_3_2_121_2
e_1_3_2_144_2
Wang J (e_1_3_2_264_2) 2006; 17
e_1_3_2_106_2
Uhr JW (e_1_3_2_128_2) 1965; 94
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_241_2
e_1_3_2_203_2
e_1_3_2_75_2
e_1_3_2_182_2
e_1_3_2_249_2
e_1_3_2_52_2
e_1_3_2_226_2
Chanishvili NA (e_1_3_2_104_2) 2012
e_1_3_2_14_2
e_1_3_2_98_2
e_1_3_2_156_2
e_1_3_2_179_2
e_1_3_2_110_2
e_1_3_2_133_2
e_1_3_2_90_2
e_1_3_2_118_2
e_1_3_2_27_2
e_1_3_2_231_2
e_1_3_2_277_2
e_1_3_2_192_2
e_1_3_2_254_2
e_1_3_2_65_2
e_1_3_2_239_2
e_1_3_2_42_2
e_1_3_2_216_2
e_1_3_2_88_2
e_1_3_2_189_2
e_1_3_2_120_2
e_1_3_2_166_2
e_1_3_2_80_2
e_1_3_2_143_2
e_1_3_2_280_2
e_1_3_2_105_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_265_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_204_2
e_1_3_2_181_2
e_1_3_2_91_2
e_1_3_2_178_2
e_1_3_2_155_2
e_1_3_2_117_2
Muir WR (e_1_3_2_242_2) 1960; 10
References_xml – volume: 2011
  start-page: 101
  year: 2011
  ident: e_1_3_2_160_2
  article-title: What happens when the child gets bacteriophage per os?
  publication-title: Georgian Med News
– ident: e_1_3_2_77_2
  doi: 10.1093/femsle/fnw047
– ident: e_1_3_2_194_2
  doi: 10.1093/femspd/ftz011
– ident: e_1_3_2_234_2
  doi: 10.1128/aac.47.1.43-47.2003
– ident: e_1_3_2_201_2
  doi: 10.1007/s00203-007-0216-y
– ident: e_1_3_2_39_2
  doi: 10.1126/science.aau8816
– volume: 90
  start-page: 782
  year: 1963
  ident: e_1_3_2_147_2
  article-title: Production of neutralizing antibody by mice injected with actinophage
  publication-title: J Immunol
  doi: 10.4049/jimmunol.90.5.782
– ident: e_1_3_2_209_2
  doi: 10.1038/380364a0
– ident: e_1_3_2_211_2
  doi: 10.1073/pnas.241655998
– ident: e_1_3_2_243_2
  doi: 10.1371/journal.pone.0158213
– ident: e_1_3_2_277_2
  doi: 10.3389/fmicb.2014.00618
– ident: e_1_3_2_8_2
  doi: 10.2174/138920110790725401
– ident: e_1_3_2_204_2
  doi: 10.1086/648478
– ident: e_1_3_2_192_2
  doi: 10.1007/s12223-018-0622-3
– ident: e_1_3_2_191_2
  doi: 10.1371/journal.pone.0209390
– ident: e_1_3_2_226_2
  doi: 10.1073/pnas.1616457114
– ident: e_1_3_2_245_2
  doi: 10.1385/IR:33:2:103
– ident: e_1_3_2_85_2
  doi: 10.1038/nrmicro3096
– ident: e_1_3_2_131_2
  doi: 10.1007/BF02880095
– ident: e_1_3_2_86_2
  doi: 10.1080/21597081.2015.1050153
– ident: e_1_3_2_238_2
  doi: 10.1128/AAC.04627-14
– volume: 94
  start-page: 544
  year: 1965
  ident: e_1_3_2_128_2
  article-title: Intracellular distribution and degradation of bacteriophage in mammalian tissues
  publication-title: J Immunol
  doi: 10.4049/jimmunol.94.4.544
– volume: 198
  start-page: 371
  year: 1965
  ident: e_1_3_2_148_2
  article-title: Animal experiments on the mucosal passage and absorption viremia of T3 phages after oral, tracheal and rectal administration
  publication-title: Zentralbl Bakteriol Orig
– ident: e_1_3_2_199_2
  doi: 10.1007/s12275-011-1512-4
– ident: e_1_3_2_66_2
  doi: 10.1038/s41591-019-0437-z
– ident: e_1_3_2_137_2
  doi: 10.1126/science.125.3251.742
– ident: e_1_3_2_70_2
  doi: 10.1007/978-1-4939-6958-6_10
– ident: e_1_3_2_182_2
  doi: 10.1128/AAC.01596-13
– ident: e_1_3_2_283_2
  doi: 10.3390/v11040343
– ident: e_1_3_2_119_2
  doi: 10.1016/j.micinf.2014.02.011
– ident: e_1_3_2_172_2
  doi: 10.1038/ni.3126
– ident: e_1_3_2_87_2
  doi: 10.1038/nrmicro.2017.120
– ident: e_1_3_2_162_2
  doi: 10.1128/AEM.02386-14
– ident: e_1_3_2_146_2
  doi: 10.3181/00379727-109-27146
– ident: e_1_3_2_206_2
  doi: 10.1586/ern.09.99
– ident: e_1_3_2_115_2
  doi: 10.1086/374001
– ident: e_1_3_2_90_2
  doi: 10.1016/B978-0-12-387044-5.00001-7
– ident: e_1_3_2_274_2
  doi: 10.2174/138920110790725311
– ident: e_1_3_2_163_2
  doi: 10.1016/j.ijmm.2014.02.007
– ident: e_1_3_2_251_2
  doi: 10.1016/j.virusres.2005.05.014
– ident: e_1_3_2_52_2
  doi: 10.3389/fmicb.2016.01112
– ident: e_1_3_2_44_2
  doi: 10.1111/1462-2920.13284
– ident: e_1_3_2_273_2
  doi: 10.1007/s11095-014-1617-7
– ident: e_1_3_2_111_2
  doi: 10.1016/j.jtbi.2017.06.037
– volume: 19
  start-page: 197
  year: 1975
  ident: e_1_3_2_221_2
  article-title: Properties of the cholera phage PL 163/10
  publication-title: Acta Virol
– ident: e_1_3_2_32_2
  doi: 10.1136/gutjnl-2018-317503
– ident: e_1_3_2_203_2
  doi: 10.1002/(SICI)1097-4598(199904)22:4<460::AID-MUS6>3.0.CO;2-L
– volume: 1992
  start-page: 30
  year: 1992
  ident: e_1_3_2_142_2
  article-title: Immunobiological properties and therapeutic effectiveness of preparations from Klebsiella bacteriophages
  publication-title: Zh Mikrobiol Epidemiol Immunobiol
– ident: e_1_3_2_89_2
  doi: 10.2174/138920110790725410
– ident: e_1_3_2_197_2
  doi: 10.1016/j.ijpharm.2018.12.004
– ident: e_1_3_2_125_2
  doi: 10.1371/journal.pntd.0002183
– volume: 158
  start-page: 842
  year: 1997
  ident: e_1_3_2_132_2
  article-title: Bispecific monoclonal antibody complexes bound to primate erythrocyte complement receptor 1 facilitate virus clearance in a monkey model
  publication-title: J Immunol
  doi: 10.4049/jimmunol.158.2.842
– ident: e_1_3_2_22_2
  doi: 10.3390/antibiotics7020035
– ident: e_1_3_2_99_2
  doi: 10.3390/v10060323
– ident: e_1_3_2_143_2
  doi: 10.1099/jmm.0.2008/002873-0
– ident: e_1_3_2_190_2
  doi: 10.1016/j.femsre.2003.08.001
– ident: e_1_3_2_140_2
  doi: 10.1038/205474a0
– ident: e_1_3_2_252_2
  doi: 10.1084/jem.115.3.655
– ident: e_1_3_2_107_2
  doi: 10.2174/1874364101509010167
– ident: e_1_3_2_237_2
  doi: 10.1128/aac.39.10.2210
– ident: e_1_3_2_168_2
  doi: 10.3389/fmicb.2017.00467
– ident: e_1_3_2_26_2
  doi: 10.4161/bact.1.2.14590
– ident: e_1_3_2_229_2
  doi: 10.1016/j.virusres.2015.10.025
– ident: e_1_3_2_65_2
  doi: 10.1007/978-1-4939-7395-8_14
– ident: e_1_3_2_19_2
  doi: 10.3389/fmicb.2016.01515
– ident: e_1_3_2_81_2
  doi: 10.1038/nrmicro2315
– ident: e_1_3_2_100_2
  doi: 10.18632/oncotarget.16723
– ident: e_1_3_2_120_2
  doi: 10.1038/246221a0
– ident: e_1_3_2_166_2
  doi: 10.1038/srep41441
– ident: e_1_3_2_159_2
  doi: 10.3382/ps.2008-00378
– ident: e_1_3_2_97_2
  doi: 10.2217/fmb.13.47
– ident: e_1_3_2_93_2
  doi: 10.1098/rspb.2006.3640
– ident: e_1_3_2_10_2
  doi: 10.4155/tde.11.64
– ident: e_1_3_2_43_2
  doi: 10.1016/j.virol.2013.05.022
– ident: e_1_3_2_48_2
  doi: 10.1038/nrmicro822
– ident: e_1_3_2_108_2
  doi: 10.1111/j.1462-2920.2011.02644.x
– ident: e_1_3_2_268_2
  doi: 10.1128/AEM.00812-15
– ident: e_1_3_2_117_2
  doi: 10.1128/AAC.06330-11
– ident: e_1_3_2_75_2
  doi: 10.4161/viru.24498
– ident: e_1_3_2_266_2
  doi: 10.2174/138920110790725348
– ident: e_1_3_2_20_2
  doi: 10.1128/microbiolspec.BAD-0003-2016
– ident: e_1_3_2_13_2
  doi: 10.1016/B978-0-12-394438-2.00001-3
– ident: e_1_3_2_106_2
  doi: 10.4161/bact.19274
– ident: e_1_3_2_60_2
  doi: 10.1007/15695_2018_110
– ident: e_1_3_2_101_2
  doi: 10.1016/j.tibtech.2007.09.004
– ident: e_1_3_2_16_2
  doi: 10.1093/jac/dku173
– ident: e_1_3_2_105_2
  doi: 10.1079/9781845939847.0134
– ident: e_1_3_2_35_2
  doi: 10.1177/0897190013499523
– ident: e_1_3_2_213_2
  doi: 10.1016/j.jbiotec.2008.01.021
– ident: e_1_3_2_56_2
  doi: 10.1128/JVI.01340-15
– ident: e_1_3_2_82_2
  doi: 10.1146/annurev-virology-031413-085500
– ident: e_1_3_2_185_2
  doi: 10.1016/j.vetmic.2016.03.016
– ident: e_1_3_2_21_2
  doi: 10.1007/978-1-4939-7604-1_11
– ident: e_1_3_2_126_2
  doi: 10.1128/AAC.01513-06
– ident: e_1_3_2_247_2
  doi: 10.1007/bf02878898
– ident: e_1_3_2_235_2
  doi: 10.1093/jac/26.1.29
– ident: e_1_3_2_179_2
  doi: 10.1093/ps/81.10.1486
– ident: e_1_3_2_233_2
  doi: 10.1006/viro.2001.1254
– ident: e_1_3_2_17_2
  doi: 10.1080/21597081.2015.1020260
– ident: e_1_3_2_112_2
  doi: 10.2217/fmb-2016-0133
– ident: e_1_3_2_151_2
  doi: 10.1016/0378-1135(92)90114-9
– volume: 5
  start-page: 173
  year: 1969
  ident: e_1_3_2_130_2
  article-title: The activity of mouse Kupffer cells following intravenous injection of T4 bacteriophage
  publication-title: Clin Exp Immunol
– ident: e_1_3_2_28_2
  doi: 10.1038/nature11234
– ident: e_1_3_2_216_2
  doi: 10.1016/j.biomaterials.2011.03.031
– ident: e_1_3_2_285_2
  doi: 10.1007/978-1-4939-7343-9_15
– ident: e_1_3_2_92_2
  doi: 10.1371/journal.ppat.1000253
– ident: e_1_3_2_102_2
  doi: 10.1079/9781845939847.0076
– ident: e_1_3_2_279_2
  doi: 10.1016/j.vetmic.2013.10.021
– ident: e_1_3_2_109_2
  doi: 10.3390/v7082845
– start-page: 427
  volume-title: Molecular biology of bacteriophage T4
  year: 1994
  ident: e_1_3_2_103_2
– ident: e_1_3_2_165_2
  doi: 10.1007/s12223-011-0039-8
– ident: e_1_3_2_42_2
  doi: 10.1016/j.virol.2012.09.002
– ident: e_1_3_2_145_2
  doi: 10.3181/00379727-98-24112
– ident: e_1_3_2_225_2
  doi: 10.1073/pnas.0913667107
– ident: e_1_3_2_62_2
  doi: 10.1128/AAC.00954-17
– ident: e_1_3_2_214_2
  doi: 10.1513/pats.200903-014AW
– volume-title: Phage therapy: current research and applications
  year: 2014
  ident: e_1_3_2_275_2
– ident: e_1_3_2_265_2
  doi: 10.20953/1729-9225-2017-1-35-40
– ident: e_1_3_2_53_2
  doi: 10.1016/S1096-4959(02)00168-9
– ident: e_1_3_2_72_2
  doi: 10.1002/bit.25571
– ident: e_1_3_2_83_2
  doi: 10.3390/v10070351
– ident: e_1_3_2_154_2
  doi: 10.1016/j.jviromet.2003.11.012
– ident: e_1_3_2_116_2
  doi: 10.1111/j.1469-0691.2005.01340.x
– ident: e_1_3_2_241_2
  doi: 10.1038/nbt1340
– ident: e_1_3_2_271_2
  doi: 10.1086/381972
– ident: e_1_3_2_5_2
  doi: 10.1038/ja.2017.30
– ident: e_1_3_2_2_2
  doi: 10.1186/s13054-016-1320-7
– ident: e_1_3_2_255_2
  doi: 10.1099/00221287-133-5-1127
– ident: e_1_3_2_51_2
  doi: 10.1038/srep14802
– ident: e_1_3_2_4_2
  doi: 10.1126/science.257.5073.1064
– ident: e_1_3_2_218_2
  doi: 10.3389/fonc.2013.00216
– ident: e_1_3_2_14_2
  doi: 10.1016/B978-0-12-800098-4.00005-2
– ident: e_1_3_2_253_2
  doi: 10.3181/00379727-111-27691
– ident: e_1_3_2_208_2
  doi: 10.2217/fmb.14.126
– ident: e_1_3_2_180_2
  doi: 10.1086/651135
– ident: e_1_3_2_96_2
  doi: 10.1016/B978-0-12-394805-2.00001-4
– ident: e_1_3_2_193_2
  doi: 10.1007/s00253-018-9471-x
– ident: e_1_3_2_176_2
  doi: 10.1080/17425247.2017.1252329
– ident: e_1_3_2_267_2
  doi: 10.3390/v11010010
– ident: e_1_3_2_157_2
  doi: 10.1637/8406-071008-Reg.1
– ident: e_1_3_2_12_2
  doi: 10.1111/j.2042-7158.2011.01324.x
– ident: e_1_3_2_79_2
  doi: 10.3389/fmicb.2016.01352
– ident: e_1_3_2_30_2
  doi: 10.3389/fmicb.2016.01357
– volume: 22
  start-page: 73
  year: 1962
  ident: e_1_3_2_198_2
  article-title: Localization of cholera bacterio-phage after intravenous injection
  publication-title: Ann Biochem Exp Med
– ident: e_1_3_2_133_2
  doi: 10.1111/j.1751-7915.2008.00028.x
– ident: e_1_3_2_184_2
  doi: 10.1089/jamp.2015.1233
– ident: e_1_3_2_269_2
  doi: 10.4315/0362-028X-73.7.1304
– ident: e_1_3_2_281_2
  doi: 10.2217/fmb.15.28
– ident: e_1_3_2_282_2
  doi: 10.3390/v11010018
– ident: e_1_3_2_58_2
  doi: 10.1111/j.1749-4486.2009.01973.x
– ident: e_1_3_2_186_2
  doi: 10.1128/AEM.00526-16
– ident: e_1_3_2_29_2
  doi: 10.1016/j.chom.2014.08.014
– ident: e_1_3_2_38_2
  doi: 10.3949/ccjm.85gr.18005
– ident: e_1_3_2_94_2
  doi: 10.1099/00221287-143-1-179
– ident: e_1_3_2_84_2
  doi: 10.3390/v10040178
– ident: e_1_3_2_110_2
  doi: 10.1016/j.chom.2017.06.018
– ident: e_1_3_2_248_2
  doi: 10.1073/pnas.93.8.3188
– ident: e_1_3_2_57_2
  doi: 10.1007/s00705-018-3723-z
– ident: e_1_3_2_210_2
  doi: 10.1002/adma.201200454
– ident: e_1_3_2_215_2
  doi: 10.1007/s00203-010-0559-7
– ident: e_1_3_2_217_2
  doi: 10.1007/s00726-011-0979-y
– ident: e_1_3_2_78_2
  doi: 10.3390/ph12010035
– ident: e_1_3_2_76_2
  doi: 10.1017/CBO9780511541483.017
– volume: 9
  start-page: 261
  year: 1961
  ident: e_1_3_2_244_2
  article-title: The role of phagocytes in virus infections
  publication-title: Arch Immunol Ther Exp (Warsz)
– ident: e_1_3_2_23_2
  doi: 10.1016/j.addr.2018.06.018
– ident: e_1_3_2_263_2
  doi: 10.1111/j.1574-695X.2002.tb00555.x
– ident: e_1_3_2_136_2
  doi: 10.1093/femsle/fnv242
– ident: e_1_3_2_183_2
  doi: 10.1155/2015/752930
– volume: 10
  start-page: 339
  year: 1960
  ident: e_1_3_2_242_2
  article-title: Staphylococcal bacteriophage in experimental infection in mice
  publication-title: Surg Forum
– volume: 1995
  start-page: 14
  year: 1995
  ident: e_1_3_2_230_2
  article-title: The efficacy of bacteriophage preparations in treating inflammatory urologic diseases
  publication-title: Urol Nefrol (Mosk)
– ident: e_1_3_2_64_2
  doi: 10.1093/ofid/ofy269
– ident: e_1_3_2_135_2
  doi: 10.1186/s13054-017-1709-y
– ident: e_1_3_2_212_2
  doi: 10.1038/nm0202-121
– ident: e_1_3_2_224_2
  doi: 10.1007/s00253-004-1585-7
– ident: e_1_3_2_121_2
  doi: 10.1099/00221287-128-2-307
– ident: e_1_3_2_25_2
  doi: 10.1177/1534734619835115
– ident: e_1_3_2_37_2
  doi: 10.1186/s13073-016-0294-z
– ident: e_1_3_2_239_2
  doi: 10.1093/jac/38.5.819
– ident: e_1_3_2_240_2
  doi: 10.1093/jac/27.5.639
– ident: e_1_3_2_59_2
  doi: 10.1016/B978-0-12-394438-2.00003-7
– ident: e_1_3_2_73_2
  doi: 10.2217/fmb.11.124
– ident: e_1_3_2_45_2
  doi: 10.1016/j.ebiom.2015.12.023
– ident: e_1_3_2_280_2
  doi: 10.1128/AEM.00049-07
– ident: e_1_3_2_18_2
  doi: 10.2174/156720181303160520193946
– ident: e_1_3_2_122_2
  doi: 10.1128/CDLI.5.3.294-298.1998
– ident: e_1_3_2_207_2
  doi: 10.1073/pnas.072027199
– ident: e_1_3_2_173_2
  doi: 10.1016/j.drudis.2016.05.007
– ident: e_1_3_2_36_2
  doi: 10.1016/j.chom.2015.04.006
– ident: e_1_3_2_152_2
  doi: 10.1128/aem.66.4.1416-1422.2000
– ident: e_1_3_2_34_2
  doi: 10.1038/nature25979
– ident: e_1_3_2_88_2
  doi: 10.1006/jtbi.2000.2198
– ident: e_1_3_2_118_2
  doi: 10.1128/AAC.02388-13
– ident: e_1_3_2_91_2
  doi: 10.2174/138920110790725429
– ident: e_1_3_2_50_2
  doi: 10.1155/2014/581639
– ident: e_1_3_2_127_2
  doi: 10.1128/AAC.01028-06
– ident: e_1_3_2_195_2
  doi: 10.1007/s12223-018-0636-x
– ident: e_1_3_2_231_2
  doi: 10.1099/jmm.0.029744-0
– ident: e_1_3_2_220_2
  doi: 10.1085/jgp.48.1.73
– ident: e_1_3_2_276_2
  doi: 10.1016/j.virol.2009.07.020
– ident: e_1_3_2_7_2
  doi: 10.1016/j.drudis.2009.03.006
– ident: e_1_3_2_61_2
  doi: 10.12968/jowc.2016.25.7.S27
– ident: e_1_3_2_187_2
  doi: 10.2217/fmb.16.11
– ident: e_1_3_2_256_2
  doi: 10.3382/ps.2009-00528
– ident: e_1_3_2_55_2
  doi: 10.1016/j.copbio.2005.03.007
– volume-title: Literature review of the practical application of bacteriophage research
  year: 2012
  ident: e_1_3_2_104_2
– ident: e_1_3_2_31_2
  doi: 10.1186/s13073-016-0307-y
– ident: e_1_3_2_178_2
  doi: 10.1086/649227
– ident: e_1_3_2_177_2
  doi: 10.1093/infdis/jiv029
– ident: e_1_3_2_219_2
  doi: 10.1042/bj0750139
– volume: 42
  start-page: 723
  year: 1970
  ident: e_1_3_2_169_2
  article-title: Effect of massive doses of bacteriophage on excretion of vibrios, duration of diarrhoea and output of stools in acute cases of cholera
  publication-title: Bull World Health Organ
– ident: e_1_3_2_270_2
  doi: 10.1371/journal.pone.0153777
– ident: e_1_3_2_144_2
  doi: 10.1093/infdis/jiu059
– ident: e_1_3_2_262_2
  doi: 10.2217/fmb-2016-0156
– ident: e_1_3_2_153_2
  doi: 10.1128/AAC.48.7.2558-2569.2004
– ident: e_1_3_2_161_2
  doi: 10.1007/s12223-011-0096-z
– volume: 17
  start-page: 309
  year: 2006
  ident: e_1_3_2_264_2
  article-title: Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa
  publication-title: Int J Mol Med
– ident: e_1_3_2_200_2
  doi: 10.1128/iai.70.11.6251-6262.2002
– ident: e_1_3_2_222_2
  doi: 10.1099/00221287-129-7-2217
– ident: e_1_3_2_63_2
  doi: 10.1093/emph/eoy005
– volume: 32
  start-page: 161
  year: 2011
  ident: e_1_3_2_124_2
  article-title: Lytic bacteriophages specific to Flavobacterium columnare rescue catfish, Clarias batrachus (Linn.) from columnaris disease
  publication-title: J Environ Biol
– ident: e_1_3_2_228_2
  doi: 10.3181/00379727-118-29778
– ident: e_1_3_2_149_2
  doi: 10.1093/infdis/116.4.523
– ident: e_1_3_2_155_2
  doi: 10.1128/AAC.49.7.2874-2878.2005
– ident: e_1_3_2_139_2
  doi: 10.1084/jem.118.1.13
– volume: 35
  start-page: 563
  year: 1987
  ident: e_1_3_2_150_2
  article-title: Studies on bacteriophage penetration in patients subjected to phage therapy
  publication-title: Arch Immunol Ther Exp (Warsz)
– ident: e_1_3_2_250_2
  doi: 10.1111/1751-7915.13414
– ident: e_1_3_2_196_2
  doi: 10.1089/sur.2018.135
– ident: e_1_3_2_15_2
  doi: 10.1155/2014/621316
– ident: e_1_3_2_74_2
  doi: 10.1016/B978-0-12-394621-8.00014-5
– volume: 14
  start-page: 325
  year: 1968
  ident: e_1_3_2_129_2
  article-title: Studies on phagocytosis. I. Antigen clearance studies in rabbits
  publication-title: Immunology
– ident: e_1_3_2_33_2
  doi: 10.1126/science.1176667
– ident: e_1_3_2_202_2
  doi: 10.1007/s00705-007-0031-4
– ident: e_1_3_2_68_2
  doi: 10.3390/ph10020043
– ident: e_1_3_2_46_2
  doi: 10.1111/1462-2920.13574
– ident: e_1_3_2_188_2
  doi: 10.1128/MMBR.00069-15
– ident: e_1_3_2_236_2
  doi: 10.1093/jac/48.3.425
– ident: e_1_3_2_80_2
  doi: 10.1007/s00253-019-09629-x
– volume: 35
  start-page: 553
  year: 1987
  ident: e_1_3_2_257_2
  article-title: Immunogenic effect of bacteriophage in patients subjected to phage therapy
  publication-title: Arch Immunol Ther Exp (Warsz)
– volume: 76
  start-page: 209
  year: 1956
  ident: e_1_3_2_260_2
  article-title: The presence in normal serum of specific antibody against bacteriophage T4 and its increase during the earliest stages of immunization
  publication-title: J Immunol
  doi: 10.4049/jimmunol.76.3.209
– ident: e_1_3_2_40_2
  doi: 10.1038/s41396-019-0349-4
– volume: 76
  start-page: 200
  year: 1956
  ident: e_1_3_2_261_2
  article-title: The development of the phage-inactivating properties of serum during the course of specific immunization of an animal: reversible and irreversible inactivation
  publication-title: J Immunol
  doi: 10.4049/jimmunol.76.3.200
– ident: e_1_3_2_174_2
  doi: 10.1073/pnas.1313839110
– ident: e_1_3_2_3_2
  doi: 10.3389/fcimb.2018.00376
– ident: e_1_3_2_54_2
  doi: 10.1016/s0092-8674(03)00276-9
– volume: 83
  start-page: 167
  year: 1959
  ident: e_1_3_2_138_2
  article-title: Studies on the factors concerned in the disappearance of bacteriophage particles from the animal body
  publication-title: J Immunol
  doi: 10.4049/jimmunol.83.2.167
– ident: e_1_3_2_254_2
  doi: 10.1128/iai.31.2.650-659.1981
– ident: e_1_3_2_164_2
  doi: 10.1007/bf00679856
– ident: e_1_3_2_246_2
  doi: 10.1128/JVI.02043-14
– ident: e_1_3_2_69_2
  doi: 10.1038/s41598-017-08336-9
– ident: e_1_3_2_189_2
  doi: 10.1128/AEM.71.8.4872-4874.2005
– ident: e_1_3_2_223_2
  doi: 10.1128/aem.69.6.3192-3202.2003
– ident: e_1_3_2_114_2
  doi: 10.3354/dao037033
– ident: e_1_3_2_205_2
  doi: 10.1084/jem.78.3.161
– ident: e_1_3_2_47_2
  doi: 10.1067/mcp.2000.109520
– ident: e_1_3_2_181_2
  doi: 10.1371/journal.pone.0116571
– ident: e_1_3_2_67_2
  doi: 10.1079/9781845939847.0256
– ident: e_1_3_2_41_2
  doi: 10.1016/S0065-2164(10)70007-1
– ident: e_1_3_2_175_2
  doi: 10.1002/med.21572
– ident: e_1_3_2_123_2
  doi: 10.1093/ps/82.7.1108
– ident: e_1_3_2_113_2
  doi: 10.1099/00221287-129-8-2659
– ident: e_1_3_2_167_2
  doi: 10.1016/j.cis.2017.05.014
– ident: e_1_3_2_232_2
  doi: 10.3389/fmicb.2018.01832
– ident: e_1_3_2_9_2
  doi: 10.4161/bact.1.2.15845
– ident: e_1_3_2_24_2
  doi: 10.1016/j.chom.2019.01.014
– ident: e_1_3_2_158_2
  doi: 10.1016/j.virol.2009.03.009
– ident: e_1_3_2_156_2
  doi: 10.1637/8091-082007-Reg
– ident: e_1_3_2_95_2
  doi: 10.1128/mBio.00362-12
– ident: e_1_3_2_258_2
  doi: 10.1086/315739
– ident: e_1_3_2_272_2
  doi: 10.1079/9781845939847.0168
– volume: 1991
  start-page: 5
  year: 1991
  ident: e_1_3_2_141_2
  article-title: The efficacy of Klebsiella pneumoniae bacteriophage in the therapy of experimental Klebsiella infection
  publication-title: Zh Mikrobiol Epidemiol Immunobiol
– ident: e_1_3_2_49_2
  doi: 10.1007/s00705-005-0641-7
– ident: e_1_3_2_6_2
  doi: 10.1016/S1473-3099(15)00466-1
– ident: e_1_3_2_259_2
  doi: 10.1637/7041
– ident: e_1_3_2_134_2
  doi: 10.1172/JCI106756
– ident: e_1_3_2_284_2
  doi: 10.1007/978-1-4939-7395-8_18
– ident: e_1_3_2_171_2
  doi: 10.1099/00221287-133-5-1111
– ident: e_1_3_2_11_2
  doi: 10.1007/s11095-010-0313-5
– ident: e_1_3_2_170_2
  doi: 10.1128/mBio.01874-17
– volume: 94
  start-page: 833
  year: 1965
  ident: e_1_3_2_227_2
  article-title: Relationship between blood clearance and viruria after intravenous injection of mice and rats with bacteriophage and polioviruses
  publication-title: J Immunol
  doi: 10.4049/jimmunol.94.6.833
– ident: e_1_3_2_278_2
  doi: 10.4161/21597073.2014.964081
– ident: e_1_3_2_249_2
  doi: 10.1006/mthe.2000.0110
– ident: e_1_3_2_27_2
  doi: 10.1038/nrmicro2853
– ident: e_1_3_2_71_2
  doi: 10.1371/journal.pone.0122672
– ident: e_1_3_2_98_2
  doi: 10.4161/bact.18609
SSID ssj0004599
Score 2.6129756
SecondaryResourceType review_article
Snippet The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Animals
Antibacterial activity
Antibiotics
Bacteria
Bacteria - virology
Bacterial diseases
Bacterial infections
Bacterial Infections - therapy
Bacterial Infections - virology
Bacteriophages - growth & development
Bacteriophages - physiology
Barriers
Host range
Host Specificity
Humans
Phage Therapy - methods
Phages
Pharmacodynamics
Pharmacokinetics
Pharmacology
Review
Side effects
Therapy
Toxicity
Virions
Title Pharmacologically Aware Phage Therapy: Pharmacodynamic and Pharmacokinetic Obstacles to Phage Antibacterial Action in Animal and Human Bodies
URI https://www.ncbi.nlm.nih.gov/pubmed/31666296
https://www.proquest.com/docview/2313054601
https://www.proquest.com/docview/2310714076
https://pubmed.ncbi.nlm.nih.gov/PMC6822990
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7DiuCLeHd0lQjiy9ix94tvXVFWZVRkFvatTC7VsrutzHRYxv-gv9lzkjQ77Y6w-hLKSdqGnK_JOc3Jdwh5njAB677IHLnwhRNGbuCkZeA7LPE8yXgWC0WmM_sUHx6FH46j49Ho91bU0rplU_5z57mS_9EqyECveEr2HzRrHwoCuAb9QgkahvJKOv5ywTuNY326meTnGMkF8m8SgymQMAB9_q6h0Pnn9REBIzsBOxNZWz8zMBQxRg7NUf2EvG4rpumcUZO8C4zM6-rMcAzoTYCDxgYjdtmhqgHD01mXh3fSSQ0RqjWllV0bsWVzvjrRB9WWm1W7qe3CkTNpUo-Y2LTJfLr918LLtiJA9ETrZr6DybH0OtTJUieKNGF1NzvrNDcGheHuSd_Hgwyz2cHXqfqx5phJuEeuPVj0bCiicoL8tMDb9U58gSyy13xwO5SL_v7jFvu8ykdq-95xtvrpq97b-zbOJcdlGH-7ZdDMb5GbxhOhuYbVbTKS9R1yXecm3dwlvy6BiypwUQUNasD1mg6gRUHXdAAtaqFF28bc34MW1dCiVU01tNRTFLSohtY9cvTu7fzNoWNydzgcTMLWiSVYgp7MWOIKHidQLlwOs71Iyyjk6CRID5mA0kiUElblMklgPHhSggMvXFcE98le3dTyIaEikqXMFoKXmJuo5FnAA5-nPotSmYBHPiYvu9EuuCG2x_wqp8VO3Y7JC9v8h2Z0-VvD_U51hfnoVwW4Q7BChtD1MXlmq2FKxn22RS2btWqDxwLdBLr2QGvavinAbXo_g5qkhwHbAOne-zV19V3RvseYmyFzH121_4_JjYsvb5_stcu1fAIWdMueKlj_AUxbymg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pharmacologically+Aware+Phage+Therapy%3A+Pharmacodynamic+and+Pharmacokinetic+Obstacles+to+Phage+Antibacterial+Action+in+Animal+and+Human+Bodies&rft.jtitle=Microbiology+and+molecular+biology+reviews&rft.au=D%C4%85browska%2C+Krystyna&rft.au=Abedon%2C+Stephen+T.&rft.date=2019-12-01&rft.issn=1092-2172&rft.eissn=1098-5557&rft.volume=83&rft.issue=4&rft_id=info:doi/10.1128%2FMMBR.00012-19&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_MMBR_00012_19
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1092-2172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1092-2172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1092-2172&client=summon