Developing Multi-Labelled Corpus of Twitter Short Texts: A Semi-Automatic Method

Facing fast-increasing electronic documents in the Digital Media Age, the need to extract textual features of online texts for better communication is growing. Sentiment classification might be the key method to catch emotions of online communication, and developing corpora with annotation of emotio...

Full description

Saved in:
Bibliographic Details
Published inSystems (Basel) Vol. 11; no. 8; p. 390
Main Authors Liu, Xuan, Zhou, Guohui, Kong, Minghui, Yin, Zhengtong, Li, Xiaolu, Yin, Lirong, Zheng, Wenfeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Facing fast-increasing electronic documents in the Digital Media Age, the need to extract textual features of online texts for better communication is growing. Sentiment classification might be the key method to catch emotions of online communication, and developing corpora with annotation of emotions is the first step to achieving sentiment classification. However, the labour-intensive and costly manual annotation has resulted in the lack of corpora for emotional words. Furthermore, single-label semantic corpora could hardly meet the requirement of modern analysis of complicated user’s emotions, but tagging emotional words with multiple labels is even more difficult than usual. Improvement of the methods of automatic emotion tagging with multiple emotion labels to construct new semantic corpora is urgently needed. Taking Twitter short texts as the case, this study proposes a new semi-automatic method to annotate Internet short texts with multiple labels and form a multi-labelled corpus for further algorithm training. Each sentence is tagged with both the emotional tendency and polarity, and each tweet, which generally contains several sentences, is tagged with the first two major emotional tendencies. The semi-automatic multi-labelled annotation is achieved through the process of selecting the base corpus and emotional tags, data preprocessing, automatic annotation through word matching and weight calculation, and manual correction in case of multiple emotional tendencies are found. The experiments on the Sentiment140 published Twitter corpus demonstrate the effectiveness of the proposed approach and show consistency between the results of semi-automatic annotation and manual annotation. By applying this method, this study summarises the annotation specification and constructs a multi-labelled emotion corpus with 6500 tweets for further algorithm training.
AbstractList Facing fast-increasing electronic documents in the Digital Media Age, the need to extract textual features of online texts for better communication is growing. Sentiment classification might be the key method to catch emotions of online communication, and developing corpora with annotation of emotions is the first step to achieving sentiment classification. However, the labour-intensive and costly manual annotation has resulted in the lack of corpora for emotional words. Furthermore, single-label semantic corpora could hardly meet the requirement of modern analysis of complicated user’s emotions, but tagging emotional words with multiple labels is even more difficult than usual. Improvement of the methods of automatic emotion tagging with multiple emotion labels to construct new semantic corpora is urgently needed. Taking Twitter short texts as the case, this study proposes a new semi-automatic method to annotate Internet short texts with multiple labels and form a multi-labelled corpus for further algorithm training. Each sentence is tagged with both the emotional tendency and polarity, and each tweet, which generally contains several sentences, is tagged with the first two major emotional tendencies. The semi-automatic multi-labelled annotation is achieved through the process of selecting the base corpus and emotional tags, data preprocessing, automatic annotation through word matching and weight calculation, and manual correction in case of multiple emotional tendencies are found. The experiments on the Sentiment140 published Twitter corpus demonstrate the effectiveness of the proposed approach and show consistency between the results of semi-automatic annotation and manual annotation. By applying this method, this study summarises the annotation specification and constructs a multi-labelled emotion corpus with 6500 tweets for further algorithm training.
Audience Academic
Author Zhou, Guohui
Liu, Xuan
Yin, Zhengtong
Li, Xiaolu
Yin, Lirong
Kong, Minghui
Zheng, Wenfeng
Author_xml – sequence: 1
  givenname: Xuan
  orcidid: 0000-0001-5599-2607
  surname: Liu
  fullname: Liu, Xuan
– sequence: 2
  givenname: Guohui
  surname: Zhou
  fullname: Zhou, Guohui
– sequence: 3
  givenname: Minghui
  surname: Kong
  fullname: Kong, Minghui
– sequence: 4
  givenname: Zhengtong
  orcidid: 0000-0002-9818-9205
  surname: Yin
  fullname: Yin, Zhengtong
– sequence: 5
  givenname: Xiaolu
  surname: Li
  fullname: Li, Xiaolu
– sequence: 6
  givenname: Lirong
  surname: Yin
  fullname: Yin, Lirong
– sequence: 7
  givenname: Wenfeng
  orcidid: 0000-0002-8486-1654
  surname: Zheng
  fullname: Zheng, Wenfeng
BookMark eNp1Ud9rFDEQDlLBWvvsa8DnbbP5sbvx7Th_Fa4o9HwO2WRyzbG3OZNstf-9oyciBTOByQzzffmY7yU5m9MMhLxu2ZUQml2Xx1LhUNqWDQzrZ-Scs143g1by7J_3C3JZyp7h0a0YOnlOvryDB5jSMc47ertMNTYbO8I0gafrlI9LoSnQ7fdYK2R6d59ypVv4UctbuqJ3cIjNaqnpYGt09BbqffKvyPNgpwKXf_IF-frh_Xb9qdl8_nizXm0aJ1tVm25UjjmuLR9tcJxxp4dBWWCik0L6ANJ5qQYltZTBKS9Gxb2wvO8V6u46cUFuTrw-2b055niw-dEkG83vRso7YzPKmsCw3nPoulaNDCQmjVc6YFZ4EXhvkevNieuY07cFSjX7tOQZ5Rs-qF5KJlqNU1enqZ1F0jiHVLN1GB734NCPELG_6juOqpkaEHB9AricSskQ_spsmfllm3liGyLUE4SLFZebZvwqTv_F_QThL537
CitedBy_id crossref_primary_10_1007_s00500_023_09457_2
crossref_primary_10_1007_s00500_023_09329_9
crossref_primary_10_3389_fenrg_2023_1272942
crossref_primary_10_1007_s10723_024_09752_8
crossref_primary_10_7717_peerj_cs_1714
crossref_primary_10_3390_math11183928
crossref_primary_10_1038_s41598_023_48220_3
crossref_primary_10_1007_s00500_023_09524_8
crossref_primary_10_1007_s00500_023_09528_4
crossref_primary_10_1080_03772063_2023_2278696
crossref_primary_10_1109_TBDATA_2023_3325746
crossref_primary_10_1007_s11356_023_30519_3
crossref_primary_10_1371_journal_pone_0295802
crossref_primary_10_1007_s11276_023_03556_6
crossref_primary_10_1007_s11277_023_10777_7
crossref_primary_10_1002_csr_2621
crossref_primary_10_1109_ACCESS_2024_3478072
crossref_primary_10_1016_j_heliyon_2024_e28147
crossref_primary_10_1016_j_heliyon_2024_e32959
crossref_primary_10_1631_FITEE_2300668
crossref_primary_10_7717_peerj_cs_1666
crossref_primary_10_1007_s00500_023_09419_8
crossref_primary_10_1016_j_jksuci_2024_101931
crossref_primary_10_1016_j_resourpol_2023_104269
crossref_primary_10_1109_ACCESS_2023_3322924
crossref_primary_10_1007_s00500_024_09642_x
crossref_primary_10_1007_s00521_024_10670_9
crossref_primary_10_1007_s12530_023_09547_4
crossref_primary_10_1007_s00500_023_09224_3
crossref_primary_10_3389_fenrg_2023_1271752
crossref_primary_10_1007_s00500_023_09621_8
crossref_primary_10_3390_su152115492
crossref_primary_10_1007_s11277_024_11020_7
crossref_primary_10_1007_s10723_024_09755_5
crossref_primary_10_3390_math11194132
crossref_primary_10_1093_comjnl_bxae052
crossref_primary_10_1016_j_engappai_2023_107561
crossref_primary_10_1109_ACCESS_2024_3358422
crossref_primary_10_1007_s00500_023_09312_4
crossref_primary_10_1007_s10479_024_05849_1
crossref_primary_10_1016_j_asoc_2024_111906
crossref_primary_10_1007_s00500_023_09134_4
crossref_primary_10_1016_j_rinp_2023_107052
crossref_primary_10_1007_s00500_023_09217_2
crossref_primary_10_1007_s00500_023_09618_3
crossref_primary_10_1002_ett_70102
crossref_primary_10_1007_s10723_024_09774_2
crossref_primary_10_1007_s11277_024_11017_2
crossref_primary_10_1002_sd_2864
crossref_primary_10_1007_s10723_024_09744_8
crossref_primary_10_1007_s10723_024_09748_4
crossref_primary_10_1016_j_asoc_2024_111461
crossref_primary_10_1109_ACCESS_2024_3355546
crossref_primary_10_1111_exsy_13564
crossref_primary_10_1111_exsy_13563
crossref_primary_10_3390_axioms13020109
crossref_primary_10_1007_s10723_023_09735_1
crossref_primary_10_1007_s10723_023_09737_z
crossref_primary_10_1007_s11227_023_05709_y
crossref_primary_10_1007_s11276_023_03589_x
crossref_primary_10_1007_s00500_023_09436_7
crossref_primary_10_1007_s00500_023_09221_6
crossref_primary_10_1007_s00500_023_09451_8
crossref_primary_10_1007_s10723_024_09765_3
crossref_primary_10_1109_ACCESS_2023_3333280
crossref_primary_10_1186_s13677_023_00577_6
crossref_primary_10_1007_s11356_023_30125_3
crossref_primary_10_1016_j_adhoc_2023_103322
crossref_primary_10_3390_su152014780
crossref_primary_10_1016_j_imu_2024_101500
crossref_primary_10_1007_s00500_023_09353_9
crossref_primary_10_1186_s13677_023_00550_3
crossref_primary_10_1016_j_resourpol_2023_104614
crossref_primary_10_1007_s00500_023_09311_5
crossref_primary_10_1007_s00500_023_09330_2
crossref_primary_10_3390_systems12010001
crossref_primary_10_1007_s00500_024_09639_6
crossref_primary_10_1057_s41599_024_02926_5
crossref_primary_10_1007_s00521_023_09236_y
crossref_primary_10_3389_fmed_2024_1379211
crossref_primary_10_1002_dac_5886
crossref_primary_10_1016_j_heliyon_2023_e20085
crossref_primary_10_1142_S2196888824500209
crossref_primary_10_1111_exsy_13468
crossref_primary_10_1007_s11042_023_17704_9
crossref_primary_10_1016_j_asoc_2024_111286
crossref_primary_10_1109_ACCESS_2023_3339553
crossref_primary_10_24857_rgsa_v18n9_056
crossref_primary_10_3390_su16062507
crossref_primary_10_7717_peerj_cs_1860
crossref_primary_10_1016_j_techfore_2023_123070
crossref_primary_10_1007_s11277_024_11041_2
crossref_primary_10_1007_s00500_023_09163_z
crossref_primary_10_1080_08839514_2024_2321555
crossref_primary_10_1016_j_heliyon_2023_e21429
crossref_primary_10_4103_drj_drj_254_24
crossref_primary_10_1007_s10723_023_09714_6
crossref_primary_10_1007_s00500_023_09450_9
crossref_primary_10_3390_systems11090483
crossref_primary_10_1016_j_heliyon_2023_e22191
crossref_primary_10_3390_fractalfract7090653
crossref_primary_10_1016_j_chaos_2024_115530
crossref_primary_10_1016_j_heliyon_2024_e26470
crossref_primary_10_1007_s10579_024_09733_z
crossref_primary_10_1007_s40996_024_01371_3
crossref_primary_10_3390_electronics12224694
crossref_primary_10_1007_s00500_023_09162_0
crossref_primary_10_1007_s11831_023_10039_6
crossref_primary_10_1007_s11042_024_18669_z
crossref_primary_10_1007_s11356_023_30015_8
crossref_primary_10_1109_TCSS_2024_3383493
crossref_primary_10_1007_s00500_023_09571_1
crossref_primary_10_1007_s12559_023_10236_2
crossref_primary_10_1007_s00500_023_09211_8
crossref_primary_10_1016_j_aej_2023_09_034
crossref_primary_10_1007_s10723_023_09722_6
crossref_primary_10_3389_fphys_2024_1344887
crossref_primary_10_1007_s10723_024_09750_w
crossref_primary_10_1016_j_heliyon_2023_e23576
crossref_primary_10_3233_JIFS_233418
crossref_primary_10_3390_s23177485
crossref_primary_10_1038_s41598_023_50839_1
crossref_primary_10_1016_j_eij_2024_100447
crossref_primary_10_1007_s11276_023_03546_8
crossref_primary_10_1016_j_heliyon_2024_e27392
crossref_primary_10_1093_comnet_cnad053
crossref_primary_10_3233_JIFS_237056
Cites_doi 10.1080/02699939208411068
10.1109/ICAEE48663.2019.8975433
10.1016/j.neucom.2016.03.088
10.3390/s18072074
10.1371/journal.pone.0239050
10.1007/s13278-019-0602-x
10.1162/COLI_a_00049
10.1016/j.joi.2020.101076
10.1049/joe.2019.1212
10.1109/ICSC.2020.00060
10.1016/j.eswa.2014.08.036
10.1515/cllt-2019-0060
10.1109/TASLP.2020.3001390
10.1109/CCIS48116.2019.9073750
10.1007/978-3-030-04015-4_11
10.23919/FRUCT48121.2019.8981501
10.1016/j.im.2021.103547
10.1016/j.csl.2013.04.010
10.1117/12.2501916
10.1007/s11036-020-01697-y
10.1145/3219819.3219853
10.1109/ICTAI.2014.71
10.1109/BigComp.2018.00026
10.1109/ICDMW.2014.146
10.1109/ISCAS51556.2021.9401737
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOA
DOI 10.3390/systems11080390
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Business
EISSN 2079-8954
ExternalDocumentID oai_doaj_org_article_07d2e6615b0e461591594ce0a3d3f27a
A762549058
10_3390_systems11080390
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
K6V
K7-
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
PMFND
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-c415t-6b5c0c29a2bafc202c9885ae036434dfe4cd45854944fc5d3b52d3a2775864663
IEDL.DBID BENPR
ISSN 2079-8954
IngestDate Wed Aug 27 01:31:42 EDT 2025
Fri Jul 25 02:50:20 EDT 2025
Tue Jun 10 21:05:13 EDT 2025
Tue Jul 01 01:28:39 EDT 2025
Thu Apr 24 22:52:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-6b5c0c29a2bafc202c9885ae036434dfe4cd45854944fc5d3b52d3a2775864663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9818-9205
0000-0001-5599-2607
0000-0002-8486-1654
OpenAccessLink https://www.proquest.com/docview/2857440319?pq-origsite=%requestingapplication%
PQID 2857440319
PQPubID 2032325
ParticipantIDs doaj_primary_oai_doaj_org_article_07d2e6615b0e461591594ce0a3d3f27a
proquest_journals_2857440319
gale_infotracacademiconefile_A762549058
crossref_primary_10_3390_systems11080390
crossref_citationtrail_10_3390_systems11080390
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Systems (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
Go (ref_36) 2009; 1
ref_13
ref_35
ref_12
ref_34
ref_11
ref_31
ref_30
Li (ref_23) 2016; 210
Fei (ref_25) 2020; 28
ref_19
ref_18
ref_17
Taboada (ref_28) 2011; 37
Dogan (ref_33) 2020; 14
(ref_22) 2021; 9
Guellil (ref_15) 2019; 9
Ptaszynski (ref_7) 2014; 28
ref_24
Tang (ref_32) 2021; 26
ref_21
ref_20
Feng (ref_1) 2021; 58
Xu (ref_10) 2008; 22
Liu (ref_5) 2015; 42
Clausen (ref_16) 2022; 18
ref_3
ref_2
ref_29
ref_27
Liang (ref_8) 2020; 2020
Ullah (ref_26) 2022; 72
Ekman (ref_9) 1992; 6
ref_4
ref_6
References_xml – volume: 6
  start-page: 169
  year: 1992
  ident: ref_9
  article-title: An argument for basic emotions
  publication-title: Cogn. Emot.
  doi: 10.1080/02699939208411068
– ident: ref_6
  doi: 10.1109/ICAEE48663.2019.8975433
– volume: 210
  start-page: 247
  year: 2016
  ident: ref_23
  article-title: Multi-label maximum entropy model for social emotion classification over short text
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.088
– ident: ref_31
  doi: 10.3390/s18072074
– ident: ref_11
  doi: 10.1371/journal.pone.0239050
– volume: 9
  start-page: 1
  year: 2019
  ident: ref_15
  article-title: Arabic sentiment analysis: Studies, resources, and tools
  publication-title: Soc. Netw. Anal. Min.
  doi: 10.1007/s13278-019-0602-x
– ident: ref_14
– volume: 37
  start-page: 267
  year: 2011
  ident: ref_28
  article-title: Lexicon-based methods for sentiment analysis
  publication-title: Comput. Linguist.
  doi: 10.1162/COLI_a_00049
– volume: 9
  start-page: 1197
  year: 2021
  ident: ref_22
  article-title: Multilabel Emotion Tagging for Domain-Specific Texts
  publication-title: IEEE Trans. Comput. Soc. Syst.
– ident: ref_18
– ident: ref_35
– volume: 14
  start-page: 101076
  year: 2020
  ident: ref_33
  article-title: A novel term weighting scheme for text classification: Tf-mono
  publication-title: J. Informetr.
  doi: 10.1016/j.joi.2020.101076
– volume: 2020
  start-page: 595
  year: 2020
  ident: ref_8
  article-title: Using normal dictionaries to extract multiple semantic relationships
  publication-title: J. Eng.
  doi: 10.1049/joe.2019.1212
– ident: ref_24
  doi: 10.1109/ICSC.2020.00060
– volume: 42
  start-page: 1083
  year: 2015
  ident: ref_5
  article-title: A multi-label classification based approach for sentiment classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.08.036
– volume: 1
  start-page: 2009
  year: 2009
  ident: ref_36
  article-title: Twitter sentiment classification using distant supervision
  publication-title: CS224N Proj. Rep. Stanf.
– volume: 18
  start-page: 1
  year: 2022
  ident: ref_16
  article-title: A corpus-based analysis of meaning variations in German tag questions Evidence from spoken and written conversational corpora
  publication-title: Corpus Linguist. Linguist. Theory
  doi: 10.1515/cllt-2019-0060
– volume: 28
  start-page: 1839
  year: 2020
  ident: ref_25
  article-title: Topic-enhanced capsule network for multi-label emotion classification
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2020.3001390
– ident: ref_27
– ident: ref_19
  doi: 10.1109/CCIS48116.2019.9073750
– ident: ref_12
– ident: ref_21
  doi: 10.1007/978-3-030-04015-4_11
– ident: ref_17
  doi: 10.23919/FRUCT48121.2019.8981501
– volume: 58
  start-page: 103547
  year: 2021
  ident: ref_1
  article-title: Understanding how the semantic features of contents influence the diffusion of government microblogs: Moderating role of content topics
  publication-title: Inf. Manag.
  doi: 10.1016/j.im.2021.103547
– volume: 28
  start-page: 38
  year: 2014
  ident: ref_7
  article-title: Automatically annotating a five-billion-word corpus of Japanese blogs for sentiment and affect analysis
  publication-title: Comput. Speech Lang.
  doi: 10.1016/j.csl.2013.04.010
– volume: 22
  start-page: 116
  year: 2008
  ident: ref_10
  article-title: Construction and analysis of affective corpus
  publication-title: J. Chin. Inf.
– ident: ref_3
  doi: 10.1117/12.2501916
– volume: 26
  start-page: 174
  year: 2021
  ident: ref_32
  article-title: Research on sentiment analysis of network forum based on BP neural network
  publication-title: Mob. Netw. Appl.
  doi: 10.1007/s11036-020-01697-y
– ident: ref_13
– volume: 72
  start-page: 2323
  year: 2022
  ident: ref_26
  article-title: Deep Learning and Machine Learning-Based Model for Conversational Sentiment Classification
  publication-title: Comput. Mater. Contin.
– ident: ref_2
  doi: 10.1145/3219819.3219853
– ident: ref_4
  doi: 10.1109/ICTAI.2014.71
– ident: ref_20
– ident: ref_29
  doi: 10.1109/BigComp.2018.00026
– ident: ref_34
  doi: 10.1109/ICDMW.2014.146
– ident: ref_30
  doi: 10.1109/ISCAS51556.2021.9401737
SSID ssj0000913864
Score 2.568597
Snippet Facing fast-increasing electronic documents in the Digital Media Age, the need to extract textual features of online texts for better communication is growing....
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 390
SubjectTerms Algorithms
annotation
Annotations
Classification
Construction
Data mining
Dictionaries
Electronic documents
emotion
Emotions
Labels
Machine learning
Marking
Methods
multi-labelled
Online social networks
Semantics
Sentences
Sentiment analysis
sentiment corpus
Social networks
Texts
Training
Twitter corpus
Words (language)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA_ig-iD6FScTsmDoC91MUnbxLf5MYY4EZywt9DmAwXdxG3473uXdmMI4otQaCkppJfL3f3I3e8IORFKigC2Pym114kUDp4yZQHz-Dy3AjymR6DYf8h6z_JumA6XWn1hTlhFD1wJrs1yxz04kbRkXsJNwyWtZ4VwIvA8hkbg85bAVLTB-kKoTFZcPgJwfbsiRp5g1jsTaIGX3FBk6__NJkdH090im3WESDvVzLbJih81yNo8Qb1BNpYoBHfI482i6onGYtrkvsCzBO8okhTPJnQc6ODrFYt26NMLBNt0APZ4ckk79Mm_vyad2XQcaVtpPzaT3iXP3dvBdS-puyQkFpzvNMnK1DLLdcHLIljOuNVKpYXHA0YhXfDSOgmgQGopg02dKFPuRMFzQAqZhIBjj6yOxiO_T6hjQeXBli6HryD01kqWXAfNmRcFREJNcj4XmrE1hTh2sngzACVQyuaHlJvkbPHBR8We8fvQK1yFxTCkvY4vQBlMrQzmL2VoklNcQ4ObEyZmi7rGAH4Paa5MB0w_CIKlqkla82U29a6dGK5S5EsEq3TwH7M5JOvYnL5KF2yR1ennzB9BCDMtj6O2fgOi_OyE
  priority: 102
  providerName: Directory of Open Access Journals
Title Developing Multi-Labelled Corpus of Twitter Short Texts: A Semi-Automatic Method
URI https://www.proquest.com/docview/2857440319
https://doaj.org/article/07d2e6615b0e461591594ce0a3d3f27a
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEB5sC6IPRavi2XrkQdCXtSHJ7ia-lKv2LGJLsVfoW8jmhxb0tnbv8N_vzG7uLEKFhV12s7A7k8zMl2S-AXgjtZIJbX_RmGgKJQNeVdoj5ol17SV6zEhA8eS0Or5QXy7Lyzzh1uVtlSub2Bvq0HqaI98XuiQuO-wxB9e_C6oaRauruYTGBmyhCdYIvrYOj07Pvq1nWYj1Uldq4PSRiO_3B4Lkjna_c0mW-I476ln777PNvcOZPoHtHCmyyaDap_Agznfg4Wqj-g48vkMl-AzOPq2zn1ifVFt8dbSmEAMjsuJlx9rEZn-uKHmHnf_AoJvN0C53H9iEncdfV8VkuWh7-lZ20heVfg4X06PZx-MiV0soPDrhRVE1pedeGCcal7zgwhutSxdpoVGqkKLyQSE4UEap5Msgm1IE6USNiKFSGHi8gM15O48vgQWedJ18E2p8C0Nwo1UjTDKCR-kwIhrB-5XQrM9U4lTR4qdFSEFStv9IeQTv1i9cDywa9zc9JC2smxH9dX-jvflu82iyvA4iYmRRNjwqPBk8lI_cySCTqN0I3pIOLQ1S_DDvcq4B_h7RXdkJugAUBC_1CPZWarZ59Hb2b1979f_Hu_CIys8PGwL3YHNxs4yvMUhZNGPY0NPP49wfxz3UvwX4Def-
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qBa0PolXpadV9UPQldtndXHaFIqf1vNq7IvQKfVuT_WgLeqnNHcV_qn-jM_k4i1DfCoGE7CYkM7PzsbvzG4BXUisZUfcnhQkmUdLjVV87jHlCljmJFjNQoDjZ748O1dej9GgFLrtcGNpW2enEWlH70tEc-ZbQKWHZocR8OPuVUNUoWl3tSmg0YrEXfl9gyFZt7-4gf18LMfw8_TRK2qoCiUNjNU_6Req4EyYXRR4dxv7OaJ3mgRbkpPIxKOcVOtHKKBVd6mWRCi9zkaFn3VdooPG9t-C2ktLQiNLDL8s5HcLYxD4NghC2860GjrmivfZckt6_YvzqGgHXWYLavA0fwP3WL2WDRpAewkqYrcOdblv8Oty7Alz4CL7tLHOtWJ3Cm4xzWsEInhE08qJiZWTTi1NKFWIHJ-jisylageo9G7CD8PM0GSzmZQ0WyyZ1CevHcHgjVHwCq7NyFjaAeR51Fl3hM3wKHX6jVSFMNIIHmaP_1YN3HdGsa4HLqX7GD4sBDFHZ_kPlHrxdPnDWYHZc3_UjcWHZjcC26xvl-bFtx67lmRcB_Zi04EHhyeChXOC59DKKLO_BG-KhJZWAH-byNrMBf4_AtewADQ4Sgqe6B5sdm22rKyr7V7Kf_r_5JdwdTSdjO97d33sGa1T4vtmKuAmr8_NFeI7u0bx4Ucskg-83PQj-AM9AIL4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFYp9KFoVT6vug6Iv8ZbdzSVbELl6PVrbHoe9Qt_WZD_aQr3U5o7iv-Zf50w-ziLUt0IgIdkNyezsfOzO_AbgrUyVDCj7o1x7HSnp8KqfWvR5fJJYiRrTk6N4NO7vnaivp_HpCvxuc2EorLKViZWgdoWlNfKeSGPCskOO6YUmLGIyHH2--hlRBSnaaW3LadQscuB_3aD7Vn7aH-JYvxNitDv9shc1FQYii4prHvXz2HIrdCbyLFjBhdVpGmeeNuekcsEr6xQa1EorFWzsZB4LJzORoJXdV6is8b0PYDVBr4h3YHVndzz5tlzhIcRNbFXjCUmpea8GZy4p8p5L0gK3VGFVMeAuvVApu9Ej2GisVDao2eoxrPjZJqy1QfKbsH4LxvAJTIbLzCtWJfRGhxntZ3jHCCh5UbIisOnNBSUOseNzNPjZFAlbbrMBO_Y_LqLBYl5U0LHsqCpo_RRO7oWOz6AzK2b-OTDHQ5oEm7sEe6H5r1OVCx204F5maI114WNLNGMbGHOqpnFp0J0hKpt_qNyFD8sOVzWCx91Nd2gUls0Ieru6UVyfmWYmG5444dGqiXPuFZ40Hsp6nkkng0iyLrynMTQkIPDDbNbkOeDvEdSWGaD6QULwOO3CVjvMppEcpfnL5y_-__gNrOEEMIf744OX8BBpLuu4xC3ozK8X_hXaSvP8dcOUDL7f9zz4AwagJlA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+Multi-Labelled+Corpus+of+Twitter+Short+Texts%3A+A+Semi-Automatic+Method&rft.jtitle=Systems+%28Basel%29&rft.au=Liu%2C+Xuan&rft.au=Zhou%2C+Guohui&rft.au=Kong%2C+Minghui&rft.au=Yin%2C+Zhengtong&rft.date=2023-08-01&rft.issn=2079-8954&rft.eissn=2079-8954&rft.volume=11&rft.issue=8&rft.spage=390&rft_id=info:doi/10.3390%2Fsystems11080390&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_systems11080390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-8954&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-8954&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-8954&client=summon