Developing Multi-Labelled Corpus of Twitter Short Texts: A Semi-Automatic Method
Facing fast-increasing electronic documents in the Digital Media Age, the need to extract textual features of online texts for better communication is growing. Sentiment classification might be the key method to catch emotions of online communication, and developing corpora with annotation of emotio...
Saved in:
Published in | Systems (Basel) Vol. 11; no. 8; p. 390 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Facing fast-increasing electronic documents in the Digital Media Age, the need to extract textual features of online texts for better communication is growing. Sentiment classification might be the key method to catch emotions of online communication, and developing corpora with annotation of emotions is the first step to achieving sentiment classification. However, the labour-intensive and costly manual annotation has resulted in the lack of corpora for emotional words. Furthermore, single-label semantic corpora could hardly meet the requirement of modern analysis of complicated user’s emotions, but tagging emotional words with multiple labels is even more difficult than usual. Improvement of the methods of automatic emotion tagging with multiple emotion labels to construct new semantic corpora is urgently needed. Taking Twitter short texts as the case, this study proposes a new semi-automatic method to annotate Internet short texts with multiple labels and form a multi-labelled corpus for further algorithm training. Each sentence is tagged with both the emotional tendency and polarity, and each tweet, which generally contains several sentences, is tagged with the first two major emotional tendencies. The semi-automatic multi-labelled annotation is achieved through the process of selecting the base corpus and emotional tags, data preprocessing, automatic annotation through word matching and weight calculation, and manual correction in case of multiple emotional tendencies are found. The experiments on the Sentiment140 published Twitter corpus demonstrate the effectiveness of the proposed approach and show consistency between the results of semi-automatic annotation and manual annotation. By applying this method, this study summarises the annotation specification and constructs a multi-labelled emotion corpus with 6500 tweets for further algorithm training. |
---|---|
AbstractList | Facing fast-increasing electronic documents in the Digital Media Age, the need to extract textual features of online texts for better communication is growing. Sentiment classification might be the key method to catch emotions of online communication, and developing corpora with annotation of emotions is the first step to achieving sentiment classification. However, the labour-intensive and costly manual annotation has resulted in the lack of corpora for emotional words. Furthermore, single-label semantic corpora could hardly meet the requirement of modern analysis of complicated user’s emotions, but tagging emotional words with multiple labels is even more difficult than usual. Improvement of the methods of automatic emotion tagging with multiple emotion labels to construct new semantic corpora is urgently needed. Taking Twitter short texts as the case, this study proposes a new semi-automatic method to annotate Internet short texts with multiple labels and form a multi-labelled corpus for further algorithm training. Each sentence is tagged with both the emotional tendency and polarity, and each tweet, which generally contains several sentences, is tagged with the first two major emotional tendencies. The semi-automatic multi-labelled annotation is achieved through the process of selecting the base corpus and emotional tags, data preprocessing, automatic annotation through word matching and weight calculation, and manual correction in case of multiple emotional tendencies are found. The experiments on the Sentiment140 published Twitter corpus demonstrate the effectiveness of the proposed approach and show consistency between the results of semi-automatic annotation and manual annotation. By applying this method, this study summarises the annotation specification and constructs a multi-labelled emotion corpus with 6500 tweets for further algorithm training. |
Audience | Academic |
Author | Zhou, Guohui Liu, Xuan Yin, Zhengtong Li, Xiaolu Yin, Lirong Kong, Minghui Zheng, Wenfeng |
Author_xml | – sequence: 1 givenname: Xuan orcidid: 0000-0001-5599-2607 surname: Liu fullname: Liu, Xuan – sequence: 2 givenname: Guohui surname: Zhou fullname: Zhou, Guohui – sequence: 3 givenname: Minghui surname: Kong fullname: Kong, Minghui – sequence: 4 givenname: Zhengtong orcidid: 0000-0002-9818-9205 surname: Yin fullname: Yin, Zhengtong – sequence: 5 givenname: Xiaolu surname: Li fullname: Li, Xiaolu – sequence: 6 givenname: Lirong surname: Yin fullname: Yin, Lirong – sequence: 7 givenname: Wenfeng orcidid: 0000-0002-8486-1654 surname: Zheng fullname: Zheng, Wenfeng |
BookMark | eNp1Ud9rFDEQDlLBWvvsa8DnbbP5sbvx7Th_Fa4o9HwO2WRyzbG3OZNstf-9oyciBTOByQzzffmY7yU5m9MMhLxu2ZUQml2Xx1LhUNqWDQzrZ-Scs143g1by7J_3C3JZyp7h0a0YOnlOvryDB5jSMc47ertMNTYbO8I0gafrlI9LoSnQ7fdYK2R6d59ypVv4UctbuqJ3cIjNaqnpYGt09BbqffKvyPNgpwKXf_IF-frh_Xb9qdl8_nizXm0aJ1tVm25UjjmuLR9tcJxxp4dBWWCik0L6ANJ5qQYltZTBKS9Gxb2wvO8V6u46cUFuTrw-2b055niw-dEkG83vRso7YzPKmsCw3nPoulaNDCQmjVc6YFZ4EXhvkevNieuY07cFSjX7tOQZ5Rs-qF5KJlqNU1enqZ1F0jiHVLN1GB734NCPELG_6juOqpkaEHB9AricSskQ_spsmfllm3liGyLUE4SLFZebZvwqTv_F_QThL537 |
CitedBy_id | crossref_primary_10_1007_s00500_023_09457_2 crossref_primary_10_1007_s00500_023_09329_9 crossref_primary_10_3389_fenrg_2023_1272942 crossref_primary_10_1007_s10723_024_09752_8 crossref_primary_10_7717_peerj_cs_1714 crossref_primary_10_3390_math11183928 crossref_primary_10_1038_s41598_023_48220_3 crossref_primary_10_1007_s00500_023_09524_8 crossref_primary_10_1007_s00500_023_09528_4 crossref_primary_10_1080_03772063_2023_2278696 crossref_primary_10_1109_TBDATA_2023_3325746 crossref_primary_10_1007_s11356_023_30519_3 crossref_primary_10_1371_journal_pone_0295802 crossref_primary_10_1007_s11276_023_03556_6 crossref_primary_10_1007_s11277_023_10777_7 crossref_primary_10_1002_csr_2621 crossref_primary_10_1109_ACCESS_2024_3478072 crossref_primary_10_1016_j_heliyon_2024_e28147 crossref_primary_10_1016_j_heliyon_2024_e32959 crossref_primary_10_1631_FITEE_2300668 crossref_primary_10_7717_peerj_cs_1666 crossref_primary_10_1007_s00500_023_09419_8 crossref_primary_10_1016_j_jksuci_2024_101931 crossref_primary_10_1016_j_resourpol_2023_104269 crossref_primary_10_1109_ACCESS_2023_3322924 crossref_primary_10_1007_s00500_024_09642_x crossref_primary_10_1007_s00521_024_10670_9 crossref_primary_10_1007_s12530_023_09547_4 crossref_primary_10_1007_s00500_023_09224_3 crossref_primary_10_3389_fenrg_2023_1271752 crossref_primary_10_1007_s00500_023_09621_8 crossref_primary_10_3390_su152115492 crossref_primary_10_1007_s11277_024_11020_7 crossref_primary_10_1007_s10723_024_09755_5 crossref_primary_10_3390_math11194132 crossref_primary_10_1093_comjnl_bxae052 crossref_primary_10_1016_j_engappai_2023_107561 crossref_primary_10_1109_ACCESS_2024_3358422 crossref_primary_10_1007_s00500_023_09312_4 crossref_primary_10_1007_s10479_024_05849_1 crossref_primary_10_1016_j_asoc_2024_111906 crossref_primary_10_1007_s00500_023_09134_4 crossref_primary_10_1016_j_rinp_2023_107052 crossref_primary_10_1007_s00500_023_09217_2 crossref_primary_10_1007_s00500_023_09618_3 crossref_primary_10_1002_ett_70102 crossref_primary_10_1007_s10723_024_09774_2 crossref_primary_10_1007_s11277_024_11017_2 crossref_primary_10_1002_sd_2864 crossref_primary_10_1007_s10723_024_09744_8 crossref_primary_10_1007_s10723_024_09748_4 crossref_primary_10_1016_j_asoc_2024_111461 crossref_primary_10_1109_ACCESS_2024_3355546 crossref_primary_10_1111_exsy_13564 crossref_primary_10_1111_exsy_13563 crossref_primary_10_3390_axioms13020109 crossref_primary_10_1007_s10723_023_09735_1 crossref_primary_10_1007_s10723_023_09737_z crossref_primary_10_1007_s11227_023_05709_y crossref_primary_10_1007_s11276_023_03589_x crossref_primary_10_1007_s00500_023_09436_7 crossref_primary_10_1007_s00500_023_09221_6 crossref_primary_10_1007_s00500_023_09451_8 crossref_primary_10_1007_s10723_024_09765_3 crossref_primary_10_1109_ACCESS_2023_3333280 crossref_primary_10_1186_s13677_023_00577_6 crossref_primary_10_1007_s11356_023_30125_3 crossref_primary_10_1016_j_adhoc_2023_103322 crossref_primary_10_3390_su152014780 crossref_primary_10_1016_j_imu_2024_101500 crossref_primary_10_1007_s00500_023_09353_9 crossref_primary_10_1186_s13677_023_00550_3 crossref_primary_10_1016_j_resourpol_2023_104614 crossref_primary_10_1007_s00500_023_09311_5 crossref_primary_10_1007_s00500_023_09330_2 crossref_primary_10_3390_systems12010001 crossref_primary_10_1007_s00500_024_09639_6 crossref_primary_10_1057_s41599_024_02926_5 crossref_primary_10_1007_s00521_023_09236_y crossref_primary_10_3389_fmed_2024_1379211 crossref_primary_10_1002_dac_5886 crossref_primary_10_1016_j_heliyon_2023_e20085 crossref_primary_10_1142_S2196888824500209 crossref_primary_10_1111_exsy_13468 crossref_primary_10_1007_s11042_023_17704_9 crossref_primary_10_1016_j_asoc_2024_111286 crossref_primary_10_1109_ACCESS_2023_3339553 crossref_primary_10_24857_rgsa_v18n9_056 crossref_primary_10_3390_su16062507 crossref_primary_10_7717_peerj_cs_1860 crossref_primary_10_1016_j_techfore_2023_123070 crossref_primary_10_1007_s11277_024_11041_2 crossref_primary_10_1007_s00500_023_09163_z crossref_primary_10_1080_08839514_2024_2321555 crossref_primary_10_1016_j_heliyon_2023_e21429 crossref_primary_10_4103_drj_drj_254_24 crossref_primary_10_1007_s10723_023_09714_6 crossref_primary_10_1007_s00500_023_09450_9 crossref_primary_10_3390_systems11090483 crossref_primary_10_1016_j_heliyon_2023_e22191 crossref_primary_10_3390_fractalfract7090653 crossref_primary_10_1016_j_chaos_2024_115530 crossref_primary_10_1016_j_heliyon_2024_e26470 crossref_primary_10_1007_s10579_024_09733_z crossref_primary_10_1007_s40996_024_01371_3 crossref_primary_10_3390_electronics12224694 crossref_primary_10_1007_s00500_023_09162_0 crossref_primary_10_1007_s11831_023_10039_6 crossref_primary_10_1007_s11042_024_18669_z crossref_primary_10_1007_s11356_023_30015_8 crossref_primary_10_1109_TCSS_2024_3383493 crossref_primary_10_1007_s00500_023_09571_1 crossref_primary_10_1007_s12559_023_10236_2 crossref_primary_10_1007_s00500_023_09211_8 crossref_primary_10_1016_j_aej_2023_09_034 crossref_primary_10_1007_s10723_023_09722_6 crossref_primary_10_3389_fphys_2024_1344887 crossref_primary_10_1007_s10723_024_09750_w crossref_primary_10_1016_j_heliyon_2023_e23576 crossref_primary_10_3233_JIFS_233418 crossref_primary_10_3390_s23177485 crossref_primary_10_1038_s41598_023_50839_1 crossref_primary_10_1016_j_eij_2024_100447 crossref_primary_10_1007_s11276_023_03546_8 crossref_primary_10_1016_j_heliyon_2024_e27392 crossref_primary_10_1093_comnet_cnad053 crossref_primary_10_3233_JIFS_237056 |
Cites_doi | 10.1080/02699939208411068 10.1109/ICAEE48663.2019.8975433 10.1016/j.neucom.2016.03.088 10.3390/s18072074 10.1371/journal.pone.0239050 10.1007/s13278-019-0602-x 10.1162/COLI_a_00049 10.1016/j.joi.2020.101076 10.1049/joe.2019.1212 10.1109/ICSC.2020.00060 10.1016/j.eswa.2014.08.036 10.1515/cllt-2019-0060 10.1109/TASLP.2020.3001390 10.1109/CCIS48116.2019.9073750 10.1007/978-3-030-04015-4_11 10.23919/FRUCT48121.2019.8981501 10.1016/j.im.2021.103547 10.1016/j.csl.2013.04.010 10.1117/12.2501916 10.1007/s11036-020-01697-y 10.1145/3219819.3219853 10.1109/ICTAI.2014.71 10.1109/BigComp.2018.00026 10.1109/ICDMW.2014.146 10.1109/ISCAS51556.2021.9401737 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U DOA |
DOI | 10.3390/systems11080390 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Business |
EISSN | 2079-8954 |
ExternalDocumentID | oai_doaj_org_article_07d2e6615b0e461591594ce0a3d3f27a A762549058 10_3390_systems11080390 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC K6V K7- KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC RNS PMFND 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI Q9U PUEGO |
ID | FETCH-LOGICAL-c415t-6b5c0c29a2bafc202c9885ae036434dfe4cd45854944fc5d3b52d3a2775864663 |
IEDL.DBID | BENPR |
ISSN | 2079-8954 |
IngestDate | Wed Aug 27 01:31:42 EDT 2025 Fri Jul 25 02:50:20 EDT 2025 Tue Jun 10 21:05:13 EDT 2025 Tue Jul 01 01:28:39 EDT 2025 Thu Apr 24 22:52:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-6b5c0c29a2bafc202c9885ae036434dfe4cd45854944fc5d3b52d3a2775864663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9818-9205 0000-0001-5599-2607 0000-0002-8486-1654 |
OpenAccessLink | https://www.proquest.com/docview/2857440319?pq-origsite=%requestingapplication% |
PQID | 2857440319 |
PQPubID | 2032325 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_07d2e6615b0e461591594ce0a3d3f27a proquest_journals_2857440319 gale_infotracacademiconefile_A762549058 crossref_primary_10_3390_systems11080390 crossref_citationtrail_10_3390_systems11080390 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Systems (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_14 Go (ref_36) 2009; 1 ref_13 ref_35 ref_12 ref_34 ref_11 ref_31 ref_30 Li (ref_23) 2016; 210 Fei (ref_25) 2020; 28 ref_19 ref_18 ref_17 Taboada (ref_28) 2011; 37 Dogan (ref_33) 2020; 14 (ref_22) 2021; 9 Guellil (ref_15) 2019; 9 Ptaszynski (ref_7) 2014; 28 ref_24 Tang (ref_32) 2021; 26 ref_21 ref_20 Feng (ref_1) 2021; 58 Xu (ref_10) 2008; 22 Liu (ref_5) 2015; 42 Clausen (ref_16) 2022; 18 ref_3 ref_2 ref_29 ref_27 Liang (ref_8) 2020; 2020 Ullah (ref_26) 2022; 72 Ekman (ref_9) 1992; 6 ref_4 ref_6 |
References_xml | – volume: 6 start-page: 169 year: 1992 ident: ref_9 article-title: An argument for basic emotions publication-title: Cogn. Emot. doi: 10.1080/02699939208411068 – ident: ref_6 doi: 10.1109/ICAEE48663.2019.8975433 – volume: 210 start-page: 247 year: 2016 ident: ref_23 article-title: Multi-label maximum entropy model for social emotion classification over short text publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.03.088 – ident: ref_31 doi: 10.3390/s18072074 – ident: ref_11 doi: 10.1371/journal.pone.0239050 – volume: 9 start-page: 1 year: 2019 ident: ref_15 article-title: Arabic sentiment analysis: Studies, resources, and tools publication-title: Soc. Netw. Anal. Min. doi: 10.1007/s13278-019-0602-x – ident: ref_14 – volume: 37 start-page: 267 year: 2011 ident: ref_28 article-title: Lexicon-based methods for sentiment analysis publication-title: Comput. Linguist. doi: 10.1162/COLI_a_00049 – volume: 9 start-page: 1197 year: 2021 ident: ref_22 article-title: Multilabel Emotion Tagging for Domain-Specific Texts publication-title: IEEE Trans. Comput. Soc. Syst. – ident: ref_18 – ident: ref_35 – volume: 14 start-page: 101076 year: 2020 ident: ref_33 article-title: A novel term weighting scheme for text classification: Tf-mono publication-title: J. Informetr. doi: 10.1016/j.joi.2020.101076 – volume: 2020 start-page: 595 year: 2020 ident: ref_8 article-title: Using normal dictionaries to extract multiple semantic relationships publication-title: J. Eng. doi: 10.1049/joe.2019.1212 – ident: ref_24 doi: 10.1109/ICSC.2020.00060 – volume: 42 start-page: 1083 year: 2015 ident: ref_5 article-title: A multi-label classification based approach for sentiment classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.08.036 – volume: 1 start-page: 2009 year: 2009 ident: ref_36 article-title: Twitter sentiment classification using distant supervision publication-title: CS224N Proj. Rep. Stanf. – volume: 18 start-page: 1 year: 2022 ident: ref_16 article-title: A corpus-based analysis of meaning variations in German tag questions Evidence from spoken and written conversational corpora publication-title: Corpus Linguist. Linguist. Theory doi: 10.1515/cllt-2019-0060 – volume: 28 start-page: 1839 year: 2020 ident: ref_25 article-title: Topic-enhanced capsule network for multi-label emotion classification publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2020.3001390 – ident: ref_27 – ident: ref_19 doi: 10.1109/CCIS48116.2019.9073750 – ident: ref_12 – ident: ref_21 doi: 10.1007/978-3-030-04015-4_11 – ident: ref_17 doi: 10.23919/FRUCT48121.2019.8981501 – volume: 58 start-page: 103547 year: 2021 ident: ref_1 article-title: Understanding how the semantic features of contents influence the diffusion of government microblogs: Moderating role of content topics publication-title: Inf. Manag. doi: 10.1016/j.im.2021.103547 – volume: 28 start-page: 38 year: 2014 ident: ref_7 article-title: Automatically annotating a five-billion-word corpus of Japanese blogs for sentiment and affect analysis publication-title: Comput. Speech Lang. doi: 10.1016/j.csl.2013.04.010 – volume: 22 start-page: 116 year: 2008 ident: ref_10 article-title: Construction and analysis of affective corpus publication-title: J. Chin. Inf. – ident: ref_3 doi: 10.1117/12.2501916 – volume: 26 start-page: 174 year: 2021 ident: ref_32 article-title: Research on sentiment analysis of network forum based on BP neural network publication-title: Mob. Netw. Appl. doi: 10.1007/s11036-020-01697-y – ident: ref_13 – volume: 72 start-page: 2323 year: 2022 ident: ref_26 article-title: Deep Learning and Machine Learning-Based Model for Conversational Sentiment Classification publication-title: Comput. Mater. Contin. – ident: ref_2 doi: 10.1145/3219819.3219853 – ident: ref_4 doi: 10.1109/ICTAI.2014.71 – ident: ref_20 – ident: ref_29 doi: 10.1109/BigComp.2018.00026 – ident: ref_34 doi: 10.1109/ICDMW.2014.146 – ident: ref_30 doi: 10.1109/ISCAS51556.2021.9401737 |
SSID | ssj0000913864 |
Score | 2.568597 |
Snippet | Facing fast-increasing electronic documents in the Digital Media Age, the need to extract textual features of online texts for better communication is growing.... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 390 |
SubjectTerms | Algorithms annotation Annotations Classification Construction Data mining Dictionaries Electronic documents emotion Emotions Labels Machine learning Marking Methods multi-labelled Online social networks Semantics Sentences Sentiment analysis sentiment corpus Social networks Texts Training Twitter corpus Words (language) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA_ig-iD6FScTsmDoC91MUnbxLf5MYY4EZywt9DmAwXdxG3473uXdmMI4otQaCkppJfL3f3I3e8IORFKigC2Pym114kUDp4yZQHz-Dy3AjymR6DYf8h6z_JumA6XWn1hTlhFD1wJrs1yxz04kbRkXsJNwyWtZ4VwIvA8hkbg85bAVLTB-kKoTFZcPgJwfbsiRp5g1jsTaIGX3FBk6__NJkdH090im3WESDvVzLbJih81yNo8Qb1BNpYoBHfI482i6onGYtrkvsCzBO8okhTPJnQc6ODrFYt26NMLBNt0APZ4ckk79Mm_vyad2XQcaVtpPzaT3iXP3dvBdS-puyQkFpzvNMnK1DLLdcHLIljOuNVKpYXHA0YhXfDSOgmgQGopg02dKFPuRMFzQAqZhIBjj6yOxiO_T6hjQeXBli6HryD01kqWXAfNmRcFREJNcj4XmrE1hTh2sngzACVQyuaHlJvkbPHBR8We8fvQK1yFxTCkvY4vQBlMrQzmL2VoklNcQ4ObEyZmi7rGAH4Paa5MB0w_CIKlqkla82U29a6dGK5S5EsEq3TwH7M5JOvYnL5KF2yR1ennzB9BCDMtj6O2fgOi_OyE priority: 102 providerName: Directory of Open Access Journals |
Title | Developing Multi-Labelled Corpus of Twitter Short Texts: A Semi-Automatic Method |
URI | https://www.proquest.com/docview/2857440319 https://doaj.org/article/07d2e6615b0e461591594ce0a3d3f27a |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEB5sC6IPRavi2XrkQdCXtSHJ7ia-lKv2LGJLsVfoW8jmhxb0tnbv8N_vzG7uLEKFhV12s7A7k8zMl2S-AXgjtZIJbX_RmGgKJQNeVdoj5ol17SV6zEhA8eS0Or5QXy7Lyzzh1uVtlSub2Bvq0HqaI98XuiQuO-wxB9e_C6oaRauruYTGBmyhCdYIvrYOj07Pvq1nWYj1Uldq4PSRiO_3B4Lkjna_c0mW-I476ln777PNvcOZPoHtHCmyyaDap_Agznfg4Wqj-g48vkMl-AzOPq2zn1ifVFt8dbSmEAMjsuJlx9rEZn-uKHmHnf_AoJvN0C53H9iEncdfV8VkuWh7-lZ20heVfg4X06PZx-MiV0soPDrhRVE1pedeGCcal7zgwhutSxdpoVGqkKLyQSE4UEap5Msgm1IE6USNiKFSGHi8gM15O48vgQWedJ18E2p8C0Nwo1UjTDKCR-kwIhrB-5XQrM9U4lTR4qdFSEFStv9IeQTv1i9cDywa9zc9JC2smxH9dX-jvflu82iyvA4iYmRRNjwqPBk8lI_cySCTqN0I3pIOLQ1S_DDvcq4B_h7RXdkJugAUBC_1CPZWarZ59Hb2b1979f_Hu_CIys8PGwL3YHNxs4yvMUhZNGPY0NPP49wfxz3UvwX4Def- |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qBa0PolXpadV9UPQldtndXHaFIqf1vNq7IvQKfVuT_WgLeqnNHcV_qn-jM_k4i1DfCoGE7CYkM7PzsbvzG4BXUisZUfcnhQkmUdLjVV87jHlCljmJFjNQoDjZ748O1dej9GgFLrtcGNpW2enEWlH70tEc-ZbQKWHZocR8OPuVUNUoWl3tSmg0YrEXfl9gyFZt7-4gf18LMfw8_TRK2qoCiUNjNU_6Req4EyYXRR4dxv7OaJ3mgRbkpPIxKOcVOtHKKBVd6mWRCi9zkaFn3VdooPG9t-C2ktLQiNLDL8s5HcLYxD4NghC2860GjrmivfZckt6_YvzqGgHXWYLavA0fwP3WL2WDRpAewkqYrcOdblv8Oty7Alz4CL7tLHOtWJ3Cm4xzWsEInhE08qJiZWTTi1NKFWIHJ-jisylageo9G7CD8PM0GSzmZQ0WyyZ1CevHcHgjVHwCq7NyFjaAeR51Fl3hM3wKHX6jVSFMNIIHmaP_1YN3HdGsa4HLqX7GD4sBDFHZ_kPlHrxdPnDWYHZc3_UjcWHZjcC26xvl-bFtx67lmRcB_Zi04EHhyeChXOC59DKKLO_BG-KhJZWAH-byNrMBf4_AtewADQ4Sgqe6B5sdm22rKyr7V7Kf_r_5JdwdTSdjO97d33sGa1T4vtmKuAmr8_NFeI7u0bx4Ucskg-83PQj-AM9AIL4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFYp9KFoVT6vug6Iv8ZbdzSVbELl6PVrbHoe9Qt_WZD_aQr3U5o7iv-Zf50w-ziLUt0IgIdkNyezsfOzO_AbgrUyVDCj7o1x7HSnp8KqfWvR5fJJYiRrTk6N4NO7vnaivp_HpCvxuc2EorLKViZWgdoWlNfKeSGPCskOO6YUmLGIyHH2--hlRBSnaaW3LadQscuB_3aD7Vn7aH-JYvxNitDv9shc1FQYii4prHvXz2HIrdCbyLFjBhdVpGmeeNuekcsEr6xQa1EorFWzsZB4LJzORoJXdV6is8b0PYDVBr4h3YHVndzz5tlzhIcRNbFXjCUmpea8GZy4p8p5L0gK3VGFVMeAuvVApu9Ej2GisVDao2eoxrPjZJqy1QfKbsH4LxvAJTIbLzCtWJfRGhxntZ3jHCCh5UbIisOnNBSUOseNzNPjZFAlbbrMBO_Y_LqLBYl5U0LHsqCpo_RRO7oWOz6AzK2b-OTDHQ5oEm7sEe6H5r1OVCx204F5maI114WNLNGMbGHOqpnFp0J0hKpt_qNyFD8sOVzWCx91Nd2gUls0Ieru6UVyfmWYmG5444dGqiXPuFZ40Hsp6nkkng0iyLrynMTQkIPDDbNbkOeDvEdSWGaD6QULwOO3CVjvMppEcpfnL5y_-__gNrOEEMIf744OX8BBpLuu4xC3ozK8X_hXaSvP8dcOUDL7f9zz4AwagJlA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+Multi-Labelled+Corpus+of+Twitter+Short+Texts%3A+A+Semi-Automatic+Method&rft.jtitle=Systems+%28Basel%29&rft.au=Liu%2C+Xuan&rft.au=Zhou%2C+Guohui&rft.au=Kong%2C+Minghui&rft.au=Yin%2C+Zhengtong&rft.date=2023-08-01&rft.issn=2079-8954&rft.eissn=2079-8954&rft.volume=11&rft.issue=8&rft.spage=390&rft_id=info:doi/10.3390%2Fsystems11080390&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_systems11080390 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-8954&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-8954&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-8954&client=summon |