Estimating Oxygen Uptake During Nonsteady-State Activities and Transitions Using Wearable Sensors

In this paper, we present a method to estimate oxygen uptake (VO 2 ) during daily life activities and transitions between them. First, we automatically locate transitions between activities and periods of nonsteady-state VO 2 . Subsequently, we propose and compare activity-specific linear functions...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 20; no. 2; pp. 469 - 475
Main Authors Altini, Marco, Penders, Julien, Amft, Oliver
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we present a method to estimate oxygen uptake (VO 2 ) during daily life activities and transitions between them. First, we automatically locate transitions between activities and periods of nonsteady-state VO 2 . Subsequently, we propose and compare activity-specific linear functions to model steady-state activities and transition-specific nonlinear functions to model nonsteady-state activities and transitions. We evaluate our approach in study data from 22 participants that wore a combined accelerometer and heart rate sensor while performing a wide range of activities (clustered into lying, sedentary, dynamic/household, walking, biking and running), including many transitions between intensities, thus resulting in nonsteady-state VO 2 . Indirect calorimetry was used in parallel to obtain VO 2 reference. VO 2 estimation error during transitions between sedentary, household and walking activities could be reduced by 16% on average using the proposed approach, compared to state of the art methods.
AbstractList In this paper, we present a method to estimate oxygen uptake ( VO2) during daily life activities and transitions between them. First, we automatically locate transitions between activities and periods of nonsteady-state VO2. Subsequently, we propose and compare activity-specific linear functions to model steady-state activities and transition-specific nonlinear functions to model nonsteady-state activities and transitions. We evaluate our approach in study data from 22 participants that wore a combined accelerometer and heart rate sensor while performing a wide range of activities (clustered into lying, sedentary, dynamic/household, walking, biking and running), including many transitions between intensities, thus resulting in nonsteady-state VO2. Indirect calorimetry was used in parallel to obtain VO2 reference. VO2 estimation error during transitions between sedentary, household and walking activities could be reduced by 16% on average using the proposed approach, compared to state of the art methods.
In this paper, we present a method to estimate oxygen uptake ([Formula Omitted]) during daily life activities and transitions between them. First, we automatically locate transitions between activities and periods of nonsteady-state [Formula Omitted]. Subsequently, we propose and compare activity-specific linear functions to model steady-state activities and transition-specific nonlinear functions to model nonsteady-state activities and transitions. We evaluate our approach in study data from [Formula Omitted] participants that wore a combined accelerometer and heart rate sensor while performing a wide range of activities (clustered into lying, sedentary, dynamic/household, walking, biking and running ), including many transitions between intensities, thus resulting in nonsteady-state [Formula Omitted]. Indirect calorimetry was used in parallel to obtain [Formula Omitted] reference. [Formula Omitted] estimation error during transitions between sedentary , household and walking activities could be reduced by [Formula Omitted] on average using the proposed approach, compared to state of the art methods.
In this paper, we present a method to estimate oxygen uptake ($V{\rm O_2}$) during daily life activities and transitions between them. First, we automatically locate transitions between activities and periods of nonsteady-state $V{\rm O_2}$. Subsequently, we propose and compare activity-specific linear functions to model steady-state activities and transition-specific nonlinear functions to model nonsteady-state activities and transitions. We evaluate our approach in study data from $22$ participants that wore a combined accelerometer and heart rate sensor while performing a wide range of activities (clustered into lying, sedentary, dynamic/household, walking, biking and running), including many transitions between intensities, thus resulting in nonsteady-state $V{\rm O_2}$. Indirect calorimetry was used in parallel to obtain $V{\rm O_2}$ reference. $V{\rm O_2}$ estimation error during transitions between sedentary, household and walking activities could be reduced by $16\%$ on average using the proposed approach, compared to state of the art methods.
In this paper, we present a method to estimate oxygen uptake (VO 2 ) during daily life activities and transitions between them. First, we automatically locate transitions between activities and periods of nonsteady-state VO 2 . Subsequently, we propose and compare activity-specific linear functions to model steady-state activities and transition-specific nonlinear functions to model nonsteady-state activities and transitions. We evaluate our approach in study data from 22 participants that wore a combined accelerometer and heart rate sensor while performing a wide range of activities (clustered into lying, sedentary, dynamic/household, walking, biking and running), including many transitions between intensities, thus resulting in nonsteady-state VO 2 . Indirect calorimetry was used in parallel to obtain VO 2 reference. VO 2 estimation error during transitions between sedentary, household and walking activities could be reduced by 16% on average using the proposed approach, compared to state of the art methods.
Author Amft, Oliver
Penders, Julien
Altini, Marco
Author_xml – sequence: 1
  givenname: Marco
  surname: Altini
  fullname: Altini, Marco
  email: marco.altini@imec-nl.nl
  organization: Bloom Technol., Diepenbeek, Belgium
– sequence: 2
  givenname: Julien
  surname: Penders
  fullname: Penders, Julien
  email: julien.penders@imec-nl.nl
  organization: Holst Centre, imec, Eindhoven, Netherlands
– sequence: 3
  givenname: Oliver
  surname: Amft
  fullname: Amft, Oliver
  email: amft@ieee.org
  organization: Univ. of Passau, Passau, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25594986$$D View this record in MEDLINE/PubMed
BookMark eNqNkctOwzAQRS0E4lH4AISELLFhk-JH4thL3i2qYAEVy8hxJijQOsV2EP17HLWwYAPe2L5z7mhGdw9t2tYCQoeUDCkl6uzuYjQeMkKzIeOKpIpvoF1GhUwYI3Lz-01VuoMOvH8l8cgoKbGNdliWqVRJsYv0tQ_NXIfGvuCHz-ULWDxdBP0G-KpzvXjfWh9AV8vkMegA-NyE5qMJDXisbYWfnLY-fiOFp743PIN2upwBfgTrW-f30VatZx4O1vcATW-uny5HyeThdnx5PklMSrOQiJLUtWZEZylXJa8zUyommMxVyquoZYLGqmFGcMIrLQijjBluqtroMtOSD9Dpqu_Cte8d-FDMG29gNtMW2s4XNG5PqFSU_43miqicM6n-geZMcqG4iOjJL_S17ZyNO0dKRiwO3I9JV5RxrfcO6mLhYgBuWVBS9MEWfbBFH2yxDjZ6jtedu3IO1Y_jO8YIHK2ABgB-yjkhQqSEfwFv6Kbn
CODEN IJBHA9
CitedBy_id crossref_primary_10_1152_japplphysiol_00299_2017
crossref_primary_10_1109_JBHI_2017_2734803
crossref_primary_10_1049_iet_cvi_2017_0112
crossref_primary_10_3389_fphys_2024_1358785
crossref_primary_10_1007_s11768_023_00188_1
crossref_primary_10_1152_japplphysiol_00148_2023
crossref_primary_10_1038_s41746_021_00531_3
crossref_primary_10_1038_srep45738
crossref_primary_10_31686_ijier_vol7_iss1_1293
crossref_primary_10_1371_journal_pone_0282398
crossref_primary_10_1152_japplphysiol_00760_2017
crossref_primary_10_3389_fphys_2022_897412
crossref_primary_10_3390_s17071698
Cites_doi 10.1152/japplphysiol.01212.2003
10.1016/j.apergo.2007.09.001
10.1088/0967-3334/33/11/1811
10.2165/00007256-200333140-00002
10.2991/cse.2013.24
10.1109/TITB.2011.2165320
10.1186/1743-7075-2-14
10.1152/jappl.1997.83.1.153
10.1109/WCICA.2010.5555072
10.1152/japplphysiol.00150.2009
10.1007/s10439-007-9362-2
10.1249/01.mss.0000177742.12931.50
10.1111/1469-8986.3740543
10.1152/jappl.1967.22.1.71
10.1682/JRRD.2007.11.0197
10.1109/TBME.2013.2284069
10.1007/s11517-009-0534-0
10.1109/BSN.2013.6575500
10.4108/icst.pervasivehealth.2013.252069
10.1113/jphysiol.1994.sp020365
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2015.2390493
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
Engineering Research Database
Technology Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 475
ExternalDocumentID 4048075491
10_1109_JBHI_2015_2390493
25594986
7006640
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
6IF
6IH
6IK
6IL
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACIWK
ACPRK
ADZIZ
AENEX
AFRAH
AKJIK
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RIG
RNS
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
AGSQL
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c415t-6b0ffa20a5439b3f5cb926287943d543561a20c2c6303da602122c3cdfcab5a83
IEDL.DBID RIE
ISSN 2168-2194
IngestDate Wed Dec 04 07:07:38 EST 2024
Wed Dec 04 02:02:38 EST 2024
Wed Dec 04 03:32:36 EST 2024
Thu Oct 10 16:04:02 EDT 2024
Fri Dec 06 04:18:20 EST 2024
Sat Sep 28 08:06:13 EDT 2024
Wed Jun 26 19:22:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Accelerometers
VO2
heart rate
nonsteady-state
energy expenditure
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-6b0ffa20a5439b3f5cb926287943d543561a20c2c6303da602122c3cdfcab5a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25594986
PQID 1787281228
PQPubID 85417
PageCount 7
ParticipantIDs ieee_primary_7006640
proquest_miscellaneous_1772836936
pubmed_primary_25594986
proquest_miscellaneous_1816018913
proquest_journals_1787281228
crossref_primary_10_1109_JBHI_2015_2390493
proquest_miscellaneous_1790973289
PublicationCentury 2000
PublicationDate 2016-March
2016-Mar
2016-3-00
20160301
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-March
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
pulkkinen (ref14) 2004; 36
ref15
wasserman (ref5) 1967; 22
tapia (ref3) 2008
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
short (ref6) 1997; 83
References_xml – ident: ref10
  doi: 10.1152/japplphysiol.01212.2003
– ident: ref13
  doi: 10.1016/j.apergo.2007.09.001
– ident: ref11
  doi: 10.1088/0967-3334/33/11/1811
– ident: ref17
  doi: 10.2165/00007256-200333140-00002
– ident: ref16
  doi: 10.2991/cse.2013.24
– ident: ref19
  doi: 10.1109/TITB.2011.2165320
– ident: ref4
  doi: 10.1186/1743-7075-2-14
– volume: 83
  start-page: 153
  year: 1997
  ident: ref6
  article-title: Excess postexercise oxygen consumption and recovery rate in trained and untrained subjects
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1997.83.1.153
  contributor:
    fullname: short
– ident: ref20
  doi: 10.1109/WCICA.2010.5555072
– ident: ref2
  doi: 10.1152/japplphysiol.00150.2009
– ident: ref7
  doi: 10.1007/s10439-007-9362-2
– ident: ref15
  doi: 10.1249/01.mss.0000177742.12931.50
– year: 2008
  ident: ref3
  article-title: Using machine learning for real-time activity recognition and estimation of energy expenditure
  contributor:
    fullname: tapia
– ident: ref21
  doi: 10.1111/1469-8986.3740543
– volume: 22
  start-page: 71
  year: 1967
  ident: ref5
  article-title: Interaction of physiological mechanisms during exercise
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1967.22.1.71
  contributor:
    fullname: wasserman
– ident: ref9
  doi: 10.1682/JRRD.2007.11.0197
– volume: 36
  year: 2004
  ident: ref14
  article-title: On-and off dynamics and respiration rate enhance the accuracy of heart rate based vo2 estimation
  publication-title: Proc ACSM Congr
  contributor:
    fullname: pulkkinen
– ident: ref22
  doi: 10.1109/TBME.2013.2284069
– ident: ref8
  doi: 10.1007/s11517-009-0534-0
– ident: ref18
  doi: 10.1109/BSN.2013.6575500
– ident: ref1
  doi: 10.4108/icst.pervasivehealth.2013.252069
– ident: ref12
  doi: 10.1113/jphysiol.1994.sp020365
SSID ssj0000816896
Score 2.2721202
Snippet In this paper, we present a method to estimate oxygen uptake (VO 2 ) during daily life activities and transitions between them. First, we automatically locate...
In this paper, we present a method to estimate oxygen uptake ( VO2) during daily life activities and transitions between them. First, we automatically locate...
In this paper, we present a method to estimate oxygen uptake ([Formula Omitted]) during daily life activities and transitions between them. First, we...
In this paper, we present a method to estimate oxygen uptake ($V{\rm O_2}$) during daily life activities and transitions between them. First, we automatically...
SourceID proquest
crossref
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 469
SubjectTerms Accelerometers
Accelerometry - methods
Adult
Calorimetry
Data models
Energy Expenditure
Energy Metabolism - physiology
Estimating
Estimation
Female
Heart Rate
Households
Humans
Legged locomotion
Logistics
Male
Mathematical models
Monitoring, Ambulatory - methods
Non-Steady-State
Oxygen - metabolism
Oxygen consumption
Oxygen Consumption - physiology
Predictive models
Sensors
Signal Processing, Computer-Assisted
Steady-state
Uptakes
V O2
Walking
Walking - physiology
Title Estimating Oxygen Uptake During Nonsteady-State Activities and Transitions Using Wearable Sensors
URI https://ieeexplore.ieee.org/document/7006640
https://www.ncbi.nlm.nih.gov/pubmed/25594986
https://www.proquest.com/docview/1787281228
https://search.proquest.com/docview/1772836936
https://search.proquest.com/docview/1790973289
https://search.proquest.com/docview/1816018913
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50D-LF96O-iOBJ7Nqmabs5-mQVVg-66K0kaepB6Ip2wfXXO5N2i4iKt9IOJc3MdL7JvAAOhI0CrqXyU3d0o4T2pQmNT31cipjr2LqI6eAm6Q_F9WP8OANHbS2MtdYln9kuXbpYfj4yYzoqO07JQAp00GdTmdS1Wu15ihsg4cZxcbzwURFFE8QMA3l8fdq_ojyuuMvRyReSxucQmBaSiqi_WCQ3YuV3tOmszuUiDKbrrZNNnrvjSnfNx7dWjv_9oCVYaOAnO6nlZRlmbLkCc4MmwL4K6gJVnkBs-cRu3ycoXWz4Uqlny85dPSO7ITyJcjHxHUxlJ8aNn0B_m6kyZ8701VlgzGUjsAdUJSrPYnfoMI9e39ZgeHlxf9b3mykMvkHjXvmJDopC8UDFiF10VMRGU4_BHnWWy_EeAjB8arhJ0BrmKqGe8dxEJi-M0rHqRevQKUel3QTGQ1GIVFlKGhRWaPSegiLFn0xe4GtU5MHhlBPZS91sI3NOSiAz4mBGHMwaDnqwShvaEjZ76cHOlHdZo45vWYi_JY5Qhvc82G8foyJRdESVdjQmGiSJEhklf9HIur2R_IMGBTEIKfrrwUYtO-0apyK39fPat2EevzCpU9x2oFO9ju0uYp5K7zlh_wT-efmd
link.rule.ids 314,780,784,796,27924,27925,54758
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5VQQIuvArF0MIicUJ1aq_XTvbYRyKnNOFAInKzdtfrHiLZUeJIlF_PzNqxEKIVN8seWeudGc83Oy-Az8JGAddS-QN3dKOE9qUJjU99XIqY69i6iOl0lqQLcb2Mlwdw2tXCWGtd8pnt06WL5eeV2dFR2dmADKRAB_1RLBDnNtVa3YmKGyHhBnJxvPBRFUUbxgwDeXZ9kU4okyvuc3TzhaQBOgSnhaQy6j9skhuycj_edHZn_Bym-xU36Sar_q7WffPrr2aO__tJL-BZC0DZeSMxL-HAlq_g8bQNsR-CGqHSE4wtb9m3n3coX2yxrtXKsitX0chmhChRMu58B1TZuXEDKNDjZqrMmTN-TR4Yc_kI7AcqExVose_oMleb7WtYjEfzy9Rv5zD4Bs177Sc6KArFAxUjetFRERtNXQaH1Fsux3sIwfCp4SZBe5irhLrGcxOZvDBKx2oYvYFeWZX2LTAeikIMlKW0QWGFRv8pKAb4m8kLfI2KPPiy50S2btptZM5NCWRGHMyIg1nLQQ8OaUM7wnYvPTje8y5rFXKbhfhj4ghm-NCDT91jVCWKj6jSVjuiQZIokVHyEI1sGhzJB2hQEIOQ4r8eHDWy061xL3Lv_r32j_AknU9vspvJ7Ot7eIpfmzQJb8fQqzc7e4IIqNYfnOD_Bkcb_PA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Oxygen+Uptake+During+Nonsteady-State+Activities+and+Transitions+Using+Wearable+Sensors&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Altini%2C+Marco&rft.au=Penders%2C+Julien&rft.au=Amft%2C+Oliver&rft.date=2016-03-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=20&rft.issue=2&rft.spage=469&rft.epage=475&rft_id=info:doi/10.1109%2FJBHI.2015.2390493&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon