Direct Estimate of the Spontaneous Mutation Rate Uncovers the Effects of Drift and Recombination in the Chlamydomonas reinhardtii Plastid Genome
Plastids perform crucial cellular functions, including photosynthesis, across a wide variety of eukaryotes. Since endosymbiosis, plastids have maintained independent genomes that now display a wide diversity of gene content, genome structure, gene regulation mechanisms, and transmission modes. The e...
Saved in:
Published in | Molecular biology and evolution Vol. 33; no. 3; pp. 800 - 808 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.03.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plastids perform crucial cellular functions, including photosynthesis, across a wide variety of eukaryotes. Since endosymbiosis, plastids have maintained independent genomes that now display a wide diversity of gene content, genome structure, gene regulation mechanisms, and transmission modes. The evolution of plastid genomes depends on an input of de novo mutation, but our knowledge of mutation in the plastid is limited to indirect inference from patterns of DNA divergence between species. Here, we use a mutation accumulation experiment, where selection acting on mutations is rendered ineffective, combined with whole-plastid genome sequencing to directly characterize de novo mutation in Chlamydomonas reinhardtii. We show that the mutation rates of the plastid and nuclear genomes are similar, but that the base spectra of mutations differ significantly. We integrate our measure of the mutation rate with a population genomic data set of 20 individuals, and show that the plastid genome is subject to substantially stronger genetic drift than the nuclear genome. We also show that high levels of linkage disequilibrium in the plastid genome are not due to restricted recombination, but are instead a consequence of increased genetic drift. One likely explanation for increased drift in the plastid genome is that there are stronger effects of genetic hitchhiking. The presence of recombination in the plastid is consistent with laboratory studies in C. reinhardtii and demonstrates that although the plastid genome is thought to be uniparentally inherited, it recombines in nature at a rate similar to the nuclear genome. |
---|---|
AbstractList | Plastids perform crucial cellular functions, including photosynthesis, across a wide variety of eukaryotes. Since endosymbiosis, plastids have maintained independent genomes that now display a wide diversity of gene content, genome structure, gene regulation mechanisms, and transmission modes. The evolution of plastid genomes depends on an input of de novo mutation, but our knowledge of mutation in the plastid is limited to indirect inference from patterns of DNA divergence between species. Here, we use a mutation accumulation experiment, where selection acting on mutations is rendered ineffective, combined with whole-plastid genome sequencing to directly characterize de novo mutation in Chlamydomonas reinhardtii. We show that the mutation rates of the plastid and nuclear genomes are similar, but that the base spectra of mutations differ significantly. We integrate our measure of the mutation rate with a population genomic data set of 20 individuals, and show that the plastid genome is subject to substantially stronger genetic drift than the nuclear genome. We also show that high levels of linkage disequilibrium in the plastid genome are not due to restricted recombination, but are instead a consequence of increased genetic drift. One likely explanation for increased drift in the plastid genome is that there are stronger effects of genetic hitchhiking. The presence of recombination in the plastid is consistent with laboratory studies in C. reinhardtii and demonstrates that although the plastid genome is thought to be uniparentally inherited, it recombines in nature at a rate similar to the nuclear genome. Plastids perform crucial cellular functions, including photosynthesis, across a wide variety of eukaryotes. Since endosymbiosis, plastids have maintained independent genomes that now display a wide diversity of gene content, genome structure, gene regulation mechanisms, and transmission modes. The evolution of plastid genomes depends on an input of de novo mutation, but our knowledge of mutation in the plastid is limited to indirect inference from patterns of DNA divergence between species. Here, we use a mutation accumulation experiment, where selection acting on mutations is rendered ineffective, combined with whole-plastid genome sequencing to directly characterize de novo mutation in Chlamydomonas reinhardtii. We show that the mutation rates of the plastid and nuclear genomes are similar, but that the base spectra of mutations differ significantly. We integrate our measure of the mutation rate with a population genomic data set of 20 individuals, and show that the plastid genome is subject to substantially stronger genetic drift than the nuclear genome. We also show that high levels of linkage disequilibrium in the plastid genome are not due to restricted recombination, but are instead a consequence of increased genetic drift. One likely explanation for increased drift in the plastid genome is that there are stronger effects of genetic hitchhiking. The presence of recombination in the plastid is consistent with laboratory studies in C. reinhardtii and demonstrates that although the plastid genome is thought to be uniparentally inherited, it recombines in nature at a rate similar to the nuclear genome.Plastids perform crucial cellular functions, including photosynthesis, across a wide variety of eukaryotes. Since endosymbiosis, plastids have maintained independent genomes that now display a wide diversity of gene content, genome structure, gene regulation mechanisms, and transmission modes. The evolution of plastid genomes depends on an input of de novo mutation, but our knowledge of mutation in the plastid is limited to indirect inference from patterns of DNA divergence between species. Here, we use a mutation accumulation experiment, where selection acting on mutations is rendered ineffective, combined with whole-plastid genome sequencing to directly characterize de novo mutation in Chlamydomonas reinhardtii. We show that the mutation rates of the plastid and nuclear genomes are similar, but that the base spectra of mutations differ significantly. We integrate our measure of the mutation rate with a population genomic data set of 20 individuals, and show that the plastid genome is subject to substantially stronger genetic drift than the nuclear genome. We also show that high levels of linkage disequilibrium in the plastid genome are not due to restricted recombination, but are instead a consequence of increased genetic drift. One likely explanation for increased drift in the plastid genome is that there are stronger effects of genetic hitchhiking. The presence of recombination in the plastid is consistent with laboratory studies in C. reinhardtii and demonstrates that although the plastid genome is thought to be uniparentally inherited, it recombines in nature at a rate similar to the nuclear genome. |
Author | Kraemer, Susanne A. Colegrave, Nick Ness, Rob W. Keightley, Peter D. |
Author_xml | – sequence: 1 givenname: Rob W. surname: Ness fullname: Ness, Rob W. email: rob.ness@utoronto.ca organization: 1 Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom – sequence: 2 givenname: Susanne A. surname: Kraemer fullname: Kraemer, Susanne A. organization: 1 Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom – sequence: 3 givenname: Nick surname: Colegrave fullname: Colegrave, Nick organization: 1 Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom – sequence: 4 givenname: Peter D. surname: Keightley fullname: Keightley, Peter D. organization: 1 Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26615203$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0stq3DAUBmBREprJtMtui6CbbtzoYlv2skymSSAhIW3WRpaOGAVbmkryQN6ij1xNPO0i0MtKWny_xOE_p-jIeQcIvaPkEyUtPxv90MPubIw7JtgrtKAVFwUVtD1CCyLyvSS8OUGnMT4SQsuyrl-jE1bXtGKEL9CPcxtAJbyOyY4yAfYGpw3gr1vvknTgp4hvpiST9Q7f78GDU34HIT6ztTE5Hfep82BNwtJpfA_Kj711c8i6Z7naDHJ80n70TkYcwLqNDDpZi-8GmT_X-AKcH-ENOjZyiPD2cC7Rw5f1t9VlcX17cbX6fF2oklapqKViDKQpa0Gh0oz0vdaNKjmRZW0aznsKvVJGV6bVqtelyoxTzXmlpeglX6KP87vb4L9PEFM32qhgGOahOyoa0QreMPEftBakbquyyfTDC_rop-DyIB3PpbCWkfavigpBWta0ubUlen9QUz-C7rYhNxSeul_lZVDMQAUfYwDzm1DS7Zejm5ejm5cje_7CKzs3m4K0wx9Th-n9tP3HBz8BMwjQPA |
CitedBy_id | crossref_primary_10_1093_plcell_koab026 crossref_primary_10_7717_peerj_8273 crossref_primary_10_1093_gbe_evz130 crossref_primary_10_1093_sysbio_syab053 crossref_primary_10_1093_gbe_evy123 crossref_primary_10_1093_molbev_msy213 crossref_primary_10_1534_g3_116_030890 crossref_primary_10_1111_mec_15193 crossref_primary_10_3389_fpls_2023_1289240 crossref_primary_10_1093_molbev_msab140 crossref_primary_10_1111_tpj_13491 crossref_primary_10_1186_s13059_021_02381_4 crossref_primary_10_1111_mec_13742 crossref_primary_10_1111_nph_16003 crossref_primary_10_1093_molbev_msae035 crossref_primary_10_1093_gbe_evy175 crossref_primary_10_1111_1755_0998_14067 crossref_primary_10_1186_s12915_023_01718_8 crossref_primary_10_1016_j_molp_2018_11_002 crossref_primary_10_1093_gbe_evaa012 crossref_primary_10_1111_evo_13360 crossref_primary_10_1534_genetics_115_185736 crossref_primary_10_1093_gbe_evaa057 crossref_primary_10_1111_1755_0998_12626 crossref_primary_10_1126_sciadv_adn0817 |
Cites_doi | 10.1101/gr.191494.115 10.1186/gb-2011-12-2-r18 10.1146/annurev.genet.35.102401.090231 10.1073/pnas.0803466105 10.1017/CBO9780511623486 10.1073/pnas.1422049112 10.1371/journal.pbio.0060204 10.1111/evo.12448 10.1073/pnas.84.12.4166 10.1093/gbe/evv069 10.1186/1471-2105-14-356 10.1111/j.1550-7408.2011.00601.x 10.1038/ng.806 10.1016/S0168-9525(99)01766-7 10.1104/pp.106.078295 10.1093/genetics/134.4.1289 10.1126/science.289.5488.2342 10.1093/bioinformatics/btp324 10.1534/genetics.112.145078 10.1073/pnas.1216223109 10.1093/nar/24.17.3323 10.1093/bioinformatics/btp352 10.1104/pp.113.233718 10.1086/368264 10.1007/BF02352278 10.1093/molbev/mst056 10.1093/nar/29.21.4472 10.1007/s00438-005-1121-1 10.1016/j.tree.2010.06.007 10.1093/molbev/msu051 10.1534/genetics.108.094904 10.1073/pnas.1323011111 10.1126/science.1092500 10.1126/science.1118884 10.1017/S0016672300014634 10.1007/BF00446957 10.1016/j.protis.2011.04.003 10.1073/pnas.84.8.2391 10.1371/journal.pgen.1003090 10.1038/nrg1770 10.1007/978-3-642-22380-8_6 10.1038/nature11396 10.1093/gbe/evp055 |
ContentType | Journal Article |
Copyright | The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2015 The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. Copyright Oxford Publishing Limited(England) Mar 2016 |
Copyright_xml | – notice: The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2015 – notice: The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. – notice: Copyright Oxford Publishing Limited(England) Mar 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QP 7QR 7SN 7SS 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 3V. 7X7 7XB 88A 88E 8AO 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH HCIFZ LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1093/molbev/msv272 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest SciTech Premium Collection Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library ProQuest Biological Science Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Research Library Prep ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep Virology and AIDS Abstracts Genetics Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1537-1719 |
EndPage | 808 |
ExternalDocumentID | 3972647741 26615203 10_1093_molbev_msv272 10.1093/molbev/msv272 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/H006109/1 |
GroupedDBID | --- -E4 -~X .2P .I3 .ZR 0R~ 18M 1TH 29M 2WC 4.4 48X 5VS 5WA 70D 7X7 AAFWJ AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AAUQX AAVAP AAVLN ABEJV ABEUO ABGNP ABIXL ABKDP ABLJU ABNKS ABPTD ABQLI ABXVV ABZBJ ACGFO ACGFS ACIPB ACIWK ACNCT ACPRK ACUFI ACUTO ACYTK ADBBV ADEYI ADEZT ADFTL ADGZP ADHKW ADHZD ADJQC ADOCK ADRIX ADRTK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFIYH AFOFC AFPKN AFRAH AFULF AFXEN AGINJ AGKEF AGSYK AHMBA AHXPO AIAGR AIJHB AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN BTRTY BVRKM CDBKE CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS EE~ EJD EMOBN F5P F9B FHSFR FLIZI FOTVD GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HH5 HW0 HZ~ IOX J21 KOP KQ8 KSI KSN M-Z M49 ML0 N9A NGC NLBLG NMDNZ NOYVH NU- O9- OAWHX ODMLO OJQWA OK1 OVD P2P PAFKI PEELM PQQKQ Q1. Q5Y RD5 RHF ROL ROX ROZ RPM RUSNO RW1 RXO TEORI TJP TJX TLC TN5 TOX TR2 VQA W8F WOQ X7H XSW YAYTL YKOAZ YXANX ZCA ZKX ~02 ~91 .GJ 53G 88E 8AO 8FI 8FJ 8G5 AAYXX ABSMQ ABUWG ADXHL AEUYN AFFNX AFKRA ASAOO ATDFG AZQEC BBNVY BENPR BHPHI C1A CAG CCPQU CITATION COF CXTWN DFGAJ DWQXO FYUFA GNUQQ GUQSH HCIFZ HMCUK IAO IGS IHR ITC M1P M2O M7P MBTAY MVM NTWIH O0~ O~Y PHGZM PHGZT PSQYO RNI RZO UKHRP XJT YHZ ZCG ZXP ZY4 CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QG 7QP 7QR 7SN 7SS 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 3V. 7XB 88A 8FE 8FH 8FK LK8 MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c415t-6ac22eaf4671e5d20bbdd8c430a46f833b1ebccfd5f9dcbd4c1e531d335da7ba3 |
IEDL.DBID | 7X7 |
ISSN | 0737-4038 1537-1719 |
IngestDate | Thu Jul 10 18:46:54 EDT 2025 Fri Jul 11 05:36:38 EDT 2025 Fri Jul 25 19:39:31 EDT 2025 Fri Jul 25 10:56:24 EDT 2025 Mon Jul 21 06:03:35 EDT 2025 Tue Jul 01 03:45:42 EDT 2025 Thu Apr 24 23:09:33 EDT 2025 Fri Feb 07 10:35:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | plastid genome effective population size mutation rate recombination chloroplast Chlamydomonas reinhardtii |
Language | English |
License | The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-6ac22eaf4671e5d20bbdd8c430a46f833b1ebccfd5f9dcbd4c1e531d335da7ba3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 26615203 |
PQID | 3171292098 |
PQPubID | 36253 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1787973827 proquest_miscellaneous_1767069548 proquest_journals_3171292098 proquest_journals_1770928940 pubmed_primary_26615203 crossref_primary_10_1093_molbev_msv272 crossref_citationtrail_10_1093_molbev_msv272 oup_primary_10_1093_molbev_msv272 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160301 2016-03-00 2016-Mar |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: 20160301 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Molecular biology and evolution |
PublicationTitleAlternate | Mol Biol Evol |
PublicationYear | 2016 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 2016021904324236000_33.3.800.8 2016021904324236000_33.3.800.9 2016021904324236000_33.3.800.4 2016021904324236000_33.3.800.3 2016021904324236000_33.3.800.6 2016021904324236000_33.3.800.5 2016021904324236000_33.3.800.31 2016021904324236000_33.3.800.30 2016021904324236000_33.3.800.2 2016021904324236000_33.3.800.11 2016021904324236000_33.3.800.33 2016021904324236000_33.3.800.1 2016021904324236000_33.3.800.10 2016021904324236000_33.3.800.32 2016021904324236000_33.3.800.24 2016021904324236000_33.3.800.23 Charlesworth (2016021904324236000_33.3.800.7) 1993; 134 2016021904324236000_33.3.800.26 2016021904324236000_33.3.800.25 2016021904324236000_33.3.800.28 2016021904324236000_33.3.800.27 2016021904324236000_33.3.800.29 2016021904324236000_33.3.800.40 2016021904324236000_33.3.800.20 2016021904324236000_33.3.800.42 2016021904324236000_33.3.800.41 2016021904324236000_33.3.800.22 2016021904324236000_33.3.800.21 2016021904324236000_33.3.800.43 2016021904324236000_33.3.800.13 2016021904324236000_33.3.800.35 2016021904324236000_33.3.800.12 2016021904324236000_33.3.800.34 2016021904324236000_33.3.800.15 2016021904324236000_33.3.800.37 2016021904324236000_33.3.800.14 2016021904324236000_33.3.800.36 2016021904324236000_33.3.800.17 2016021904324236000_33.3.800.39 2016021904324236000_33.3.800.16 2016021904324236000_33.3.800.38 2016021904324236000_33.3.800.19 2016021904324236000_33.3.800.18 |
References_xml | – ident: 2016021904324236000_33.3.800.31 doi: 10.1101/gr.191494.115 – ident: 2016021904324236000_33.3.800.1 doi: 10.1186/gb-2011-12-2-r18 – ident: 2016021904324236000_33.3.800.3 doi: 10.1146/annurev.genet.35.102401.090231 – ident: 2016021904324236000_33.3.800.25 doi: 10.1073/pnas.0803466105 – ident: 2016021904324236000_33.3.800.17 doi: 10.1017/CBO9780511623486 – ident: 2016021904324236000_33.3.800.37 doi: 10.1073/pnas.1422049112 – ident: 2016021904324236000_33.3.800.12 doi: 10.1371/journal.pbio.0060204 – ident: 2016021904324236000_33.3.800.29 doi: 10.1111/evo.12448 – ident: 2016021904324236000_33.3.800.20 doi: 10.1073/pnas.84.12.4166 – ident: 2016021904324236000_33.3.800.35 doi: 10.1093/gbe/evv069 – ident: 2016021904324236000_33.3.800.16 doi: 10.1186/1471-2105-14-356 – ident: 2016021904324236000_33.3.800.36 doi: 10.1111/j.1550-7408.2011.00601.x – ident: 2016021904324236000_33.3.800.9 doi: 10.1038/ng.806 – ident: 2016021904324236000_33.3.800.33 doi: 10.1016/S0168-9525(99)01766-7 – ident: 2016021904324236000_33.3.800.41 doi: 10.1104/pp.106.078295 – volume: 134 start-page: 1289 year: 1993 ident: 2016021904324236000_33.3.800.7 article-title: The effects of deleterious mutations on neutral molecular variation publication-title: Genetics doi: 10.1093/genetics/134.4.1289 – ident: 2016021904324236000_33.3.800.8 doi: 10.1126/science.289.5488.2342 – ident: 2016021904324236000_33.3.800.22 doi: 10.1093/bioinformatics/btp324 – ident: 2016021904324236000_33.3.800.30 doi: 10.1534/genetics.112.145078 – ident: 2016021904324236000_33.3.800.40 doi: 10.1073/pnas.1216223109 – ident: 2016021904324236000_33.3.800.10 doi: 10.1093/nar/24.17.3323 – ident: 2016021904324236000_33.3.800.23 doi: 10.1093/bioinformatics/btp352 – ident: 2016021904324236000_33.3.800.38 doi: 10.1104/pp.113.233718 – ident: 2016021904324236000_33.3.800.14 doi: 10.1086/368264 – ident: 2016021904324236000_33.3.800.2 doi: 10.1007/BF02352278 – ident: 2016021904324236000_33.3.800.21 doi: 10.1093/molbev/mst056 – ident: 2016021904324236000_33.3.800.32 doi: 10.1093/nar/29.21.4472 – ident: 2016021904324236000_33.3.800.11 doi: 10.1007/s00438-005-1121-1 – ident: 2016021904324236000_33.3.800.19 doi: 10.1016/j.tree.2010.06.007 – ident: 2016021904324236000_33.3.800.28 doi: 10.1093/molbev/msu051 – ident: 2016021904324236000_33.3.800.39 doi: 10.1534/genetics.108.094904 – ident: 2016021904324236000_33.3.800.43 doi: 10.1073/pnas.1323011111 – ident: 2016021904324236000_33.3.800.27 doi: 10.1126/science.1092500 – ident: 2016021904324236000_33.3.800.24 doi: 10.1126/science.1118884 – ident: 2016021904324236000_33.3.800.26 doi: 10.1017/S0016672300014634 – ident: 2016021904324236000_33.3.800.42 doi: 10.1007/BF00446957 – ident: 2016021904324236000_33.3.800.15 doi: 10.1016/j.protis.2011.04.003 – ident: 2016021904324236000_33.3.800.4 doi: 10.1073/pnas.84.8.2391 – ident: 2016021904324236000_33.3.800.6 doi: 10.1371/journal.pgen.1003090 – ident: 2016021904324236000_33.3.800.5 doi: 10.1038/nrg1770 – ident: 2016021904324236000_33.3.800.34 doi: 10.1007/978-3-642-22380-8_6 – ident: 2016021904324236000_33.3.800.18 doi: 10.1038/nature11396 – ident: 2016021904324236000_33.3.800.13 doi: 10.1093/gbe/evp055 |
SSID | ssj0014466 |
Score | 2.3330612 |
Snippet | Plastids perform crucial cellular functions, including photosynthesis, across a wide variety of eukaryotes. Since endosymbiosis, plastids have maintained... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 800 |
SubjectTerms | Algae Base Composition Chlamydomonas reinhardtii Chlamydomonas reinhardtii - genetics Deoxyribonucleic acid DNA Estimating techniques Eukaryotes Gene regulation Gene sequencing Genetic Drift Genetics, Population Genome, Plastid Genomes Linkage disequilibrium Mutation Mutation Rate Mutation rates Photosynthesis Plastids Polymorphism, Genetic Recombination Recombination, Genetic |
Title | Direct Estimate of the Spontaneous Mutation Rate Uncovers the Effects of Drift and Recombination in the Chlamydomonas reinhardtii Plastid Genome |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26615203 https://www.proquest.com/docview/1770928940 https://www.proquest.com/docview/3171292098 https://www.proquest.com/docview/1767069548 https://www.proquest.com/docview/1787973827 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9wwDDdby2Avo93nrR94MPa0cIntxMnTWNvryqBd6Xpwb8FfoYGec7ukhf4X-5MnxbkbZVv3GCwnwZKlnyxZIuQ9GAHBdcYiMM8qEqZKIi0VjwQaZ5dbsEF4G_n0LDuZiq-zdDYcuLVDWuVKJ_aK2jYGz8jHYOcS7KxU5J8WPyLsGoXR1aGFxmOyiaXLMKVLztYOV7KKVUouwU_i-VBjE5z48by51u52PG9vmWT3bNK9e25_wM3e7BxvkWcDXqSfA4O3ySPnn5MnoYPk3QvyM6gsOoGdCtjT0aaiAOno90XjAfY58Ovp6U0It9MLJJh6g1mbbU8Wahe3OOtoWVcdVd5S9Ejn4DCHSbXvKQ-vQHTubAPLoFq6dLXH61pdXdNzwN9dbekX55u5e0mmx5PLw5NoaLIQGbDdXZQpw5hTFSjMxKWWxVpbmxvBYyWyKudcJ04bU9m0KqzRVhgg44nlPLVKasVfkQ3fePeG0CKTTGhbaFVxwZzDUoNWc6XTQqd5Jkbk42qZSzNUIMdGGNdliITzMnClDFwZkQ9r8kUovfEvwnfAs__R7K44Wg67tC0TKeMCPE4R_3X4t8jBF9bDsP0wphJYCK_IZJxh1byHaHJZSJ4zOSKvgzCtfxbxUcpi_vbhH9ghTwGpZSH5bZdsdMsbtwdoqNP7vcjvk82Dydn5BTxdfpv9AqpdEEI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJ8ReEP_XMcBIwBNRE9uJkweEYOvo2FpNY5X2FvwvWqQ1KU061G-xT7LPyLlOiiZgPO3ZZ8fyne9-l_PdIfQGjACjMiIemGfhMZUFnuSCeswaZxNrsEE2G3k4igZj9vU0PF1DV20ujH1W2erEpaLWpbL_yHtg5wLbWSmJP05_eLZrlI2uti00nFgcmMVPcNmqD_u7wN-3hOz1T3YGXtNVwFNgrGovEooQIzLQEIEJNfGl1DpWjPqCRVlMqQyMVCrTYZZoJTVTQEYDTWmoBZeCwrp30Dqj4Mp00Prn_ujoeBW3aKOjnHLwzGjcVPX0E9qblOfSXPQm1QXh5JoVvJZZ9wfAXRq6vQfofoNQ8ScnUg_RmikeobuuZ-XiMbp0ShL3QTcA2jW4zDCASPxtWhYANE05r_Bw7gL8-NgSjAtl34lWSzJXLbmys3ZneVZjUWhsfeAJuOhuUl4sKXfOQFgXuoSDFxWembywCWJ1nuMjQPx1rvEXU5QT8wSNb4UBT1GnKAuziXASccKkTqTIKCPG2OKGWlIhw0SGccS66H17zKlqap7b1hvnqYu909RxJXVc6aJ3K_KpK_bxL8LXwLP_0Wy3HE0bvVClAed-Aj4u8_86_FvI4QurYbjwNorjWAhLRNyPbJ2-m2hinnAaE95Fz5wwrTZrEVlIfLp18wZeoXuDk-Fherg_OniONgAnRu7p3Tbq1LO5eQFYrJYvmwuA0ffbvnO_AJRNTrM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Estimate+of+the+Spontaneous+Mutation+Rate+Uncovers+the+Effects+of+Drift+and+Recombination+in+the+Chlamydomonas+reinhardtii+Plastid+Genome&rft.jtitle=Molecular+biology+and+evolution&rft.au=Ness%2C+Rob+W&rft.au=Kraemer%2C+Susanne+A&rft.au=Colegrave%2C+Nick&rft.au=Keightley%2C+Peter+D&rft.date=2016-03-01&rft.issn=0737-4038&rft.eissn=1537-1719&rft.volume=33&rft.issue=3&rft.spage=800&rft.epage=808&rft_id=info:doi/10.1093%2Fmolbev%2Fmsv272&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0737-4038&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0737-4038&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0737-4038&client=summon |