Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration

Introduction. Bone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We therefore developed osteoinductive, micro-fibrous surface patterned demineralized bone matrix (DBM) fibers for engineering both defect-match...

Full description

Saved in:
Bibliographic Details
Published inBiofabrication Vol. 8; no. 3; p. 035007
Main Authors Rodriguez, Rudy U, Kemper, Nathan, Breathwaite, Erick, Dutta, Sucharita M, Huber, Alexander, Murchison, Angela, Chen, Silvia, Hsu, Erin L, Hsu, Wellington K, Francis, Michael P
Format Journal Article
LanguageEnglish
Published England IOP Publishing 26.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Introduction. Bone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We therefore developed osteoinductive, micro-fibrous surface patterned demineralized bone matrix (DBM) fibers for engineering both defect-matched and general three-dimensional implants. Methods and results. Implant molds were filled with demineralized human cortical bone fibers there were compressed and lyophilized, forming mechanically strong shaped DBM scaffolds. Enzyme linked immunosorbent assays and mass spectrometry confirmed that DBM fibers contained abundant osteogenic growth factors (bone morphogenetic proteins, insulin-like growth factor-I) and extracellular matrix proteins. Mercury porosimetry and mechanical testing showed interconnected pores within the mechanically stable, custom DBM fiber scaffolds. Mesenchymal stem cells readily attached to the DBM and showed increasing metabolic activity over time. DBM fibers further increased alkaline phosphatase activity in C2C12 cells. In vivo, DBM implants elicited osteoinductive potential in a mouse muscle pouch, and also promoted spine fusion in a rat arthrodesis model. Significance. DBM fibers can be engineered into custom-shaped, osteoinductive and osteoconductive implants with potential for repairing osseous defects with precise fitment, potentially reducing operating time. By providing pre-formed and custom implants, this regenerative allograft may improve patient outcomes following surgical bone repair, while further advancing personalized orthopedic and craniomaxillofacial medicine using three-dimensional-printed tissue molds.
AbstractList Introduction. Bone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We therefore developed osteoinductive, micro-fibrous surface patterned demineralized bone matrix (DBM) fibers for engineering both defect-matched and general three-dimensional implants. Methods and results. Implant molds were filled with demineralized human cortical bone fibers there were compressed and lyophilized, forming mechanically strong shaped DBM scaffolds. Enzyme linked immunosorbent assays and mass spectrometry confirmed that DBM fibers contained abundant osteogenic growth factors (bone morphogenetic proteins, insulin-like growth factor-I) and extracellular matrix proteins. Mercury porosimetry and mechanical testing showed interconnected pores within the mechanically stable, custom DBM fiber scaffolds. Mesenchymal stem cells readily attached to the DBM and showed increasing metabolic activity over time. DBM fibers further increased alkaline phosphatase activity in C2C12 cells. In vivo, DBM implants elicited osteoinductive potential in a mouse muscle pouch, and also promoted spine fusion in a rat arthrodesis model. Significance. DBM fibers can be engineered into custom-shaped, osteoinductive and osteoconductive implants with potential for repairing osseous defects with precise fitment, potentially reducing operating time. By providing pre-formed and custom implants, this regenerative allograft may improve patient outcomes following surgical bone repair, while further advancing personalized orthopedic and craniomaxillofacial medicine using three-dimensional-printed tissue molds.
Bone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We therefore developed osteoinductive, micro-fibrous surface patterned demineralized bone matrix (DBM) fibers for engineering both defect-matched and general three-dimensional implants. Implant molds were filled with demineralized human cortical bone fibers there were compressed and lyophilized, forming mechanically strong shaped DBM scaffolds. Enzyme linked immunosorbent assays and mass spectrometry confirmed that DBM fibers contained abundant osteogenic growth factors (bone morphogenetic proteins, insulin-like growth factor-I) and extracellular matrix proteins. Mercury porosimetry and mechanical testing showed interconnected pores within the mechanically stable, custom DBM fiber scaffolds. Mesenchymal stem cells readily attached to the DBM and showed increasing metabolic activity over time. DBM fibers further increased alkaline phosphatase activity in C2C12 cells. In vivo, DBM implants elicited osteoinductive potential in a mouse muscle pouch, and also promoted spine fusion in a rat arthrodesis model. DBM fibers can be engineered into custom-shaped, osteoinductive and osteoconductive implants with potential for repairing osseous defects with precise fitment, potentially reducing operating time. By providing pre-formed and custom implants, this regenerative allograft may improve patient outcomes following surgical bone repair, while further advancing personalized orthopedic and craniomaxillofacial medicine using three-dimensional-printed tissue molds.
INTRODUCTIONBone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We therefore developed osteoinductive, micro-fibrous surface patterned demineralized bone matrix (DBM) fibers for engineering both defect-matched and general three-dimensional implants.METHODS AND RESULTSImplant molds were filled with demineralized human cortical bone fibers there were compressed and lyophilized, forming mechanically strong shaped DBM scaffolds. Enzyme linked immunosorbent assays and mass spectrometry confirmed that DBM fibers contained abundant osteogenic growth factors (bone morphogenetic proteins, insulin-like growth factor-I) and extracellular matrix proteins. Mercury porosimetry and mechanical testing showed interconnected pores within the mechanically stable, custom DBM fiber scaffolds. Mesenchymal stem cells readily attached to the DBM and showed increasing metabolic activity over time. DBM fibers further increased alkaline phosphatase activity in C2C12 cells. In vivo, DBM implants elicited osteoinductive potential in a mouse muscle pouch, and also promoted spine fusion in a rat arthrodesis model.SIGNIFICANCEDBM fibers can be engineered into custom-shaped, osteoinductive and osteoconductive implants with potential for repairing osseous defects with precise fitment, potentially reducing operating time. By providing pre-formed and custom implants, this regenerative allograft may improve patient outcomes following surgical bone repair, while further advancing personalized orthopedic and craniomaxillofacial medicine using three-dimensional-printed tissue molds.
Author Kemper, Nathan
Dutta, Sucharita M
Huber, Alexander
Hsu, Wellington K
Hsu, Erin L
Francis, Michael P
Murchison, Angela
Chen, Silvia
Breathwaite, Erick
Rodriguez, Rudy U
Author_xml – sequence: 1
  givenname: Rudy U
  surname: Rodriguez
  fullname: Rodriguez, Rudy U
  organization: LifeNet Health Institute of Regenerative Medicine, Virginia Beach, VA, USA
– sequence: 2
  givenname: Nathan
  surname: Kemper
  fullname: Kemper, Nathan
  organization: LifeNet Health Institute of Regenerative Medicine, Virginia Beach, VA, USA
– sequence: 3
  givenname: Erick
  surname: Breathwaite
  fullname: Breathwaite, Erick
  organization: LifeNet Health Institute of Regenerative Medicine, Virginia Beach, VA, USA
– sequence: 4
  givenname: Sucharita M
  surname: Dutta
  fullname: Dutta, Sucharita M
  organization: Eastern Virginia Medical School, Norfolk, VA, USA
– sequence: 5
  givenname: Alexander
  surname: Huber
  fullname: Huber, Alexander
  organization: LifeNet Health Institute of Regenerative Medicine, Virginia Beach, VA, USA
– sequence: 6
  givenname: Angela
  surname: Murchison
  fullname: Murchison, Angela
  organization: LifeNet Health Institute of Regenerative Medicine, Virginia Beach, VA, USA
– sequence: 7
  givenname: Silvia
  surname: Chen
  fullname: Chen, Silvia
  organization: Eastern Virginia Medical School, Norfolk, VA, USA
– sequence: 8
  givenname: Erin L
  surname: Hsu
  fullname: Hsu, Erin L
  organization: Northwestern University Feinberg School of Medicine , Chicago, IL, USA
– sequence: 9
  givenname: Wellington K
  surname: Hsu
  fullname: Hsu, Wellington K
  organization: Northwestern University Feinberg School of Medicine , Chicago, IL, USA
– sequence: 10
  givenname: Michael P
  surname: Francis
  fullname: Francis, Michael P
  email: mpf3b@virginia.edu
  organization: Eastern Virginia Medical School, Norfolk, VA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27458901$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1vFiEUhYmpsV_-A2PYmLgZXxgGBpamrR9JEzd2TWC4NDQDvMJMoi787eXt1KYL44ob7nPOvfecoqOUEyD0hpIPlEi5oyOXHSeK7OSO7QjjhIwv0MnT99Gz-hid1npHiOBc0FfouB8HLhWhJ-jPJcSQoJg5_AaHbZuBo1lK-Il9sFAq9rlEY2fApuJbeECxSQ5Pa11yxOwS70tISxPHPLvOmtrKEPezScuDuvVzzEtIt5t9gc1mCTmdo5fezBVeP75n6ObT1feLL931t89fLz5ed9NA-dIJ1TvVKw9MgPV88ANTkoDpRS-otV5wIccelKSeKtoLT0mrJFd2dI64iZ2h95tv2-XHCnXRMdQJ5rYk5LVqKsnImWBMNnTY0KnkWgt43e6LpvzSlOhD8voQqz7EqqVmeku-yd4-TlhtBPck-ht1A95tQMh7fZfXktrB2vpnJnrvfOPIP7j_zr4HnUacoA
CODEN BIOFCK
CitedBy_id crossref_primary_10_14568_cp2018003
crossref_primary_10_1007_s12178_020_09620_4
crossref_primary_10_1016_j_ijbiomac_2021_06_072
crossref_primary_10_3390_ma14164431
crossref_primary_10_1021_acsabm_1c00949
crossref_primary_10_4236_ojo_2020_107019
crossref_primary_10_1039_C8BM01657G
crossref_primary_10_3390_jfb9030045
crossref_primary_10_3390_nano8120999
crossref_primary_10_3390_pharmaceutics14091962
crossref_primary_10_4236_ojo_2020_107016
crossref_primary_10_1097_SCS_0000000000006133
crossref_primary_10_1007_s12178_022_09757_4
Cites_doi 10.1597/10-178
10.1097/BRS.0b013e31820cccfb
10.1002/jor.21454
10.1302/0301-620X.95B5.30286
10.1007/s00586-007-0501-0
10.1097/01.BRS.0000090823.12652.F9
10.1002/jbm.a.31085
10.5435/JAAOS-21-01-51
10.1097/00008505-200009010-00008
10.1097/01.scs.0000179745.91165.73
10.1007/s00586-008-0844-1
10.1089/107632700418146
10.1097/BSD.0000000000000281
10.1002/jbmr.5650081313
10.4317/medoral.16.e210
10.1016/j.cden.2005.11.003
10.1097/BRS.0b013e31828cb977
10.1002/jor.1100030108
10.1002/jbm.820040309
10.1097/00007632-199904010-00005
10.1097/00003086-196707000-00026
10.4103/0970-9290.62796
10.1002/jbm.b.30015
10.1007/s00264-010-1145-y
10.1016/S0142-9612(97)00180-4
10.2106/JBJS.H.01400
10.1097/ID.0b013e3182885fa1
10.1023/A:1011256107282
10.1016/j.spinee.2009.04.007
10.1177/0022034514547271
10.2106/00004623-200410000-00016
10.1016/S1359-6101(96)00049-4
10.1097/01.brs.0000218581.92992.b7
10.1002/jbm.820280505
10.1002/jor.1100030306
10.1007/s10856-014-5240-2
10.1055/s-0032-1315454
10.1002/adhm.201400129
10.1002/jbm.b.31195
ContentType Journal Article
Copyright 2016 IOP Publishing Ltd
Copyright_xml – notice: 2016 IOP Publishing Ltd
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1088/1758-5090/8/3/035007
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration
EISSN 1758-5090
EndPage 035007
ExternalDocumentID 10_1088_1758_5090_8_3_035007
27458901
bfaa3072
Genre Journal Article
GrantInformation_xml – fundername: LifeNet Health Institute of Regenerative Medicine
GroupedDBID ---
4.4
5B3
5PX
5VS
7.M
AAGCD
AAJIO
AALHV
AATNI
ABJNI
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
DU5
EBS
EDWGO
EJD
EQZZN
F5P
IJHAN
IOP
IZVLO
KOT
M45
MV1
N5L
NT-
NT.
PJBAE
RIN
RNS
ROL
RPA
SY9
W28
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c415t-692d929fe36ebf54f43980ea26261bbf656872e981f19126f101f1859b7dd0dc3
IEDL.DBID IOP
ISSN 1758-5090
IngestDate Fri Jun 28 14:56:08 EDT 2024
Fri Aug 23 02:27:06 EDT 2024
Wed Oct 16 00:58:08 EDT 2024
Wed Aug 21 03:41:05 EDT 2024
Thu Jan 07 13:54:09 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-692d929fe36ebf54f43980ea26261bbf656872e981f19126f101f1859b7dd0dc3
Notes BF-100693.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27458901
PQID 1807536338
PQPubID 23479
PageCount 16
ParticipantIDs crossref_primary_10_1088_1758_5090_8_3_035007
pubmed_primary_27458901
iop_journals_10_1088_1758_5090_8_3_035007
proquest_miscellaneous_1807536338
PublicationCentury 2000
PublicationDate 2016-07-26
PublicationDateYYYYMMDD 2016-07-26
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-26
  day: 26
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biofabrication
PublicationTitleAbbrev BF
PublicationTitleAlternate Biofabrication
PublicationYear 2016
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
23
24
25
26
29
Peterson B (21) 2004; 86-A
Daculsi G (27) 1990; 11
Eggli P S (28) 1988
31
10
32
11
33
12
34
13
35
14
36
15
37
38
17
39
18
19
Galois L (30) 2004; 70
Kim J (16) 2014; 9
1
2
3
4
5
6
7
8
9
40
41
20
42
43
References_xml – ident: 3
  doi: 10.1597/10-178
– volume: 11
  start-page: 86
  issn: 0142-9612
  year: 1990
  ident: 27
  publication-title: Biomaterials
  contributor:
    fullname: Daculsi G
– ident: 11
  doi: 10.1097/BRS.0b013e31820cccfb
– ident: 23
  doi: 10.1002/jor.21454
– ident: 6
  doi: 10.1302/0301-620X.95B5.30286
– ident: 35
  doi: 10.1007/s00586-007-0501-0
– ident: 19
  doi: 10.1097/01.BRS.0000090823.12652.F9
– ident: 43
  doi: 10.1002/jbm.a.31085
– ident: 10
  doi: 10.5435/JAAOS-21-01-51
– ident: 22
  doi: 10.1097/00008505-200009010-00008
– ident: 41
  doi: 10.1097/01.scs.0000179745.91165.73
– ident: 7
  doi: 10.1007/s00586-008-0844-1
– ident: 40
  doi: 10.1089/107632700418146
– ident: 38
  doi: 10.1097/BSD.0000000000000281
– ident: 13
  doi: 10.1002/jbmr.5650081313
– ident: 4
  doi: 10.4317/medoral.16.e210
– ident: 2
  doi: 10.1016/j.cden.2005.11.003
– ident: 24
  doi: 10.1097/BRS.0b013e31828cb977
– ident: 34
  doi: 10.1002/jor.1100030108
– volume: 9
  issn: 0955-7717
  year: 2014
  ident: 16
  publication-title: Biomed. Mater.
  contributor:
    fullname: Kim J
– ident: 32
  doi: 10.1002/jbm.820040309
– ident: 20
  doi: 10.1097/00007632-199904010-00005
– ident: 15
  doi: 10.1097/00003086-196707000-00026
– ident: 18
  doi: 10.4103/0970-9290.62796
– ident: 42
  doi: 10.1002/jbm.b.30015
– ident: 17
  doi: 10.1007/s00264-010-1145-y
– ident: 31
  doi: 10.1016/S0142-9612(97)00180-4
– ident: 36
  doi: 10.2106/JBJS.H.01400
– ident: 9
  doi: 10.1097/ID.0b013e3182885fa1
– ident: 29
  doi: 10.1023/A:1011256107282
– ident: 8
  doi: 10.1016/j.spinee.2009.04.007
– ident: 1
  doi: 10.1177/0022034514547271
– volume: 86-A
  start-page: 2243
  issn: 1058-2436
  year: 2004
  ident: 21
  publication-title: J. Bone Joint Surg. Am.
  doi: 10.2106/00004623-200410000-00016
  contributor:
    fullname: Peterson B
– ident: 14
  doi: 10.1016/S1359-6101(96)00049-4
– ident: 37
  doi: 10.1097/01.brs.0000218581.92992.b7
– ident: 5
  doi: 10.1002/jbm.820280505
– ident: 33
  doi: 10.1002/jor.1100030306
– ident: 26
  doi: 10.1007/s10856-014-5240-2
– volume: 70
  start-page: 598
  issn: 0001-6462
  year: 2004
  ident: 30
  publication-title: Acta Orthop. Belg.
  contributor:
    fullname: Galois L
– ident: 12
  doi: 10.1055/s-0032-1315454
– start-page: 127
  year: 1988
  ident: 28
  publication-title: Clin. Orthop. Relat. Res.
  contributor:
    fullname: Eggli P S
– ident: 25
  doi: 10.1002/adhm.201400129
– ident: 39
  doi: 10.1002/jbm.b.31195
SSID ssj0065561
Score 2.2118812
Snippet Introduction. Bone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We...
Bone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We therefore...
INTRODUCTIONBone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We...
SourceID proquest
crossref
pubmed
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 035007
SubjectTerms 3D printing
allograft
Animals
Bone and Bones - pathology
Bone and Bones - physiology
Bone Matrix - chemistry
Bone Matrix - metabolism
Bone Morphogenetic Proteins - metabolism
bone regeneration
Bone Regeneration - drug effects
Bone Substitutes - chemistry
Bone Substitutes - pharmacology
Bone Substitutes - therapeutic use
Cell Differentiation - drug effects
Cell Line
computer aided design and modeling
Computer-Aided Design
demineralized bone matrix
Female
Humans
Insulin-Like Growth Factor I - metabolism
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - metabolism
Mice
Mice, Nude
Minimally Invasive Surgical Procedures
Osteogenesis - drug effects
Printing, Three-Dimensional
Prostheses and Implants
Rats
Rats, Sprague-Dawley
Spine - pathology
Spine - surgery
stem cell
Surface Properties
Tissue Engineering - methods
Tissue Scaffolds - chemistry
Title Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration
URI https://iopscience.iop.org/article/10.1088/1758-5090/8/3/035007
https://www.ncbi.nlm.nih.gov/pubmed/27458901
https://search.proquest.com/docview/1807536338
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZouNAD5VlCITISFw5Osi-v91g1RAGJx4FIuRk_o6jJJspDqnLob2dmvYsSpAghbit5_Njx2PN5PDMm5L3JcquUilnRV5alJjOsiCPOXCp8pL3KrUZ7x5evfDROP0-ySf3OaRULs1zVW38XPkOi4MDC2iFO9EDhCQZ6rt8TvaSHN2MYTf4wEYKjT9-nb9-brZjj249NvNyJmkf66Az6PA01K5UzvCA_m8EGT5Pb7m6ru2b_Rx7H__ibJ-RxDUfpdSB_Sh648hk5P0hS-JzcDzD_CJquZntnqV6Wji4wsf8d9ehusqEV7tVzR9WGTkMaa6pKS80OkOWCJgOK1kOAtnSxnFuGitPS2WI1Rx8crA3llVNgOQ3Nr11oBoXmBRkPP_64GbH61QZmAAxsGS9iC5jLu4Q77bPUA-QRfadiODpFWnsAkCKPXSEiD2fFmHvYFDyghkLn1vatSV6SVgl9vSI05VxESeqBVqQqFyrS3FhjHAYXwdG2TVgzd3IVknPI6lJdCIl8lchXKWQiA1_b5ANMg6xX6eYvtJ0jWu0PCuXK-jZ518iJhCWJ9yyqdMsdNIsJnhMOh_82uQwC9Ht4cZ5mAjDY638YyhV5BDCNo0U55m9Ia7veubcAhba6U4n7L77T_hE
link.rule.ids 314,780,784,27924,27925,38865,53841
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB6SFEp76PvhPlIVeulB3rdWeyxxTdJHmkMDuQk9Q6i9NrENJYf-9s6sdkNSCKX0tqDnjkaaT6PRJ4B3tqqd1jrnTaodL21leZNngvtShswEXTtD_o6vh2L_uPx0Up1swd7lXZjFsl_6x_gZiYKjCPuAOJmgwZMc7VyayKRI6GQsrZOlC9twC2dvSbPz4NvRsBwLev9xuDN3Q-lrNmkb270ZbnZmZ3of3NDhGG3yY7xZm7G9-IPL8T__6AHc62Ep-xCLPIQt3z6Cu1fICh_DrwnxkJAL6-zCO2YWrWdzIvj_yQKFnaxYh3_NzDO9YqeRzprp1jG7QYQ5Z8WEkRcRIS6bL2aOkwF17Gy-nFEsDpXG9C44sD2N1Z_7WA0pzxM4nn78vrfP-9cbuEVQsOaiyR1ir-AL4U2oyoDQR6Ze57iFyowJCCRlnftGZgH3jLkIuDgERA-NqZ1LnS2ewk6LbT0HVgohs6IMmFeWupY6M8I6az1dMsIt7gj4MH5qGUk6VHe4LqUi2SqSrZKqUFG2I3iPQ6H62br6S97da3lNuJKocJBG8HbQFYVTk85bdOsXG6yWiJ4LURRyBM-iEl12L6_LSiIWe_EPXXkDt48mU_Xl4PDzS7iDyE2QkzkXr2Bnfb7xrxEdrc1up_2_AQvaA38
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Demineralized+bone+matrix+fibers+formable+as+general+and+custom+3D+printed+mold-based+implants+for+promoting+bone+regeneration&rft.jtitle=Biofabrication&rft.au=Rodriguez%2C+Rudy+U&rft.au=Kemper%2C+Nathan&rft.au=Breathwaite%2C+Erick&rft.au=Dutta%2C+Sucharita+M&rft.date=2016-07-26&rft.eissn=1758-5090&rft.volume=8&rft.issue=3&rft.spage=035007&rft.epage=035007&rft_id=info:doi/10.1088%2F1758-5090%2F8%2F3%2F035007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-5090&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-5090&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-5090&client=summon