Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration
Introduction. Bone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We therefore developed osteoinductive, micro-fibrous surface patterned demineralized bone matrix (DBM) fibers for engineering both defect-match...
Saved in:
Published in | Biofabrication Vol. 8; no. 3; p. 035007 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
26.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Introduction. Bone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We therefore developed osteoinductive, micro-fibrous surface patterned demineralized bone matrix (DBM) fibers for engineering both defect-matched and general three-dimensional implants. Methods and results. Implant molds were filled with demineralized human cortical bone fibers there were compressed and lyophilized, forming mechanically strong shaped DBM scaffolds. Enzyme linked immunosorbent assays and mass spectrometry confirmed that DBM fibers contained abundant osteogenic growth factors (bone morphogenetic proteins, insulin-like growth factor-I) and extracellular matrix proteins. Mercury porosimetry and mechanical testing showed interconnected pores within the mechanically stable, custom DBM fiber scaffolds. Mesenchymal stem cells readily attached to the DBM and showed increasing metabolic activity over time. DBM fibers further increased alkaline phosphatase activity in C2C12 cells. In vivo, DBM implants elicited osteoinductive potential in a mouse muscle pouch, and also promoted spine fusion in a rat arthrodesis model. Significance. DBM fibers can be engineered into custom-shaped, osteoinductive and osteoconductive implants with potential for repairing osseous defects with precise fitment, potentially reducing operating time. By providing pre-formed and custom implants, this regenerative allograft may improve patient outcomes following surgical bone repair, while further advancing personalized orthopedic and craniomaxillofacial medicine using three-dimensional-printed tissue molds. |
---|---|
AbstractList | Introduction. Bone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We therefore developed osteoinductive, micro-fibrous surface patterned demineralized bone matrix (DBM) fibers for engineering both defect-matched and general three-dimensional implants. Methods and results. Implant molds were filled with demineralized human cortical bone fibers there were compressed and lyophilized, forming mechanically strong shaped DBM scaffolds. Enzyme linked immunosorbent assays and mass spectrometry confirmed that DBM fibers contained abundant osteogenic growth factors (bone morphogenetic proteins, insulin-like growth factor-I) and extracellular matrix proteins. Mercury porosimetry and mechanical testing showed interconnected pores within the mechanically stable, custom DBM fiber scaffolds. Mesenchymal stem cells readily attached to the DBM and showed increasing metabolic activity over time. DBM fibers further increased alkaline phosphatase activity in C2C12 cells. In vivo, DBM implants elicited osteoinductive potential in a mouse muscle pouch, and also promoted spine fusion in a rat arthrodesis model. Significance. DBM fibers can be engineered into custom-shaped, osteoinductive and osteoconductive implants with potential for repairing osseous defects with precise fitment, potentially reducing operating time. By providing pre-formed and custom implants, this regenerative allograft may improve patient outcomes following surgical bone repair, while further advancing personalized orthopedic and craniomaxillofacial medicine using three-dimensional-printed tissue molds. Bone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We therefore developed osteoinductive, micro-fibrous surface patterned demineralized bone matrix (DBM) fibers for engineering both defect-matched and general three-dimensional implants. Implant molds were filled with demineralized human cortical bone fibers there were compressed and lyophilized, forming mechanically strong shaped DBM scaffolds. Enzyme linked immunosorbent assays and mass spectrometry confirmed that DBM fibers contained abundant osteogenic growth factors (bone morphogenetic proteins, insulin-like growth factor-I) and extracellular matrix proteins. Mercury porosimetry and mechanical testing showed interconnected pores within the mechanically stable, custom DBM fiber scaffolds. Mesenchymal stem cells readily attached to the DBM and showed increasing metabolic activity over time. DBM fibers further increased alkaline phosphatase activity in C2C12 cells. In vivo, DBM implants elicited osteoinductive potential in a mouse muscle pouch, and also promoted spine fusion in a rat arthrodesis model. DBM fibers can be engineered into custom-shaped, osteoinductive and osteoconductive implants with potential for repairing osseous defects with precise fitment, potentially reducing operating time. By providing pre-formed and custom implants, this regenerative allograft may improve patient outcomes following surgical bone repair, while further advancing personalized orthopedic and craniomaxillofacial medicine using three-dimensional-printed tissue molds. INTRODUCTIONBone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We therefore developed osteoinductive, micro-fibrous surface patterned demineralized bone matrix (DBM) fibers for engineering both defect-matched and general three-dimensional implants.METHODS AND RESULTSImplant molds were filled with demineralized human cortical bone fibers there were compressed and lyophilized, forming mechanically strong shaped DBM scaffolds. Enzyme linked immunosorbent assays and mass spectrometry confirmed that DBM fibers contained abundant osteogenic growth factors (bone morphogenetic proteins, insulin-like growth factor-I) and extracellular matrix proteins. Mercury porosimetry and mechanical testing showed interconnected pores within the mechanically stable, custom DBM fiber scaffolds. Mesenchymal stem cells readily attached to the DBM and showed increasing metabolic activity over time. DBM fibers further increased alkaline phosphatase activity in C2C12 cells. In vivo, DBM implants elicited osteoinductive potential in a mouse muscle pouch, and also promoted spine fusion in a rat arthrodesis model.SIGNIFICANCEDBM fibers can be engineered into custom-shaped, osteoinductive and osteoconductive implants with potential for repairing osseous defects with precise fitment, potentially reducing operating time. By providing pre-formed and custom implants, this regenerative allograft may improve patient outcomes following surgical bone repair, while further advancing personalized orthopedic and craniomaxillofacial medicine using three-dimensional-printed tissue molds. |
Author | Kemper, Nathan Dutta, Sucharita M Huber, Alexander Hsu, Wellington K Hsu, Erin L Francis, Michael P Murchison, Angela Chen, Silvia Breathwaite, Erick Rodriguez, Rudy U |
Author_xml | – sequence: 1 givenname: Rudy U surname: Rodriguez fullname: Rodriguez, Rudy U organization: LifeNet Health Institute of Regenerative Medicine, Virginia Beach, VA, USA – sequence: 2 givenname: Nathan surname: Kemper fullname: Kemper, Nathan organization: LifeNet Health Institute of Regenerative Medicine, Virginia Beach, VA, USA – sequence: 3 givenname: Erick surname: Breathwaite fullname: Breathwaite, Erick organization: LifeNet Health Institute of Regenerative Medicine, Virginia Beach, VA, USA – sequence: 4 givenname: Sucharita M surname: Dutta fullname: Dutta, Sucharita M organization: Eastern Virginia Medical School, Norfolk, VA, USA – sequence: 5 givenname: Alexander surname: Huber fullname: Huber, Alexander organization: LifeNet Health Institute of Regenerative Medicine, Virginia Beach, VA, USA – sequence: 6 givenname: Angela surname: Murchison fullname: Murchison, Angela organization: LifeNet Health Institute of Regenerative Medicine, Virginia Beach, VA, USA – sequence: 7 givenname: Silvia surname: Chen fullname: Chen, Silvia organization: Eastern Virginia Medical School, Norfolk, VA, USA – sequence: 8 givenname: Erin L surname: Hsu fullname: Hsu, Erin L organization: Northwestern University Feinberg School of Medicine , Chicago, IL, USA – sequence: 9 givenname: Wellington K surname: Hsu fullname: Hsu, Wellington K organization: Northwestern University Feinberg School of Medicine , Chicago, IL, USA – sequence: 10 givenname: Michael P surname: Francis fullname: Francis, Michael P email: mpf3b@virginia.edu organization: Eastern Virginia Medical School, Norfolk, VA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27458901$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1vFiEUhYmpsV_-A2PYmLgZXxgGBpamrR9JEzd2TWC4NDQDvMJMoi787eXt1KYL44ob7nPOvfecoqOUEyD0hpIPlEi5oyOXHSeK7OSO7QjjhIwv0MnT99Gz-hid1npHiOBc0FfouB8HLhWhJ-jPJcSQoJg5_AaHbZuBo1lK-Il9sFAq9rlEY2fApuJbeECxSQ5Pa11yxOwS70tISxPHPLvOmtrKEPezScuDuvVzzEtIt5t9gc1mCTmdo5fezBVeP75n6ObT1feLL931t89fLz5ed9NA-dIJ1TvVKw9MgPV88ANTkoDpRS-otV5wIccelKSeKtoLT0mrJFd2dI64iZ2h95tv2-XHCnXRMdQJ5rYk5LVqKsnImWBMNnTY0KnkWgt43e6LpvzSlOhD8voQqz7EqqVmeku-yd4-TlhtBPck-ht1A95tQMh7fZfXktrB2vpnJnrvfOPIP7j_zr4HnUacoA |
CODEN | BIOFCK |
CitedBy_id | crossref_primary_10_14568_cp2018003 crossref_primary_10_1007_s12178_020_09620_4 crossref_primary_10_1016_j_ijbiomac_2021_06_072 crossref_primary_10_3390_ma14164431 crossref_primary_10_1021_acsabm_1c00949 crossref_primary_10_4236_ojo_2020_107019 crossref_primary_10_1039_C8BM01657G crossref_primary_10_3390_jfb9030045 crossref_primary_10_3390_nano8120999 crossref_primary_10_3390_pharmaceutics14091962 crossref_primary_10_4236_ojo_2020_107016 crossref_primary_10_1097_SCS_0000000000006133 crossref_primary_10_1007_s12178_022_09757_4 |
Cites_doi | 10.1597/10-178 10.1097/BRS.0b013e31820cccfb 10.1002/jor.21454 10.1302/0301-620X.95B5.30286 10.1007/s00586-007-0501-0 10.1097/01.BRS.0000090823.12652.F9 10.1002/jbm.a.31085 10.5435/JAAOS-21-01-51 10.1097/00008505-200009010-00008 10.1097/01.scs.0000179745.91165.73 10.1007/s00586-008-0844-1 10.1089/107632700418146 10.1097/BSD.0000000000000281 10.1002/jbmr.5650081313 10.4317/medoral.16.e210 10.1016/j.cden.2005.11.003 10.1097/BRS.0b013e31828cb977 10.1002/jor.1100030108 10.1002/jbm.820040309 10.1097/00007632-199904010-00005 10.1097/00003086-196707000-00026 10.4103/0970-9290.62796 10.1002/jbm.b.30015 10.1007/s00264-010-1145-y 10.1016/S0142-9612(97)00180-4 10.2106/JBJS.H.01400 10.1097/ID.0b013e3182885fa1 10.1023/A:1011256107282 10.1016/j.spinee.2009.04.007 10.1177/0022034514547271 10.2106/00004623-200410000-00016 10.1016/S1359-6101(96)00049-4 10.1097/01.brs.0000218581.92992.b7 10.1002/jbm.820280505 10.1002/jor.1100030306 10.1007/s10856-014-5240-2 10.1055/s-0032-1315454 10.1002/adhm.201400129 10.1002/jbm.b.31195 |
ContentType | Journal Article |
Copyright | 2016 IOP Publishing Ltd |
Copyright_xml | – notice: 2016 IOP Publishing Ltd |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1088/1758-5090/8/3/035007 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration |
EISSN | 1758-5090 |
EndPage | 035007 |
ExternalDocumentID | 10_1088_1758_5090_8_3_035007 27458901 bfaa3072 |
Genre | Journal Article |
GrantInformation_xml | – fundername: LifeNet Health Institute of Regenerative Medicine |
GroupedDBID | --- 4.4 5B3 5PX 5VS 7.M AAGCD AAJIO AALHV AATNI ABJNI ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU DU5 EBS EDWGO EJD EQZZN F5P IJHAN IOP IZVLO KOT M45 MV1 N5L NT- NT. PJBAE RIN RNS ROL RPA SY9 W28 CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c415t-692d929fe36ebf54f43980ea26261bbf656872e981f19126f101f1859b7dd0dc3 |
IEDL.DBID | IOP |
ISSN | 1758-5090 |
IngestDate | Fri Jun 28 14:56:08 EDT 2024 Fri Aug 23 02:27:06 EDT 2024 Wed Oct 16 00:58:08 EDT 2024 Wed Aug 21 03:41:05 EDT 2024 Thu Jan 07 13:54:09 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-692d929fe36ebf54f43980ea26261bbf656872e981f19126f101f1859b7dd0dc3 |
Notes | BF-100693.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27458901 |
PQID | 1807536338 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1088_1758_5090_8_3_035007 pubmed_primary_27458901 iop_journals_10_1088_1758_5090_8_3_035007 proquest_miscellaneous_1807536338 |
PublicationCentury | 2000 |
PublicationDate | 2016-07-26 |
PublicationDateYYYYMMDD | 2016-07-26 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biofabrication |
PublicationTitleAbbrev | BF |
PublicationTitleAlternate | Biofabrication |
PublicationYear | 2016 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 22 23 24 25 26 29 Peterson B (21) 2004; 86-A Daculsi G (27) 1990; 11 Eggli P S (28) 1988 31 10 32 11 33 12 34 13 35 14 36 15 37 38 17 39 18 19 Galois L (30) 2004; 70 Kim J (16) 2014; 9 1 2 3 4 5 6 7 8 9 40 41 20 42 43 |
References_xml | – ident: 3 doi: 10.1597/10-178 – volume: 11 start-page: 86 issn: 0142-9612 year: 1990 ident: 27 publication-title: Biomaterials contributor: fullname: Daculsi G – ident: 11 doi: 10.1097/BRS.0b013e31820cccfb – ident: 23 doi: 10.1002/jor.21454 – ident: 6 doi: 10.1302/0301-620X.95B5.30286 – ident: 35 doi: 10.1007/s00586-007-0501-0 – ident: 19 doi: 10.1097/01.BRS.0000090823.12652.F9 – ident: 43 doi: 10.1002/jbm.a.31085 – ident: 10 doi: 10.5435/JAAOS-21-01-51 – ident: 22 doi: 10.1097/00008505-200009010-00008 – ident: 41 doi: 10.1097/01.scs.0000179745.91165.73 – ident: 7 doi: 10.1007/s00586-008-0844-1 – ident: 40 doi: 10.1089/107632700418146 – ident: 38 doi: 10.1097/BSD.0000000000000281 – ident: 13 doi: 10.1002/jbmr.5650081313 – ident: 4 doi: 10.4317/medoral.16.e210 – ident: 2 doi: 10.1016/j.cden.2005.11.003 – ident: 24 doi: 10.1097/BRS.0b013e31828cb977 – ident: 34 doi: 10.1002/jor.1100030108 – volume: 9 issn: 0955-7717 year: 2014 ident: 16 publication-title: Biomed. Mater. contributor: fullname: Kim J – ident: 32 doi: 10.1002/jbm.820040309 – ident: 20 doi: 10.1097/00007632-199904010-00005 – ident: 15 doi: 10.1097/00003086-196707000-00026 – ident: 18 doi: 10.4103/0970-9290.62796 – ident: 42 doi: 10.1002/jbm.b.30015 – ident: 17 doi: 10.1007/s00264-010-1145-y – ident: 31 doi: 10.1016/S0142-9612(97)00180-4 – ident: 36 doi: 10.2106/JBJS.H.01400 – ident: 9 doi: 10.1097/ID.0b013e3182885fa1 – ident: 29 doi: 10.1023/A:1011256107282 – ident: 8 doi: 10.1016/j.spinee.2009.04.007 – ident: 1 doi: 10.1177/0022034514547271 – volume: 86-A start-page: 2243 issn: 1058-2436 year: 2004 ident: 21 publication-title: J. Bone Joint Surg. Am. doi: 10.2106/00004623-200410000-00016 contributor: fullname: Peterson B – ident: 14 doi: 10.1016/S1359-6101(96)00049-4 – ident: 37 doi: 10.1097/01.brs.0000218581.92992.b7 – ident: 5 doi: 10.1002/jbm.820280505 – ident: 33 doi: 10.1002/jor.1100030306 – ident: 26 doi: 10.1007/s10856-014-5240-2 – volume: 70 start-page: 598 issn: 0001-6462 year: 2004 ident: 30 publication-title: Acta Orthop. Belg. contributor: fullname: Galois L – ident: 12 doi: 10.1055/s-0032-1315454 – start-page: 127 year: 1988 ident: 28 publication-title: Clin. Orthop. Relat. Res. contributor: fullname: Eggli P S – ident: 25 doi: 10.1002/adhm.201400129 – ident: 39 doi: 10.1002/jbm.b.31195 |
SSID | ssj0065561 |
Score | 2.2118812 |
Snippet | Introduction. Bone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We... Bone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We therefore... INTRODUCTIONBone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We... |
SourceID | proquest crossref pubmed iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 035007 |
SubjectTerms | 3D printing allograft Animals Bone and Bones - pathology Bone and Bones - physiology Bone Matrix - chemistry Bone Matrix - metabolism Bone Morphogenetic Proteins - metabolism bone regeneration Bone Regeneration - drug effects Bone Substitutes - chemistry Bone Substitutes - pharmacology Bone Substitutes - therapeutic use Cell Differentiation - drug effects Cell Line computer aided design and modeling Computer-Aided Design demineralized bone matrix Female Humans Insulin-Like Growth Factor I - metabolism Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - metabolism Mice Mice, Nude Minimally Invasive Surgical Procedures Osteogenesis - drug effects Printing, Three-Dimensional Prostheses and Implants Rats Rats, Sprague-Dawley Spine - pathology Spine - surgery stem cell Surface Properties Tissue Engineering - methods Tissue Scaffolds - chemistry |
Title | Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration |
URI | https://iopscience.iop.org/article/10.1088/1758-5090/8/3/035007 https://www.ncbi.nlm.nih.gov/pubmed/27458901 https://search.proquest.com/docview/1807536338 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZouNAD5VlCITISFw5Osi-v91g1RAGJx4FIuRk_o6jJJspDqnLob2dmvYsSpAghbit5_Njx2PN5PDMm5L3JcquUilnRV5alJjOsiCPOXCp8pL3KrUZ7x5evfDROP0-ySf3OaRULs1zVW38XPkOi4MDC2iFO9EDhCQZ6rt8TvaSHN2MYTf4wEYKjT9-nb9-brZjj249NvNyJmkf66Az6PA01K5UzvCA_m8EGT5Pb7m6ru2b_Rx7H__ibJ-RxDUfpdSB_Sh648hk5P0hS-JzcDzD_CJquZntnqV6Wji4wsf8d9ehusqEV7tVzR9WGTkMaa6pKS80OkOWCJgOK1kOAtnSxnFuGitPS2WI1Rx8crA3llVNgOQ3Nr11oBoXmBRkPP_64GbH61QZmAAxsGS9iC5jLu4Q77bPUA-QRfadiODpFWnsAkCKPXSEiD2fFmHvYFDyghkLn1vatSV6SVgl9vSI05VxESeqBVqQqFyrS3FhjHAYXwdG2TVgzd3IVknPI6lJdCIl8lchXKWQiA1_b5ANMg6xX6eYvtJ0jWu0PCuXK-jZ518iJhCWJ9yyqdMsdNIsJnhMOh_82uQwC9Ht4cZ5mAjDY638YyhV5BDCNo0U55m9Ia7veubcAhba6U4n7L77T_hE |
link.rule.ids | 314,780,784,27924,27925,38865,53841 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB6SFEp76PvhPlIVeulB3rdWeyxxTdJHmkMDuQk9Q6i9NrENJYf-9s6sdkNSCKX0tqDnjkaaT6PRJ4B3tqqd1jrnTaodL21leZNngvtShswEXTtD_o6vh2L_uPx0Up1swd7lXZjFsl_6x_gZiYKjCPuAOJmgwZMc7VyayKRI6GQsrZOlC9twC2dvSbPz4NvRsBwLev9xuDN3Q-lrNmkb270ZbnZmZ3of3NDhGG3yY7xZm7G9-IPL8T__6AHc62Ep-xCLPIQt3z6Cu1fICh_DrwnxkJAL6-zCO2YWrWdzIvj_yQKFnaxYh3_NzDO9YqeRzprp1jG7QYQ5Z8WEkRcRIS6bL2aOkwF17Gy-nFEsDpXG9C44sD2N1Z_7WA0pzxM4nn78vrfP-9cbuEVQsOaiyR1ir-AL4U2oyoDQR6Ze57iFyowJCCRlnftGZgH3jLkIuDgERA-NqZ1LnS2ewk6LbT0HVgohs6IMmFeWupY6M8I6az1dMsIt7gj4MH5qGUk6VHe4LqUi2SqSrZKqUFG2I3iPQ6H62br6S97da3lNuJKocJBG8HbQFYVTk85bdOsXG6yWiJ4LURRyBM-iEl12L6_LSiIWe_EPXXkDt48mU_Xl4PDzS7iDyE2QkzkXr2Bnfb7xrxEdrc1up_2_AQvaA38 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Demineralized+bone+matrix+fibers+formable+as+general+and+custom+3D+printed+mold-based+implants+for+promoting+bone+regeneration&rft.jtitle=Biofabrication&rft.au=Rodriguez%2C+Rudy+U&rft.au=Kemper%2C+Nathan&rft.au=Breathwaite%2C+Erick&rft.au=Dutta%2C+Sucharita+M&rft.date=2016-07-26&rft.eissn=1758-5090&rft.volume=8&rft.issue=3&rft.spage=035007&rft.epage=035007&rft_id=info:doi/10.1088%2F1758-5090%2F8%2F3%2F035007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-5090&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-5090&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-5090&client=summon |