A Novel Representation Learning for Dynamic Graphs Based on Graph Convolutional Networks
Graph representation learning has re-emerged as a fascinating research topic due to the successful application of graph convolutional networks (GCNs) for graphs and inspires various downstream tasks, such as node classification and link prediction. Nevertheless, existing GCN-based methods for graph...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 53; no. 6; pp. 3599 - 3612 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2267 2168-2275 2168-2275 |
DOI | 10.1109/TCYB.2022.3159661 |
Cover
Loading…