Noise effects on Padé approximants and conformal maps
We analyze the properties of Padé and conformal map approximants for functions with branch points, in the situation where the expansion coefficients are only known with finite precision or are subject to noise. We prove that there is a universal scaling relation between the strength of the noise and...
Saved in:
Published in | Journal of physics. A, Mathematical and theoretical Vol. 55; no. 46; pp. 464007 - 464027 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IOP Publishing
18.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1751-8113 1751-8121 |
DOI | 10.1088/1751-8121/aca303 |
Cover
Loading…
Abstract | We analyze the properties of Padé and conformal map approximants for functions with branch points, in the situation where the expansion coefficients are only known with finite precision or are subject to noise. We prove that there is a universal scaling relation between the strength of the noise and the expansion order at which Padé or the conformal map breaks down. We illustrate this behavior with some physically relevant model test functions and with two non-trivial physical examples where the relevant Riemann surface has complicated structure. |
---|---|
AbstractList | We analyze the properties of Padé and conformal map approximants for functions with branch points, in the situation where the expansion coefficients are only known with finite precision or are subject to noise. We prove that there is a universal scaling relation between the strength of the noise and the expansion order at which Padé or the conformal map breaks down. We illustrate this behavior with some physically relevant model test functions and with two non-trivial physical examples where the relevant Riemann surface has complicated structure. Here, we analyze the properties of Padé and conformal map approximants for functions with branch points, in the situation where the expansion coefficients are only known with finite precision or are subject to noise. We prove that there is a universal scaling relation between the strength of the noise and the expansion order at which Padé or the conformal map breaks down. We illustrate this behavior with some physically relevant model test functions and with two non-trivial physical examples where the relevant Riemann surface has complicated structure. |
Author | Dunne, Gerald V Costin, Ovidiu Meynig, Max |
Author_xml | – sequence: 1 givenname: Ovidiu surname: Costin fullname: Costin, Ovidiu organization: The Ohio State University Department of Mathematics, Columbus, OH 43210-1174, United States of America – sequence: 2 givenname: Gerald V orcidid: 0000-0003-1338-339X surname: Dunne fullname: Dunne, Gerald V organization: University of Connecticut Department of Physics, Storrs, CT 06269-3046, United States of America – sequence: 3 givenname: Max surname: Meynig fullname: Meynig, Max organization: University of Connecticut Department of Physics, Storrs, CT 06269-3046, United States of America |
BackLink | https://www.osti.gov/servlets/purl/2420020$$D View this record in Osti.gov |
BookMark | eNp9UE1LAzEUDKJgW717XDy79uVrd3uU4hcU9aDn8DabYEqbLMkK-pP8Hf4xU1Z6EPT0Ho-ZeTMzJYc-eEPIGYVLCk0zp7WkZUMZnaNGDvyATPanw_1O-TGZprQGkAIWbEKqh-CSKYy1Rg-pCL54wu7rs8C-j-HdbdHnK_qu0MHbELe4KbbYpxNyZHGTzOnPnJGXm-vn5V25ery9X16tSi2oHEqJsjM1bysG-T9KKWTHoalZa5hAFI2pBdML20iwki4M1m1bSVsLiZwyTvmMnI-6IQ1OJe0Go1-zFZ_dKiYYAIMMghGkY0gpGqv6mJ3HD0VB7cpRu_Rq14Qay8mU6hclS-Pggh8ius1_xIuR6EKv1uEt-hz_b_g3MDN3gA |
CODEN | JPHAC5 |
CitedBy_id | crossref_primary_10_1017_S1446181124000038 crossref_primary_10_1007_JHEP08_2023_060 crossref_primary_10_1103_PhysRevD_109_074505 crossref_primary_10_1103_PhysRevC_110_015203 |
Cites_doi | 10.1016/j.physletb.2020.135627 10.1070/RM2011v066n06ABEH004770 10.1090/conm/578/11474 10.1016/0377-0427(95)00177-8 10.1016/S0377-0427(97)00185-4 10.1103/PhysRevD.103.116024 10.1016/j.nuclphysb.2022.115861 10.1016/0370-1573(94)00084-G 10.1016/S0370-2693(00)00051-4 10.1088/0305-4470/14/9/034 10.1016/0550-3213(79)90086-5 10.1007/s11511-016-0133-5 10.1016/S0377-0427(02)00674-X 10.1137/0506024 10.1140/epjs/s11734-021-00267-x 10.1006/jath.1997.3141 10.1016/S0377-0427(99)00041-2 10.1070/RM2011v066n06ABEH004769 10.1088/1751-8113/42/36/365202 10.1103/PhysRevLett.40.1610 10.3842/SIGMA.2021.087 10.1007/s00222-005-0485-5 10.1088/1751-8121/ab477b 10.1007/s00332-008-9025-y 10.1007/BF03321780 10.1007/PL00005547 10.1007/s00220-022-04361-6 10.1007/s002200050779 10.1016/S0550-3213(01)00071-2 10.1215/00127094-2429589 |
ContentType | Journal Article |
Copyright | 2022 IOP Publishing Ltd |
Copyright_xml | – notice: 2022 IOP Publishing Ltd |
CorporateAuthor | Univ. of Connecticut, Storrs, CT (United States) |
CorporateAuthor_xml | – name: Univ. of Connecticut, Storrs, CT (United States) |
DBID | AAYXX CITATION OIOZB OTOTI |
DOI | 10.1088/1751-8121/aca303 |
DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1751-8121 |
ExternalDocumentID | 2420020 10_1088_1751_8121_aca303 aaca303 |
GrantInformation_xml | – fundername: United States National Science Foundation grantid: DMS - 2206241 – fundername: U.S. Department of Energy grantid: DE-SC0010339 funderid: http://dx.doi.org/10.13039/100000015 |
GroupedDBID | 1JI 4.4 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHWH ABQJV ABVAM ACAFW ACGFS ACHIP ACNCT AEFHF AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L PJBAE RIN RNS RO9 ROL RPA SY9 TN5 W28 AAYXX ADEQX CITATION OIOZB OTOTI |
ID | FETCH-LOGICAL-c415t-5a5de73b620751a5545d30872be24aa48e742c9f850f519ea7bb65f745a312313 |
IEDL.DBID | IOP |
ISSN | 1751-8113 |
IngestDate | Mon Sep 30 10:30:34 EDT 2024 Tue Jul 01 02:32:52 EDT 2025 Thu Apr 24 23:00:03 EDT 2025 Wed Aug 21 03:40:39 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-5a5de73b620751a5545d30872be24aa48e742c9f850f519ea7bb65f745a312313 |
Notes | JPhysA-117919.R1 SC0010339 USDOE Office of Science (SC), High Energy Physics (HEP) |
ORCID | 0000-0003-1338-339X 000000031338339X |
OpenAccessLink | https://www.osti.gov/servlets/purl/2420020 |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_1088_1751_8121_aca303 iop_journals_10_1088_1751_8121_aca303 osti_scitechconnect_2420020 crossref_citationtrail_10_1088_1751_8121_aca303 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-18 |
PublicationDateYYYYMMDD | 2022-11-18 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of physics. A, Mathematical and theoretical |
PublicationTitleAbbrev | JPhysA |
PublicationTitleAlternate | J. Phys. A: Math. Theor |
PublicationYear | 2022 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Martínez-Finkelshtein (aaca303bib7) 2012; 578 Costin (aaca303bib23) 2022; 392 Gonchar (aaca303bib5) 2011; 66 Gilewicz (aaca303bib14) 2003; 153 Fisher (aaca303bib28) 1978; 40 Borinsky (aaca303bib35) 2022; 981 Kober (aaca303bib25) 1957 Ransford (aaca303bib21) 2011; 10 de Alcantara Bonfim (aaca303bib30) 1981; 14 Costin (aaca303bib41) 2014; 163 Froissart (aaca303bib10) 1969; 9 Yamada (aaca303bib17) 2013 Zinn-Justin (aaca303bib15) 2002; vol 113 Broadhurst (aaca303bib33) 2001; 600 Connes (aaca303bib32) 2001; 216 Di Francesco (aaca303bib38) 1995; 254 McKane (aaca303bib29) 1979; 152 Costin (aaca303bib9) 2021; 230 Lipatov (aaca303bib27) 1977; 45 Costin (aaca303bib37) 2008 Damanik (aaca303bib22) 2006; 165 Stahl (aaca303bib3) 1997; 91 Guillou (aaca303bib18) 1990 Grassmann (aaca303bib20) 1975; 6 Connes (aaca303bib32) 2000; 210 Costin (aaca303bib16) 2020; 808 Kuz’mina (aaca303bib19) 1969; 94 Brown (aaca303bib24) 2009 Bender (aaca303bib2) 1999 Aptekarev (aaca303bib8) 2015; 215 Aptekarev (aaca303bib6) 2011; 66 Kahane (aaca303bib26) 1985 Saff (aaca303bib4) 2010; 5 Borinsky (aaca303bib31) 2021; 103 Broadhurst (aaca303bib33) 2000; 475 Borinsky (aaca303bib34) 2021; 17 Costin (aaca303bib39) 2019; 52 Gilewicz (aaca303bib13) 1999; 105 Baker (aaca303bib1) 2009 Bessis (aaca303bib12) 2009; 42 Bessis (aaca303bib11) 1996; 66 Gilewicz (aaca303bib13) 1997; 87 Dubrovin (aaca303bib40) 2009; 19 Clarkson (aaca303bib36) 2006; vol 1883 |
References_xml | – volume: 808 year: 2020 ident: aaca303bib16 article-title: Physical resurgent extrapolation publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2020.135627 – year: 2009 ident: aaca303bib1 – volume: 66 start-page: 1049 year: 2011 ident: aaca303bib6 article-title: Padé approximants, continued fractions and orthogonal polynomials publication-title: Russ. Math. Surv. doi: 10.1070/RM2011v066n06ABEH004770 – volume: 578 start-page: 165 year: 2012 ident: aaca303bib7 article-title: Heine, Hilbert, Pade, Riemann and Stieltjes: John Nuttall’s work 25 years later publication-title: Contemp. Math. doi: 10.1090/conm/578/11474 – volume: 94 start-page: 53 year: 1969 ident: aaca303bib19 article-title: Estimates for the transfinite diameter of a family of continua and covering theorems for univalent functions publication-title: Proc. Steklov Inst. Math. – volume: 66 start-page: 85 year: 1996 ident: aaca303bib11 article-title: Padé approximations in noise filtering publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(95)00177-8 – volume: 87 start-page: 199 year: 1997 ident: aaca303bib13 article-title: Padé approximants and noise: a case of geometric series publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(97)00185-4 – volume: 103 year: 2021 ident: aaca303bib31 article-title: Five-loop renormalization of φ3 theory with applications to the Lee-Yang edge singularity and percolation theory publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.116024 – volume: 981 year: 2022 ident: aaca303bib35 article-title: Resonant resurgent asymptotics from quantum field theory publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2022.115861 – volume: 254 start-page: 1 year: 1995 ident: aaca303bib38 article-title: 2-D gravity and random matrices publication-title: Phys. Rep. doi: 10.1016/0370-1573(94)00084-G – volume: 475 start-page: 63 year: 2000 ident: aaca303bib33 article-title: Combinatoric explosion of renormalization tamed by Hopf algebra: thirty loop Pade-Borel resummation publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(00)00051-4 – volume: 14 start-page: 2391 year: 1981 ident: aaca303bib30 article-title: Critical exponents for the percolation problem and the Yang-Lee edge singularity publication-title: J. Phys. A doi: 10.1088/0305-4470/14/9/034 – volume: 152 start-page: 166 year: 1979 ident: aaca303bib29 article-title: Vacuum instability in scalar field theories publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(79)90086-5 – year: 1985 ident: aaca303bib26 – volume: 215 start-page: 217 year: 2015 ident: aaca303bib8 article-title: Padé approximants for functions with branch points—strong asymptotics of Nuttall-Stahl polynomials publication-title: Acta Math. doi: 10.1007/s11511-016-0133-5 – volume: 45 start-page: 216 year: 1977 ident: aaca303bib27 article-title: Divergence of the perturbation theory series and the quasiclassical theory publication-title: Sov. Phys. JETP – volume: 153 start-page: 235 year: 2003 ident: aaca303bib14 article-title: Froissart doublets in Padé approximation in the case of polynomial noise publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(02)00674-X – volume: 6 start-page: 242 year: 1975 ident: aaca303bib20 article-title: An explicit calculation of some sets of minimal capacity publication-title: SIAM J. Math. Anal. doi: 10.1137/0506024 – volume: 230 start-page: 2679 year: 2021 ident: aaca303bib9 article-title: Conformal and uniformizing maps in Borel analysis publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjs/s11734-021-00267-x – volume: 91 start-page: 139 year: 1997 ident: aaca303bib3 article-title: The convergence of Padé approximants to functions with branch points publication-title: J. Approx. Theory doi: 10.1006/jath.1997.3141 – year: 2013 ident: aaca303bib17 article-title: A numerical test of Padé approximation for some functions with singularity – year: 1957 ident: aaca303bib25 – volume: 5 start-page: 165 year: 2010 ident: aaca303bib4 article-title: Logarithmic potential theory with applications to approximation theory publication-title: Surv. Approx. Theory – volume: 105 start-page: 285 year: 1999 ident: aaca303bib13 article-title: Padé approximants and noise: rational functions publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(99)00041-2 – year: 1999 ident: aaca303bib2 – volume: 66 start-page: 1015 year: 2011 ident: aaca303bib5 article-title: Padé-Chebyshev approximants of multivalued analytic functions, variation of equilibrium energy and the S-property of stationary compact sets publication-title: Russ. Math. Surv. doi: 10.1070/RM2011v066n06ABEH004769 – volume: 42 year: 2009 ident: aaca303bib12 article-title: Universal analytic properties of noise: introducing the J-matrix formalism publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/42/36/365202 – year: 2008 ident: aaca303bib37 – volume: 40 start-page: 1610 year: 1978 ident: aaca303bib28 article-title: Yang-Lee edge singularity and φ 3 field theory publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.40.1610 – volume: 17 start-page: 087 year: 2021 ident: aaca303bib34 article-title: Semiclassical trans-series from the perturbative Hopf-Algebraic Dyson-Schwinger equations: ϕ 3 QFT in 6 dimensions publication-title: SIGMA doi: 10.3842/SIGMA.2021.087 – volume: 165 start-page: 1 year: 2006 ident: aaca303bib22 article-title: Jost functions and Jost solutions for Jacobi matrices, I. A necessary and sufficient condition for Szegö asymptotics publication-title: Invent. Math. doi: 10.1007/s00222-005-0485-5 – volume: 52 year: 2019 ident: aaca303bib39 article-title: Resurgent extrapolation: rebuilding a function from asymptotic data. Painlevé I publication-title: J. Phys. A doi: 10.1088/1751-8121/ab477b – volume: 19 start-page: 57 year: 2009 ident: aaca303bib40 article-title: On universality of critical behavior in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the tritronquée solution to the Painlevé-I equation publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-008-9025-y – volume: 10 start-page: 555 year: 2011 ident: aaca303bib21 article-title: Computation of logarithmic capacity publication-title: Comput. Methods Funct. Theory doi: 10.1007/BF03321780 – year: 1990 ident: aaca303bib18 – volume: 216 start-page: 215 year: 2001 ident: aaca303bib32 article-title: Renormalization in quantum field theory and the Riemann-Hilbert problem. 2. The beta function, diffeomorphisms and the renormalization group publication-title: Commun. Math. Phys. doi: 10.1007/PL00005547 – year: 2009 ident: aaca303bib24 – volume: 392 start-page: 863 year: 2022 ident: aaca303bib23 article-title: Uniformization and constructive analytic continuation of Taylor series publication-title: Commun. Math. Phys. doi: 10.1007/s00220-022-04361-6 – volume: vol 1883 year: 2006 ident: aaca303bib36 article-title: Painlevé equations—nonlinear special functions – volume: 210 start-page: 249 year: 2000 ident: aaca303bib32 article-title: Renormalization in quantum field theory and the Riemann-Hilbert problem. 1. The Hopf algebra structure of graphs and the main theorem publication-title: Commun. Math. Phys. doi: 10.1007/s002200050779 – volume: vol 113 start-page: p 1 year: 2002 ident: aaca303bib15 – volume: 600 start-page: 403 year: 2001 ident: aaca303bib33 article-title: Exact solutions of Dyson-Schwinger equations for iterated one loop integrals and propagator coupling duality publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(01)00071-2 – volume: 9 start-page: 1 year: 1969 ident: aaca303bib10 article-title: Approximation de Padé. Application à la physique des particules elémentaires publication-title: Les Rencontres Physiciens-Mathématiciens de Strasbourg RCP25 – volume: 163 start-page: 665 year: 2014 ident: aaca303bib41 article-title: Proof of the Dubrovin conjecture and analysis of the tritronquée solutions of PI publication-title: Duke Math. J. doi: 10.1215/00127094-2429589 |
SSID | ssj0054092 |
Score | 2.4042277 |
Snippet | We analyze the properties of Padé and conformal map approximants for functions with branch points, in the situation where the expansion coefficients are only... Here, we analyze the properties of Padé and conformal map approximants for functions with branch points, in the situation where the expansion coefficients are... |
SourceID | osti crossref iop |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 464007 |
SubjectTerms | conformal maps MATHEMATICS AND COMPUTING noise Pade approximants Painleve quantum field theory |
Title | Noise effects on Padé approximants and conformal maps |
URI | https://iopscience.iop.org/article/10.1088/1751-8121/aca303 https://www.osti.gov/servlets/purl/2420020 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5zInjxtzinkoMePHRbmyZt8STimIJzBwc7COU1TUHc2mE7EP8j_w7_MV_abKjIEE_t4TVtXpr3vpAv3yPkFGQUe64Slo8Xyw0SboHgngVcg91ODF65o3vXF72hezvioxq5WJyFyaYm9LfwthIKrlxoCHF-GxOebWFestsggWmlz1XmC6HLF9zcD-ZhGJFIWRHZWNvM7FH-1sK3nLSC78X4nOEM-5Jpupvkcf6NFcHkuTUropZ8-yHf-M9ObJENg0DpZWW6TWoq3SFrJRNU5rtE9LOnXFHD86BZSgcQf7zTUnz89WmieTMU0pjiQroEvGM6gWm-R4bd64ernmWKK1gSc3ZhceCx8lgkHAQNNiCq4LFWB3Qi5bgArq9w0SyDxOedBFGeAi-KBE88lwPDbGezfVJPs1QdEOolDoMAQ0NHKo3_ANsTCgMBiIQFQjZIe-7eUBrlcV0AYxyWO-C-H2pvhNobYeWNBjlfPDGtVDeW2J6hk0Mz9fIldk09piGOjJbHlZpHJIsQIYqGzId_bKVJ1h19AEITAf0jUi9eZuoYYUkRnZS_3yfRMtZw |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgCMSFHVHK4gMcOKRtFjvpEQFVy1J6oFJvZuI4UkWbVDSVEH_Ed_BjjBMXAUIVEqfkYDvJOJ551jy_IeQEZBj5nuJWgBfLa8TMAs58C5gGu_UI_Dyje9fhrZ533Wd9U-c0PwuTjo3rr-JtIRRcmNAQ4oIaBjzbwrhk10ACeuDaOIoXyRJzuavF89v33ZkrRjSSV0U2PWzX5Cl_G-VbXFrEZ6OPTnGVfYk2zXXyOHvPgmTyVJ1mYVW-_pBw_MeHbJA1g0TpedF8kyyoZIss54xQOdkmvJMOJooavgdNE9qF6P2N5iLkL4OR5s9QSCKKG-oc-A7pCMaTHdJrXj1ctCxTZMGSGLsziwGLlO-G3EHwYAOiCxZplUAnVI4H4AUKN8-yEQesHiPaU-CHIWex7zFwMerZ7i4pJWmi9gj1Y8eFBrqIulQaBwKOxxU6BOCx2-CyTGozEwtpFMh1IYyhyDPhQSC0RYS2iCgsUiZnnz3GhfrGnLanaGhhluBkTruKnleBs6NlcqXmE8lMIFTR0Hn_j6Mck5XuZVPctjs3FbLq6DMRmhsYHJBS9jxVh4hUsvAo_xs_ADL_29Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+effects+on+Pad%C3%A9+approximants+and+conformal+maps&rft.jtitle=Journal+of+physics.+A%2C+Mathematical+and+theoretical&rft.au=Costin%2C+Ovidiu&rft.au=Dunne%2C+Gerald+V.&rft.au=Meynig%2C+Max&rft.date=2022-11-18&rft.pub=IOP+Publishing&rft.issn=1751-8113&rft.volume=55&rft.issue=46&rft_id=info:doi/10.1088%2F1751-8121%2Faca303&rft.externalDocID=2420020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8113&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8113&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8113&client=summon |