Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle
Purpose Nitrification, the microbial oxidation of ammonia to nitrate via nitrite, is a pivotal component of the biogeochemical nitrogen cycle. Nitrification was conventionally assumed as a two-step process in which ammonia oxidation was thought to be catalyzed by ammonia-oxidizing archaea (AOA) and...
Saved in:
Published in | Journal of soils and sediments Vol. 17; no. 12; pp. 2709 - 2717 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
Nitrification, the microbial oxidation of ammonia to nitrate via nitrite, is a pivotal component of the biogeochemical nitrogen cycle. Nitrification was conventionally assumed as a two-step process in which ammonia oxidation was thought to be catalyzed by ammonia-oxidizing archaea (AOA) and bacteria (AOB), as well as nitrite oxidation by nitrite-oxidizing bacteria (NOB). This long-held assumption of labour division between the two functional groups, however, was challenged by the recent unexpected discovery of complete ammonia oxidizers within the
Nitrospira
genus that are capable of converting ammonia to nitrate in a single organism (comammox). This breakthrough raised fundamental questions on the niche specialization and differentiation of comammox organisms with other canonical nitrifying prokaryotes in terrestrial ecosystems.
Materials and methods
This article provides an overview of the recent insights into the genomic analysis, physiological characterization and environmental investigation of the comammox organisms, which have dramatically changed our perspective on the aerobic nitrification process. By using quantitative PCR analysis, we also compared the abundances of comammox
Nitrospira
clade A and clade B, AOA, AOB and NOB in 300 forest soil samples from China spanning a wide range of soil pH.
Results and discussion
Comammox
Nitrospira
are environmentally widespread and numerically abundant in natural and engineered habitats. Physiological data, including ammonia oxidation kinetics and metabolic versatility, and comparative genomic analysis revealed that comammox organisms might functionally outcompete other canonical nitrifiers under highly oligotrophic conditions. These findings highlight the necessity in future studies to re-evaluate the niche differentiation between ammonia oxidizers and their relative contribution to nitrification in various terrestrial ecosystems by including comammox
Nitrospira
in such comparisons.
Conclusions
The discovery of comammox and their broad environmental distribution added a new dimension to our knowledge of the biochemistry and physiology of nitrification and has far-reaching implications for refined strategies to manipulate nitrification in terrestrial ecosystems and to maximize agricultural productivity and sustainability. |
---|---|
AbstractList | Purpose
Nitrification, the microbial oxidation of ammonia to nitrate via nitrite, is a pivotal component of the biogeochemical nitrogen cycle. Nitrification was conventionally assumed as a two-step process in which ammonia oxidation was thought to be catalyzed by ammonia-oxidizing archaea (AOA) and bacteria (AOB), as well as nitrite oxidation by nitrite-oxidizing bacteria (NOB). This long-held assumption of labour division between the two functional groups, however, was challenged by the recent unexpected discovery of complete ammonia oxidizers within the
Nitrospira
genus that are capable of converting ammonia to nitrate in a single organism (comammox). This breakthrough raised fundamental questions on the niche specialization and differentiation of comammox organisms with other canonical nitrifying prokaryotes in terrestrial ecosystems.
Materials and methods
This article provides an overview of the recent insights into the genomic analysis, physiological characterization and environmental investigation of the comammox organisms, which have dramatically changed our perspective on the aerobic nitrification process. By using quantitative PCR analysis, we also compared the abundances of comammox
Nitrospira
clade A and clade B, AOA, AOB and NOB in 300 forest soil samples from China spanning a wide range of soil pH.
Results and discussion
Comammox
Nitrospira
are environmentally widespread and numerically abundant in natural and engineered habitats. Physiological data, including ammonia oxidation kinetics and metabolic versatility, and comparative genomic analysis revealed that comammox organisms might functionally outcompete other canonical nitrifiers under highly oligotrophic conditions. These findings highlight the necessity in future studies to re-evaluate the niche differentiation between ammonia oxidizers and their relative contribution to nitrification in various terrestrial ecosystems by including comammox
Nitrospira
in such comparisons.
Conclusions
The discovery of comammox and their broad environmental distribution added a new dimension to our knowledge of the biochemistry and physiology of nitrification and has far-reaching implications for refined strategies to manipulate nitrification in terrestrial ecosystems and to maximize agricultural productivity and sustainability. PurposeNitrification, the microbial oxidation of ammonia to nitrate via nitrite, is a pivotal component of the biogeochemical nitrogen cycle. Nitrification was conventionally assumed as a two-step process in which ammonia oxidation was thought to be catalyzed by ammonia-oxidizing archaea (AOA) and bacteria (AOB), as well as nitrite oxidation by nitrite-oxidizing bacteria (NOB). This long-held assumption of labour division between the two functional groups, however, was challenged by the recent unexpected discovery of complete ammonia oxidizers within the Nitrospira genus that are capable of converting ammonia to nitrate in a single organism (comammox). This breakthrough raised fundamental questions on the niche specialization and differentiation of comammox organisms with other canonical nitrifying prokaryotes in terrestrial ecosystems.Materials and methodsThis article provides an overview of the recent insights into the genomic analysis, physiological characterization and environmental investigation of the comammox organisms, which have dramatically changed our perspective on the aerobic nitrification process. By using quantitative PCR analysis, we also compared the abundances of comammox Nitrospira clade A and clade B, AOA, AOB and NOB in 300 forest soil samples from China spanning a wide range of soil pH.Results and discussionComammox Nitrospira are environmentally widespread and numerically abundant in natural and engineered habitats. Physiological data, including ammonia oxidation kinetics and metabolic versatility, and comparative genomic analysis revealed that comammox organisms might functionally outcompete other canonical nitrifiers under highly oligotrophic conditions. These findings highlight the necessity in future studies to re-evaluate the niche differentiation between ammonia oxidizers and their relative contribution to nitrification in various terrestrial ecosystems by including comammox Nitrospira in such comparisons.ConclusionsThe discovery of comammox and their broad environmental distribution added a new dimension to our knowledge of the biochemistry and physiology of nitrification and has far-reaching implications for refined strategies to manipulate nitrification in terrestrial ecosystems and to maximize agricultural productivity and sustainability. PURPOSE: Nitrification, the microbial oxidation of ammonia to nitrate via nitrite, is a pivotal component of the biogeochemical nitrogen cycle. Nitrification was conventionally assumed as a two-step process in which ammonia oxidation was thought to be catalyzed by ammonia-oxidizing archaea (AOA) and bacteria (AOB), as well as nitrite oxidation by nitrite-oxidizing bacteria (NOB). This long-held assumption of labour division between the two functional groups, however, was challenged by the recent unexpected discovery of complete ammonia oxidizers within the Nitrospira genus that are capable of converting ammonia to nitrate in a single organism (comammox). This breakthrough raised fundamental questions on the niche specialization and differentiation of comammox organisms with other canonical nitrifying prokaryotes in terrestrial ecosystems. MATERIALS AND METHODS: This article provides an overview of the recent insights into the genomic analysis, physiological characterization and environmental investigation of the comammox organisms, which have dramatically changed our perspective on the aerobic nitrification process. By using quantitative PCR analysis, we also compared the abundances of comammox Nitrospira clade A and clade B, AOA, AOB and NOB in 300 forest soil samples from China spanning a wide range of soil pH. RESULTS AND DISCUSSION: Comammox Nitrospira are environmentally widespread and numerically abundant in natural and engineered habitats. Physiological data, including ammonia oxidation kinetics and metabolic versatility, and comparative genomic analysis revealed that comammox organisms might functionally outcompete other canonical nitrifiers under highly oligotrophic conditions. These findings highlight the necessity in future studies to re-evaluate the niche differentiation between ammonia oxidizers and their relative contribution to nitrification in various terrestrial ecosystems by including comammox Nitrospira in such comparisons. CONCLUSIONS: The discovery of comammox and their broad environmental distribution added a new dimension to our knowledge of the biochemistry and physiology of nitrification and has far-reaching implications for refined strategies to manipulate nitrification in terrestrial ecosystems and to maximize agricultural productivity and sustainability. |
Author | Hu, Hang-Wei He, Ji-Zheng |
Author_xml | – sequence: 1 givenname: Hang-Wei surname: Hu fullname: Hu, Hang-Wei organization: Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences – sequence: 2 givenname: Ji-Zheng orcidid: 0000-0002-9169-8058 surname: He fullname: He, Ji-Zheng email: jzhe@rcees.ac.cn organization: Faculty of Veterinary and Agricultural Sciences, The University of Melbourne |
BookMark | eNp9kMtKBDEQRYMoqKMf4K7BjZvWSjr9yFIGXyC40XXIJBWNdCea9Kiz8yP8Qr_EzIwLEXSVgjq3cjm7ZNMHj4QcUDimAO1JorRquhJoW9KupqXYIDu0obxseQebeeaVyFvotsluSo8AVZvXO-RuGgY1DOHt8_1DFR5f-0VhXNLhBSOawrsxOuu0Gl3wxVMMGlMqnC_GByxGjBFTBlS_AsM9-kIvdI97ZMuqPuH-9zshd-dnt9PL8vrm4mp6el1qTuuxrIWBmVWWi8aKWWdrCk1HLWOKM2NhJkxX4Uw3bW1aUyneVJqBEjVaJpgRppqQo_Xd3Ox5nrvIIXfHvlcewzxJBgANBQZtRg9_oY9hHn1uJ6loOK87LiBTdE3pGFKKaOVTdIOKC0lBLkXLtWiZRculaClypv2V0W5cCRujcv2_SbZOpvyLv8f4o9OfoS-Z85XG |
CitedBy_id | crossref_primary_10_1016_j_apsoil_2025_105885 crossref_primary_10_1002_saj2_20029 crossref_primary_10_1080_10643389_2024_2350317 crossref_primary_10_1016_j_jhazmat_2021_126994 crossref_primary_10_1186_s12302_022_00700_5 crossref_primary_10_3390_agronomy13082001 crossref_primary_10_1016_j_jenvman_2024_121939 crossref_primary_10_1007_s11783_022_1555_2 crossref_primary_10_3389_fmicb_2023_1337507 crossref_primary_10_1016_j_soilbio_2020_107725 crossref_primary_10_1007_s11368_021_02897_z crossref_primary_10_1016_j_pedsph_2022_06_061 crossref_primary_10_1007_s00128_020_03092_5 crossref_primary_10_1007_s00248_021_01724_9 crossref_primary_10_1016_j_apsoil_2025_105890 crossref_primary_10_1080_10643389_2022_2049578 crossref_primary_10_3389_fmicb_2020_589268 crossref_primary_10_1016_j_watres_2023_121094 crossref_primary_10_3389_fmicb_2021_715070 crossref_primary_10_3389_fmicb_2020_560942 crossref_primary_10_3390_ijerph19042411 crossref_primary_10_1016_j_soilbio_2023_109079 crossref_primary_10_1002_sae2_12115 crossref_primary_10_1021_acsestwater_3c00320 crossref_primary_10_1007_s11368_020_02627_x crossref_primary_10_1016_j_scitotenv_2023_164290 crossref_primary_10_1016_j_jhazmat_2022_129725 crossref_primary_10_1111_1462_2920_14063 crossref_primary_10_1007_s11356_022_19048_7 crossref_primary_10_3389_fmicb_2022_1069554 crossref_primary_10_1016_j_jenvman_2025_124943 crossref_primary_10_1007_s00253_021_11529_y crossref_primary_10_1016_j_ecoenv_2023_114907 crossref_primary_10_1007_s00374_022_01628_x crossref_primary_10_1016_j_ibiod_2021_105286 crossref_primary_10_1093_ismeco_ycae093 crossref_primary_10_1016_j_ejsobi_2022_103409 crossref_primary_10_1016_j_ejsobi_2019_103087 crossref_primary_10_1021_acs_est_0c07279 crossref_primary_10_1016_j_jenvman_2023_117841 crossref_primary_10_5194_bg_16_4765_2019 crossref_primary_10_1016_j_jwpe_2022_103411 crossref_primary_10_1016_j_scitotenv_2021_146558 crossref_primary_10_1007_s11157_022_09634_z crossref_primary_10_1016_j_chemosphere_2024_142156 crossref_primary_10_1016_j_watres_2023_119931 crossref_primary_10_1016_j_biortech_2020_122936 crossref_primary_10_1039_D2EW00204C crossref_primary_10_1080_03650340_2020_1718113 crossref_primary_10_1016_j_agee_2022_108224 crossref_primary_10_1016_j_scitotenv_2020_140456 crossref_primary_10_1016_j_jwpe_2022_102607 crossref_primary_10_3390_microorganisms8111687 crossref_primary_10_1016_j_jes_2022_02_038 crossref_primary_10_3389_fmicb_2022_1022899 crossref_primary_10_1007_s00374_023_01707_7 crossref_primary_10_1111_1462_2920_14691 crossref_primary_10_1016_j_geoderma_2025_117194 crossref_primary_10_1016_j_jhydrol_2024_131741 crossref_primary_10_1016_j_watres_2021_117241 crossref_primary_10_1016_j_soilbio_2018_09_004 crossref_primary_10_1007_s42832_023_0199_x crossref_primary_10_1016_j_jia_2023_10_016 crossref_primary_10_1016_j_biortech_2019_122491 crossref_primary_10_3389_fmicb_2023_1249668 crossref_primary_10_3389_fmicb_2020_01737 crossref_primary_10_1016_j_scitotenv_2019_134943 crossref_primary_10_3390_su132111967 crossref_primary_10_1016_j_soilbio_2021_108231 crossref_primary_10_1016_j_jenvman_2021_114336 crossref_primary_10_1016_j_soilbio_2024_109687 crossref_primary_10_1038_s41598_021_82613_6 crossref_primary_10_3389_fmicb_2019_00036 crossref_primary_10_1111_ejss_13467 crossref_primary_10_1007_s00253_024_13306_z crossref_primary_10_1016_j_watres_2019_115268 crossref_primary_10_1007_s10661_022_09754_7 crossref_primary_10_1016_j_apsoil_2018_06_017 crossref_primary_10_1016_j_watres_2018_08_066 crossref_primary_10_1007_s00374_024_01812_1 crossref_primary_10_1016_j_eng_2021_07_024 crossref_primary_10_1007_s00374_020_01499_0 crossref_primary_10_1016_j_scitotenv_2024_171227 crossref_primary_10_1007_s11356_022_25085_z crossref_primary_10_1016_j_scitotenv_2023_165051 crossref_primary_10_1038_s41396_020_0701_8 crossref_primary_10_1007_s00374_025_01889_2 crossref_primary_10_1016_j_envres_2022_114432 crossref_primary_10_1016_j_scitotenv_2022_153972 crossref_primary_10_1007_s11368_020_02562_x crossref_primary_10_1016_j_chemosphere_2019_125399 crossref_primary_10_3389_fmicb_2018_02061 crossref_primary_10_1016_j_scitotenv_2022_159961 crossref_primary_10_3390_ijerph19031801 crossref_primary_10_1016_j_scitotenv_2020_137257 crossref_primary_10_1016_j_apsoil_2021_104267 crossref_primary_10_1007_s11368_022_03261_5 crossref_primary_10_1016_j_scitotenv_2019_07_131 crossref_primary_10_1007_s11368_018_1954_y crossref_primary_10_1021_acs_est_0c00915 crossref_primary_10_1016_j_tim_2022_04_006 crossref_primary_10_1093_femsec_fiz197 crossref_primary_10_1007_s11368_018_2109_x crossref_primary_10_1016_j_apsoil_2024_105417 crossref_primary_10_1016_j_apsoil_2023_105119 crossref_primary_10_1016_j_jwpe_2021_102085 crossref_primary_10_1007_s42729_024_02086_0 crossref_primary_10_1093_ismejo_wrae186 crossref_primary_10_3389_fmicb_2024_1355859 crossref_primary_10_1016_j_desal_2024_118503 crossref_primary_10_1016_j_soilbio_2019_107673 crossref_primary_10_1016_j_scitotenv_2023_167055 crossref_primary_10_1111_jam_14593 crossref_primary_10_1016_j_apsoil_2025_105941 crossref_primary_10_1016_j_envres_2024_120456 crossref_primary_10_1002_imt2_271 crossref_primary_10_1016_j_scitotenv_2024_174411 crossref_primary_10_1016_j_cej_2023_144318 crossref_primary_10_1016_j_chemosphere_2024_142093 crossref_primary_10_1016_j_apsoil_2022_104456 crossref_primary_10_1007_s11368_020_02645_9 crossref_primary_10_1016_j_ejsobi_2019_103116 crossref_primary_10_1016_j_envpol_2022_120272 crossref_primary_10_1128_AEM_00092_21 crossref_primary_10_1016_j_soilbio_2021_108153 crossref_primary_10_3390_microorganisms7120699 crossref_primary_10_1007_s11368_018_1997_0 crossref_primary_10_1016_j_envres_2023_116565 crossref_primary_10_1007_s10123_023_00465_8 crossref_primary_10_1007_s42452_024_06354_7 crossref_primary_10_3390_su16135791 crossref_primary_10_3389_fmicb_2022_952967 crossref_primary_10_1016_j_agee_2020_107147 crossref_primary_10_1128_mBio_01870_19 crossref_primary_10_1016_j_geoderma_2021_115395 crossref_primary_10_1016_j_envpol_2023_121549 crossref_primary_10_1038_s41598_021_86212_3 crossref_primary_10_1016_j_apsoil_2023_104926 crossref_primary_10_1016_j_chemosphere_2022_135412 crossref_primary_10_1071_MA18007 crossref_primary_10_1007_s11104_019_04052_7 crossref_primary_10_1111_ejss_13017 crossref_primary_10_1038_s41598_019_53679_0 crossref_primary_10_1016_j_scitotenv_2022_158426 crossref_primary_10_1016_j_soilbio_2020_107925 crossref_primary_10_1016_j_apsoil_2024_105682 crossref_primary_10_1016_j_geoderma_2023_116711 crossref_primary_10_1007_s00248_022_02110_9 crossref_primary_10_1007_s11368_018_2039_7 crossref_primary_10_1016_j_wroa_2022_100131 crossref_primary_10_1007_s00253_018_9486_3 crossref_primary_10_1007_s00248_021_01940_3 crossref_primary_10_1016_j_apsoil_2020_103776 crossref_primary_10_1186_s13568_021_01321_6 crossref_primary_10_1016_j_apsoil_2021_104342 crossref_primary_10_1016_j_apsoil_2024_105451 crossref_primary_10_1007_s11368_019_02442_z crossref_primary_10_1016_j_watres_2024_121686 crossref_primary_10_1016_j_ejsobi_2024_103661 crossref_primary_10_1016_j_watres_2021_117087 crossref_primary_10_3389_fmicb_2023_1095937 crossref_primary_10_3390_agronomy15020255 crossref_primary_10_1038_s41396_020_00827_4 crossref_primary_10_1016_j_cej_2022_138546 crossref_primary_10_1038_s41396_022_01300_0 crossref_primary_10_1016_j_scitotenv_2023_167653 crossref_primary_10_1093_femsle_fny058 crossref_primary_10_1016_j_ejsobi_2021_103316 crossref_primary_10_1016_j_biortech_2018_09_089 crossref_primary_10_1007_s11356_018_2873_6 crossref_primary_10_1007_s11368_019_02540_y crossref_primary_10_1016_j_jece_2024_115300 crossref_primary_10_1128_AEM_01775_20 crossref_primary_10_3389_fmicb_2020_618287 crossref_primary_10_3389_fmicb_2023_1273211 crossref_primary_10_1128_AEM_01807_20 crossref_primary_10_1016_j_apsoil_2025_106037 crossref_primary_10_1128_aem_01698_23 crossref_primary_10_1016_j_watres_2021_117895 crossref_primary_10_1016_j_scitotenv_2021_148768 crossref_primary_10_1016_j_scitotenv_2022_155132 crossref_primary_10_1007_s42729_024_01964_x crossref_primary_10_1016_j_ecolind_2021_107722 crossref_primary_10_1016_j_soilbio_2019_107609 crossref_primary_10_1016_j_chemosphere_2019_125098 crossref_primary_10_1016_j_scitotenv_2020_138563 crossref_primary_10_1016_j_ejsobi_2024_103643 crossref_primary_10_3389_fmicb_2022_956860 crossref_primary_10_1016_S1002_0160_18_60055_4 crossref_primary_10_1007_s11270_020_4436_y crossref_primary_10_1016_j_soilbio_2021_108192 crossref_primary_10_1016_j_apsoil_2024_105673 crossref_primary_10_1002_ieam_4913 crossref_primary_10_1007_s44173_022_00005_z crossref_primary_10_1016_j_resenv_2025_100210 crossref_primary_10_1007_s00374_023_01749_x crossref_primary_10_1016_j_watres_2022_119225 crossref_primary_10_1002_bit_27605 crossref_primary_10_1016_j_soilbio_2017_12_005 crossref_primary_10_1007_s11368_018_2089_x crossref_primary_10_1016_j_apsoil_2021_104139 crossref_primary_10_1016_j_apsoil_2020_103783 crossref_primary_10_1016_j_marpolbul_2024_116046 crossref_primary_10_1016_j_scitotenv_2019_02_427 |
Cites_doi | 10.1111/1462-2920.12300 10.1038/nature03911 10.1128/AEM.05787-11 10.1038/srep19561 10.1007/s11356-016-7914-4 10.3389/fmicb.2017.00101 10.1038/nature04983 10.1128/AEM.01478-10 10.1038/ismej.2014.194 10.1126/science.aad9839 10.1073/pnas.1107196108 10.1038/528487a 10.1038/ismej.2016.63 10.1016/j.tim.2012.08.001 10.3389/fmicb.2017.01508 10.1128/AEM.01031-16 10.1073/pnas.1201914109 10.1371/journal.pone.0080835 10.1073/pnas.1013488108 10.1111/1462-2920.12481 10.1007/s11368-016-1588-x 10.1128/AEM.67.7.2952-2957.2001 10.1073/pnas.1506533112 10.1038/ismej.2013.220 10.1111/j.1462-2920.2007.01358.x 10.1073/pnas.0506361103 10.1016/j.watres.2017.03.042 10.1038/nature14856 10.1111/1462-2920.12071 10.1016/j.soilbio.2012.06.006 10.1128/9781555817145.ch14 10.1016/j.tim.2006.03.006 10.1016/j.tim.2016.05.004 10.1038/srep38785 10.1111/j.1574-6941.2007.00418.x 10.1038/nature08465 10.1093/femsre/fuv021 10.1038/ismej.2011.168 10.1111/1462-2920.12098 10.1007/s00253-016-7655-9 10.1038/ismej.2014.156 10.1016/B978-0-12-800137-0.00006-6 10.1126/science.1224041 10.1111/j.1462-2920.2008.01701.x 10.1038/nrmicro.2015.20 10.1007/s11368-013-0726-y 10.1111/1462-2920.13872 10.1038/nature23679 10.1128/mSystems.00059-17 10.1111/1462-2920.13282 10.1111/1462-2920.13795 10.1111/j.1462-2920.2012.02893.x 10.1101/138586 10.1038/nature16459 10.1038/nature16461 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany 2017 Journal of Soils and Sediments is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany 2017 – notice: Journal of Soils and Sediments is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7ST 7UA 7X2 7XB 88I 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 H97 HCIFZ L.G M0K M2P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY Q9U SOI 7S9 L.6 |
DOI | 10.1007/s11368-017-1851-9 |
DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Water Resources Abstracts Agricultural Science Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Agriculture Science Database Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1614-7480 |
EndPage | 2717 |
ExternalDocumentID | 10_1007_s11368_017_1851_9 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Australian Research Council grantid: DE150100870; DP160101028 funderid: http://dx.doi.org/10.13039/501100000923 |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5GY 5VS 67M 67Z 6NX 7X2 7XC 88I 8CJ 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ATCPS AXYYD AYJHY AZQEC B-. BA0 BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L8X LAS LK5 LLZTM M0K M2P M4Y M7R MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM PATMY PCBAR PF0 PQQKQ PROAC PT4 PYCSY Q2X QOS R89 R9I RMD ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7U Z7Y ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7ST 7UA 7XB 8FK ABRTQ C1K F1W H96 H97 L.G PKEHL PQEST PQUKI Q9U SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c415t-59d0bfaf496f9b8f510681f22a42df0b9d83ebc675d7d3a463c20a95ef292d9d3 |
IEDL.DBID | BENPR |
ISSN | 1439-0108 |
IngestDate | Fri Jul 11 06:00:03 EDT 2025 Fri Jul 25 21:36:16 EDT 2025 Tue Jul 01 01:38:12 EDT 2025 Thu Apr 24 23:10:18 EDT 2025 Fri Feb 21 02:33:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Ammonia oxidation Comammox Complete nitrification Nitrite oxidation Niche separation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-59d0bfaf496f9b8f510681f22a42df0b9d83ebc675d7d3a463c20a95ef292d9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Literature Review-3 content type line 23 |
ORCID | 0000-0002-9169-8058 |
PQID | 1964458490 |
PQPubID | 54474 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000610207 proquest_journals_1964458490 crossref_primary_10_1007_s11368_017_1851_9 crossref_citationtrail_10_1007_s11368_017_1851_9 springer_journals_10_1007_s11368_017_1851_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
PublicationTitle | Journal of soils and sediments |
PublicationTitleAbbrev | J Soils Sediments |
PublicationYear | 2017 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Nunes-Alves (CR34) 2016; 14 Bartelme, McLellan, Newton (CR3) 2017; 8 Palomo, Fowler, Gulay, Rasmussen, Sicheritz-Ponten, Smets (CR36) 2016; 10 Pester, Maixner, Berry, Rattei, Koch, Lucker (CR39) 2014; 16 Kuypers (CR27) 2015; 528 Wrighton, Thomas, Sharon, Miller, Castelle, VerBerkmoes (CR56) 2012; 337 CR37 Chao, Mao, Yu, Zhang (CR6) 2016; 100 He, Hu, Zhang (CR15) 2012; 55 Wang, Zheng, Hu, Li, Zhang, Chen, Chen, He (CR54) 2016; 6 Gonzalez-Martinez, Rodriguez-Sanchez, van Loosdrecht, Gonzalez-Lopez, Vahala (CR12) 2016; 23 Pjevac, Schauberger, Poghosyan, Herbold, van Kessel, Daebeler (CR41) 2017; 8 Wang, Zhao, Guo, Ma, Xu, Jia (CR53) 2015; 9 Hu, Chen, He (CR19) 2015; 39 Koch, Lucker, Albertsen, Kitzinger, Herbold, Spieck (CR25) 2015; 112 CR5 Hu, Zhang, Dai, Di, He (CR17) 2013; 13 Nicol, Leininger, Schleper, Prosser (CR33) 2008; 10 CR48 CR47 van Kessel, Speth, Albertsen, Nielsen, den Camp, Kartal (CR52) 2015; 528 Gruber-Dorninger, Pester, Kitzinger, Savio, Loy, Rattei, Wagner, Damis (CR13) 2015; 9 Shi, Hu, Kelly, Chen, He, Suter (CR45) 2016; 17 Alonso-Sáez, Waller, Mende, Bakker, Farnelid, Yager (CR1) 2012; 109 Pinto, Marcus, Ijaz, Bautista-de lose Santos, Dick, Raskin (CR40) 2015; 1 Stieglmeier, Mooshammer, Kitzler, Wanek, Zechmeister-Boltenstem, Richter (CR49) 2014; 8 Park, Park, Yoon, Schouten, Damste, Rhee (CR38) 2010; 76 Costa, Perez, Kreft (CR7) 2006; 14 Könneke, Bernhard, Jose, Walker, Waterbury, Stahl (CR26) 2005; 437 Leininger, Urich, Schloter, Schwark, Qi, Nicol, Prosser, Schuster, Schleper (CR30) 2006; 442 Foesel, Gieseke, Schwerner, Stief, Koch, Cytryn (CR10) 2008; 63 Martens-Habbena, Berube, Urakawa, de la Torre, Stahl (CR32) 2009; 461 CR16 Hu, Macdonald, Trivedi, Holmes, Bodrossy, He, Singh (CR20) 2015; 17 Jung, Park, Min, Kim, Rijpstra, Dameste, Kim, Madsen, Rhee (CR22) 2011; 77 Tourna, Stieglmeier, Spang, Könneke, Schintlmeister, Urich (CR51) 2011; 108 Prosser, Ward, Arp, Klotz (CR42) 2011 Gao, Fan, Pan, Li, Sun (CR11) 2016; 6 He, Shen, Zhang, Zhu, Zheng, Xu, Di (CR14) 2007; 9 Ke, Angel, Lu, Conrad (CR23) 2013; 15 Santoro (CR44) 2016; 351 Lu, Jia (CR31) 2013; 15 Daims, Lebedeva, Pjevac, Han, Herbold, Albertsen (CR8) 2015; 528 Lebedeva, Hatzenpichler, Pelletier, Schuster, Hauzmayer, Bulaev (CR28) 2013; 8 Arp, Bottomley (CR2) 2006; 1 CR24 CR21 Lehtovirta-Morley, Stoecker, Vilcinskas, Prosser, Nicol (CR29) 2011; 108 Daims, Lucker, Wagner (CR9) 2016; 24 Zhang, Hu, Shen, He (CR57) 2012; 6 Burton, Prosser (CR4) 2001; 67 Palatinszky, Herbold, Jehmlich, Pogoda, Han, von Bergen (CR35) 2015; 524 Wang, Ma, Mao, Jiang, Xia, Yu, Li, Zhang (CR55) 2017; 116 Stoecker, Bendinger, Schoning, Nielsen, Nielsen, Baranyi (CR50) 2006; 103 Shi, Hu, Müller, He, Chen, Suter (CR46) 2016; 82 Hu, Xu, He (CR18) 2014; 125 Prosser, Nicol (CR43) 2012; 20 HW Hu (1851_CR18) 2014; 125 MA van Kessel (1851_CR52) 2015; 528 MMM Kuypers (1851_CR27) 2015; 528 AE Santoro (1851_CR44) 2016; 351 RP Bartelme (1851_CR3) 2017; 8 XZ Shi (1851_CR45) 2016; 17 BZ Wang (1851_CR53) 2015; 9 JT Wang (1851_CR54) 2016; 6 X Ke (1851_CR23) 2013; 15 C Gruber-Dorninger (1851_CR13) 2015; 9 E Costa (1851_CR7) 2006; 14 1851_CR48 1851_CR47 HW Hu (1851_CR20) 2015; 17 SAQ Burton (1851_CR4) 2001; 67 M Stieglmeier (1851_CR49) 2014; 8 M Tourna (1851_CR51) 2011; 108 H Daims (1851_CR8) 2015; 528 EV Lebedeva (1851_CR28) 2013; 8 BJ Park (1851_CR38) 2010; 76 XZ Shi (1851_CR46) 2016; 82 HW Hu (1851_CR17) 2013; 13 W Martens-Habbena (1851_CR32) 2009; 461 1851_CR5 D Arp (1851_CR2) 2006; 1 AJ Pinto (1851_CR40) 2015; 1 JF Gao (1851_CR11) 2016; 6 A Palomo (1851_CR36) 2016; 10 1851_CR37 JI Prosser (1851_CR42) 2011 L Lu (1851_CR31) 2013; 15 JI Prosser (1851_CR43) 2012; 20 A Gonzalez-Martinez (1851_CR12) 2016; 23 P Pjevac (1851_CR41) 2017; 8 M Pester (1851_CR39) 2014; 16 LE Lehtovirta-Morley (1851_CR29) 2011; 108 1851_CR24 MY Jung (1851_CR22) 2011; 77 KC Wrighton (1851_CR56) 2012; 337 L Alonso-Sáez (1851_CR1) 2012; 109 GW Nicol (1851_CR33) 2008; 10 1851_CR21 HW Hu (1851_CR19) 2015; 39 Y Chao (1851_CR6) 2016; 100 C Nunes-Alves (1851_CR34) 2016; 14 BU Foesel (1851_CR10) 2008; 63 H Koch (1851_CR25) 2015; 112 JZ He (1851_CR15) 2012; 55 H Daims (1851_CR9) 2016; 24 JZ He (1851_CR14) 2007; 9 LM Zhang (1851_CR57) 2012; 6 M Palatinszky (1851_CR35) 2015; 524 1851_CR16 K Stoecker (1851_CR50) 2006; 103 Y Wang (1851_CR55) 2017; 116 M Könneke (1851_CR26) 2005; 437 S Leininger (1851_CR30) 2006; 442 |
References_xml | – volume: 16 start-page: 3055 year: 2014 end-page: 3071 ident: CR39 article-title: NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira publication-title: Environ Microbiol doi: 10.1111/1462-2920.12300 – volume: 437 start-page: 543 year: 2005 end-page: 546 ident: CR26 article-title: Isolation of an autotrophic ammonia-oxidizing marine archaeon publication-title: Nature doi: 10.1038/nature03911 – volume: 77 start-page: 8635 year: 2011 end-page: 8647 ident: CR22 article-title: Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil publication-title: Appl Environ Microbiol doi: 10.1128/AEM.05787-11 – volume: 1 start-page: e00054 year: 2015 end-page: e00015 ident: CR40 article-title: Metagenomic evidence for the presence of comammox Nitrospira-like bacteria in a drinking water system publication-title: mSphere – volume: 6 start-page: 19561 year: 2016 ident: CR54 article-title: Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems publication-title: Sci Rep doi: 10.1038/srep19561 – ident: CR16 – volume: 23 start-page: 25501 year: 2016 end-page: 25511 ident: CR12 article-title: Detection of comammox bacteria in full-scale wastewater treatment bioreactors using tag-454-pyrosequencing publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-016-7914-4 – volume: 8 start-page: 101 year: 2017 ident: CR3 article-title: Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of ammonia-oxidizing archaea and comammox publication-title: Front Microbiol doi: 10.3389/fmicb.2017.00101 – volume: 528 start-page: 504 year: 2015 end-page: 509 ident: CR8 article-title: Complete nitrification by bacteria publication-title: Nature – volume: 442 start-page: 806 year: 2006 end-page: 809 ident: CR30 article-title: Archaea predominate among ammonia-oxidizing prokaryotes in soils publication-title: Nature doi: 10.1038/nature04983 – volume: 76 start-page: 7575 year: 2010 end-page: 7587 ident: CR38 article-title: Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01478-10 – ident: CR21 – volume: 9 start-page: 1062 year: 2015 end-page: 1075 ident: CR53 article-title: Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils publication-title: ISME J doi: 10.1038/ismej.2014.194 – volume: 351 start-page: 342 year: 2016 end-page: 343 ident: CR44 article-title: The do-it-all nitrifier publication-title: Science doi: 10.1126/science.aad9839 – volume: 108 start-page: 15892 year: 2011 end-page: 15897 ident: CR29 article-title: Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1107196108 – volume: 528 start-page: 487 year: 2015 end-page: 488 ident: CR27 article-title: Microbiology: a division of labour combined publication-title: Nature doi: 10.1038/528487a – volume: 528 start-page: 555 year: 2015 end-page: 559 ident: CR52 article-title: Complete nitrification by a single microorganism publication-title: Nature – volume: 10 start-page: 2569 year: 2016 end-page: 2580 ident: CR36 article-title: Metagenomic analysis of rapid gravity sand filter microbial communities suggests novel physiology of Nitrospira spp publication-title: ISME J doi: 10.1038/ismej.2016.63 – volume: 20 start-page: 523 year: 2012 end-page: 531 ident: CR43 article-title: Archaeal and bacterial ammonia-oxidizers in soil: the quest for niche specialisation and differentiation publication-title: Trends Microbiol doi: 10.1016/j.tim.2012.08.001 – volume: 8 start-page: 1508 year: 2017 ident: CR41 article-title: -targeted polymerase chain reaction primers for the specific detection and quantification of comammox in the environment publication-title: Front Microbiol doi: 10.3389/fmicb.2017.01508 – volume: 82 start-page: 5236 year: 2016 end-page: 5248 ident: CR46 article-title: Effects of the nitrification inhibitor 3,4-dimethylpyrazole phosphate on nitrification and nitrifiers in two contrasting agricultural soils publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01031-16 – ident: CR5 – volume: 109 start-page: 17989 year: 2012 end-page: 17994 ident: CR1 article-title: Role for urea in nitrification by polar marine Archaea publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1201914109 – volume: 8 year: 2013 ident: CR28 article-title: Enrichment and genome sequence of the group I.1a ammonia-oxidizing archaeon “ Nitrosotenuis uzonensis” representing a clade globally distributed in thermal habitats publication-title: PLoS One doi: 10.1371/journal.pone.0080835 – volume: 108 start-page: 8420 year: 2011 end-page: 8425 ident: CR51 article-title: , an ammonia oxidizing archaeon from soil publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1013488108 – volume: 17 start-page: 444 year: 2015 end-page: 461 ident: CR20 article-title: Water addition regulates the metabolic activity of ammonia oxidizers responding to environmental perturbations in dry subhumid ecosystems publication-title: Environ Microbiol doi: 10.1111/1462-2920.12481 – volume: 17 start-page: 974 year: 2016 end-page: 984 ident: CR45 article-title: Responses of ammonia oxidizers and denitrifiers to repeated applications of a nitrification inhibitor and a urease inhibitor in two pasture soils publication-title: J Soils Sediments doi: 10.1007/s11368-016-1588-x – volume: 67 start-page: 2952 year: 2001 end-page: 2957 ident: CR4 article-title: Autotrophic ammonia oxidation at low pH through urea hydrolysis publication-title: Appl Environ Microbiol doi: 10.1128/AEM.67.7.2952-2957.2001 – volume: 112 start-page: 11371 year: 2015 end-page: 11376 ident: CR25 article-title: Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus publication-title: Proc Nat Acad Sci USA doi: 10.1073/pnas.1506533112 – ident: CR47 – volume: 8 start-page: 1135 year: 2014 end-page: 1146 ident: CR49 article-title: Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea publication-title: ISME J doi: 10.1038/ismej.2013.220 – ident: CR37 – volume: 1 start-page: 229 year: 2006 end-page: 234 ident: CR2 article-title: Nitrifier: more than 100 years from isolation to genome sequences publication-title: Microbe – volume: 9 start-page: 2364 year: 2007 end-page: 2374 ident: CR14 article-title: Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2007.01358.x – volume: 103 start-page: 2363 year: 2006 end-page: 2367 ident: CR50 article-title: Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0506361103 – volume: 116 start-page: 332 year: 2017 end-page: 341 ident: CR55 article-title: Comammox in drinking water systems publication-title: Water Res doi: 10.1016/j.watres.2017.03.042 – volume: 524 start-page: 105 year: 2015 end-page: 108 ident: CR35 article-title: Cyanate as an energy source for nitrifiers publication-title: Nature doi: 10.1038/nature14856 – volume: 15 start-page: 1795 year: 2013 end-page: 1809 ident: CR31 article-title: Urea gene-containing archaea dominate autotrophic ammonia oxidation in two acid soils publication-title: Environ Microbiol doi: 10.1111/1462-2920.12071 – volume: 55 start-page: 146 year: 2012 end-page: 154 ident: CR15 article-title: Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.06.006 – start-page: 347 year: 2011 end-page: 383 ident: CR42 article-title: Soil nitrifiers and nitrification publication-title: Nitrification doi: 10.1128/9781555817145.ch14 – volume: 14 start-page: 213 year: 2006 end-page: 219 ident: CR7 article-title: Why is metabolic labour divided in nitrification? publication-title: Trends Microbiol doi: 10.1016/j.tim.2006.03.006 – volume: 24 start-page: 699 year: 2016 end-page: 712 ident: CR9 article-title: A new perspective on microbes formerly known as nitrite-oxidizing bacteria publication-title: Trends Microbiol doi: 10.1016/j.tim.2016.05.004 – ident: CR48 – volume: 6 start-page: 38785 year: 2016 ident: CR11 article-title: Diversity, abundance and activity of ammonia-oxidizing microorganisms in fine particulate matter publication-title: Sci Rep doi: 10.1038/srep38785 – volume: 63 start-page: 192 year: 2008 end-page: 204 ident: CR10 article-title: Nitrosomonas Nm143-like ammonia oxidizers and Nitrospira marina-like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2007.00418.x – volume: 461 start-page: 976 year: 2009 end-page: 979 ident: CR32 article-title: Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and bacteria publication-title: Nature doi: 10.1038/nature08465 – volume: 39 start-page: 729 year: 2015 end-page: 749 ident: CR19 article-title: Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates publication-title: FEMS Microbiol Rev doi: 10.1093/femsre/fuv021 – volume: 6 start-page: 1032 year: 2012 end-page: 1045 ident: CR57 article-title: Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils publication-title: ISME J doi: 10.1038/ismej.2011.168 – volume: 15 start-page: 2275 year: 2013 end-page: 2292 ident: CR23 article-title: Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil publication-title: Environ Microbiol doi: 10.1111/1462-2920.12098 – volume: 100 start-page: 8225 year: 2016 end-page: 8237 ident: CR6 article-title: Novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomics approach publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-016-7655-9 – volume: 9 start-page: 643 year: 2015 end-page: 655 ident: CR13 article-title: Functionally relevant diversity of closely related Nitrospira in activated sludge publication-title: ISME J doi: 10.1038/ismej.2014.156 – volume: 125 start-page: 261 year: 2014 end-page: 302 ident: CR18 article-title: Ammonia-oxidizing archaea play a predominant role in acid soil nitrification publication-title: Adv Agron doi: 10.1016/B978-0-12-800137-0.00006-6 – volume: 337 start-page: 1661 year: 2012 end-page: 1665 ident: CR56 article-title: Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla publication-title: Science doi: 10.1126/science.1224041 – ident: CR24 – volume: 10 start-page: 2966 year: 2008 end-page: 2978 ident: CR33 article-title: The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2008.01701.x – volume: 14 start-page: 61 year: 2016 ident: CR34 article-title: Do it yourself nitrification publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2015.20 – volume: 13 start-page: 1439 year: 2013 end-page: 1449 ident: CR17 article-title: pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing publication-title: J Soils Sediments doi: 10.1007/s11368-013-0726-y – volume: 109 start-page: 17989 year: 2012 ident: 1851_CR1 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1201914109 – volume: 8 start-page: 101 year: 2017 ident: 1851_CR3 publication-title: Front Microbiol doi: 10.3389/fmicb.2017.00101 – volume: 1 start-page: 229 year: 2006 ident: 1851_CR2 publication-title: Microbe – volume: 8 start-page: 1508 year: 2017 ident: 1851_CR41 publication-title: Front Microbiol doi: 10.3389/fmicb.2017.01508 – volume: 112 start-page: 11371 year: 2015 ident: 1851_CR25 publication-title: Proc Nat Acad Sci USA doi: 10.1073/pnas.1506533112 – volume: 16 start-page: 3055 year: 2014 ident: 1851_CR39 publication-title: Environ Microbiol doi: 10.1111/1462-2920.12300 – volume: 9 start-page: 1062 year: 2015 ident: 1851_CR53 publication-title: ISME J doi: 10.1038/ismej.2014.194 – volume: 17 start-page: 974 year: 2016 ident: 1851_CR45 publication-title: J Soils Sediments doi: 10.1007/s11368-016-1588-x – ident: 1851_CR47 doi: 10.1111/1462-2920.13872 – volume: 76 start-page: 7575 year: 2010 ident: 1851_CR38 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01478-10 – volume: 337 start-page: 1661 year: 2012 ident: 1851_CR56 publication-title: Science doi: 10.1126/science.1224041 – ident: 1851_CR24 doi: 10.1038/nature23679 – volume: 13 start-page: 1439 year: 2013 ident: 1851_CR17 publication-title: J Soils Sediments doi: 10.1007/s11368-013-0726-y – volume: 10 start-page: 2966 year: 2008 ident: 1851_CR33 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2008.01701.x – volume: 55 start-page: 146 year: 2012 ident: 1851_CR15 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.06.006 – volume: 437 start-page: 543 year: 2005 ident: 1851_CR26 publication-title: Nature doi: 10.1038/nature03911 – volume: 67 start-page: 2952 year: 2001 ident: 1851_CR4 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.67.7.2952-2957.2001 – volume: 14 start-page: 213 year: 2006 ident: 1851_CR7 publication-title: Trends Microbiol doi: 10.1016/j.tim.2006.03.006 – volume: 14 start-page: 61 year: 2016 ident: 1851_CR34 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2015.20 – volume: 15 start-page: 2275 year: 2013 ident: 1851_CR23 publication-title: Environ Microbiol doi: 10.1111/1462-2920.12098 – volume: 524 start-page: 105 year: 2015 ident: 1851_CR35 publication-title: Nature doi: 10.1038/nature14856 – volume: 116 start-page: 332 year: 2017 ident: 1851_CR55 publication-title: Water Res doi: 10.1016/j.watres.2017.03.042 – volume: 461 start-page: 976 year: 2009 ident: 1851_CR32 publication-title: Nature doi: 10.1038/nature08465 – volume: 8 year: 2013 ident: 1851_CR28 publication-title: PLoS One doi: 10.1371/journal.pone.0080835 – volume: 528 start-page: 487 year: 2015 ident: 1851_CR27 publication-title: Nature doi: 10.1038/528487a – volume: 15 start-page: 1795 year: 2013 ident: 1851_CR31 publication-title: Environ Microbiol doi: 10.1111/1462-2920.12071 – volume: 8 start-page: 1135 year: 2014 ident: 1851_CR49 publication-title: ISME J doi: 10.1038/ismej.2013.220 – volume: 24 start-page: 699 year: 2016 ident: 1851_CR9 publication-title: Trends Microbiol doi: 10.1016/j.tim.2016.05.004 – volume: 39 start-page: 729 year: 2015 ident: 1851_CR19 publication-title: FEMS Microbiol Rev doi: 10.1093/femsre/fuv021 – volume: 6 start-page: 19561 year: 2016 ident: 1851_CR54 publication-title: Sci Rep doi: 10.1038/srep19561 – volume: 6 start-page: 1032 year: 2012 ident: 1851_CR57 publication-title: ISME J doi: 10.1038/ismej.2011.168 – volume: 442 start-page: 806 year: 2006 ident: 1851_CR30 publication-title: Nature doi: 10.1038/nature04983 – volume: 103 start-page: 2363 year: 2006 ident: 1851_CR50 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0506361103 – volume: 20 start-page: 523 year: 2012 ident: 1851_CR43 publication-title: Trends Microbiol doi: 10.1016/j.tim.2012.08.001 – volume: 108 start-page: 15892 year: 2011 ident: 1851_CR29 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1107196108 – ident: 1851_CR5 doi: 10.1128/mSystems.00059-17 – ident: 1851_CR16 doi: 10.1111/1462-2920.13282 – volume: 108 start-page: 8420 year: 2011 ident: 1851_CR51 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1013488108 – volume: 17 start-page: 444 year: 2015 ident: 1851_CR20 publication-title: Environ Microbiol doi: 10.1111/1462-2920.12481 – ident: 1851_CR21 doi: 10.1111/1462-2920.13795 – volume: 23 start-page: 25501 year: 2016 ident: 1851_CR12 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-016-7914-4 – volume: 9 start-page: 2364 year: 2007 ident: 1851_CR14 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2007.01358.x – volume: 82 start-page: 5236 year: 2016 ident: 1851_CR46 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01031-16 – ident: 1851_CR48 doi: 10.1111/j.1462-2920.2012.02893.x – volume: 1 start-page: e00054 year: 2015 ident: 1851_CR40 publication-title: mSphere – volume: 77 start-page: 8635 year: 2011 ident: 1851_CR22 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.05787-11 – ident: 1851_CR37 doi: 10.1101/138586 – volume: 63 start-page: 192 year: 2008 ident: 1851_CR10 publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2007.00418.x – volume: 10 start-page: 2569 year: 2016 ident: 1851_CR36 publication-title: ISME J doi: 10.1038/ismej.2016.63 – volume: 6 start-page: 38785 year: 2016 ident: 1851_CR11 publication-title: Sci Rep doi: 10.1038/srep38785 – start-page: 347 volume-title: Nitrification year: 2011 ident: 1851_CR42 doi: 10.1128/9781555817145.ch14 – volume: 125 start-page: 261 year: 2014 ident: 1851_CR18 publication-title: Adv Agron doi: 10.1016/B978-0-12-800137-0.00006-6 – volume: 100 start-page: 8225 year: 2016 ident: 1851_CR6 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-016-7655-9 – volume: 528 start-page: 555 year: 2015 ident: 1851_CR52 publication-title: Nature doi: 10.1038/nature16459 – volume: 351 start-page: 342 year: 2016 ident: 1851_CR44 publication-title: Science doi: 10.1126/science.aad9839 – volume: 528 start-page: 504 year: 2015 ident: 1851_CR8 publication-title: Nature doi: 10.1038/nature16461 – volume: 9 start-page: 643 year: 2015 ident: 1851_CR13 publication-title: ISME J doi: 10.1038/ismej.2014.156 |
SSID | ssj0037161 |
Score | 2.5642943 |
SecondaryResourceType | review_article |
Snippet | Purpose
Nitrification, the microbial oxidation of ammonia to nitrate via nitrite, is a pivotal component of the biogeochemical nitrogen cycle. Nitrification... PurposeNitrification, the microbial oxidation of ammonia to nitrate via nitrite, is a pivotal component of the biogeochemical nitrogen cycle. Nitrification was... PURPOSE: Nitrification, the microbial oxidation of ammonia to nitrate via nitrite, is a pivotal component of the biogeochemical nitrogen cycle. Nitrification... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2709 |
SubjectTerms | Agricultural ecosystems Agricultural production agricultural productivity Ammonia Archaea Bacteria biochemistry Biogeochemical cycles Biogeochemistry China Differentiation DNA Earth and Environmental Science ecological differentiation Ecosystems Environment Environmental Physics Forest soils Frontiers in Soils and Sediments • Review Article Functional groups Genomic analysis genomics habitats Kinetics Labour Microorganisms moieties Niches nitrates Nitrification Nitrites Nitrogen cycle nitrogen-fixing bacteria Nitrospira Nitrospira (genus) Nucleotide sequence Organisms oxidants Oxidation Oxidizing agents PCR pH effects Physiology Prokaryotes prokaryotic cells quantitative polymerase chain reaction Reaction kinetics Soil Soil chemistry Soil pH soil sampling Soil Science & Conservation Specialization Sustainability sustainable development Terrestrial ecosystems Terrestrial environments |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL3oQn7haJYInJZBNstnNsYilCHqy0NuS3SQilK30Afbmj_AX-kucpLutigqed3YCk5nMN8wLoYuscNaVghPNqSXCWTApmwpiVGwTgPvUlr53-O5e9vridpAM6j7uSVPt3qQkw0u9anaLufSFVykBHxMTtY42Eh-6gxL3Wad5fjkEACHKAk8LxDRrUpk_sfjqjFYI81tSNPia7g7arkEi7ixudRet2WoPbXUex_WgDLuP-mDIGnTo5f31TWPAxsM59h22viLTGgyGOvZFQEHu-HnRDYCfKgx4D4Mo_UYOr3qBcARKhMs5HHWA-t2bh-seqVckkBI875QkytDCaSeUdKrIHFiYzGLHmBbMOFook3FblBAVmNRwLSQvGdUqsY4pZpThh6hVjSp7hDCPRSoo8IqlFAlPtEtLLrlxBWVOSxch2sgqL-v54X6NxTBfTT724s1BvLkXb64idLn85XkxPOMv4nZzAXltR5PcjwvzmVxFI3S-_AwW4NMaurKj2SQPzUaAk2gaoavm4j6x-O3A439Rn6BNFhTHV7K0UWs6ntlTwCPT4izo3wdZIdjy priority: 102 providerName: Springer Nature |
Title | Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle |
URI | https://link.springer.com/article/10.1007/s11368-017-1851-9 https://www.proquest.com/docview/1964458490 https://www.proquest.com/docview/2000610207 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3bahQx9GC7L_pQvOJqXSL4pAQzSSYzeZJVthbFIuJCfRoyuYhQZtfdLbRvfoRf6Jd4zmymq4J9nkwSzv3k3ACe1W2KyWvFnRKR6xSRpWKlebBFLNHcF9FT7fCHE3M81-9Oy9P84LbOaZWDTOwFdVh4eiN_SY2jKKZnxavld05Toyi6mkdo7MEIRXCNztfo9ezk46dBFiv0BnqXC9UuOs2iHuKaffFcoQwlclUcdVbB7d-aaWdu_hMh7RXP0W04yBYjm25RfAduxO4u3Jp-XeWuGfEezJGrHd7w4tePn46hoXx2yajcltIzY2DItSvKCOqRwJbb0gD2rWNo_DGEK43nIDrsFy6Qopi_xKPuw_xo9vnNMc_zErhHNbzhpQ2iTS5pa5Jt64TsZuoiSem0DEm0NtQqth5dhFAF5bRRXgpny5iklcEG9QD2u0UXHwJTha60wL0KY3SpSpcqr4wKqRUyOZPGIAZYNT43E6eZFmfNrg0ygbdB8DYE3saO4fnVL8ttJ43rFh8OCGgyU62bHQmM4enVZ2QHinG4Li7O101feYRGk6jG8GJA3B9b_O_AR9cf-Bhuyp5SKI_lEPY3q_P4BK2RTTuB0fTtl_ezSSa9CezN5fQ30jfgUA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AA9IJ4iUMBIcAFZeG2vd32oUIFWKW0jhBqpN-P1A1WqNiFJBbnxI_gd_VH8Esab3QaQ6K3n9drSzOd5eF4Az8sqhuikoFawQGUMeKVCIanXWcjR3GfBpdrhw6EajOSH4_x4Dc67WpiUVtnJxEZQ-7FLb-SvU-OoFNPT7M3kK01To1J0tRuhsYTFflh8Q5dttrX3Hvn7gvPdnaN3A9pOFaAOldWc5tqzKtootYq6KiOCUpVZ5NxK7iOrtC9FqBwa0r7wwkolHGdW5yFyzb32Ave9ButSoCvTg_W3O8OPnzrZL9D7aFw8VPPopLOyi6M2xXqZUClxrKCoIzOq_9aEK_P2n4hso-h2b8HN1kIl20tI3Ya1UN-Bje0v07ZLR7gLI5QiFiny_dePn5agYX66IKm8N6WDBk9QSkxTBlLDdDJZliKQk5qgsUmQj2kcSMJ9s3CMCCZugUfdg9GVUPI-9OpxHR4AEZksJMO9MqVkLnIbCyeU8LFiPFoV-8A6WhnXNi9PMzROzartciKvQfKaRF6j-_Dy4pfJsnPHZYs3OwaY9hLPzApyfXh28RmvX4qp2DqMz2amqXRCI40VfXjVMe6PLf534MPLD3wK1wdHhwfmYG-4_whu8AY1KYdmE3rz6Vl4jJbQvHrSwo_A56tG_G-cUxtj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD7ULYh9EK-4WjWCviihmSSTmTwUqbZLa3Up4kLfYiYXKZTZdXeL7ps_wl_Tn-Mv8WR2pquCfevzzCRwznduc24Az8sqhuikoFawQGUMKFKhkNTrLOTo7rPgUu_wh6HaH8l3x_nxGpx3vTCprLLTiY2i9mOX_pFvpcFRKaen2VZsyyKOdgevJ19p2iCVMq3dOo0lRA7D4huGb7Ptg13k9QvOB3uf3u7TdsMAdWi45jTXnlXRRqlV1FUZEaCqzCLnVnIfWaV9KULl0Kn2hRdWKuE4szoPkWvutRd47jVYLzAqYj1Yf7M3PPrY2QGBkUgT7qHJx4CdlV1OtWncy4RKRWQFRXuZUf23VVy5uv9kZxujN7gFN1tvlews4XUb1kJ9BzZ2vkzbiR3hLoxQo1ikyPdfP35agk766YKkVt9UGho8QY0xTdVIDQDIZNmWQE5qgo4nQZ6m1SBJBpoXx4hm4hZ41T0YXQkl70OvHtfhARCRSSQonpUpJXOR21g4oYSPFePRqtgH1tHKuHaQedqncWpWI5gTeQ2S1yTyGt2HlxefTJZTPC57ebNjgGkFemZW8OvDs4vHKIopv2LrMD6bmabrCR02VvThVce4P47434UPL7_wKVxHpJv3B8PDR3CDN6BJ5TSb0JtPz8JjdIrm1ZMWfQQ-XzXgfwOrUx-Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comammox%E2%80%94a+newly+discovered+nitrification+process+in+the+terrestrial+nitrogen+cycle&rft.jtitle=Journal+of+soils+and+sediments&rft.au=Hang-Wei%2C+Hu&rft.au=Ji-Zheng%2C+He&rft.date=2017-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1439-0108&rft.eissn=1614-7480&rft.volume=17&rft.issue=12&rft.spage=2709&rft.epage=2717&rft_id=info:doi/10.1007%2Fs11368-017-1851-9&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-0108&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-0108&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-0108&client=summon |