Online Reinforcement Learning Control for the Personalization of a Robotic Knee Prosthesis

Robotic prostheses deliver greater function than passive prostheses, but we face the challenge of tuning a large number of control parameters in order to personalize the device for individual amputee users. This problem is not easily solved by traditional control designs or the latest robotic techno...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 50; no. 6; pp. 2346 - 2356
Main Authors Wen, Yue, Si, Jennie, Brandt, Andrea, Gao, Xiang, Huang, He Helen
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Robotic prostheses deliver greater function than passive prostheses, but we face the challenge of tuning a large number of control parameters in order to personalize the device for individual amputee users. This problem is not easily solved by traditional control designs or the latest robotic technology. Reinforcement learning (RL) is naturally appealing. The recent, unprecedented success of AlphaZero demonstrated RL as a feasible, large-scale problem solver. However, the prosthesis-tuning problem is associated with several unaddressed issues such as that it does not have a known and stable model, the continuous states and controls of the problem may result in a curse of dimensionality, and the human-prosthesis system is constantly subject to measurement noise, environmental change and human-body-caused variations. In this paper, we demonstrated the feasibility of direct heuristic dynamic programming, an approximate dynamic programming (ADP) approach, to automatically tune the 12 robotic knee prosthesis parameters to meet individual human users' needs. We tested the ADP-tuner on two subjects (one able-bodied subject and one amputee subject) walking at a fixed speed on a treadmill. The ADP-tuner learned to reach target gait kinematics in an average of 300 gait cycles or 10 min of walking. We observed improved ADP tuning performance when we transferred a previously learned ADP controller to a new learning session with the same subject. To the best of our knowledge, our approach to personalize robotic prostheses is the first implementation of online ADP learning control to a clinical problem involving human subjects.
AbstractList Robotic prostheses deliver greater function than passive prostheses, but we face the challenge of tuning a large number of control parameters in order to personalize the device for individual amputee users. This problem is not easily solved by traditional control designs or the latest robotic technology. Reinforcement learning (RL) is naturally appealing. The recent, unprecedented success of AlphaZero demonstrated RL as a feasible, large-scale problem solver. However, the prosthesis-tuning problem is associated with several unaddressed issues such as that it does not have a known and stable model, the continuous states and controls of the problem may result in a curse of dimensionality, and the human-prosthesis system is constantly subject to measurement noise, environmental change and human-body-caused variations. In this paper, we demonstrated the feasibility of direct heuristic dynamic programming, an approximate dynamic programming (ADP) approach, to automatically tune the 12 robotic knee prosthesis parameters to meet individual human users' needs. We tested the ADP-tuner on two subjects (one able-bodied subject and one amputee subject) walking at a fixed speed on a treadmill. The ADP-tuner learned to reach target gait kinematics in an average of 300 gait cycles or 10 min of walking. We observed improved ADP tuning performance when we transferred a previously learned ADP controller to a new learning session with the same subject. To the best of our knowledge, our approach to personalize robotic prostheses is the first implementation of online ADP learning control to a clinical problem involving human subjects.
Robotic prostheses deliver greater function than passive prostheses, but we face the challenge of tuning a large number of control parameters in order to personalize the device for individual amputee users. This problem is not easily solved by traditional control designs or the latest robotic technology. Reinforcement learning (RL) is naturally appealing. The recent, unprecedented success of AlphaZero demonstrated RL as a feasible, large-scale problem solver. However, the prosthesis-tuning problem is associated with several unaddressed issues such as that it does not have a known and stable model, the continuous states and controls of the problem may result in a curse of dimensionality, and the human-prosthesis system is constantly subject to measurement noise, environmental change and human-body-caused variations. In this paper, we demonstrated the feasibility of direct heuristic dynamic programming, an approximate dynamic programming (ADP) approach, to automatically tune the 12 robotic knee prosthesis parameters to meet individual human users' needs. We tested the ADP-tuner on two subjects (one able-bodied subject and one amputee subject) walking at a fixed speed on a treadmill. The ADP-tuner learned to reach target gait kinematics in an average of 300 gait cycles or 10 min of walking. We observed improved ADP tuning performance when we transferred a previously learned ADP controller to a new learning session with the same subject. To the best of our knowledge, our approach to personalize robotic prostheses is the first implementation of online ADP learning control to a clinical problem involving human subjects.Robotic prostheses deliver greater function than passive prostheses, but we face the challenge of tuning a large number of control parameters in order to personalize the device for individual amputee users. This problem is not easily solved by traditional control designs or the latest robotic technology. Reinforcement learning (RL) is naturally appealing. The recent, unprecedented success of AlphaZero demonstrated RL as a feasible, large-scale problem solver. However, the prosthesis-tuning problem is associated with several unaddressed issues such as that it does not have a known and stable model, the continuous states and controls of the problem may result in a curse of dimensionality, and the human-prosthesis system is constantly subject to measurement noise, environmental change and human-body-caused variations. In this paper, we demonstrated the feasibility of direct heuristic dynamic programming, an approximate dynamic programming (ADP) approach, to automatically tune the 12 robotic knee prosthesis parameters to meet individual human users' needs. We tested the ADP-tuner on two subjects (one able-bodied subject and one amputee subject) walking at a fixed speed on a treadmill. The ADP-tuner learned to reach target gait kinematics in an average of 300 gait cycles or 10 min of walking. We observed improved ADP tuning performance when we transferred a previously learned ADP controller to a new learning session with the same subject. To the best of our knowledge, our approach to personalize robotic prostheses is the first implementation of online ADP learning control to a clinical problem involving human subjects.
Author Wen, Yue
Brandt, Andrea
Si, Jennie
Huang, He Helen
Gao, Xiang
Author_xml – sequence: 1
  givenname: Yue
  orcidid: 0000-0001-5297-6230
  surname: Wen
  fullname: Wen, Yue
  organization: UNC/NCSU Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
– sequence: 2
  givenname: Jennie
  surname: Si
  fullname: Si, Jennie
  email: si@asu.edu
  organization: Department of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, USA
– sequence: 3
  givenname: Andrea
  surname: Brandt
  fullname: Brandt, Andrea
  organization: UNC/NCSU Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
– sequence: 4
  givenname: Xiang
  orcidid: 0000-0003-3253-8000
  surname: Gao
  fullname: Gao, Xiang
  organization: Department of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, USA
– sequence: 5
  givenname: He Helen
  orcidid: 0000-0001-5581-1423
  surname: Huang
  fullname: Huang, He Helen
  email: hhuang11@ncsu.edu
  organization: UNC/NCSU Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30668514$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PHDEMhiNExVf5AQgJReqFy27jTDKTHOkK2qorUSF6aC9RNuOBoNkEkuwBfn2z3YUDh_piy35eS_Z7SHZDDEjICbApANOfb2e_v0w5Az3lSjPdiR1ywKFVE847uftWt90-Oc75gdVQtaXVHtlvWNsqCeKA_LkOow9Ib9CHISaHSwyFztGm4MMdncVQUhxpHdFyj_QnphyDHf2LLT4GGgdq6U1cxOId_RGwEinmSmafP5IPgx0zHm_zEfl1dXk7-zaZX3_9PruYT5wAWSZScq5s72wPHeO9bTvRO9kpDpxrpmRT24NlfQsLQCasbtECWMcFail61hyR883exxSfVpiLWfrscBxtwLjKhkOnBWjGm4p-eoc-xFWq91RKMAAulJSVOttSq8USe_OY_NKmZ_P6tQp0G8DVY3PCwThf_j2kJOtHA8ysLTJri8zaIrO1qCrhnfJ1-f80pxuNR8Q3XrXQKMGbvyE3mg4
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_knosys_2022_109624
crossref_primary_10_1109_TRO_2021_3078317
crossref_primary_10_1109_TCYB_2024_3483148
crossref_primary_10_1186_s12984_019_0583_z
crossref_primary_10_1007_s42235_022_00169_1
crossref_primary_10_1109_ACCESS_2019_2936863
crossref_primary_10_1109_TSMC_2024_3454556
crossref_primary_10_1016_j_arcontrol_2023_03_003
crossref_primary_10_1007_s11704_024_3194_1
crossref_primary_10_1109_TCYB_2020_3028988
crossref_primary_10_1136_bmjopen_2020_039975
crossref_primary_10_3390_biomimetics8040353
crossref_primary_10_1007_s11044_023_09884_x
crossref_primary_10_1109_TCYB_2020_2978216
crossref_primary_10_1088_1741_2552_ac1176
crossref_primary_10_1007_s13369_023_08026_x
crossref_primary_10_1038_s41586_024_07697_2
crossref_primary_10_1097_JPO_0000000000000533
crossref_primary_10_1007_s43674_021_00031_7
crossref_primary_10_1109_TNNLS_2021_3053037
crossref_primary_10_61186_joc_17_4_75
crossref_primary_10_1109_ACCESS_2019_2933614
crossref_primary_10_1016_j_matpr_2020_11_039
crossref_primary_10_1109_TNSRE_2022_3156884
crossref_primary_10_1088_1741_2552_ab8e8e
crossref_primary_10_1109_TMRB_2023_3258505
crossref_primary_10_1177_01423312221088848
crossref_primary_10_3389_fnbot_2022_1068706
crossref_primary_10_1109_TBME_2022_3224026
crossref_primary_10_1109_TNSRE_2020_2979033
crossref_primary_10_1109_ACCESS_2022_3171246
crossref_primary_10_3390_s20226533
crossref_primary_10_1109_TMECH_2022_3219115
crossref_primary_10_3390_s21041278
crossref_primary_10_1002_rnc_5410
crossref_primary_10_1109_LRA_2022_3187616
crossref_primary_10_1007_s40815_023_01518_w
crossref_primary_10_1109_TCYB_2021_3107202
crossref_primary_10_1109_TCYB_2021_3116762
crossref_primary_10_1109_TNNLS_2023_3243631
crossref_primary_10_3390_electronics11071069
crossref_primary_10_1109_TBME_2019_2912466
crossref_primary_10_1109_TNSRE_2022_3179978
crossref_primary_10_1109_TCYB_2022_3224895
crossref_primary_10_3390_math12243916
crossref_primary_10_1109_LRA_2022_3194326
crossref_primary_10_1109_TRO_2024_3359541
crossref_primary_10_3390_s24248090
crossref_primary_10_1109_TNNLS_2021_3071727
crossref_primary_10_1186_s12984_022_01118_z
crossref_primary_10_1109_TCDS_2022_3187186
crossref_primary_10_1038_s41598_020_73838_y
crossref_primary_10_1109_TCYB_2022_3157892
crossref_primary_10_1115_1_4049333
crossref_primary_10_1007_s00521_021_06476_8
crossref_primary_10_1109_ACCESS_2020_3004823
crossref_primary_10_3389_fnbot_2020_565702
crossref_primary_10_1016_j_cobme_2021_100314
crossref_primary_10_1016_j_neucom_2021_01_070
crossref_primary_10_1109_TASE_2024_3370615
crossref_primary_10_1002_aisy_202400333
crossref_primary_10_1088_1741_2552_ad349c
crossref_primary_10_1109_TSMC_2024_3369071
crossref_primary_10_1177_16878140211009015
crossref_primary_10_1109_ACCESS_2020_3012204
crossref_primary_10_1109_TCYB_2020_2990722
crossref_primary_10_1115_1_4063251
crossref_primary_10_1038_s41586_024_07382_4
crossref_primary_10_1109_TCYB_2022_3222564
crossref_primary_10_1109_TCYB_2021_3111082
crossref_primary_10_1007_s11053_019_09548_8
crossref_primary_10_1080_00207179_2025_2470349
crossref_primary_10_1016_j_isatra_2025_01_007
crossref_primary_10_1109_TNNLS_2023_3245980
crossref_primary_10_1109_ACCESS_2020_3022656
crossref_primary_10_1109_JAS_2021_1004272
crossref_primary_10_1016_j_ijmecsci_2021_106942
crossref_primary_10_3389_fnbot_2021_790060
crossref_primary_10_1109_LRA_2022_3196105
crossref_primary_10_3389_fnins_2022_976437
crossref_primary_10_1109_LRA_2022_3194323
crossref_primary_10_1017_wtc_2022_19
crossref_primary_10_1017_wtc_2021_2
crossref_primary_10_3390_machines11020186
crossref_primary_10_1109_LRA_2021_3100269
crossref_primary_10_1109_TASE_2022_3229396
crossref_primary_10_1109_TRO_2021_3133137
crossref_primary_10_1109_JAS_2023_123843
crossref_primary_10_1109_LRA_2022_3143579
crossref_primary_10_3390_app11219990
crossref_primary_10_1016_j_eswa_2023_120493
crossref_primary_10_3390_robotics11010020
Cites_doi 10.1109/TBME.2017.2656130
10.1109/TNNLS.2016.2584559
10.1109/9780470544785
10.1109/TRO.2014.2361937
10.1126/science.aal5054
10.1109/TNNLS.2018.2817256
10.1109/TAC.2017.2707520
10.15607/RSS.2016.XII.007
10.1002/jor.1100080310
10.1371/journal.pone.0099387
10.2514/2.5107
10.1007/s10514-009-9120-4
10.1109/TRO.2008.2008747
10.1002/9781118029176
10.1109/TFUZZ.2014.2310238
10.1007/s10846-013-9979-3
10.1007/s10439-015-1464-7
10.1109/TSMC.1987.289329
10.1007/s10994-011-5235-x
10.1109/TNNLS.2015.2431734
10.1109/TSMCB.2008.923157
10.1109/TNNLS.2017.2728622
10.1007/11564096_32
10.1177/0278364914545673
10.1038/s41598-017-14834-7
10.1126/scirobotics.aar5438
10.1115/1.4001139
10.1016/j.neunet.2012.02.005
10.1109/FBIT.2007.37
10.1109/TMECH.2009.2032688
10.1109/ROBOT.2007.363631
10.1109/TIE.2017.2698377
10.1109/TBME.2012.2207895
10.1109/TSMCB.2009.2021950
10.1109/TNSRE.2014.2307256
10.1109/72.623201
10.1109/TNN.2003.813839
10.1109/TNN.2011.2168538
10.1109/MRA.2014.2360278
10.1109/72.914523
10.1109/TCYB.2017.2712188
10.1109/TBME.2007.901024
10.1109/TNSRE.2012.2225640
10.1109/EMBC.2016.7591867
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2019.2890974
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 2356
ExternalDocumentID 30668514
10_1109_TCYB_2019_2890974
8613842
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1563454; 1563921; 1808752; 1808898
  funderid: 10.13039/501100008982
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c415t-55228adcad1702da674dc578212290853170fa0d61b1e04a96ea11ac24e954d03
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 11:25:31 EDT 2025
Sun Jun 29 15:36:44 EDT 2025
Mon Jul 21 06:00:41 EDT 2025
Tue Jul 01 00:53:52 EDT 2025
Thu Apr 24 22:55:38 EDT 2025
Wed Aug 27 02:39:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-55228adcad1702da674dc578212290853170fa0d61b1e04a96ea11ac24e954d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5581-1423
0000-0001-5297-6230
0000-0003-3253-8000
PMID 30668514
PQID 2401124855
PQPubID 85422
PageCount 11
ParticipantIDs crossref_primary_10_1109_TCYB_2019_2890974
ieee_primary_8613842
proquest_miscellaneous_2179419023
proquest_journals_2401124855
crossref_citationtrail_10_1109_TCYB_2019_2890974
pubmed_primary_30668514
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
jordan (ref33) 1990
ref15
ref14
gabel (ref37) 2008; 24
ref11
ref10
ref19
ref18
werbos (ref21) 1974
zhang (ref26) 2018; 29
bertsekas (ref17) 1996
ref46
ref45
ref48
wen (ref44) 2017; 28
ref47
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref36
ref31
ref30
ref32
ref2
ref1
ref39
ref38
werbos (ref20) 1990
ding (ref16) 2018; 3
ref24
ref23
ref25
ref22
ref28
ref27
ref29
References_xml – ident: ref11
  doi: 10.1109/TBME.2017.2656130
– volume: 28
  start-page: 2215
  year: 2017
  ident: ref44
  article-title: A new powered lower limb prosthesis control framework based on adaptive dynamic programming
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2584559
– ident: ref18
  doi: 10.1109/9780470544785
– ident: ref12
  doi: 10.1109/TRO.2014.2361937
– ident: ref15
  doi: 10.1126/science.aal5054
– ident: ref27
  doi: 10.1109/TNNLS.2018.2817256
– ident: ref29
  doi: 10.1109/TAC.2017.2707520
– ident: ref14
  doi: 10.15607/RSS.2016.XII.007
– ident: ref47
  doi: 10.1002/jor.1100080310
– ident: ref7
  doi: 10.1371/journal.pone.0099387
– ident: ref42
  doi: 10.2514/2.5107
– ident: ref36
  doi: 10.1007/s10514-009-9120-4
– ident: ref4
  doi: 10.1109/TRO.2008.2008747
– ident: ref19
  doi: 10.1002/9781118029176
– volume: 24
  start-page: 1
  year: 2008
  ident: ref37
  article-title: Adaptive reactive job-shop scheduling with reinforcement learning agents
  publication-title: Int J Info Technol Intell Comput
– ident: ref25
  doi: 10.1109/TFUZZ.2014.2310238
– ident: ref6
  doi: 10.1007/s10846-013-9979-3
– ident: ref13
  doi: 10.1007/s10439-015-1464-7
– start-page: 324
  year: 1990
  ident: ref33
  article-title: Learning to control an unstable system with forward modeling
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref22
  doi: 10.1109/TSMC.1987.289329
– ident: ref34
  doi: 10.1007/s10994-011-5235-x
– ident: ref43
  doi: 10.1109/TNNLS.2015.2431734
– start-page: 67
  year: 1990
  ident: ref20
  article-title: A menu of designs for reinforcement learning over time
  publication-title: Neural Networks for Control
– ident: ref41
  doi: 10.1109/TSMCB.2008.923157
– volume: 29
  start-page: 3339
  year: 2018
  ident: ref26
  article-title: Distributed optimal consensus control for nonlinear multiagent system with unknown dynamic
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2728622
– ident: ref31
  doi: 10.1007/11564096_32
– ident: ref5
  doi: 10.1177/0278364914545673
– ident: ref8
  doi: 10.1038/s41598-017-14834-7
– volume: 3
  year: 2018
  ident: ref16
  article-title: Human-in-the-loop optimization of hip assistance with a soft exosuit during walking
  publication-title: Robotics Science
  doi: 10.1126/scirobotics.aar5438
– ident: ref1
  doi: 10.1115/1.4001139
– ident: ref48
  doi: 10.1016/j.neunet.2012.02.005
– ident: ref35
  doi: 10.1109/FBIT.2007.37
– ident: ref3
  doi: 10.1109/TMECH.2009.2032688
– ident: ref38
  doi: 10.1109/ROBOT.2007.363631
– ident: ref28
  doi: 10.1109/TIE.2017.2698377
– ident: ref9
  doi: 10.1109/TBME.2012.2207895
– ident: ref40
  doi: 10.1109/TSMCB.2009.2021950
– ident: ref10
  doi: 10.1109/TNSRE.2014.2307256
– ident: ref30
  doi: 10.1109/72.623201
– ident: ref39
  doi: 10.1109/TNN.2003.813839
– ident: ref24
  doi: 10.1109/TNN.2011.2168538
– ident: ref2
  doi: 10.1109/MRA.2014.2360278
– year: 1996
  ident: ref17
  publication-title: Neuro-Dynamic Programming
– ident: ref32
  doi: 10.1109/72.914523
– ident: ref23
  doi: 10.1109/TCYB.2017.2712188
– ident: ref45
  doi: 10.1109/TBME.2007.901024
– ident: ref46
  doi: 10.1109/TNSRE.2012.2225640
– year: 1974
  ident: ref21
  article-title: Beyond regression: New tools for prediction and analysis in the behavioral sciences
– ident: ref49
  doi: 10.1109/EMBC.2016.7591867
SSID ssj0000816898
Score 2.5534952
Snippet Robotic prostheses deliver greater function than passive prostheses, but we face the challenge of tuning a large number of control parameters in order to...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2346
SubjectTerms Adult
Algorithms
Amputees - rehabilitation
Approximate dynamic programming (ADP)
Automation
Biomechanical Phenomena - physiology
direct heuristic dynamic programming (dHDP)
Dynamic programming
Exoskeleton Device
Feasibility
Gait
Gait - physiology
Humans
Impedance
Kinematics
Knee
Knee Prosthesis
Learning
Male
Noise measurement
Order parameters
Prostheses
Prosthetics
reinforcement learning (RL)
Reinforcement, Psychology
robotic knee prosthesis
Robotics
Robots
Signal Processing, Computer-Assisted
Treadmills
Tuning
Walking
Young Adult
Title Online Reinforcement Learning Control for the Personalization of a Robotic Knee Prosthesis
URI https://ieeexplore.ieee.org/document/8613842
https://www.ncbi.nlm.nih.gov/pubmed/30668514
https://www.proquest.com/docview/2401124855
https://www.proquest.com/docview/2179419023
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RDohLedPwqFyJQ4vIkmSdh4-wKkJFVBUCCbhEjj3bVqAEsbsXfj0zjhMJBFVvUew8P9vzecb-BmBPE8g5stdGyTSUuTahwnTM0Uck-00jYMV-yPOf2emV_HGdXs_BQb8XBhHd4jMc8KGL5dvGzNhVdliQ7SkkDbgfaOLW7tXq_SkugYRLfZvQQUisIvdBzDhSh5ejm2Nex6UGHFgjDr0IC0SWM-Ib8oVFcilW3mebzuqcLMF5977tYpO7wWxaDczTKynH__2gZfjo6ac4atvLCsxhvQorvoNPxFevQv1tDW5bEVJxgU5b1Tg3ovByrL_FqF3iLqhIEIcUvzpS327rFM1YaHHRVA09SJzVSDV4f8kfnPydrMPVyffL0WnoEzGEhuz7NEyJpBXaGm3jPEqsznJpDevgx6wWTwafTo91ZLO4ijGSWmWo41ibRKJKpY2GGzBfNzV-AkE_fWjGic5UqmWGcWEINWML1oFDZaMAog6M0niVck6WcV-62UqkSoayZChLD2UA-_0lD61Ex78qrzEMfUWPQAA7HeKl78STksgOsVFWzwngS19M3Y9jKrrGZkZ1eEAjUpUMA9hsW0p_766Bbb39zG1YTHjy7lw6OzA_fZzhLjGcafXZNe1nZbLx3A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9RAEJ4QTJAXFFEsAq6JD2rs0fa2P_YRL5BTOGLIkaAvzXZ3TgikJdzdi3-9M9ttE40Y35ruttv22935OrP7DcBbTSDnyF4bJdNQ5tqECtMZRx-R7DfNgBX7ISdn2fhCfrlML1fgY78XBhHd4jMc8KGL5dvGLNlVdlCQ7SkkTbiPyO6nSbtbq_eouBQSLvltQgch8YrchzHjSB1MR98-8UouNeDQGrHodVgjupwR45C_2SSXZOVhvunszvETmHRP3C43uRksF9XA_PxDzPF_X-kpbHgCKg7bHrMJK1g_g00_xOfindehfr8F31sZUnGOTl3VOEei8IKsP8SoXeQuqEgQixRfO1rfbuwUzUxocd5UDTUkTmqkGrzD5Arn1_PncHF8NB2NQ5-KITRk4Rchfe2k0NZoG-dRYnWWS2tYCT9mvXgy-XR6piObxVWMkdQqQx3H2iQSVSptNHwBq3VT40sQ9NGHZpboTKVaZhgXhlAztmAlOFQ2CiDqwCiN1ynndBm3pftfiVTJUJYMZemhDOBDf8ldK9Lxr8pbDENf0SMQwG6HeOmH8bwkukN8lPVzAnjTF9MA5KiKrrFZUh2e0ohWJcMAttue0t-762A7f2_zNTweTyen5enns5NXsJ7wr7xz8OzC6uJ-iXvEdxbVvuvmvwAvFvUm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Reinforcement+Learning+Control+for+the+Personalization+of+a+Robotic+Knee+Prosthesis&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wen%2C+Yue&rft.au=Si%2C+Jennie&rft.au=Brandt%2C+Andrea&rft.au=Gao%2C+Xiang&rft.date=2020-06-01&rft.eissn=2168-2275&rft.volume=50&rft.issue=6&rft.spage=2346&rft_id=info:doi/10.1109%2FTCYB.2019.2890974&rft_id=info%3Apmid%2F30668514&rft.externalDocID=30668514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon