Online Reinforcement Learning Control for the Personalization of a Robotic Knee Prosthesis
Robotic prostheses deliver greater function than passive prostheses, but we face the challenge of tuning a large number of control parameters in order to personalize the device for individual amputee users. This problem is not easily solved by traditional control designs or the latest robotic techno...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 50; no. 6; pp. 2346 - 2356 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Robotic prostheses deliver greater function than passive prostheses, but we face the challenge of tuning a large number of control parameters in order to personalize the device for individual amputee users. This problem is not easily solved by traditional control designs or the latest robotic technology. Reinforcement learning (RL) is naturally appealing. The recent, unprecedented success of AlphaZero demonstrated RL as a feasible, large-scale problem solver. However, the prosthesis-tuning problem is associated with several unaddressed issues such as that it does not have a known and stable model, the continuous states and controls of the problem may result in a curse of dimensionality, and the human-prosthesis system is constantly subject to measurement noise, environmental change and human-body-caused variations. In this paper, we demonstrated the feasibility of direct heuristic dynamic programming, an approximate dynamic programming (ADP) approach, to automatically tune the 12 robotic knee prosthesis parameters to meet individual human users' needs. We tested the ADP-tuner on two subjects (one able-bodied subject and one amputee subject) walking at a fixed speed on a treadmill. The ADP-tuner learned to reach target gait kinematics in an average of 300 gait cycles or 10 min of walking. We observed improved ADP tuning performance when we transferred a previously learned ADP controller to a new learning session with the same subject. To the best of our knowledge, our approach to personalize robotic prostheses is the first implementation of online ADP learning control to a clinical problem involving human subjects. |
---|---|
AbstractList | Robotic prostheses deliver greater function than passive prostheses, but we face the challenge of tuning a large number of control parameters in order to personalize the device for individual amputee users. This problem is not easily solved by traditional control designs or the latest robotic technology. Reinforcement learning (RL) is naturally appealing. The recent, unprecedented success of AlphaZero demonstrated RL as a feasible, large-scale problem solver. However, the prosthesis-tuning problem is associated with several unaddressed issues such as that it does not have a known and stable model, the continuous states and controls of the problem may result in a curse of dimensionality, and the human-prosthesis system is constantly subject to measurement noise, environmental change and human-body-caused variations. In this paper, we demonstrated the feasibility of direct heuristic dynamic programming, an approximate dynamic programming (ADP) approach, to automatically tune the 12 robotic knee prosthesis parameters to meet individual human users' needs. We tested the ADP-tuner on two subjects (one able-bodied subject and one amputee subject) walking at a fixed speed on a treadmill. The ADP-tuner learned to reach target gait kinematics in an average of 300 gait cycles or 10 min of walking. We observed improved ADP tuning performance when we transferred a previously learned ADP controller to a new learning session with the same subject. To the best of our knowledge, our approach to personalize robotic prostheses is the first implementation of online ADP learning control to a clinical problem involving human subjects. Robotic prostheses deliver greater function than passive prostheses, but we face the challenge of tuning a large number of control parameters in order to personalize the device for individual amputee users. This problem is not easily solved by traditional control designs or the latest robotic technology. Reinforcement learning (RL) is naturally appealing. The recent, unprecedented success of AlphaZero demonstrated RL as a feasible, large-scale problem solver. However, the prosthesis-tuning problem is associated with several unaddressed issues such as that it does not have a known and stable model, the continuous states and controls of the problem may result in a curse of dimensionality, and the human-prosthesis system is constantly subject to measurement noise, environmental change and human-body-caused variations. In this paper, we demonstrated the feasibility of direct heuristic dynamic programming, an approximate dynamic programming (ADP) approach, to automatically tune the 12 robotic knee prosthesis parameters to meet individual human users' needs. We tested the ADP-tuner on two subjects (one able-bodied subject and one amputee subject) walking at a fixed speed on a treadmill. The ADP-tuner learned to reach target gait kinematics in an average of 300 gait cycles or 10 min of walking. We observed improved ADP tuning performance when we transferred a previously learned ADP controller to a new learning session with the same subject. To the best of our knowledge, our approach to personalize robotic prostheses is the first implementation of online ADP learning control to a clinical problem involving human subjects.Robotic prostheses deliver greater function than passive prostheses, but we face the challenge of tuning a large number of control parameters in order to personalize the device for individual amputee users. This problem is not easily solved by traditional control designs or the latest robotic technology. Reinforcement learning (RL) is naturally appealing. The recent, unprecedented success of AlphaZero demonstrated RL as a feasible, large-scale problem solver. However, the prosthesis-tuning problem is associated with several unaddressed issues such as that it does not have a known and stable model, the continuous states and controls of the problem may result in a curse of dimensionality, and the human-prosthesis system is constantly subject to measurement noise, environmental change and human-body-caused variations. In this paper, we demonstrated the feasibility of direct heuristic dynamic programming, an approximate dynamic programming (ADP) approach, to automatically tune the 12 robotic knee prosthesis parameters to meet individual human users' needs. We tested the ADP-tuner on two subjects (one able-bodied subject and one amputee subject) walking at a fixed speed on a treadmill. The ADP-tuner learned to reach target gait kinematics in an average of 300 gait cycles or 10 min of walking. We observed improved ADP tuning performance when we transferred a previously learned ADP controller to a new learning session with the same subject. To the best of our knowledge, our approach to personalize robotic prostheses is the first implementation of online ADP learning control to a clinical problem involving human subjects. |
Author | Wen, Yue Brandt, Andrea Si, Jennie Huang, He Helen Gao, Xiang |
Author_xml | – sequence: 1 givenname: Yue orcidid: 0000-0001-5297-6230 surname: Wen fullname: Wen, Yue organization: UNC/NCSU Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA – sequence: 2 givenname: Jennie surname: Si fullname: Si, Jennie email: si@asu.edu organization: Department of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, USA – sequence: 3 givenname: Andrea surname: Brandt fullname: Brandt, Andrea organization: UNC/NCSU Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA – sequence: 4 givenname: Xiang orcidid: 0000-0003-3253-8000 surname: Gao fullname: Gao, Xiang organization: Department of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, USA – sequence: 5 givenname: He Helen orcidid: 0000-0001-5581-1423 surname: Huang fullname: Huang, He Helen email: hhuang11@ncsu.edu organization: UNC/NCSU Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30668514$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1PHDEMhiNExVf5AQgJReqFy27jTDKTHOkK2qorUSF6aC9RNuOBoNkEkuwBfn2z3YUDh_piy35eS_Z7SHZDDEjICbApANOfb2e_v0w5Az3lSjPdiR1ywKFVE847uftWt90-Oc75gdVQtaXVHtlvWNsqCeKA_LkOow9Ib9CHISaHSwyFztGm4MMdncVQUhxpHdFyj_QnphyDHf2LLT4GGgdq6U1cxOId_RGwEinmSmafP5IPgx0zHm_zEfl1dXk7-zaZX3_9PruYT5wAWSZScq5s72wPHeO9bTvRO9kpDpxrpmRT24NlfQsLQCasbtECWMcFail61hyR883exxSfVpiLWfrscBxtwLjKhkOnBWjGm4p-eoc-xFWq91RKMAAulJSVOttSq8USe_OY_NKmZ_P6tQp0G8DVY3PCwThf_j2kJOtHA8ysLTJri8zaIrO1qCrhnfJ1-f80pxuNR8Q3XrXQKMGbvyE3mg4 |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1016_j_knosys_2022_109624 crossref_primary_10_1109_TRO_2021_3078317 crossref_primary_10_1109_TCYB_2024_3483148 crossref_primary_10_1186_s12984_019_0583_z crossref_primary_10_1007_s42235_022_00169_1 crossref_primary_10_1109_ACCESS_2019_2936863 crossref_primary_10_1109_TSMC_2024_3454556 crossref_primary_10_1016_j_arcontrol_2023_03_003 crossref_primary_10_1007_s11704_024_3194_1 crossref_primary_10_1109_TCYB_2020_3028988 crossref_primary_10_1136_bmjopen_2020_039975 crossref_primary_10_3390_biomimetics8040353 crossref_primary_10_1007_s11044_023_09884_x crossref_primary_10_1109_TCYB_2020_2978216 crossref_primary_10_1088_1741_2552_ac1176 crossref_primary_10_1007_s13369_023_08026_x crossref_primary_10_1038_s41586_024_07697_2 crossref_primary_10_1097_JPO_0000000000000533 crossref_primary_10_1007_s43674_021_00031_7 crossref_primary_10_1109_TNNLS_2021_3053037 crossref_primary_10_61186_joc_17_4_75 crossref_primary_10_1109_ACCESS_2019_2933614 crossref_primary_10_1016_j_matpr_2020_11_039 crossref_primary_10_1109_TNSRE_2022_3156884 crossref_primary_10_1088_1741_2552_ab8e8e crossref_primary_10_1109_TMRB_2023_3258505 crossref_primary_10_1177_01423312221088848 crossref_primary_10_3389_fnbot_2022_1068706 crossref_primary_10_1109_TBME_2022_3224026 crossref_primary_10_1109_TNSRE_2020_2979033 crossref_primary_10_1109_ACCESS_2022_3171246 crossref_primary_10_3390_s20226533 crossref_primary_10_1109_TMECH_2022_3219115 crossref_primary_10_3390_s21041278 crossref_primary_10_1002_rnc_5410 crossref_primary_10_1109_LRA_2022_3187616 crossref_primary_10_1007_s40815_023_01518_w crossref_primary_10_1109_TCYB_2021_3107202 crossref_primary_10_1109_TCYB_2021_3116762 crossref_primary_10_1109_TNNLS_2023_3243631 crossref_primary_10_3390_electronics11071069 crossref_primary_10_1109_TBME_2019_2912466 crossref_primary_10_1109_TNSRE_2022_3179978 crossref_primary_10_1109_TCYB_2022_3224895 crossref_primary_10_3390_math12243916 crossref_primary_10_1109_LRA_2022_3194326 crossref_primary_10_1109_TRO_2024_3359541 crossref_primary_10_3390_s24248090 crossref_primary_10_1109_TNNLS_2021_3071727 crossref_primary_10_1186_s12984_022_01118_z crossref_primary_10_1109_TCDS_2022_3187186 crossref_primary_10_1038_s41598_020_73838_y crossref_primary_10_1109_TCYB_2022_3157892 crossref_primary_10_1115_1_4049333 crossref_primary_10_1007_s00521_021_06476_8 crossref_primary_10_1109_ACCESS_2020_3004823 crossref_primary_10_3389_fnbot_2020_565702 crossref_primary_10_1016_j_cobme_2021_100314 crossref_primary_10_1016_j_neucom_2021_01_070 crossref_primary_10_1109_TASE_2024_3370615 crossref_primary_10_1002_aisy_202400333 crossref_primary_10_1088_1741_2552_ad349c crossref_primary_10_1109_TSMC_2024_3369071 crossref_primary_10_1177_16878140211009015 crossref_primary_10_1109_ACCESS_2020_3012204 crossref_primary_10_1109_TCYB_2020_2990722 crossref_primary_10_1115_1_4063251 crossref_primary_10_1038_s41586_024_07382_4 crossref_primary_10_1109_TCYB_2022_3222564 crossref_primary_10_1109_TCYB_2021_3111082 crossref_primary_10_1007_s11053_019_09548_8 crossref_primary_10_1080_00207179_2025_2470349 crossref_primary_10_1016_j_isatra_2025_01_007 crossref_primary_10_1109_TNNLS_2023_3245980 crossref_primary_10_1109_ACCESS_2020_3022656 crossref_primary_10_1109_JAS_2021_1004272 crossref_primary_10_1016_j_ijmecsci_2021_106942 crossref_primary_10_3389_fnbot_2021_790060 crossref_primary_10_1109_LRA_2022_3196105 crossref_primary_10_3389_fnins_2022_976437 crossref_primary_10_1109_LRA_2022_3194323 crossref_primary_10_1017_wtc_2022_19 crossref_primary_10_1017_wtc_2021_2 crossref_primary_10_3390_machines11020186 crossref_primary_10_1109_LRA_2021_3100269 crossref_primary_10_1109_TASE_2022_3229396 crossref_primary_10_1109_TRO_2021_3133137 crossref_primary_10_1109_JAS_2023_123843 crossref_primary_10_1109_LRA_2022_3143579 crossref_primary_10_3390_app11219990 crossref_primary_10_1016_j_eswa_2023_120493 crossref_primary_10_3390_robotics11010020 |
Cites_doi | 10.1109/TBME.2017.2656130 10.1109/TNNLS.2016.2584559 10.1109/9780470544785 10.1109/TRO.2014.2361937 10.1126/science.aal5054 10.1109/TNNLS.2018.2817256 10.1109/TAC.2017.2707520 10.15607/RSS.2016.XII.007 10.1002/jor.1100080310 10.1371/journal.pone.0099387 10.2514/2.5107 10.1007/s10514-009-9120-4 10.1109/TRO.2008.2008747 10.1002/9781118029176 10.1109/TFUZZ.2014.2310238 10.1007/s10846-013-9979-3 10.1007/s10439-015-1464-7 10.1109/TSMC.1987.289329 10.1007/s10994-011-5235-x 10.1109/TNNLS.2015.2431734 10.1109/TSMCB.2008.923157 10.1109/TNNLS.2017.2728622 10.1007/11564096_32 10.1177/0278364914545673 10.1038/s41598-017-14834-7 10.1126/scirobotics.aar5438 10.1115/1.4001139 10.1016/j.neunet.2012.02.005 10.1109/FBIT.2007.37 10.1109/TMECH.2009.2032688 10.1109/ROBOT.2007.363631 10.1109/TIE.2017.2698377 10.1109/TBME.2012.2207895 10.1109/TSMCB.2009.2021950 10.1109/TNSRE.2014.2307256 10.1109/72.623201 10.1109/TNN.2003.813839 10.1109/TNN.2011.2168538 10.1109/MRA.2014.2360278 10.1109/72.914523 10.1109/TCYB.2017.2712188 10.1109/TBME.2007.901024 10.1109/TNSRE.2012.2225640 10.1109/EMBC.2016.7591867 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2019.2890974 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Aerospace Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 2356 |
ExternalDocumentID | 30668514 10_1109_TCYB_2019_2890974 8613842 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Science Foundation grantid: 1563454; 1563921; 1808752; 1808898 funderid: 10.13039/501100008982 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c415t-55228adcad1702da674dc578212290853170fa0d61b1e04a96ea11ac24e954d03 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 11:25:31 EDT 2025 Sun Jun 29 15:36:44 EDT 2025 Mon Jul 21 06:00:41 EDT 2025 Tue Jul 01 00:53:52 EDT 2025 Thu Apr 24 22:55:38 EDT 2025 Wed Aug 27 02:39:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-55228adcad1702da674dc578212290853170fa0d61b1e04a96ea11ac24e954d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5581-1423 0000-0001-5297-6230 0000-0003-3253-8000 |
PMID | 30668514 |
PQID | 2401124855 |
PQPubID | 85422 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TCYB_2019_2890974 ieee_primary_8613842 proquest_miscellaneous_2179419023 proquest_journals_2401124855 crossref_citationtrail_10_1109_TCYB_2019_2890974 pubmed_primary_30668514 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 jordan (ref33) 1990 ref15 ref14 gabel (ref37) 2008; 24 ref11 ref10 ref19 ref18 werbos (ref21) 1974 zhang (ref26) 2018; 29 bertsekas (ref17) 1996 ref46 ref45 ref48 wen (ref44) 2017; 28 ref47 ref42 ref41 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref36 ref31 ref30 ref32 ref2 ref1 ref39 ref38 werbos (ref20) 1990 ding (ref16) 2018; 3 ref24 ref23 ref25 ref22 ref28 ref27 ref29 |
References_xml | – ident: ref11 doi: 10.1109/TBME.2017.2656130 – volume: 28 start-page: 2215 year: 2017 ident: ref44 article-title: A new powered lower limb prosthesis control framework based on adaptive dynamic programming publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2584559 – ident: ref18 doi: 10.1109/9780470544785 – ident: ref12 doi: 10.1109/TRO.2014.2361937 – ident: ref15 doi: 10.1126/science.aal5054 – ident: ref27 doi: 10.1109/TNNLS.2018.2817256 – ident: ref29 doi: 10.1109/TAC.2017.2707520 – ident: ref14 doi: 10.15607/RSS.2016.XII.007 – ident: ref47 doi: 10.1002/jor.1100080310 – ident: ref7 doi: 10.1371/journal.pone.0099387 – ident: ref42 doi: 10.2514/2.5107 – ident: ref36 doi: 10.1007/s10514-009-9120-4 – ident: ref4 doi: 10.1109/TRO.2008.2008747 – ident: ref19 doi: 10.1002/9781118029176 – volume: 24 start-page: 1 year: 2008 ident: ref37 article-title: Adaptive reactive job-shop scheduling with reinforcement learning agents publication-title: Int J Info Technol Intell Comput – ident: ref25 doi: 10.1109/TFUZZ.2014.2310238 – ident: ref6 doi: 10.1007/s10846-013-9979-3 – ident: ref13 doi: 10.1007/s10439-015-1464-7 – start-page: 324 year: 1990 ident: ref33 article-title: Learning to control an unstable system with forward modeling publication-title: Proc Adv Neural Inf Process Syst – ident: ref22 doi: 10.1109/TSMC.1987.289329 – ident: ref34 doi: 10.1007/s10994-011-5235-x – ident: ref43 doi: 10.1109/TNNLS.2015.2431734 – start-page: 67 year: 1990 ident: ref20 article-title: A menu of designs for reinforcement learning over time publication-title: Neural Networks for Control – ident: ref41 doi: 10.1109/TSMCB.2008.923157 – volume: 29 start-page: 3339 year: 2018 ident: ref26 article-title: Distributed optimal consensus control for nonlinear multiagent system with unknown dynamic publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2017.2728622 – ident: ref31 doi: 10.1007/11564096_32 – ident: ref5 doi: 10.1177/0278364914545673 – ident: ref8 doi: 10.1038/s41598-017-14834-7 – volume: 3 year: 2018 ident: ref16 article-title: Human-in-the-loop optimization of hip assistance with a soft exosuit during walking publication-title: Robotics Science doi: 10.1126/scirobotics.aar5438 – ident: ref1 doi: 10.1115/1.4001139 – ident: ref48 doi: 10.1016/j.neunet.2012.02.005 – ident: ref35 doi: 10.1109/FBIT.2007.37 – ident: ref3 doi: 10.1109/TMECH.2009.2032688 – ident: ref38 doi: 10.1109/ROBOT.2007.363631 – ident: ref28 doi: 10.1109/TIE.2017.2698377 – ident: ref9 doi: 10.1109/TBME.2012.2207895 – ident: ref40 doi: 10.1109/TSMCB.2009.2021950 – ident: ref10 doi: 10.1109/TNSRE.2014.2307256 – ident: ref30 doi: 10.1109/72.623201 – ident: ref39 doi: 10.1109/TNN.2003.813839 – ident: ref24 doi: 10.1109/TNN.2011.2168538 – ident: ref2 doi: 10.1109/MRA.2014.2360278 – year: 1996 ident: ref17 publication-title: Neuro-Dynamic Programming – ident: ref32 doi: 10.1109/72.914523 – ident: ref23 doi: 10.1109/TCYB.2017.2712188 – ident: ref45 doi: 10.1109/TBME.2007.901024 – ident: ref46 doi: 10.1109/TNSRE.2012.2225640 – year: 1974 ident: ref21 article-title: Beyond regression: New tools for prediction and analysis in the behavioral sciences – ident: ref49 doi: 10.1109/EMBC.2016.7591867 |
SSID | ssj0000816898 |
Score | 2.5534952 |
Snippet | Robotic prostheses deliver greater function than passive prostheses, but we face the challenge of tuning a large number of control parameters in order to... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2346 |
SubjectTerms | Adult Algorithms Amputees - rehabilitation Approximate dynamic programming (ADP) Automation Biomechanical Phenomena - physiology direct heuristic dynamic programming (dHDP) Dynamic programming Exoskeleton Device Feasibility Gait Gait - physiology Humans Impedance Kinematics Knee Knee Prosthesis Learning Male Noise measurement Order parameters Prostheses Prosthetics reinforcement learning (RL) Reinforcement, Psychology robotic knee prosthesis Robotics Robots Signal Processing, Computer-Assisted Treadmills Tuning Walking Young Adult |
Title | Online Reinforcement Learning Control for the Personalization of a Robotic Knee Prosthesis |
URI | https://ieeexplore.ieee.org/document/8613842 https://www.ncbi.nlm.nih.gov/pubmed/30668514 https://www.proquest.com/docview/2401124855 https://www.proquest.com/docview/2179419023 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RDohLedPwqFyJQ4vIkmSdh4-wKkJFVBUCCbhEjj3bVqAEsbsXfj0zjhMJBFVvUew8P9vzecb-BmBPE8g5stdGyTSUuTahwnTM0Uck-00jYMV-yPOf2emV_HGdXs_BQb8XBhHd4jMc8KGL5dvGzNhVdliQ7SkkDbgfaOLW7tXq_SkugYRLfZvQQUisIvdBzDhSh5ejm2Nex6UGHFgjDr0IC0SWM-Ib8oVFcilW3mebzuqcLMF5977tYpO7wWxaDczTKynH__2gZfjo6ac4atvLCsxhvQorvoNPxFevQv1tDW5bEVJxgU5b1Tg3ovByrL_FqF3iLqhIEIcUvzpS327rFM1YaHHRVA09SJzVSDV4f8kfnPydrMPVyffL0WnoEzGEhuz7NEyJpBXaGm3jPEqsznJpDevgx6wWTwafTo91ZLO4ijGSWmWo41ibRKJKpY2GGzBfNzV-AkE_fWjGic5UqmWGcWEINWML1oFDZaMAog6M0niVck6WcV-62UqkSoayZChLD2UA-_0lD61Ex78qrzEMfUWPQAA7HeKl78STksgOsVFWzwngS19M3Y9jKrrGZkZ1eEAjUpUMA9hsW0p_766Bbb39zG1YTHjy7lw6OzA_fZzhLjGcafXZNe1nZbLx3A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9RAEJ4QTJAXFFEsAq6JD2rs0fa2P_YRL5BTOGLIkaAvzXZ3TgikJdzdi3-9M9ttE40Y35ruttv22935OrP7DcBbTSDnyF4bJdNQ5tqECtMZRx-R7DfNgBX7ISdn2fhCfrlML1fgY78XBhHd4jMc8KGL5dvGLNlVdlCQ7SkkTbiPyO6nSbtbq_eouBQSLvltQgch8YrchzHjSB1MR98-8UouNeDQGrHodVgjupwR45C_2SSXZOVhvunszvETmHRP3C43uRksF9XA_PxDzPF_X-kpbHgCKg7bHrMJK1g_g00_xOfindehfr8F31sZUnGOTl3VOEei8IKsP8SoXeQuqEgQixRfO1rfbuwUzUxocd5UDTUkTmqkGrzD5Arn1_PncHF8NB2NQ5-KITRk4Rchfe2k0NZoG-dRYnWWS2tYCT9mvXgy-XR6piObxVWMkdQqQx3H2iQSVSptNHwBq3VT40sQ9NGHZpboTKVaZhgXhlAztmAlOFQ2CiDqwCiN1ynndBm3pftfiVTJUJYMZemhDOBDf8ldK9Lxr8pbDENf0SMQwG6HeOmH8bwkukN8lPVzAnjTF9MA5KiKrrFZUh2e0ohWJcMAttue0t-762A7f2_zNTweTyen5enns5NXsJ7wr7xz8OzC6uJ-iXvEdxbVvuvmvwAvFvUm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Reinforcement+Learning+Control+for+the+Personalization+of+a+Robotic+Knee+Prosthesis&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wen%2C+Yue&rft.au=Si%2C+Jennie&rft.au=Brandt%2C+Andrea&rft.au=Gao%2C+Xiang&rft.date=2020-06-01&rft.eissn=2168-2275&rft.volume=50&rft.issue=6&rft.spage=2346&rft_id=info:doi/10.1109%2FTCYB.2019.2890974&rft_id=info%3Apmid%2F30668514&rft.externalDocID=30668514 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |