A 3-D Active Contour Method for Automated Segmentation of the Left Ventricle From Magnetic Resonance Images
Objective: This study's objective is to develop and validate a fast automated 3-D segmentation method for cardiac magnetic resonance imaging (MRI). The segmentation algorithm automatically reconstructs cardiac MRI DICOM data into a 3-D model (i.e., direct volumetric segmentation), without relyi...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 64; no. 1; pp. 134 - 144 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective: This study's objective is to develop and validate a fast automated 3-D segmentation method for cardiac magnetic resonance imaging (MRI). The segmentation algorithm automatically reconstructs cardiac MRI DICOM data into a 3-D model (i.e., direct volumetric segmentation), without relying on prior statistical knowledge. Methods: A novel 3-D active contour method was employed to detect the left ventricular cavity in 33 subjects with heterogeneous heart diseases from the York University database. Papillary muscles were identified and added to the chamber using a convex hull of the left ventricle and interpolation. The myocardium was then segmented using a similar 3-D segmentation method according to anatomic information. A multistage approach was taken to determine the method's efficacy. Results: Our method demonstrated a significant improvement in segmentation performance when compared to manual segmentation and other automated methods. Conclusion and Significance: A true 3-D reconstruction technique without the need for training datasets or any user-driven segmentation has been developed. In this method, a novel combination of internal and external energy terms for active contour was utilized that exploits histogram matching for improving the segmentation performance. This method takes advantage of full volumetric imaging, does not rely on prior statistical knowledge, and employs a convex-hull interpolation to include the papillary muscles. |
---|---|
AbstractList | Objective: This study's objective is to develop and validate a fast automated 3-D segmentation method for cardiac magnetic resonance imaging (MRI). The segmentation algorithm automatically reconstructs cardiac MRI DICOM data into a 3-D model (i.e., direct volumetric segmentation), without relying on prior statistical knowledge. Methods: A novel 3-D active contour method was employed to detect the left ventricular cavity in 33 subjects with heterogeneous heart diseases from the York University database. Papillary muscles were identified and added to the chamber using a convex hull of the left ventricle and interpolation. The myocardium was then segmented using a similar 3-D segmentation method according to anatomic information. A multistage approach was taken to determine the method's efficacy. Results: Our method demonstrated a significant improvement in segmentation performance when compared to manual segmentation and other automated methods. Conclusion and Significance: A true 3-D reconstruction technique without the need for training datasets or any user-driven segmentation has been developed. In this method, a novel combination of internal and external energy terms for active contour was utilized that exploits histogram matching for improving the segmentation performance. This method takes advantage of full volumetric imaging, does not rely on prior statistical knowledge, and employs a convex-hull interpolation to include the papillary muscles. This study's objective is to develop and validate a fast automated 3-D segmentation method for cardiac magnetic resonance imaging (MRI). The segmentation algorithm automatically reconstructs cardiac MRI DICOM data into a 3-D model (i.e., direct volumetric segmentation), without relying on prior statistical knowledge. A novel 3-D active contour method was employed to detect the left ventricular cavity in 33 subjects with heterogeneous heart diseases from the York University database. Papillary muscles were identified and added to the chamber using a convex hull of the left ventricle and interpolation. The myocardium was then segmented using a similar 3-D segmentation method according to anatomic information. A multistage approach was taken to determine the method's efficacy. Our method demonstrated a significant improvement in segmentation performance when compared to manual segmentation and other automated methods. A true 3-D reconstruction technique without the need for training datasets or any user-driven segmentation has been developed. In this method, a novel combination of internal and external energy terms for active contour was utilized that exploits histogram matching for improving the segmentation performance. This method takes advantage of full volumetric imaging, does not rely on prior statistical knowledge, and employs a convex-hull interpolation to include the papillary muscles. This study's objective is to develop and validate a fast automated 3-D segmentation method for cardiac magnetic resonance imaging (MRI). The segmentation algorithm automatically reconstructs cardiac MRI DICOM data into a 3-D model (i.e., direct volumetric segmentation), without relying on prior statistical knowledge.OBJECTIVEThis study's objective is to develop and validate a fast automated 3-D segmentation method for cardiac magnetic resonance imaging (MRI). The segmentation algorithm automatically reconstructs cardiac MRI DICOM data into a 3-D model (i.e., direct volumetric segmentation), without relying on prior statistical knowledge.A novel 3-D active contour method was employed to detect the left ventricular cavity in 33 subjects with heterogeneous heart diseases from the York University database. Papillary muscles were identified and added to the chamber using a convex hull of the left ventricle and interpolation. The myocardium was then segmented using a similar 3-D segmentation method according to anatomic information. A multistage approach was taken to determine the method's efficacy.METHODSA novel 3-D active contour method was employed to detect the left ventricular cavity in 33 subjects with heterogeneous heart diseases from the York University database. Papillary muscles were identified and added to the chamber using a convex hull of the left ventricle and interpolation. The myocardium was then segmented using a similar 3-D segmentation method according to anatomic information. A multistage approach was taken to determine the method's efficacy.Our method demonstrated a significant improvement in segmentation performance when compared to manual segmentation and other automated methods.RESULTSOur method demonstrated a significant improvement in segmentation performance when compared to manual segmentation and other automated methods.A true 3-D reconstruction technique without the need for training datasets or any user-driven segmentation has been developed. In this method, a novel combination of internal and external energy terms for active contour was utilized that exploits histogram matching for improving the segmentation performance. This method takes advantage of full volumetric imaging, does not rely on prior statistical knowledge, and employs a convex-hull interpolation to include the papillary muscles.CONCLUSION AND SIGNIFICANCEA true 3-D reconstruction technique without the need for training datasets or any user-driven segmentation has been developed. In this method, a novel combination of internal and external energy terms for active contour was utilized that exploits histogram matching for improving the segmentation performance. This method takes advantage of full volumetric imaging, does not rely on prior statistical knowledge, and employs a convex-hull interpolation to include the papillary muscles. |
Author | Hajiaghayi, Mahdi Jafarkhani, Hamid Groves, Elliott M. Kheradvar, Arash |
Author_xml | – sequence: 1 givenname: Mahdi surname: Hajiaghayi fullname: Hajiaghayi, Mahdi organization: Center for Pervasive Communications and ComputingUniversity of California – sequence: 2 givenname: Elliott M. surname: Groves fullname: Groves, Elliott M. organization: Edwards Lifesciences Center for Advanced Cardiovascular TechnologyDepartment of Biomedical EngineeringUniversity of California – sequence: 3 givenname: Hamid surname: Jafarkhani fullname: Jafarkhani, Hamid organization: Center for Pervasive Communications and ComputingUniversity of California – sequence: 4 givenname: Arash surname: Kheradvar fullname: Kheradvar, Arash email: arashkh@uci.edu organization: Edwards Lifesciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, University of California, Irvine, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27046887$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFu1DAQhi1URLeFB0BIyBIXLllsx3ac47K0pdKukKBwtRxnvE1J7NZ2kHj7erVbDj1wGs3M949m5j9DJz54QOgtJUtKSfvp5vP2YskIlUsmOGO8foEWVAhVMVHTE7QghKqqZS0_RWcp3ZWUKy5foVPWEC6Vahbo9wrX1Re8snn4A3gdfA5zxFvIt6HHLkS8mnOYTIYe_4DdBD6bPASPg8P5FvAGXMa_SjUOdgR8GcOEt2bnIQ8Wf4cUvPEW8PVkdpBeo5fOjAneHOM5-nl5cbP-Wm2-XV2vV5vKcipyJZgQzFHaGdl3pOPlIGWathOCgjKSOWtB9DUjDGqwrHHClbbjTDjJae_qc_TxMPc-hocZUtbTkCyMo_EQ5qSpYlI2jRK8oB-eoXflfl-2K5SQtZJ1Swr1_kjN3QS9vo_DZOJf_fTGAjQHwMaQUgSn7XB4VI5mGDUlem-Y3hum94bpo2FFSZ8pn4b_T_PuoBkA4B_fcC5oI-tHEBKeyQ |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1016_j_mri_2021_02_003 crossref_primary_10_1016_j_neucom_2019_04_052 crossref_primary_10_1080_02564602_2021_1955760 crossref_primary_10_1016_j_media_2020_101723 crossref_primary_10_1098_rsif_2020_0267 crossref_primary_10_2217_fca_2020_0128 crossref_primary_10_1186_s12968_020_00678_0 crossref_primary_10_1016_j_compmedimag_2017_03_004 crossref_primary_10_1016_j_media_2021_102170 crossref_primary_10_3233_XST_210879 crossref_primary_10_1148_ryai_2021200148 crossref_primary_10_1016_j_neucom_2024_127379 crossref_primary_10_1109_TBME_2020_2985724 crossref_primary_10_3233_JIFS_169974 crossref_primary_10_1016_j_media_2022_102455 crossref_primary_10_1016_j_ejmp_2021_05_026 crossref_primary_10_1016_j_ejmp_2019_01_003 crossref_primary_10_1155_2019_5636423 crossref_primary_10_1109_TBME_2018_2884319 crossref_primary_10_1007_s11042_018_6682_1 crossref_primary_10_1016_j_jbi_2023_104366 crossref_primary_10_3390_jimaging6070065 crossref_primary_10_1007_s11042_021_11155_w crossref_primary_10_1109_TCYB_2020_2994235 crossref_primary_10_1016_j_neucom_2024_129326 crossref_primary_10_1016_j_compmedimag_2018_11_001 crossref_primary_10_1016_j_media_2019_101591 crossref_primary_10_1587_transinf_2017EDL8085 crossref_primary_10_1016_j_mri_2018_04_011 crossref_primary_10_1016_j_mri_2021_10_005 |
Cites_doi | 10.1117/3.831079.ch3 10.1007/BF00133570 10.1016/j.media.2016.01.005 10.1109/TMI.2008.2004421 10.1016/j.media.2009.05.004 10.1109/CBMS.2007.96 10.1016/j.cviu.2013.10.013 10.1109/TVCG.2004.2 10.1016/j.cviu.2012.11.017 10.1007/s11548-010-0532-6 10.1007/s11263-006-6658-x 10.1007/978-3-642-16295-4_28 10.1007/b98879 10.1109/TBME.2006.873684 10.1016/j.media.2004.06.015 10.1006/jcph.1994.1155 10.1016/j.media.2010.12.004 10.1097/HJH.0b013e328302ca14 10.1016/j.euromechflu.2012.01.019 10.1016/j.compbiomed.2005.01.005 10.1007/978-3-642-04271-3_109 10.1023/A:1020874308076 10.1002/jmri.21292 10.1109/TMI.2002.804425 10.1111/j.2517-6161.1977.tb01600.x 10.1016/j.media.2007.12.003 10.1109/TMI.2005.843740 10.1109/34.368173 10.1016/j.media.2005.12.001 10.1109/42.370402 10.1007/s11263-006-7936-3 10.1109/83.902291 10.1007/978-3-642-01932-6_37 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2016.2542243 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Statistics |
EISSN | 1558-2531 |
EndPage | 144 |
ExternalDocumentID | 27046887 10_1109_TBME_2016_2542243 7445176 |
Genre | orig-research Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: CORCL MultiInvestigator Research Grant and American Heart Association Grant-in-Aid Award grantid: 14GRNT18800013 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c415t-52552f11ba6db0b45588a79b551e8a62fcce5d3202e3ec27f5fa79f425f641df3 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Fri Jul 11 00:21:18 EDT 2025 Mon Jun 30 08:27:28 EDT 2025 Thu Apr 03 07:10:23 EDT 2025 Tue Jul 01 03:28:28 EDT 2025 Thu Apr 24 23:01:40 EDT 2025 Wed Aug 27 02:53:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-52552f11ba6db0b45588a79b551e8a62fcce5d3202e3ec27f5fa79f425f641df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
PMID | 27046887 |
PQID | 1856386390 |
PQPubID | 85474 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_TBME_2016_2542243 crossref_primary_10_1109_TBME_2016_2542243 pubmed_primary_27046887 proquest_miscellaneous_1826677854 proquest_journals_1856386390 ieee_primary_7445176 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-Jan. 2017-1-00 2017-01-00 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-Jan. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref32 ref10 luk (ref4) 2014; 85 ref2 ref1 ref17 ref16 ref19 ref18 ref23 ref25 ref20 ref22 ref21 ref28 dempster (ref27) 1977; 39 ref29 ref8 ref7 ref9 gonzalez (ref24) 2002 ref3 ref6 ref5 li (ref11) 0 franco (ref26) 1985 |
References_xml | – ident: ref13 doi: 10.1117/3.831079.ch3 – ident: ref20 doi: 10.1007/BF00133570 – start-page: 25 year: 0 ident: ref11 article-title: Improved semi-automated segmentation of cardiac CT and MR images publication-title: Proc IEEE Int Symp Biomed Imag Nano Macro – ident: ref35 doi: 10.1016/j.media.2016.01.005 – ident: ref10 doi: 10.1109/TMI.2008.2004421 – ident: ref8 doi: 10.1016/j.media.2009.05.004 – ident: ref29 doi: 10.1109/CBMS.2007.96 – year: 2002 ident: ref24 publication-title: Digital Image Processing – ident: ref21 doi: 10.1016/j.cviu.2013.10.013 – ident: ref37 doi: 10.1109/TVCG.2004.2 – ident: ref3 doi: 10.1016/j.cviu.2012.11.017 – ident: ref14 doi: 10.1007/s11548-010-0532-6 – ident: ref34 doi: 10.1007/s11263-006-6658-x – ident: ref30 doi: 10.1007/978-3-642-16295-4_28 – ident: ref23 doi: 10.1007/b98879 – ident: ref15 doi: 10.1109/TBME.2006.873684 – ident: ref6 doi: 10.1016/j.media.2004.06.015 – ident: ref22 doi: 10.1006/jcph.1994.1155 – ident: ref2 doi: 10.1016/j.media.2010.12.004 – ident: ref1 doi: 10.1097/HJH.0b013e328302ca14 – ident: ref32 doi: 10.1016/j.euromechflu.2012.01.019 – ident: ref16 doi: 10.1016/j.compbiomed.2005.01.005 – ident: ref28 doi: 10.1007/978-3-642-04271-3_109 – ident: ref25 doi: 10.1023/A:1020874308076 – ident: ref31 doi: 10.1002/jmri.21292 – year: 1985 ident: ref26 article-title: Convex hulls: Basic algorithms publication-title: Computational Geometry – ident: ref33 doi: 10.1109/TMI.2002.804425 – volume: 39 start-page: 1 year: 1977 ident: ref27 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc Ser B Methodol doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: ref12 doi: 10.1016/j.media.2007.12.003 – ident: ref17 doi: 10.1109/TMI.2005.843740 – ident: ref18 doi: 10.1109/34.368173 – ident: ref5 doi: 10.1016/j.media.2005.12.001 – ident: ref36 doi: 10.1109/42.370402 – ident: ref7 doi: 10.1007/s11263-006-7936-3 – volume: 85 start-page: 494 year: 2014 ident: ref4 article-title: Comparing left ventricular ejection fraction measurement using cardiovascular magnetic resonance imaging publication-title: Radiologic Technol – ident: ref19 doi: 10.1109/83.902291 – ident: ref9 doi: 10.1007/978-3-642-01932-6_37 |
SSID | ssj0014846 |
Score | 2.4153287 |
Snippet | Objective: This study's objective is to develop and validate a fast automated 3-D segmentation method for cardiac magnetic resonance imaging (MRI). The... This study's objective is to develop and validate a fast automated 3-D segmentation method for cardiac magnetic resonance imaging (MRI). The segmentation... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 134 |
SubjectTerms | Active contour method Active contours Algorithms automated Automation cardiac MRI Cardiovascular diseases Computational geometry Contour matching Convexity Coronary artery disease Heart Heart diseases Heart Ventricles - anatomy & histology Heart Ventricles - diagnostic imaging Humans Image edge detection Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Image reconstruction Image segmentation Imaging, Three-Dimensional - methods Interpolation Machine Learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Muscles Myocardium NMR Nuclear magnetic resonance Pattern Recognition, Automated - methods Reproducibility of Results segmentation Sensitivity and Specificity Statistical methods Statistics three dimensional Three dimensional models Three-dimensional displays Ventricle volumetric |
Title | A 3-D Active Contour Method for Automated Segmentation of the Left Ventricle From Magnetic Resonance Images |
URI | https://ieeexplore.ieee.org/document/7445176 https://www.ncbi.nlm.nih.gov/pubmed/27046887 https://www.proquest.com/docview/1856386390 https://www.proquest.com/docview/1826677854 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA48GihBNrKSJwQ2eZh53Fc2q4KIlxoUW9R7Ix7KJugNrnw65lxvFGFAHGLZDtONGPPNx7PNwBvy9YoW1oZsvEJpWnLsClKDKMUCU4kkWmR852rL9n5pfx0pa624P2cC4OI7vIZLvjRxfLb3ox8VHacM5tWnm3DNjluU67WHDGQxZSUE8W0gJNS-ghmHJXHFx-qM77ElS3IGyKTxbVzkpwcQ3eR7p45cvVV_g41nclZPYFq87HTTZObxTjohfn5G4_j__7NU3jssadYTsryDLaw24VH9xgJd-FB5WPte3CzFGl4KpZuQxTMYkXjReUqTguCumI5Dj3hXWzFV7xe-xymTvRWEKgUn9EO4hufHfNkYnXbr0XVXHecNCk4aMBMHyg-rmlDu3sOl6uzi5Pz0JdmCA1Z_IHcV6USG8e6yVodaalUUTR5qQl_YdFkiTUGVcu12TFFk-RWWWq2tEHYTMatTV_ATtd3-BJEanXcWFmURWKZvUynudINE5GlsdamCSDaSKg2nrecy2d8r53_EpU1y7dm-dZevgG8m4f8mEg7_tV5j2Uzd_RiCeBgowa1X9Z3NYEb2q8I1EUBvJmbaUFylKXpsB-5D2GePC-UDGB_Up_53Rute_XnOV_Dw4RRgzvhOYCd4XbEQ8I8gz5yyv4LwQX5Fw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48GgLBAoYiRMi27wfxwW62sKmF7aot8h2xj2UTVCbXPj1zDjeqEKAuEWyHSeaseezZ-YbgLdlo1NTmsRn4-Mnuil9WZToBzESnIgC3SDnO1en2fIs-Xyenu_A-ykXBhFt8BnO-NH68ptOD3xVdpQzm1ae3YLbZPfTaMzWmnwGSTGm5QQhLeGoTJwPMwzKo_WH6pjDuLIZnYfIaHH1nCino6ENpbthkGyFlb-DTWt0Fg-h2n7uGGtyORt6NdM_f2Ny_N__eQQPHPoU81FdHsMOtntw_wYn4R7cqZy3fR8u5yL2P4m53RIF81jReFHZmtOCwK6YD31HiBcb8RUvNi6LqRWdEQQrxQpNL77x7TFPJhZX3UZU8qLltEnBbgPm-kBxsqEt7foAzhbH649L3xVn8DXZ_J4OsCQBE4ZKZo0KFMmjKGReKkJgWMgsMlpj2nB1doxRR7lJDTUb2iJMloSNiZ_Abtu1-AxEbFQoTVKURWSYv0zFeaokU5HFoVJaehBsJVRrx1zOBTS-1_YEE5Q1y7dm-dZOvh68m4b8GGk7_tV5n2UzdXRi8eBwqwa1W9jXNcEb2rEI1gUevJmaaUmyn0W22A3ch1BPnhdp4sHTUX2md2-17vmf53wNd5fralWvTk6_vIB7EWMIe99zCLv91YAvCQH16pVV_F_pwfxh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+3-D+Active+Contour+Method+for+Automated+Segmentation+of+the+Left+Ventricle+From+Magnetic+Resonance+Images&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Hajiaghayi%2C+Mahdi&rft.au=Groves%2C+Elliott+M&rft.au=Jafarkhani%2C+Hamid&rft.au=Kheradvar%2C+Arash&rft.date=2017-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=64&rft.issue=1&rft.spage=134&rft_id=info:doi/10.1109%2FTBME.2016.2542243&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |