A 3-D Active Contour Method for Automated Segmentation of the Left Ventricle From Magnetic Resonance Images

Objective: This study's objective is to develop and validate a fast automated 3-D segmentation method for cardiac magnetic resonance imaging (MRI). The segmentation algorithm automatically reconstructs cardiac MRI DICOM data into a 3-D model (i.e., direct volumetric segmentation), without relyi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 64; no. 1; pp. 134 - 144
Main Authors Hajiaghayi, Mahdi, Groves, Elliott M., Jafarkhani, Hamid, Kheradvar, Arash
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective: This study's objective is to develop and validate a fast automated 3-D segmentation method for cardiac magnetic resonance imaging (MRI). The segmentation algorithm automatically reconstructs cardiac MRI DICOM data into a 3-D model (i.e., direct volumetric segmentation), without relying on prior statistical knowledge. Methods: A novel 3-D active contour method was employed to detect the left ventricular cavity in 33 subjects with heterogeneous heart diseases from the York University database. Papillary muscles were identified and added to the chamber using a convex hull of the left ventricle and interpolation. The myocardium was then segmented using a similar 3-D segmentation method according to anatomic information. A multistage approach was taken to determine the method's efficacy. Results: Our method demonstrated a significant improvement in segmentation performance when compared to manual segmentation and other automated methods. Conclusion and Significance: A true 3-D reconstruction technique without the need for training datasets or any user-driven segmentation has been developed. In this method, a novel combination of internal and external energy terms for active contour was utilized that exploits histogram matching for improving the segmentation performance. This method takes advantage of full volumetric imaging, does not rely on prior statistical knowledge, and employs a convex-hull interpolation to include the papillary muscles.
AbstractList Objective: This study's objective is to develop and validate a fast automated 3-D segmentation method for cardiac magnetic resonance imaging (MRI). The segmentation algorithm automatically reconstructs cardiac MRI DICOM data into a 3-D model (i.e., direct volumetric segmentation), without relying on prior statistical knowledge. Methods: A novel 3-D active contour method was employed to detect the left ventricular cavity in 33 subjects with heterogeneous heart diseases from the York University database. Papillary muscles were identified and added to the chamber using a convex hull of the left ventricle and interpolation. The myocardium was then segmented using a similar 3-D segmentation method according to anatomic information. A multistage approach was taken to determine the method's efficacy. Results: Our method demonstrated a significant improvement in segmentation performance when compared to manual segmentation and other automated methods. Conclusion and Significance: A true 3-D reconstruction technique without the need for training datasets or any user-driven segmentation has been developed. In this method, a novel combination of internal and external energy terms for active contour was utilized that exploits histogram matching for improving the segmentation performance. This method takes advantage of full volumetric imaging, does not rely on prior statistical knowledge, and employs a convex-hull interpolation to include the papillary muscles.
This study's objective is to develop and validate a fast automated 3-D segmentation method for cardiac magnetic resonance imaging (MRI). The segmentation algorithm automatically reconstructs cardiac MRI DICOM data into a 3-D model (i.e., direct volumetric segmentation), without relying on prior statistical knowledge. A novel 3-D active contour method was employed to detect the left ventricular cavity in 33 subjects with heterogeneous heart diseases from the York University database. Papillary muscles were identified and added to the chamber using a convex hull of the left ventricle and interpolation. The myocardium was then segmented using a similar 3-D segmentation method according to anatomic information. A multistage approach was taken to determine the method's efficacy. Our method demonstrated a significant improvement in segmentation performance when compared to manual segmentation and other automated methods. A true 3-D reconstruction technique without the need for training datasets or any user-driven segmentation has been developed. In this method, a novel combination of internal and external energy terms for active contour was utilized that exploits histogram matching for improving the segmentation performance. This method takes advantage of full volumetric imaging, does not rely on prior statistical knowledge, and employs a convex-hull interpolation to include the papillary muscles.
This study's objective is to develop and validate a fast automated 3-D segmentation method for cardiac magnetic resonance imaging (MRI). The segmentation algorithm automatically reconstructs cardiac MRI DICOM data into a 3-D model (i.e., direct volumetric segmentation), without relying on prior statistical knowledge.OBJECTIVEThis study's objective is to develop and validate a fast automated 3-D segmentation method for cardiac magnetic resonance imaging (MRI). The segmentation algorithm automatically reconstructs cardiac MRI DICOM data into a 3-D model (i.e., direct volumetric segmentation), without relying on prior statistical knowledge.A novel 3-D active contour method was employed to detect the left ventricular cavity in 33 subjects with heterogeneous heart diseases from the York University database. Papillary muscles were identified and added to the chamber using a convex hull of the left ventricle and interpolation. The myocardium was then segmented using a similar 3-D segmentation method according to anatomic information. A multistage approach was taken to determine the method's efficacy.METHODSA novel 3-D active contour method was employed to detect the left ventricular cavity in 33 subjects with heterogeneous heart diseases from the York University database. Papillary muscles were identified and added to the chamber using a convex hull of the left ventricle and interpolation. The myocardium was then segmented using a similar 3-D segmentation method according to anatomic information. A multistage approach was taken to determine the method's efficacy.Our method demonstrated a significant improvement in segmentation performance when compared to manual segmentation and other automated methods.RESULTSOur method demonstrated a significant improvement in segmentation performance when compared to manual segmentation and other automated methods.A true 3-D reconstruction technique without the need for training datasets or any user-driven segmentation has been developed. In this method, a novel combination of internal and external energy terms for active contour was utilized that exploits histogram matching for improving the segmentation performance. This method takes advantage of full volumetric imaging, does not rely on prior statistical knowledge, and employs a convex-hull interpolation to include the papillary muscles.CONCLUSION AND SIGNIFICANCEA true 3-D reconstruction technique without the need for training datasets or any user-driven segmentation has been developed. In this method, a novel combination of internal and external energy terms for active contour was utilized that exploits histogram matching for improving the segmentation performance. This method takes advantage of full volumetric imaging, does not rely on prior statistical knowledge, and employs a convex-hull interpolation to include the papillary muscles.
Author Hajiaghayi, Mahdi
Jafarkhani, Hamid
Groves, Elliott M.
Kheradvar, Arash
Author_xml – sequence: 1
  givenname: Mahdi
  surname: Hajiaghayi
  fullname: Hajiaghayi, Mahdi
  organization: Center for Pervasive Communications and ComputingUniversity of California
– sequence: 2
  givenname: Elliott M.
  surname: Groves
  fullname: Groves, Elliott M.
  organization: Edwards Lifesciences Center for Advanced Cardiovascular TechnologyDepartment of Biomedical EngineeringUniversity of California
– sequence: 3
  givenname: Hamid
  surname: Jafarkhani
  fullname: Jafarkhani, Hamid
  organization: Center for Pervasive Communications and ComputingUniversity of California
– sequence: 4
  givenname: Arash
  surname: Kheradvar
  fullname: Kheradvar, Arash
  email: arashkh@uci.edu
  organization: Edwards Lifesciences Center for Advanced Cardiovascular Technology, Department of Biomedical Engineering, University of California, Irvine, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27046887$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFu1DAQhi1URLeFB0BIyBIXLllsx3ac47K0pdKukKBwtRxnvE1J7NZ2kHj7erVbDj1wGs3M949m5j9DJz54QOgtJUtKSfvp5vP2YskIlUsmOGO8foEWVAhVMVHTE7QghKqqZS0_RWcp3ZWUKy5foVPWEC6Vahbo9wrX1Re8snn4A3gdfA5zxFvIt6HHLkS8mnOYTIYe_4DdBD6bPASPg8P5FvAGXMa_SjUOdgR8GcOEt2bnIQ8Wf4cUvPEW8PVkdpBeo5fOjAneHOM5-nl5cbP-Wm2-XV2vV5vKcipyJZgQzFHaGdl3pOPlIGWathOCgjKSOWtB9DUjDGqwrHHClbbjTDjJae_qc_TxMPc-hocZUtbTkCyMo_EQ5qSpYlI2jRK8oB-eoXflfl-2K5SQtZJ1Swr1_kjN3QS9vo_DZOJf_fTGAjQHwMaQUgSn7XB4VI5mGDUlem-Y3hum94bpo2FFSZ8pn4b_T_PuoBkA4B_fcC5oI-tHEBKeyQ
CODEN IEBEAX
CitedBy_id crossref_primary_10_1016_j_mri_2021_02_003
crossref_primary_10_1016_j_neucom_2019_04_052
crossref_primary_10_1080_02564602_2021_1955760
crossref_primary_10_1016_j_media_2020_101723
crossref_primary_10_1098_rsif_2020_0267
crossref_primary_10_2217_fca_2020_0128
crossref_primary_10_1186_s12968_020_00678_0
crossref_primary_10_1016_j_compmedimag_2017_03_004
crossref_primary_10_1016_j_media_2021_102170
crossref_primary_10_3233_XST_210879
crossref_primary_10_1148_ryai_2021200148
crossref_primary_10_1016_j_neucom_2024_127379
crossref_primary_10_1109_TBME_2020_2985724
crossref_primary_10_3233_JIFS_169974
crossref_primary_10_1016_j_media_2022_102455
crossref_primary_10_1016_j_ejmp_2021_05_026
crossref_primary_10_1016_j_ejmp_2019_01_003
crossref_primary_10_1155_2019_5636423
crossref_primary_10_1109_TBME_2018_2884319
crossref_primary_10_1007_s11042_018_6682_1
crossref_primary_10_1016_j_jbi_2023_104366
crossref_primary_10_3390_jimaging6070065
crossref_primary_10_1007_s11042_021_11155_w
crossref_primary_10_1109_TCYB_2020_2994235
crossref_primary_10_1016_j_neucom_2024_129326
crossref_primary_10_1016_j_compmedimag_2018_11_001
crossref_primary_10_1016_j_media_2019_101591
crossref_primary_10_1587_transinf_2017EDL8085
crossref_primary_10_1016_j_mri_2018_04_011
crossref_primary_10_1016_j_mri_2021_10_005
Cites_doi 10.1117/3.831079.ch3
10.1007/BF00133570
10.1016/j.media.2016.01.005
10.1109/TMI.2008.2004421
10.1016/j.media.2009.05.004
10.1109/CBMS.2007.96
10.1016/j.cviu.2013.10.013
10.1109/TVCG.2004.2
10.1016/j.cviu.2012.11.017
10.1007/s11548-010-0532-6
10.1007/s11263-006-6658-x
10.1007/978-3-642-16295-4_28
10.1007/b98879
10.1109/TBME.2006.873684
10.1016/j.media.2004.06.015
10.1006/jcph.1994.1155
10.1016/j.media.2010.12.004
10.1097/HJH.0b013e328302ca14
10.1016/j.euromechflu.2012.01.019
10.1016/j.compbiomed.2005.01.005
10.1007/978-3-642-04271-3_109
10.1023/A:1020874308076
10.1002/jmri.21292
10.1109/TMI.2002.804425
10.1111/j.2517-6161.1977.tb01600.x
10.1016/j.media.2007.12.003
10.1109/TMI.2005.843740
10.1109/34.368173
10.1016/j.media.2005.12.001
10.1109/42.370402
10.1007/s11263-006-7936-3
10.1109/83.902291
10.1007/978-3-642-01932-6_37
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2016.2542243
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Statistics
EISSN 1558-2531
EndPage 144
ExternalDocumentID 27046887
10_1109_TBME_2016_2542243
7445176
Genre orig-research
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CORCL MultiInvestigator Research Grant and American Heart Association Grant-in-Aid Award
  grantid: 14GRNT18800013
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c415t-52552f11ba6db0b45588a79b551e8a62fcce5d3202e3ec27f5fa79f425f641df3
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Fri Jul 11 00:21:18 EDT 2025
Mon Jun 30 08:27:28 EDT 2025
Thu Apr 03 07:10:23 EDT 2025
Tue Jul 01 03:28:28 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
Wed Aug 27 02:53:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-52552f11ba6db0b45588a79b551e8a62fcce5d3202e3ec27f5fa79f425f641df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
PMID 27046887
PQID 1856386390
PQPubID 85474
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TBME_2016_2542243
crossref_primary_10_1109_TBME_2016_2542243
pubmed_primary_27046887
proquest_miscellaneous_1826677854
proquest_journals_1856386390
ieee_primary_7445176
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Jan.
2017-1-00
2017-01-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-Jan.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref32
ref10
luk (ref4) 2014; 85
ref2
ref1
ref17
ref16
ref19
ref18
ref23
ref25
ref20
ref22
ref21
ref28
dempster (ref27) 1977; 39
ref29
ref8
ref7
ref9
gonzalez (ref24) 2002
ref3
ref6
ref5
li (ref11) 0
franco (ref26) 1985
References_xml – ident: ref13
  doi: 10.1117/3.831079.ch3
– ident: ref20
  doi: 10.1007/BF00133570
– start-page: 25
  year: 0
  ident: ref11
  article-title: Improved semi-automated segmentation of cardiac CT and MR images
  publication-title: Proc IEEE Int Symp Biomed Imag Nano Macro
– ident: ref35
  doi: 10.1016/j.media.2016.01.005
– ident: ref10
  doi: 10.1109/TMI.2008.2004421
– ident: ref8
  doi: 10.1016/j.media.2009.05.004
– ident: ref29
  doi: 10.1109/CBMS.2007.96
– year: 2002
  ident: ref24
  publication-title: Digital Image Processing
– ident: ref21
  doi: 10.1016/j.cviu.2013.10.013
– ident: ref37
  doi: 10.1109/TVCG.2004.2
– ident: ref3
  doi: 10.1016/j.cviu.2012.11.017
– ident: ref14
  doi: 10.1007/s11548-010-0532-6
– ident: ref34
  doi: 10.1007/s11263-006-6658-x
– ident: ref30
  doi: 10.1007/978-3-642-16295-4_28
– ident: ref23
  doi: 10.1007/b98879
– ident: ref15
  doi: 10.1109/TBME.2006.873684
– ident: ref6
  doi: 10.1016/j.media.2004.06.015
– ident: ref22
  doi: 10.1006/jcph.1994.1155
– ident: ref2
  doi: 10.1016/j.media.2010.12.004
– ident: ref1
  doi: 10.1097/HJH.0b013e328302ca14
– ident: ref32
  doi: 10.1016/j.euromechflu.2012.01.019
– ident: ref16
  doi: 10.1016/j.compbiomed.2005.01.005
– ident: ref28
  doi: 10.1007/978-3-642-04271-3_109
– ident: ref25
  doi: 10.1023/A:1020874308076
– ident: ref31
  doi: 10.1002/jmri.21292
– year: 1985
  ident: ref26
  article-title: Convex hulls: Basic algorithms
  publication-title: Computational Geometry
– ident: ref33
  doi: 10.1109/TMI.2002.804425
– volume: 39
  start-page: 1
  year: 1977
  ident: ref27
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc Ser B Methodol
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref12
  doi: 10.1016/j.media.2007.12.003
– ident: ref17
  doi: 10.1109/TMI.2005.843740
– ident: ref18
  doi: 10.1109/34.368173
– ident: ref5
  doi: 10.1016/j.media.2005.12.001
– ident: ref36
  doi: 10.1109/42.370402
– ident: ref7
  doi: 10.1007/s11263-006-7936-3
– volume: 85
  start-page: 494
  year: 2014
  ident: ref4
  article-title: Comparing left ventricular ejection fraction measurement using cardiovascular magnetic resonance imaging
  publication-title: Radiologic Technol
– ident: ref19
  doi: 10.1109/83.902291
– ident: ref9
  doi: 10.1007/978-3-642-01932-6_37
SSID ssj0014846
Score 2.4153287
Snippet Objective: This study's objective is to develop and validate a fast automated 3-D segmentation method for cardiac magnetic resonance imaging (MRI). The...
This study's objective is to develop and validate a fast automated 3-D segmentation method for cardiac magnetic resonance imaging (MRI). The segmentation...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 134
SubjectTerms Active contour method
Active contours
Algorithms
automated
Automation
cardiac MRI
Cardiovascular diseases
Computational geometry
Contour matching
Convexity
Coronary artery disease
Heart
Heart diseases
Heart Ventricles - anatomy & histology
Heart Ventricles - diagnostic imaging
Humans
Image edge detection
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image reconstruction
Image segmentation
Imaging, Three-Dimensional - methods
Interpolation
Machine Learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Muscles
Myocardium
NMR
Nuclear magnetic resonance
Pattern Recognition, Automated - methods
Reproducibility of Results
segmentation
Sensitivity and Specificity
Statistical methods
Statistics
three dimensional
Three dimensional models
Three-dimensional displays
Ventricle
volumetric
Title A 3-D Active Contour Method for Automated Segmentation of the Left Ventricle From Magnetic Resonance Images
URI https://ieeexplore.ieee.org/document/7445176
https://www.ncbi.nlm.nih.gov/pubmed/27046887
https://www.proquest.com/docview/1856386390
https://www.proquest.com/docview/1826677854
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA48GihBNrKSJwQ2eZh53Fc2q4KIlxoUW9R7Ix7KJugNrnw65lxvFGFAHGLZDtONGPPNx7PNwBvy9YoW1oZsvEJpWnLsClKDKMUCU4kkWmR852rL9n5pfx0pa624P2cC4OI7vIZLvjRxfLb3ox8VHacM5tWnm3DNjluU67WHDGQxZSUE8W0gJNS-ghmHJXHFx-qM77ElS3IGyKTxbVzkpwcQ3eR7p45cvVV_g41nclZPYFq87HTTZObxTjohfn5G4_j__7NU3jssadYTsryDLaw24VH9xgJd-FB5WPte3CzFGl4KpZuQxTMYkXjReUqTguCumI5Dj3hXWzFV7xe-xymTvRWEKgUn9EO4hufHfNkYnXbr0XVXHecNCk4aMBMHyg-rmlDu3sOl6uzi5Pz0JdmCA1Z_IHcV6USG8e6yVodaalUUTR5qQl_YdFkiTUGVcu12TFFk-RWWWq2tEHYTMatTV_ATtd3-BJEanXcWFmURWKZvUynudINE5GlsdamCSDaSKg2nrecy2d8r53_EpU1y7dm-dZevgG8m4f8mEg7_tV5j2Uzd_RiCeBgowa1X9Z3NYEb2q8I1EUBvJmbaUFylKXpsB-5D2GePC-UDGB_Up_53Rute_XnOV_Dw4RRgzvhOYCd4XbEQ8I8gz5yyv4LwQX5Fw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48GgLBAoYiRMi27wfxwW62sKmF7aot8h2xj2UTVCbXPj1zDjeqEKAuEWyHSeaseezZ-YbgLdlo1NTmsRn4-Mnuil9WZToBzESnIgC3SDnO1en2fIs-Xyenu_A-ykXBhFt8BnO-NH68ptOD3xVdpQzm1ae3YLbZPfTaMzWmnwGSTGm5QQhLeGoTJwPMwzKo_WH6pjDuLIZnYfIaHH1nCino6ENpbthkGyFlb-DTWt0Fg-h2n7uGGtyORt6NdM_f2Ny_N__eQQPHPoU81FdHsMOtntw_wYn4R7cqZy3fR8u5yL2P4m53RIF81jReFHZmtOCwK6YD31HiBcb8RUvNi6LqRWdEQQrxQpNL77x7TFPJhZX3UZU8qLltEnBbgPm-kBxsqEt7foAzhbH649L3xVn8DXZ_J4OsCQBE4ZKZo0KFMmjKGReKkJgWMgsMlpj2nB1doxRR7lJDTUb2iJMloSNiZ_Abtu1-AxEbFQoTVKURWSYv0zFeaokU5HFoVJaehBsJVRrx1zOBTS-1_YEE5Q1y7dm-dZOvh68m4b8GGk7_tV5n2UzdXRi8eBwqwa1W9jXNcEb2rEI1gUevJmaaUmyn0W22A3ch1BPnhdp4sHTUX2md2-17vmf53wNd5fralWvTk6_vIB7EWMIe99zCLv91YAvCQH16pVV_F_pwfxh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+3-D+Active+Contour+Method+for+Automated+Segmentation+of+the+Left+Ventricle+From+Magnetic+Resonance+Images&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Hajiaghayi%2C+Mahdi&rft.au=Groves%2C+Elliott+M&rft.au=Jafarkhani%2C+Hamid&rft.au=Kheradvar%2C+Arash&rft.date=2017-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=64&rft.issue=1&rft.spage=134&rft_id=info:doi/10.1109%2FTBME.2016.2542243&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon