OCT4 induces embryonic pluripotency via STAT3 signaling and metabolic mechanisms
OCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro. To determine how OCT4 establishes and protects the pluripotent lineage in the embryo, we used comparative single-cell transcriptomics and quantitative immunofluorescence on control and OCT4 null b...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 118; no. 3; pp. 1 - 11 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
19.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | OCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro. To determine how OCT4 establishes and protects the pluripotent lineage in the embryo, we used comparative single-cell transcriptomics and quantitative immunofluorescence on control and OCT4 null blastocyst inner cell masses at two developmental stages. Surprisingly, activation of most pluripotency-associated transcription factors in the early mouse embryo occurs independently of OCT4, with the exception of the JAK/STAT signaling machinery. Concurrently, OCT4 null inner cell masses ectopically activate a subset of trophectoderm- associated genes. Inspection of metabolic pathways implicates the regulation of rate-limiting glycolytic enzymes by OCT4, consistent with a role in sustaining glycolysis. Furthermore, up-regulation of the lysosomal pathway was specifically detected in OCT4 null embryos. This finding implicates a requirement for OCT4 in the production of normal trophectoderm. Collectively, our findings uncover regulation of cellular metabolism and biophysical properties as mechanisms by which OCT4 instructs pluripotency. |
---|---|
AbstractList | OCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro. To determine how OCT4 establishes and protects the pluripotent lineage in the embryo, we used comparative single-cell transcriptomics and quantitative immunofluorescence on control and OCT4 null blastocyst inner cell masses at two developmental stages. Surprisingly, activation of most pluripotency-associated transcription factors in the early mouse embryo occurs independently of OCT4, with the exception of the JAK/STAT signaling machinery. Concurrently, OCT4 null inner cell masses ectopically activate a subset of trophectoderm-associated genes. Inspection of metabolic pathways implicates the regulation of rate-limiting glycolytic enzymes by OCT4, consistent with a role in sustaining glycolysis. Furthermore, up-regulation of the lysosomal pathway was specifically detected in OCT4 null embryos. This finding implicates a requirement for OCT4 in the production of normal trophectoderm. Collectively, our findings uncover regulation of cellular metabolism and biophysical properties as mechanisms by which OCT4 instructs pluripotency. Significance We used single-cell whole-genome transcriptional profiling and protein quantification to investigate the role of OCT4 in establishing pluripotency in the murine embryo. Surprisingly, most pluripotency-associated factors are induced normally in OCT4 null early blastocysts, apart from members of the STAT3 signaling pathway. Coincidentally, certain trophectoderm markers are induced but not Cdx2 , which was previously implicated to repress Pou5f1 in vitro. This ectopic gene activation suggests a role for OCT4 in maintaining chromatin in a pluripotency-compatible state, likely via UTF1, a known OCT4 target. At implantation, OCT4 null inner cell masses morphologically resemble trophectoderm but exhibit molecular differences linking metabolic and physical stress responses to loss of OCT4. These effects correlate with reduced STAT3 signaling and consequent reduction of oxidative respiration. OCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro. To determine how OCT4 establishes and protects the pluripotent lineage in the embryo, we used comparative single-cell transcriptomics and quantitative immunofluorescence on control and OCT4 null blastocyst inner cell masses at two developmental stages. Surprisingly, activation of most pluripotency-associated transcription factors in the early mouse embryo occurs independently of OCT4, with the exception of the JAK/STAT signaling machinery. Concurrently, OCT4 null inner cell masses ectopically activate a subset of trophectoderm-associated genes. Inspection of metabolic pathways implicates the regulation of rate-limiting glycolytic enzymes by OCT4, consistent with a role in sustaining glycolysis. Furthermore, up-regulation of the lysosomal pathway was specifically detected in OCT4 null embryos. This finding implicates a requirement for OCT4 in the production of normal trophectoderm. Collectively, our findings uncover regulation of cellular metabolism and biophysical properties as mechanisms by which OCT4 instructs pluripotency. We used single-cell whole-genome transcriptional profiling and protein quantification to investigate the role of OCT4 in establishing pluripotency in the murine embryo. Surprisingly, most pluripotency-associated factors are induced normally in OCT4 null early blastocysts, apart from members of the STAT3 signaling pathway. Coincidentally, certain trophectoderm markers are induced but not Cdx2 , which was previously implicated to repress Pou5f1 in vitro. This ectopic gene activation suggests a role for OCT4 in maintaining chromatin in a pluripotency-compatible state, likely via UTF1, a known OCT4 target. At implantation, OCT4 null inner cell masses morphologically resemble trophectoderm but exhibit molecular differences linking metabolic and physical stress responses to loss of OCT4. These effects correlate with reduced STAT3 signaling and consequent reduction of oxidative respiration. OCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro. To determine how OCT4 establishes and protects the pluripotent lineage in the embryo, we used comparative single-cell transcriptomics and quantitative immunofluorescence on control and OCT4 null blastocyst inner cell masses at two developmental stages. Surprisingly, activation of most pluripotency-associated transcription factors in the early mouse embryo occurs independently of OCT4, with the exception of the JAK/STAT signaling machinery. Concurrently, OCT4 null inner cell masses ectopically activate a subset of trophectoderm-associated genes. Inspection of metabolic pathways implicates the regulation of rate-limiting glycolytic enzymes by OCT4, consistent with a role in sustaining glycolysis. Furthermore, up-regulation of the lysosomal pathway was specifically detected in OCT4 null embryos. This finding implicates a requirement for OCT4 in the production of normal trophectoderm. Collectively, our findings uncover regulation of cellular metabolism and biophysical properties as mechanisms by which OCT4 instructs pluripotency. |
Author | Boroviak, Thorsten E. Stirparo, Giuliano G. Hladkou, Siarhei Silva, Jose C. R. Yanagida, Ayaka Kurowski, Agata Nichols, Jennifer Strawbridge, Stanley E. Stuart, Hannah T. Bates, Lawrence E. |
Author_xml | – sequence: 1 givenname: Giuliano G. surname: Stirparo fullname: Stirparo, Giuliano G. – sequence: 2 givenname: Agata surname: Kurowski fullname: Kurowski, Agata – sequence: 3 givenname: Ayaka surname: Yanagida fullname: Yanagida, Ayaka – sequence: 4 givenname: Lawrence E. surname: Bates fullname: Bates, Lawrence E. – sequence: 5 givenname: Stanley E. surname: Strawbridge fullname: Strawbridge, Stanley E. – sequence: 6 givenname: Siarhei surname: Hladkou fullname: Hladkou, Siarhei – sequence: 7 givenname: Hannah T. surname: Stuart fullname: Stuart, Hannah T. – sequence: 8 givenname: Thorsten E. surname: Boroviak fullname: Boroviak, Thorsten E. – sequence: 9 givenname: Jose C. R. surname: Silva fullname: Silva, Jose C. R. – sequence: 10 givenname: Jennifer surname: Nichols fullname: Nichols, Jennifer |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33452132$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkUFP3DAQha2KqizQMydQjr0ExmMnti9IaNVCJSQqdTlbjuNdjBI72AnS_vtmtXRpT3N437wZvXdCjkIMjpBzClcUBLsegslXCCClAkrlJ7KgoGhZcwVHZAGAopQc-TE5yfkFAFQl4Qs5ZoxXSBkuyK_H5YoXPrSTdblwfZO2MXhbDN2U_BBHF-y2ePOm-L26XbEi-00wnQ-bwoS26N1omtjNeO_sswk-9_mMfF6bLruv7_OUPP34vlrelw-Pdz-Xtw-l5bQaywqaFpWzqm5Mw6xB1rSU1WBb5pQEJWuneC2ocIgGwfK6lSDWO7ldo1HslNzsfYep6V1rXRiT6fSQfG_SVkfj9f9K8M96E9-0kFizGmeDb-8GKb5OLo-699m6rjPBxSlr5EJWiotKzuj1HrUp5pzc-nCGgt71oHc96I8e5o3Lf7878H-Dn4GLPfCSx5gOOgqgiFSwP9PLkOU |
CitedBy_id | crossref_primary_10_1016_j_phymed_2024_155698 crossref_primary_10_1098_rsob_220065 crossref_primary_10_1242_bio_060055 crossref_primary_10_1007_s00018_024_05161_y crossref_primary_10_1038_s41594_023_01199_x crossref_primary_10_3389_fcell_2022_1079387 crossref_primary_10_1007_s00018_021_03975_8 crossref_primary_10_3390_ijms24087389 crossref_primary_10_1016_j_isci_2022_104743 crossref_primary_10_1093_abbs_gmab127 crossref_primary_10_2139_ssrn_4077251 crossref_primary_10_1126_science_adi5516 crossref_primary_10_1186_s12859_024_05788_5 crossref_primary_10_1126_sciadv_abo3583 crossref_primary_10_1093_biolre_ioad165 crossref_primary_10_1093_molbev_msac098 crossref_primary_10_3390_cells10082161 crossref_primary_10_3390_ijms23158108 crossref_primary_10_1016_j_gde_2022_101923 crossref_primary_10_1080_14728222_2023_2177151 crossref_primary_10_1186_s13287_023_03583_2 crossref_primary_10_1016_j_bbrc_2022_11_029 crossref_primary_10_1016_j_celrep_2024_114077 crossref_primary_10_1042_BST20230479 crossref_primary_10_1016_j_jri_2023_104133 crossref_primary_10_3389_fcell_2021_747722 crossref_primary_10_1016_j_cell_2024_05_051 crossref_primary_10_1016_j_celrep_2022_111501 |
Cites_doi | 10.1101/gad.12.13.2048 10.1016/j.biomaterials.2008.10.027 10.1093/bioinformatics/bts635 10.1016/S0093-691X(97)00404-4 10.1242/dev.084996 10.1242/dev.104.2.219 10.1016/j.cub.2013.05.014 10.1186/1471-2105-9-559 10.1093/bioinformatics/btt090 10.1016/j.devcel.2010.02.012 10.1093/nar/gkv1157 10.15252/embj.201592629 10.1016/S0960-9822(06)00059-5 10.1093/bioinformatics/btv715 10.1038/nmeth.2967 10.1194/jlr.R067520 10.1634/stemcells.2004-0157 10.1016/j.cell.2009.03.046 10.1074/jbc.R300002200 10.1111/j.1432-0436.2006.00052.x 10.1242/dev.162644 10.1093/emboj/17.7.2019 10.1126/science.1245316 10.1074/jbc.M109.016840 10.1016/j.scr.2009.02.001 10.1002/stem.2073 10.1242/dev.01819 10.1242/dev.078071 10.1016/j.devcel.2006.02.020 10.1093/nar/gkf435 10.1016/S0092-8674(03)00392-1 10.1038/ncb1589 10.1242/dev.124.4.907 10.1073/pnas.100135197 10.1242/dev.096875 10.1098/rstb.2013.0542 10.3945/jn.114.197202 10.1016/j.cmet.2015.02.002 10.1242/dev.021519 10.1038/nature24033 10.1038/ng1760 10.1242/dev.167833 10.1016/0925-4773(95)00479-3 10.1128/MCB.19.8.5453 10.1016/j.ydbio.2007.09.049 10.1038/nprot.2014.006 10.1242/dev.131235 10.1093/bioinformatics/btu638 10.1093/oxfordjournals.humrep.a019527 10.1242/dev.038828 10.1016/j.modgep.2004.04.003 10.1242/dev.159103 10.1242/dev.128.12.2333 10.1093/embo-reports/kve064 10.1016/0925-4773(94)90030-2 10.1101/gad.7.7a.1191 10.1101/2020.09.21.306241 10.1530/REP-11-0484 10.1016/j.stemcr.2014.01.010 10.1016/j.devcel.2013.05.004 10.1152/ajpcell.1983.245.1.C40 10.1016/S0092-8674(00)81769-9 10.1083/jcb.200702058 10.1242/dev.024398 10.1242/dev.010223 10.1095/biolreprod62.6.1866 10.1634/stemcells.22-2-169 10.1006/dbio.1994.1312 10.1038/344435a0 10.1126/science.1204592 10.1016/j.cell.2005.08.040 10.1242/dev.121.8.2513 10.1101/gad.264994.115 10.1126/science.7809630 10.1038/74199 10.1101/gad.221176.113 10.1038/emboj.2013.177 10.1002/jcb.24243 10.1074/jbc.M502573200 10.1242/dev.158501 10.1016/j.devcel.2009.02.003 10.1128/MCB.25.6.2475-2485.2005 10.1242/dev.093799 10.1038/nature08113 10.1038/ncb2965 10.1016/j.ydbio.2010.12.007 10.1016/j.stem.2013.04.023 10.1186/gb-2010-11-10-r106 10.1073/pnas.72.12.5099 10.1016/j.devcel.2017.05.003 10.1016/j.devcel.2017.05.004 10.1016/j.devcel.2014.06.019 |
ContentType | Journal Article |
Copyright | Copyright © 2021 the Author(s). Published by PNAS. Copyright © 2021 the Author(s). Published by PNAS. 2021 |
Copyright_xml | – notice: Copyright © 2021 the Author(s). Published by PNAS. – notice: Copyright © 2021 the Author(s). Published by PNAS. 2021 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1073/pnas.2008890118 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 11 |
ExternalDocumentID | 10_1073_pnas_2008890118 33452132 27012217 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_PC_17230 – fundername: Wellcome Trust – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/R018588/1 – fundername: Medical Research Council grantid: MR/R017735/1 – fundername: BBSRC grantid: BB/R018588/1 – fundername: MRC grantid: MR/R017735/1 – fundername: BBSRC grantid: RG74277 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADACV AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c415t-50bd29ec96bab3ca23bd1360cd3e980986e946717e22a20c46d807fcd3edf2a93 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:21:33 EDT 2024 Sat Aug 17 05:39:50 EDT 2024 Fri Aug 23 01:31:52 EDT 2024 Sat Nov 02 12:23:06 EDT 2024 Sun Oct 20 12:43:37 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | OCT4 STAT3 pathway metabolism developmental biology single-cell profiling |
Language | English |
License | Copyright © 2021 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-50bd29ec96bab3ca23bd1360cd3e980986e946717e22a20c46d807fcd3edf2a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by Rudolf Jaenisch, Whitehead Institute for Biomedical Research, Cambridge, MA, and approved December 8, 2020 (received for review June 3, 2020) 1G.G.S. and A.K. contributed equally to this work. Author contributions: G.G.S., A.K., and J.N. designed research; A.K., A.Y., L.E.B., S.E.S., S.H., H.T.S., T.E.B., J.C.R.S., and J.N. performed research; G.G.S., A.Y., L.E.B., S.E.S., and J.N. contributed new reagents/analytic tools; G.G.S., A.K., L.E.B., S.E.S., and J.N. analyzed data; and G.G.S., A.K., and J.N. wrote the paper. |
ORCID | 0000-0002-6350-2185 0000-0003-0502-571X 0000-0002-4354-3270 0000-0002-8650-1388 0000-0002-2675-309X 0000-0002-5911-8682 0000-0001-5487-1117 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826362/ |
PMID | 33452132 |
PQID | 2478594758 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7826362 proquest_miscellaneous_2478594758 crossref_primary_10_1073_pnas_2008890118 pubmed_primary_33452132 jstor_primary_27012217 |
PublicationCentury | 2000 |
PublicationDate | 2021-01-19 |
PublicationDateYYYYMMDD | 2021-01-19 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2021 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_84_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_86_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_88_2 e_1_3_4_29_2 e_1_3_4_72_2 e_1_3_4_74_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_91_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_83_2 e_1_3_4_62_2 e_1_3_4_85_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_87_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_89_2 e_1_3_4_28_2 e_1_3_4_71_2 e_1_3_4_73_2 e_1_3_4_52_2 e_1_3_4_90_2 e_1_3_4_50_2 e_1_3_4_92_2 e_1_3_4_79_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_75_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_77_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_43_2 doi: 10.1101/gad.12.13.2048 – ident: e_1_3_4_79_2 doi: 10.1016/j.biomaterials.2008.10.027 – ident: e_1_3_4_85_2 doi: 10.1093/bioinformatics/bts635 – ident: e_1_3_4_2_2 doi: 10.1016/S0093-691X(97)00404-4 – ident: e_1_3_4_57_2 doi: 10.1242/dev.084996 – ident: e_1_3_4_33_2 doi: 10.1242/dev.104.2.219 – ident: e_1_3_4_69_2 doi: 10.1016/j.cub.2013.05.014 – ident: e_1_3_4_91_2 doi: 10.1186/1471-2105-9-559 – ident: e_1_3_4_64_2 doi: 10.1093/bioinformatics/btt090 – ident: e_1_3_4_66_2 doi: 10.1016/j.devcel.2010.02.012 – ident: e_1_3_4_86_2 doi: 10.1093/nar/gkv1157 – ident: e_1_3_4_80_2 doi: 10.15252/embj.201592629 – ident: e_1_3_4_82_2 doi: 10.1016/S0960-9822(06)00059-5 – ident: e_1_3_4_89_2 doi: 10.1093/bioinformatics/btv715 – ident: e_1_3_4_90_2 doi: 10.1038/nmeth.2967 – ident: e_1_3_4_73_2 doi: 10.1194/jlr.R067520 – ident: e_1_3_4_31_2 doi: 10.1634/stemcells.2004-0157 – ident: e_1_3_4_75_2 doi: 10.1016/j.cell.2009.03.046 – ident: e_1_3_4_3_2 doi: 10.1074/jbc.R300002200 – ident: e_1_3_4_6_2 doi: 10.1111/j.1432-0436.2006.00052.x – ident: e_1_3_4_9_2 doi: 10.1242/dev.162644 – ident: e_1_3_4_41_2 doi: 10.1093/emboj/17.7.2019 – ident: e_1_3_4_63_2 doi: 10.1126/science.1245316 – ident: e_1_3_4_35_2 doi: 10.1074/jbc.M109.016840 – ident: e_1_3_4_42_2 doi: 10.1016/j.scr.2009.02.001 – ident: e_1_3_4_71_2 doi: 10.1002/stem.2073 – ident: e_1_3_4_58_2 doi: 10.1242/dev.01819 – ident: e_1_3_4_17_2 doi: 10.1242/dev.078071 – ident: e_1_3_4_51_2 doi: 10.1016/j.devcel.2006.02.020 – ident: e_1_3_4_22_2 doi: 10.1093/nar/gkf435 – ident: e_1_3_4_23_2 doi: 10.1016/S0092-8674(03)00392-1 – ident: e_1_3_4_16_2 doi: 10.1038/ncb1589 – ident: e_1_3_4_61_2 doi: 10.1242/dev.124.4.907 – ident: e_1_3_4_48_2 doi: 10.1073/pnas.100135197 – ident: e_1_3_4_25_2 doi: 10.1242/dev.096875 – ident: e_1_3_4_56_2 doi: 10.1098/rstb.2013.0542 – ident: e_1_3_4_67_2 doi: 10.3945/jn.114.197202 – ident: e_1_3_4_70_2 doi: 10.1016/j.cmet.2015.02.002 – ident: e_1_3_4_50_2 doi: 10.1242/dev.021519 – ident: e_1_3_4_81_2 doi: 10.1038/nature24033 – ident: e_1_3_4_19_2 doi: 10.1038/ng1760 – ident: e_1_3_4_40_2 doi: 10.1242/dev.167833 – ident: e_1_3_4_59_2 doi: 10.1016/0925-4773(95)00479-3 – ident: e_1_3_4_39_2 doi: 10.1128/MCB.19.8.5453 – ident: e_1_3_4_68_2 doi: 10.1016/j.ydbio.2007.09.049 – ident: e_1_3_4_84_2 doi: 10.1038/nprot.2014.006 – ident: e_1_3_4_92_2 doi: 10.1242/dev.131235 – ident: e_1_3_4_87_2 doi: 10.1093/bioinformatics/btu638 – ident: e_1_3_4_5_2 doi: 10.1093/oxfordjournals.humrep.a019527 – ident: e_1_3_4_26_2 doi: 10.1242/dev.038828 – ident: e_1_3_4_60_2 doi: 10.1016/j.modgep.2004.04.003 – ident: e_1_3_4_14_2 doi: 10.1242/dev.159103 – ident: e_1_3_4_45_2 doi: 10.1242/dev.128.12.2333 – ident: e_1_3_4_83_2 doi: 10.1093/embo-reports/kve064 – ident: e_1_3_4_78_2 doi: 10.1016/0925-4773(94)90030-2 – ident: e_1_3_4_34_2 doi: 10.1101/gad.7.7a.1191 – ident: e_1_3_4_72_2 doi: 10.1101/2020.09.21.306241 – ident: e_1_3_4_7_2 doi: 10.1530/REP-11-0484 – ident: e_1_3_4_37_2 doi: 10.1016/j.stemcr.2014.01.010 – ident: e_1_3_4_24_2 doi: 10.1016/j.devcel.2013.05.004 – ident: e_1_3_4_4_2 doi: 10.1152/ajpcell.1983.245.1.C40 – ident: e_1_3_4_13_2 doi: 10.1016/S0092-8674(00)81769-9 – ident: e_1_3_4_38_2 doi: 10.1083/jcb.200702058 – ident: e_1_3_4_21_2 doi: 10.1242/dev.024398 – ident: e_1_3_4_11_2 doi: 10.1242/dev.010223 – ident: e_1_3_4_1_2 doi: 10.1095/biolreprod62.6.1866 – ident: e_1_3_4_30_2 doi: 10.1634/stemcells.22-2-169 – ident: e_1_3_4_12_2 doi: 10.1006/dbio.1994.1312 – ident: e_1_3_4_29_2 doi: 10.1038/344435a0 – ident: e_1_3_4_74_2 doi: 10.1126/science.1204592 – ident: e_1_3_4_77_2 doi: 10.1016/j.cell.2005.08.040 – ident: e_1_3_4_32_2 doi: 10.1242/dev.121.8.2513 – ident: e_1_3_4_55_2 doi: 10.1101/gad.264994.115 – ident: e_1_3_4_52_2 doi: 10.1126/science.7809630 – ident: e_1_3_4_15_2 doi: 10.1038/74199 – ident: e_1_3_4_44_2 doi: 10.1101/gad.221176.113 – ident: e_1_3_4_47_2 doi: 10.1038/emboj.2013.177 – ident: e_1_3_4_65_2 doi: 10.1002/jcb.24243 – ident: e_1_3_4_20_2 doi: 10.1074/jbc.M502573200 – ident: e_1_3_4_28_2 doi: 10.1242/dev.158501 – ident: e_1_3_4_10_2 doi: 10.1016/j.devcel.2009.02.003 – ident: e_1_3_4_18_2 doi: 10.1128/MCB.25.6.2475-2485.2005 – ident: e_1_3_4_8_2 doi: 10.1242/dev.093799 – ident: e_1_3_4_46_2 doi: 10.1038/nature08113 – ident: e_1_3_4_76_2 doi: 10.1038/ncb2965 – ident: e_1_3_4_49_2 doi: 10.1016/j.ydbio.2010.12.007 – ident: e_1_3_4_36_2 doi: 10.1016/j.stem.2013.04.023 – ident: e_1_3_4_88_2 doi: 10.1186/gb-2010-11-10-r106 – ident: e_1_3_4_27_2 doi: 10.1073/pnas.72.12.5099 – ident: e_1_3_4_53_2 doi: 10.1016/j.devcel.2017.05.003 – ident: e_1_3_4_54_2 doi: 10.1016/j.devcel.2017.05.004 – ident: e_1_3_4_62_2 doi: 10.1016/j.devcel.2014.06.019 |
SSID | ssj0009580 |
Score | 2.5208592 |
Snippet | OCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro. To determine how OCT4 establishes and protects the... Significance We used single-cell whole-genome transcriptional profiling and protein quantification to investigate the role of OCT4 in establishing pluripotency... We used single-cell whole-genome transcriptional profiling and protein quantification to investigate the role of OCT4 in establishing pluripotency in the... |
SourceID | pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Animals Biological Sciences Blastocyst Inner Cell Mass - metabolism Cell Lineage - genetics Embryo, Mammalian Embryonic Development - genetics Embryonic Development - immunology Gene Expression Regulation, Developmental - genetics Glycolysis - genetics Mice Octamer Transcription Factor-3 - genetics Pluripotent Stem Cells - metabolism Signal Transduction - genetics Single-Cell Analysis STAT3 Transcription Factor - genetics |
Title | OCT4 induces embryonic pluripotency via STAT3 signaling and metabolic mechanisms |
URI | https://www.jstor.org/stable/27012217 https://www.ncbi.nlm.nih.gov/pubmed/33452132 https://search.proquest.com/docview/2478594758 https://pubmed.ncbi.nlm.nih.gov/PMC7826362 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4BB8SlKlCoW4oWqQc4mNi7a-_uEUVFPARFapC4WfuyGil2IpJU4t8z60faoJ64emYka2Y8M6v95jPAd-0C54ktY0p9HnMjXayFL2NvpOVo4gUL28h39_nVI795yp42IOt3YRrQvjXj83pSndfj3w22clbZQY8TGzzcDbGr5Vh4B5uwiQnaH9FXTLuy3TuhWH455T2fj2CDWa0bhm4pm4XLHdhmjGP_YnStK7XAxP-NnG-Rk_-0osuP8KGbIclF-667sOHrPdjtvtI5Oe2opM_24eHncMQJHruXQeAr8_wSqHDJbLLEYjEN8_IL-TPW5NfoYsRIAHPosJ9OdO1I5ReYIRNUr3zYDx7Pq_kneLz8MRpexd0_FGKLrXkRZ4lxVHmrcqMNs5oy41KWJ9Yxr2SiZO4V1spUeEo1TSzPnUxEGcSupFqxA9iqp7X_DASfZJmgXsvMcFOWRkmmTZlnTliVOhXBae_DYtZSZRTNFbdgRfB88dfzERw0Pl7pURGu-FIRwUnv9ALzPFxe6NpPl2jMhcwUx-NNBIdtEFbWfRQjEGvhWSkEDu11CaZWw6XdpdKXd1t-hR0aYC5JGqfqCLYWz0v_DeeUhTnGCf369rjJzldaNumf |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkEvhQKF8DQSh3LIbmI7sX2sVlQLdEslUtRb5FfEik121U0qlV-PncfCVlzgmvEcrM-eh_zNF4B30njNE12EGNs0pIqbUDJbhFZxTZ2LZcRPI8_O0ukF_XSZXO5AMszCtKR9reajalGOqvn3llu5KvV44ImNz2cTl9VSF3jHd-Cuu68RHZr0jdYu7yZPsAvAFNNB0YeR8aqSrUY35-3I5R7cI4S6DEbwVl7qqIl_Kzpvcyf_SEYnD-DbsI2Og_Jj1NRqpH_eUnj8530-hP2-PEXHnfkAdmz1CA76ALBGR71K9fvHcP5lklHkOvrGG2yprm68yi5aLRoXh5a-FL9B13OJvmbHGUGeJyL96DuSlUGlrd3hW7jlpfWjx_N1uX4CFycfssk07H_PEGqX9eswiZTBwmqRKqmIlpgoE5M00oZYwSPBUytcGI6ZxVjiSNPU8IgV3mwKLAU5hN1qWdlngNyXJGHYSp4oqopCCU6kKtLEMC1iIwI4GsDJV50KR96-njOSe0jz35AGcNiCt1mHmX89jFkAbwc0c3eF_LuIrOyycc6U8URQ1zkF8LRDd-M9HI8A2BbumwVennvb4tBsZbp79J7_t-cbuD_NZqf56cezzy9gD3s2TRSHsXgJu_VVY1-5cqhWr9vD_wt86Qqt |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkapeCgUKKS8jcSiHbBLbie1jtbAqj5aV2EoVl8iviBWbbNTdIJVfj53H0q049WrPHKzPnhnL33wGeCeN1zzRRYixzUKquAkls0VoFdfUuVhGfDfy2Xl2ekE_X6aXN776akn7Ws1H1aIcVfOfLbeyLnU08MSi6dnYZbXMBd6oNkV0Hx64Mxtnw0V9o7fLu-4T7IIwxXRQ9WEkqivZ6nRz3rZd7sEuIdRlMYK3clNHT_xf4XmbP3kjIU0ewo9hKR0P5deoWauR_nNL5fFOa30E-32Zik46kwO4Z6vHcNAHghU67tWq3z-B6bfxjCJ3s2_8hC3V1bVX20X1onHxaOlL8mv0ey7R99nJjCDPF5G-BR7JyqDSrt0mXDjz0voW5PmqXD2Fi8nH2fg07L9pCLXL_uswjZXBwmqRKamIlpgok5As1oZYwWPBMytcOE6YxVjiWNPM8JgVftoUWApyCDvVsrLPAbmRNGXYSp4qqopCCU6kKrLUMC0SIwI4HgDK606NI29f0RnJPaz5P1gDOGwB3Nhh5l8RExbA2wHR3B0l_z4iK7tsnDNlPBXU3aACeNYhvPEetkgAbAv7jYGX6d6ecYi2ct09gkd39nwDu9MPk_zrp_MvL2APe1JNnISJeAk766vGvnJV0Vq9bvf_X9wPDS0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OCT4+induces+embryonic+pluripotency+via+STAT3+signaling+and+metabolic+mechanisms&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Stirparo%2C+Giuliano+G&rft.au=Kurowski%2C+Agata&rft.au=Yanagida%2C+Ayaka&rft.au=Bates%2C+Lawrence+E&rft.date=2021-01-19&rft.eissn=1091-6490&rft.volume=118&rft.issue=3&rft_id=info:doi/10.1073%2Fpnas.2008890118&rft_id=info%3Apmid%2F33452132&rft.externalDocID=33452132 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |