OCT4 induces embryonic pluripotency via STAT3 signaling and metabolic mechanisms

OCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro. To determine how OCT4 establishes and protects the pluripotent lineage in the embryo, we used comparative single-cell transcriptomics and quantitative immunofluorescence on control and OCT4 null b...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 118; no. 3; pp. 1 - 11
Main Authors Stirparo, Giuliano G., Kurowski, Agata, Yanagida, Ayaka, Bates, Lawrence E., Strawbridge, Stanley E., Hladkou, Siarhei, Stuart, Hannah T., Boroviak, Thorsten E., Silva, Jose C. R., Nichols, Jennifer
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 19.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract OCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro. To determine how OCT4 establishes and protects the pluripotent lineage in the embryo, we used comparative single-cell transcriptomics and quantitative immunofluorescence on control and OCT4 null blastocyst inner cell masses at two developmental stages. Surprisingly, activation of most pluripotency-associated transcription factors in the early mouse embryo occurs independently of OCT4, with the exception of the JAK/STAT signaling machinery. Concurrently, OCT4 null inner cell masses ectopically activate a subset of trophectoderm- associated genes. Inspection of metabolic pathways implicates the regulation of rate-limiting glycolytic enzymes by OCT4, consistent with a role in sustaining glycolysis. Furthermore, up-regulation of the lysosomal pathway was specifically detected in OCT4 null embryos. This finding implicates a requirement for OCT4 in the production of normal trophectoderm. Collectively, our findings uncover regulation of cellular metabolism and biophysical properties as mechanisms by which OCT4 instructs pluripotency.
AbstractList OCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro. To determine how OCT4 establishes and protects the pluripotent lineage in the embryo, we used comparative single-cell transcriptomics and quantitative immunofluorescence on control and OCT4 null blastocyst inner cell masses at two developmental stages. Surprisingly, activation of most pluripotency-associated transcription factors in the early mouse embryo occurs independently of OCT4, with the exception of the JAK/STAT signaling machinery. Concurrently, OCT4 null inner cell masses ectopically activate a subset of trophectoderm-associated genes. Inspection of metabolic pathways implicates the regulation of rate-limiting glycolytic enzymes by OCT4, consistent with a role in sustaining glycolysis. Furthermore, up-regulation of the lysosomal pathway was specifically detected in OCT4 null embryos. This finding implicates a requirement for OCT4 in the production of normal trophectoderm. Collectively, our findings uncover regulation of cellular metabolism and biophysical properties as mechanisms by which OCT4 instructs pluripotency.
Significance We used single-cell whole-genome transcriptional profiling and protein quantification to investigate the role of OCT4 in establishing pluripotency in the murine embryo. Surprisingly, most pluripotency-associated factors are induced normally in OCT4 null early blastocysts, apart from members of the STAT3 signaling pathway. Coincidentally, certain trophectoderm markers are induced but not Cdx2 , which was previously implicated to repress Pou5f1 in vitro. This ectopic gene activation suggests a role for OCT4 in maintaining chromatin in a pluripotency-compatible state, likely via UTF1, a known OCT4 target. At implantation, OCT4 null inner cell masses morphologically resemble trophectoderm but exhibit molecular differences linking metabolic and physical stress responses to loss of OCT4. These effects correlate with reduced STAT3 signaling and consequent reduction of oxidative respiration. OCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro. To determine how OCT4 establishes and protects the pluripotent lineage in the embryo, we used comparative single-cell transcriptomics and quantitative immunofluorescence on control and OCT4 null blastocyst inner cell masses at two developmental stages. Surprisingly, activation of most pluripotency-associated transcription factors in the early mouse embryo occurs independently of OCT4, with the exception of the JAK/STAT signaling machinery. Concurrently, OCT4 null inner cell masses ectopically activate a subset of trophectoderm-associated genes. Inspection of metabolic pathways implicates the regulation of rate-limiting glycolytic enzymes by OCT4, consistent with a role in sustaining glycolysis. Furthermore, up-regulation of the lysosomal pathway was specifically detected in OCT4 null embryos. This finding implicates a requirement for OCT4 in the production of normal trophectoderm. Collectively, our findings uncover regulation of cellular metabolism and biophysical properties as mechanisms by which OCT4 instructs pluripotency.
We used single-cell whole-genome transcriptional profiling and protein quantification to investigate the role of OCT4 in establishing pluripotency in the murine embryo. Surprisingly, most pluripotency-associated factors are induced normally in OCT4 null early blastocysts, apart from members of the STAT3 signaling pathway. Coincidentally, certain trophectoderm markers are induced but not Cdx2 , which was previously implicated to repress Pou5f1 in vitro. This ectopic gene activation suggests a role for OCT4 in maintaining chromatin in a pluripotency-compatible state, likely via UTF1, a known OCT4 target. At implantation, OCT4 null inner cell masses morphologically resemble trophectoderm but exhibit molecular differences linking metabolic and physical stress responses to loss of OCT4. These effects correlate with reduced STAT3 signaling and consequent reduction of oxidative respiration. OCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro. To determine how OCT4 establishes and protects the pluripotent lineage in the embryo, we used comparative single-cell transcriptomics and quantitative immunofluorescence on control and OCT4 null blastocyst inner cell masses at two developmental stages. Surprisingly, activation of most pluripotency-associated transcription factors in the early mouse embryo occurs independently of OCT4, with the exception of the JAK/STAT signaling machinery. Concurrently, OCT4 null inner cell masses ectopically activate a subset of trophectoderm-associated genes. Inspection of metabolic pathways implicates the regulation of rate-limiting glycolytic enzymes by OCT4, consistent with a role in sustaining glycolysis. Furthermore, up-regulation of the lysosomal pathway was specifically detected in OCT4 null embryos. This finding implicates a requirement for OCT4 in the production of normal trophectoderm. Collectively, our findings uncover regulation of cellular metabolism and biophysical properties as mechanisms by which OCT4 instructs pluripotency.
Author Boroviak, Thorsten E.
Stirparo, Giuliano G.
Hladkou, Siarhei
Silva, Jose C. R.
Yanagida, Ayaka
Kurowski, Agata
Nichols, Jennifer
Strawbridge, Stanley E.
Stuart, Hannah T.
Bates, Lawrence E.
Author_xml – sequence: 1
  givenname: Giuliano G.
  surname: Stirparo
  fullname: Stirparo, Giuliano G.
– sequence: 2
  givenname: Agata
  surname: Kurowski
  fullname: Kurowski, Agata
– sequence: 3
  givenname: Ayaka
  surname: Yanagida
  fullname: Yanagida, Ayaka
– sequence: 4
  givenname: Lawrence E.
  surname: Bates
  fullname: Bates, Lawrence E.
– sequence: 5
  givenname: Stanley E.
  surname: Strawbridge
  fullname: Strawbridge, Stanley E.
– sequence: 6
  givenname: Siarhei
  surname: Hladkou
  fullname: Hladkou, Siarhei
– sequence: 7
  givenname: Hannah T.
  surname: Stuart
  fullname: Stuart, Hannah T.
– sequence: 8
  givenname: Thorsten E.
  surname: Boroviak
  fullname: Boroviak, Thorsten E.
– sequence: 9
  givenname: Jose C. R.
  surname: Silva
  fullname: Silva, Jose C. R.
– sequence: 10
  givenname: Jennifer
  surname: Nichols
  fullname: Nichols, Jennifer
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33452132$$D View this record in MEDLINE/PubMed
BookMark eNpVkUFP3DAQha2KqizQMydQjr0ExmMnti9IaNVCJSQqdTlbjuNdjBI72AnS_vtmtXRpT3N437wZvXdCjkIMjpBzClcUBLsegslXCCClAkrlJ7KgoGhZcwVHZAGAopQc-TE5yfkFAFQl4Qs5ZoxXSBkuyK_H5YoXPrSTdblwfZO2MXhbDN2U_BBHF-y2ePOm-L26XbEi-00wnQ-bwoS26N1omtjNeO_sswk-9_mMfF6bLruv7_OUPP34vlrelw-Pdz-Xtw-l5bQaywqaFpWzqm5Mw6xB1rSU1WBb5pQEJWuneC2ocIgGwfK6lSDWO7ldo1HslNzsfYep6V1rXRiT6fSQfG_SVkfj9f9K8M96E9-0kFizGmeDb-8GKb5OLo-699m6rjPBxSlr5EJWiotKzuj1HrUp5pzc-nCGgt71oHc96I8e5o3Lf7878H-Dn4GLPfCSx5gOOgqgiFSwP9PLkOU
CitedBy_id crossref_primary_10_1016_j_phymed_2024_155698
crossref_primary_10_1098_rsob_220065
crossref_primary_10_1242_bio_060055
crossref_primary_10_1007_s00018_024_05161_y
crossref_primary_10_1038_s41594_023_01199_x
crossref_primary_10_3389_fcell_2022_1079387
crossref_primary_10_1007_s00018_021_03975_8
crossref_primary_10_3390_ijms24087389
crossref_primary_10_1016_j_isci_2022_104743
crossref_primary_10_1093_abbs_gmab127
crossref_primary_10_2139_ssrn_4077251
crossref_primary_10_1126_science_adi5516
crossref_primary_10_1186_s12859_024_05788_5
crossref_primary_10_1126_sciadv_abo3583
crossref_primary_10_1093_biolre_ioad165
crossref_primary_10_1093_molbev_msac098
crossref_primary_10_3390_cells10082161
crossref_primary_10_3390_ijms23158108
crossref_primary_10_1016_j_gde_2022_101923
crossref_primary_10_1080_14728222_2023_2177151
crossref_primary_10_1186_s13287_023_03583_2
crossref_primary_10_1016_j_bbrc_2022_11_029
crossref_primary_10_1016_j_celrep_2024_114077
crossref_primary_10_1042_BST20230479
crossref_primary_10_1016_j_jri_2023_104133
crossref_primary_10_3389_fcell_2021_747722
crossref_primary_10_1016_j_cell_2024_05_051
crossref_primary_10_1016_j_celrep_2022_111501
Cites_doi 10.1101/gad.12.13.2048
10.1016/j.biomaterials.2008.10.027
10.1093/bioinformatics/bts635
10.1016/S0093-691X(97)00404-4
10.1242/dev.084996
10.1242/dev.104.2.219
10.1016/j.cub.2013.05.014
10.1186/1471-2105-9-559
10.1093/bioinformatics/btt090
10.1016/j.devcel.2010.02.012
10.1093/nar/gkv1157
10.15252/embj.201592629
10.1016/S0960-9822(06)00059-5
10.1093/bioinformatics/btv715
10.1038/nmeth.2967
10.1194/jlr.R067520
10.1634/stemcells.2004-0157
10.1016/j.cell.2009.03.046
10.1074/jbc.R300002200
10.1111/j.1432-0436.2006.00052.x
10.1242/dev.162644
10.1093/emboj/17.7.2019
10.1126/science.1245316
10.1074/jbc.M109.016840
10.1016/j.scr.2009.02.001
10.1002/stem.2073
10.1242/dev.01819
10.1242/dev.078071
10.1016/j.devcel.2006.02.020
10.1093/nar/gkf435
10.1016/S0092-8674(03)00392-1
10.1038/ncb1589
10.1242/dev.124.4.907
10.1073/pnas.100135197
10.1242/dev.096875
10.1098/rstb.2013.0542
10.3945/jn.114.197202
10.1016/j.cmet.2015.02.002
10.1242/dev.021519
10.1038/nature24033
10.1038/ng1760
10.1242/dev.167833
10.1016/0925-4773(95)00479-3
10.1128/MCB.19.8.5453
10.1016/j.ydbio.2007.09.049
10.1038/nprot.2014.006
10.1242/dev.131235
10.1093/bioinformatics/btu638
10.1093/oxfordjournals.humrep.a019527
10.1242/dev.038828
10.1016/j.modgep.2004.04.003
10.1242/dev.159103
10.1242/dev.128.12.2333
10.1093/embo-reports/kve064
10.1016/0925-4773(94)90030-2
10.1101/gad.7.7a.1191
10.1101/2020.09.21.306241
10.1530/REP-11-0484
10.1016/j.stemcr.2014.01.010
10.1016/j.devcel.2013.05.004
10.1152/ajpcell.1983.245.1.C40
10.1016/S0092-8674(00)81769-9
10.1083/jcb.200702058
10.1242/dev.024398
10.1242/dev.010223
10.1095/biolreprod62.6.1866
10.1634/stemcells.22-2-169
10.1006/dbio.1994.1312
10.1038/344435a0
10.1126/science.1204592
10.1016/j.cell.2005.08.040
10.1242/dev.121.8.2513
10.1101/gad.264994.115
10.1126/science.7809630
10.1038/74199
10.1101/gad.221176.113
10.1038/emboj.2013.177
10.1002/jcb.24243
10.1074/jbc.M502573200
10.1242/dev.158501
10.1016/j.devcel.2009.02.003
10.1128/MCB.25.6.2475-2485.2005
10.1242/dev.093799
10.1038/nature08113
10.1038/ncb2965
10.1016/j.ydbio.2010.12.007
10.1016/j.stem.2013.04.023
10.1186/gb-2010-11-10-r106
10.1073/pnas.72.12.5099
10.1016/j.devcel.2017.05.003
10.1016/j.devcel.2017.05.004
10.1016/j.devcel.2014.06.019
ContentType Journal Article
Copyright Copyright © 2021 the Author(s). Published by PNAS.
Copyright © 2021 the Author(s). Published by PNAS. 2021
Copyright_xml – notice: Copyright © 2021 the Author(s). Published by PNAS.
– notice: Copyright © 2021 the Author(s). Published by PNAS. 2021
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1073/pnas.2008890118
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 11
ExternalDocumentID 10_1073_pnas_2008890118
33452132
27012217
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_PC_17230
– fundername: Wellcome Trust
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/R018588/1
– fundername: Medical Research Council
  grantid: MR/R017735/1
– fundername: BBSRC
  grantid: BB/R018588/1
– fundername: MRC
  grantid: MR/R017735/1
– fundername: BBSRC
  grantid: RG74277
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADACV
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c415t-50bd29ec96bab3ca23bd1360cd3e980986e946717e22a20c46d807fcd3edf2a93
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:21:33 EDT 2024
Sat Aug 17 05:39:50 EDT 2024
Fri Aug 23 01:31:52 EDT 2024
Sat Nov 02 12:23:06 EDT 2024
Sun Oct 20 12:43:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords OCT4
STAT3 pathway
metabolism
developmental biology
single-cell profiling
Language English
License Copyright © 2021 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-50bd29ec96bab3ca23bd1360cd3e980986e946717e22a20c46d807fcd3edf2a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Rudolf Jaenisch, Whitehead Institute for Biomedical Research, Cambridge, MA, and approved December 8, 2020 (received for review June 3, 2020)
1G.G.S. and A.K. contributed equally to this work.
Author contributions: G.G.S., A.K., and J.N. designed research; A.K., A.Y., L.E.B., S.E.S., S.H., H.T.S., T.E.B., J.C.R.S., and J.N. performed research; G.G.S., A.Y., L.E.B., S.E.S., and J.N. contributed new reagents/analytic tools; G.G.S., A.K., L.E.B., S.E.S., and J.N. analyzed data; and G.G.S., A.K., and J.N. wrote the paper.
ORCID 0000-0002-6350-2185
0000-0003-0502-571X
0000-0002-4354-3270
0000-0002-8650-1388
0000-0002-2675-309X
0000-0002-5911-8682
0000-0001-5487-1117
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826362/
PMID 33452132
PQID 2478594758
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7826362
proquest_miscellaneous_2478594758
crossref_primary_10_1073_pnas_2008890118
pubmed_primary_33452132
jstor_primary_27012217
PublicationCentury 2000
PublicationDate 2021-01-19
PublicationDateYYYYMMDD 2021-01-19
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2021
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_82_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_84_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_80_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_86_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_88_2
e_1_3_4_29_2
e_1_3_4_72_2
e_1_3_4_74_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_91_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_78_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_83_2
e_1_3_4_62_2
e_1_3_4_85_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_81_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_87_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_89_2
e_1_3_4_28_2
e_1_3_4_71_2
e_1_3_4_73_2
e_1_3_4_52_2
e_1_3_4_90_2
e_1_3_4_50_2
e_1_3_4_92_2
e_1_3_4_79_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_75_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_77_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_43_2
  doi: 10.1101/gad.12.13.2048
– ident: e_1_3_4_79_2
  doi: 10.1016/j.biomaterials.2008.10.027
– ident: e_1_3_4_85_2
  doi: 10.1093/bioinformatics/bts635
– ident: e_1_3_4_2_2
  doi: 10.1016/S0093-691X(97)00404-4
– ident: e_1_3_4_57_2
  doi: 10.1242/dev.084996
– ident: e_1_3_4_33_2
  doi: 10.1242/dev.104.2.219
– ident: e_1_3_4_69_2
  doi: 10.1016/j.cub.2013.05.014
– ident: e_1_3_4_91_2
  doi: 10.1186/1471-2105-9-559
– ident: e_1_3_4_64_2
  doi: 10.1093/bioinformatics/btt090
– ident: e_1_3_4_66_2
  doi: 10.1016/j.devcel.2010.02.012
– ident: e_1_3_4_86_2
  doi: 10.1093/nar/gkv1157
– ident: e_1_3_4_80_2
  doi: 10.15252/embj.201592629
– ident: e_1_3_4_82_2
  doi: 10.1016/S0960-9822(06)00059-5
– ident: e_1_3_4_89_2
  doi: 10.1093/bioinformatics/btv715
– ident: e_1_3_4_90_2
  doi: 10.1038/nmeth.2967
– ident: e_1_3_4_73_2
  doi: 10.1194/jlr.R067520
– ident: e_1_3_4_31_2
  doi: 10.1634/stemcells.2004-0157
– ident: e_1_3_4_75_2
  doi: 10.1016/j.cell.2009.03.046
– ident: e_1_3_4_3_2
  doi: 10.1074/jbc.R300002200
– ident: e_1_3_4_6_2
  doi: 10.1111/j.1432-0436.2006.00052.x
– ident: e_1_3_4_9_2
  doi: 10.1242/dev.162644
– ident: e_1_3_4_41_2
  doi: 10.1093/emboj/17.7.2019
– ident: e_1_3_4_63_2
  doi: 10.1126/science.1245316
– ident: e_1_3_4_35_2
  doi: 10.1074/jbc.M109.016840
– ident: e_1_3_4_42_2
  doi: 10.1016/j.scr.2009.02.001
– ident: e_1_3_4_71_2
  doi: 10.1002/stem.2073
– ident: e_1_3_4_58_2
  doi: 10.1242/dev.01819
– ident: e_1_3_4_17_2
  doi: 10.1242/dev.078071
– ident: e_1_3_4_51_2
  doi: 10.1016/j.devcel.2006.02.020
– ident: e_1_3_4_22_2
  doi: 10.1093/nar/gkf435
– ident: e_1_3_4_23_2
  doi: 10.1016/S0092-8674(03)00392-1
– ident: e_1_3_4_16_2
  doi: 10.1038/ncb1589
– ident: e_1_3_4_61_2
  doi: 10.1242/dev.124.4.907
– ident: e_1_3_4_48_2
  doi: 10.1073/pnas.100135197
– ident: e_1_3_4_25_2
  doi: 10.1242/dev.096875
– ident: e_1_3_4_56_2
  doi: 10.1098/rstb.2013.0542
– ident: e_1_3_4_67_2
  doi: 10.3945/jn.114.197202
– ident: e_1_3_4_70_2
  doi: 10.1016/j.cmet.2015.02.002
– ident: e_1_3_4_50_2
  doi: 10.1242/dev.021519
– ident: e_1_3_4_81_2
  doi: 10.1038/nature24033
– ident: e_1_3_4_19_2
  doi: 10.1038/ng1760
– ident: e_1_3_4_40_2
  doi: 10.1242/dev.167833
– ident: e_1_3_4_59_2
  doi: 10.1016/0925-4773(95)00479-3
– ident: e_1_3_4_39_2
  doi: 10.1128/MCB.19.8.5453
– ident: e_1_3_4_68_2
  doi: 10.1016/j.ydbio.2007.09.049
– ident: e_1_3_4_84_2
  doi: 10.1038/nprot.2014.006
– ident: e_1_3_4_92_2
  doi: 10.1242/dev.131235
– ident: e_1_3_4_87_2
  doi: 10.1093/bioinformatics/btu638
– ident: e_1_3_4_5_2
  doi: 10.1093/oxfordjournals.humrep.a019527
– ident: e_1_3_4_26_2
  doi: 10.1242/dev.038828
– ident: e_1_3_4_60_2
  doi: 10.1016/j.modgep.2004.04.003
– ident: e_1_3_4_14_2
  doi: 10.1242/dev.159103
– ident: e_1_3_4_45_2
  doi: 10.1242/dev.128.12.2333
– ident: e_1_3_4_83_2
  doi: 10.1093/embo-reports/kve064
– ident: e_1_3_4_78_2
  doi: 10.1016/0925-4773(94)90030-2
– ident: e_1_3_4_34_2
  doi: 10.1101/gad.7.7a.1191
– ident: e_1_3_4_72_2
  doi: 10.1101/2020.09.21.306241
– ident: e_1_3_4_7_2
  doi: 10.1530/REP-11-0484
– ident: e_1_3_4_37_2
  doi: 10.1016/j.stemcr.2014.01.010
– ident: e_1_3_4_24_2
  doi: 10.1016/j.devcel.2013.05.004
– ident: e_1_3_4_4_2
  doi: 10.1152/ajpcell.1983.245.1.C40
– ident: e_1_3_4_13_2
  doi: 10.1016/S0092-8674(00)81769-9
– ident: e_1_3_4_38_2
  doi: 10.1083/jcb.200702058
– ident: e_1_3_4_21_2
  doi: 10.1242/dev.024398
– ident: e_1_3_4_11_2
  doi: 10.1242/dev.010223
– ident: e_1_3_4_1_2
  doi: 10.1095/biolreprod62.6.1866
– ident: e_1_3_4_30_2
  doi: 10.1634/stemcells.22-2-169
– ident: e_1_3_4_12_2
  doi: 10.1006/dbio.1994.1312
– ident: e_1_3_4_29_2
  doi: 10.1038/344435a0
– ident: e_1_3_4_74_2
  doi: 10.1126/science.1204592
– ident: e_1_3_4_77_2
  doi: 10.1016/j.cell.2005.08.040
– ident: e_1_3_4_32_2
  doi: 10.1242/dev.121.8.2513
– ident: e_1_3_4_55_2
  doi: 10.1101/gad.264994.115
– ident: e_1_3_4_52_2
  doi: 10.1126/science.7809630
– ident: e_1_3_4_15_2
  doi: 10.1038/74199
– ident: e_1_3_4_44_2
  doi: 10.1101/gad.221176.113
– ident: e_1_3_4_47_2
  doi: 10.1038/emboj.2013.177
– ident: e_1_3_4_65_2
  doi: 10.1002/jcb.24243
– ident: e_1_3_4_20_2
  doi: 10.1074/jbc.M502573200
– ident: e_1_3_4_28_2
  doi: 10.1242/dev.158501
– ident: e_1_3_4_10_2
  doi: 10.1016/j.devcel.2009.02.003
– ident: e_1_3_4_18_2
  doi: 10.1128/MCB.25.6.2475-2485.2005
– ident: e_1_3_4_8_2
  doi: 10.1242/dev.093799
– ident: e_1_3_4_46_2
  doi: 10.1038/nature08113
– ident: e_1_3_4_76_2
  doi: 10.1038/ncb2965
– ident: e_1_3_4_49_2
  doi: 10.1016/j.ydbio.2010.12.007
– ident: e_1_3_4_36_2
  doi: 10.1016/j.stem.2013.04.023
– ident: e_1_3_4_88_2
  doi: 10.1186/gb-2010-11-10-r106
– ident: e_1_3_4_27_2
  doi: 10.1073/pnas.72.12.5099
– ident: e_1_3_4_53_2
  doi: 10.1016/j.devcel.2017.05.003
– ident: e_1_3_4_54_2
  doi: 10.1016/j.devcel.2017.05.004
– ident: e_1_3_4_62_2
  doi: 10.1016/j.devcel.2014.06.019
SSID ssj0009580
Score 2.5208592
Snippet OCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro. To determine how OCT4 establishes and protects the...
Significance We used single-cell whole-genome transcriptional profiling and protein quantification to investigate the role of OCT4 in establishing pluripotency...
We used single-cell whole-genome transcriptional profiling and protein quantification to investigate the role of OCT4 in establishing pluripotency in the...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Animals
Biological Sciences
Blastocyst Inner Cell Mass - metabolism
Cell Lineage - genetics
Embryo, Mammalian
Embryonic Development - genetics
Embryonic Development - immunology
Gene Expression Regulation, Developmental - genetics
Glycolysis - genetics
Mice
Octamer Transcription Factor-3 - genetics
Pluripotent Stem Cells - metabolism
Signal Transduction - genetics
Single-Cell Analysis
STAT3 Transcription Factor - genetics
Title OCT4 induces embryonic pluripotency via STAT3 signaling and metabolic mechanisms
URI https://www.jstor.org/stable/27012217
https://www.ncbi.nlm.nih.gov/pubmed/33452132
https://search.proquest.com/docview/2478594758
https://pubmed.ncbi.nlm.nih.gov/PMC7826362
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4BB8SlKlCoW4oWqQc4mNi7a-_uEUVFPARFapC4WfuyGil2IpJU4t8z60faoJ64emYka2Y8M6v95jPAd-0C54ktY0p9HnMjXayFL2NvpOVo4gUL28h39_nVI795yp42IOt3YRrQvjXj83pSndfj3w22clbZQY8TGzzcDbGr5Vh4B5uwiQnaH9FXTLuy3TuhWH455T2fj2CDWa0bhm4pm4XLHdhmjGP_YnStK7XAxP-NnG-Rk_-0osuP8KGbIclF-667sOHrPdjtvtI5Oe2opM_24eHncMQJHruXQeAr8_wSqHDJbLLEYjEN8_IL-TPW5NfoYsRIAHPosJ9OdO1I5ReYIRNUr3zYDx7Pq_kneLz8MRpexd0_FGKLrXkRZ4lxVHmrcqMNs5oy41KWJ9Yxr2SiZO4V1spUeEo1TSzPnUxEGcSupFqxA9iqp7X_DASfZJmgXsvMcFOWRkmmTZlnTliVOhXBae_DYtZSZRTNFbdgRfB88dfzERw0Pl7pURGu-FIRwUnv9ALzPFxe6NpPl2jMhcwUx-NNBIdtEFbWfRQjEGvhWSkEDu11CaZWw6XdpdKXd1t-hR0aYC5JGqfqCLYWz0v_DeeUhTnGCf369rjJzldaNumf
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkEvhQKF8DQSh3LIbmI7sX2sVlQLdEslUtRb5FfEik121U0qlV-PncfCVlzgmvEcrM-eh_zNF4B30njNE12EGNs0pIqbUDJbhFZxTZ2LZcRPI8_O0ukF_XSZXO5AMszCtKR9reajalGOqvn3llu5KvV44ImNz2cTl9VSF3jHd-Cuu68RHZr0jdYu7yZPsAvAFNNB0YeR8aqSrUY35-3I5R7cI4S6DEbwVl7qqIl_Kzpvcyf_SEYnD-DbsI2Og_Jj1NRqpH_eUnj8530-hP2-PEXHnfkAdmz1CA76ALBGR71K9fvHcP5lklHkOvrGG2yprm68yi5aLRoXh5a-FL9B13OJvmbHGUGeJyL96DuSlUGlrd3hW7jlpfWjx_N1uX4CFycfssk07H_PEGqX9eswiZTBwmqRKqmIlpgoE5M00oZYwSPBUytcGI6ZxVjiSNPU8IgV3mwKLAU5hN1qWdlngNyXJGHYSp4oqopCCU6kKtLEMC1iIwI4GsDJV50KR96-njOSe0jz35AGcNiCt1mHmX89jFkAbwc0c3eF_LuIrOyycc6U8URQ1zkF8LRDd-M9HI8A2BbumwVennvb4tBsZbp79J7_t-cbuD_NZqf56cezzy9gD3s2TRSHsXgJu_VVY1-5cqhWr9vD_wt86Qqt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkapeCgUKKS8jcSiHbBLbie1jtbAqj5aV2EoVl8iviBWbbNTdIJVfj53H0q049WrPHKzPnhnL33wGeCeN1zzRRYixzUKquAkls0VoFdfUuVhGfDfy2Xl2ekE_X6aXN776akn7Ws1H1aIcVfOfLbeyLnU08MSi6dnYZbXMBd6oNkV0Hx64Mxtnw0V9o7fLu-4T7IIwxXRQ9WEkqivZ6nRz3rZd7sEuIdRlMYK3clNHT_xf4XmbP3kjIU0ewo9hKR0P5deoWauR_nNL5fFOa30E-32Zik46kwO4Z6vHcNAHghU67tWq3z-B6bfxjCJ3s2_8hC3V1bVX20X1onHxaOlL8mv0ey7R99nJjCDPF5G-BR7JyqDSrt0mXDjz0voW5PmqXD2Fi8nH2fg07L9pCLXL_uswjZXBwmqRKamIlpgok5As1oZYwWPBMytcOE6YxVjiWNPM8JgVftoUWApyCDvVsrLPAbmRNGXYSp4qqopCCU6kKrLUMC0SIwI4HgDK606NI29f0RnJPaz5P1gDOGwB3Nhh5l8RExbA2wHR3B0l_z4iK7tsnDNlPBXU3aACeNYhvPEetkgAbAv7jYGX6d6ecYi2ct09gkd39nwDu9MPk_zrp_MvL2APe1JNnISJeAk766vGvnJV0Vq9bvf_X9wPDS0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OCT4+induces+embryonic+pluripotency+via+STAT3+signaling+and+metabolic+mechanisms&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Stirparo%2C+Giuliano+G&rft.au=Kurowski%2C+Agata&rft.au=Yanagida%2C+Ayaka&rft.au=Bates%2C+Lawrence+E&rft.date=2021-01-19&rft.eissn=1091-6490&rft.volume=118&rft.issue=3&rft_id=info:doi/10.1073%2Fpnas.2008890118&rft_id=info%3Apmid%2F33452132&rft.externalDocID=33452132
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon