Feature Selection Based on Neighborhood Self-Information

The concept of dependency in a neighborhood rough set model is an important evaluation function for the feature selection. This function considers only the classification information contained in the lower approximation of the decision while ignoring the upper approximation. In this paper, we constr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 50; no. 9; pp. 4031 - 4042
Main Authors Wang, Changzhong, Huang, Yang, Shao, Mingwen, Hu, Qinghua, Chen, Degang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The concept of dependency in a neighborhood rough set model is an important evaluation function for the feature selection. This function considers only the classification information contained in the lower approximation of the decision while ignoring the upper approximation. In this paper, we construct a class of uncertainty measures: decision self-information for the feature selection. These measures take into account the uncertainty information in the lower and the upper approximations. The relationships between these measures and their properties are discussed in detail. It is proven that the fourth measure, called relative neighborhood self-information, is better for feature selection than the other measures, because not only does it consider both the lower and the upper approximations but also the change of its magnitude is largest with the variation of feature subsets. This helps to facilitate the selection of optimal feature subsets. Finally, a greedy algorithm for feature selection has been designed and a series of numerical experiments was carried out to verify the effectiveness of the proposed algorithm. The experimental results show that the proposed algorithm often chooses fewer features and improves the classification accuracy in most cases.
AbstractList The concept of dependency in a neighborhood rough set model is an important evaluation function for the feature selection. This function considers only the classification information contained in the lower approximation of the decision while ignoring the upper approximation. In this paper, we construct a class of uncertainty measures: decision self-information for the feature selection. These measures take into account the uncertainty information in the lower and the upper approximations. The relationships between these measures and their properties are discussed in detail. It is proven that the fourth measure, called relative neighborhood self-information, is better for feature selection than the other measures, because not only does it consider both the lower and the upper approximations but also the change of its magnitude is largest with the variation of feature subsets. This helps to facilitate the selection of optimal feature subsets. Finally, a greedy algorithm for feature selection has been designed and a series of numerical experiments was carried out to verify the effectiveness of the proposed algorithm. The experimental results show that the proposed algorithm often chooses fewer features and improves the classification accuracy in most cases.
The concept of dependency in a neighborhood rough set model is an important evaluation function for the feature selection. This function considers only the classification information contained in the lower approximation of the decision while ignoring the upper approximation. In this paper, we construct a class of uncertainty measures: decision self-information for the feature selection. These measures take into account the uncertainty information in the lower and the upper approximations. The relationships between these measures and their properties are discussed in detail. It is proven that the fourth measure, called relative neighborhood self-information, is better for feature selection than the other measures, because not only does it consider both the lower and the upper approximations but also the change of its magnitude is largest with the variation of feature subsets. This helps to facilitate the selection of optimal feature subsets. Finally, a greedy algorithm for feature selection has been designed and a series of numerical experiments was carried out to verify the effectiveness of the proposed algorithm. The experimental results show that the proposed algorithm often chooses fewer features and improves the classification accuracy in most cases.The concept of dependency in a neighborhood rough set model is an important evaluation function for the feature selection. This function considers only the classification information contained in the lower approximation of the decision while ignoring the upper approximation. In this paper, we construct a class of uncertainty measures: decision self-information for the feature selection. These measures take into account the uncertainty information in the lower and the upper approximations. The relationships between these measures and their properties are discussed in detail. It is proven that the fourth measure, called relative neighborhood self-information, is better for feature selection than the other measures, because not only does it consider both the lower and the upper approximations but also the change of its magnitude is largest with the variation of feature subsets. This helps to facilitate the selection of optimal feature subsets. Finally, a greedy algorithm for feature selection has been designed and a series of numerical experiments was carried out to verify the effectiveness of the proposed algorithm. The experimental results show that the proposed algorithm often chooses fewer features and improves the classification accuracy in most cases.
Author Chen, Degang
Huang, Yang
Wang, Changzhong
Hu, Qinghua
Shao, Mingwen
Author_xml – sequence: 1
  givenname: Changzhong
  orcidid: 0000-0002-4136-2433
  surname: Wang
  fullname: Wang, Changzhong
  email: changzhongwang@126.com
  organization: Department of Mathematics, Bohai University, Jinzhou, China
– sequence: 2
  givenname: Yang
  surname: Huang
  fullname: Huang, Yang
  organization: Department of Mathematics, Bohai University, Jinzhou, China
– sequence: 3
  givenname: Mingwen
  surname: Shao
  fullname: Shao, Mingwen
  email: smw278@126.com
  organization: College of Computer and Communication Engineering, Chinese University of Petroleum, Qingdao
– sequence: 4
  givenname: Qinghua
  orcidid: 0000-0001-8690-987X
  surname: Hu
  fullname: Hu, Qinghua
  email: huqinghua@hit.edu.cn
  organization: School of Computer Science and Technology, Tianjin University, Tianjin, China
– sequence: 5
  givenname: Degang
  orcidid: 0000-0002-1135-9807
  surname: Chen
  fullname: Chen, Degang
  email: chengdegang@263.net
  organization: Department of Mathematics and Physics, North China Electric Power University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31295137$$D View this record in MEDLINE/PubMed
BookMark eNp9kbtOwzAUhi1UREvpAyAkVImFJcWXxI5HWlGoVMFAGZgsxz2hqdK42MnA2-PQy9ABS5aPz_n-48t_iTqVrQCha4JHhGD5sJh8jkcUEzmikrKY4TPUo4SnEaUi6RxjLrpo4P0ah5GGlEwvUJcRKhPCRA-lU9B142D4DiWYurDVcKw9LIcheIXia5VZt7J22dbzaFbl1m10i12h81yXHgb7tY8-pk-LyUs0f3ueTR7nkYlJUkcxycJhXAiuhUgh0ZoJTUHLDGKswz7LMxmSEuci1ZznTBrDwzQG5yQU-uh-13fr7HcDvlabwhsoS12BbbyiNBECy4TjgN6doGvbuCrcTtGYcU6kZDRQt3uqyTawVFtXbLT7UYc_CYDYAcZZ7x3kyhT135trp4tSEaxaA1RrgGoNUHsDgpKcKA_N_9Pc7DQFABz5VCQpJTH7Be9ejss
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_ins_2021_08_067
crossref_primary_10_3390_make4040054
crossref_primary_10_1109_TCYB_2025_3538646
crossref_primary_10_3233_JIFS_240581
crossref_primary_10_1007_s10489_022_03987_2
crossref_primary_10_4018_IJWSR_353899
crossref_primary_10_1016_j_knosys_2021_106799
crossref_primary_10_3390_math11092084
crossref_primary_10_1016_j_ijar_2022_05_004
crossref_primary_10_1109_ACCESS_2021_3138961
crossref_primary_10_7717_peerj_cs_1711
crossref_primary_10_1016_j_asoc_2023_110679
crossref_primary_10_1109_ACCESS_2022_3228387
crossref_primary_10_3233_JIFS_237320
crossref_primary_10_1109_TFUZZ_2021_3093202
crossref_primary_10_1016_j_ins_2024_120403
crossref_primary_10_1109_ACCESS_2020_3015813
crossref_primary_10_1016_j_inffus_2024_102486
crossref_primary_10_1080_03081079_2024_2436887
crossref_primary_10_1109_TBDATA_2023_3342643
crossref_primary_10_1016_j_knosys_2022_109018
crossref_primary_10_1007_s10489_022_03760_5
crossref_primary_10_1109_TNNLS_2021_3132918
crossref_primary_10_1016_j_ijar_2024_109165
crossref_primary_10_1007_s10489_023_05115_0
crossref_primary_10_1016_j_neucom_2023_126990
crossref_primary_10_3233_JIFS_212037
crossref_primary_10_1016_j_ins_2022_07_133
crossref_primary_10_1016_j_ins_2024_121340
crossref_primary_10_1007_s12559_021_09921_x
crossref_primary_10_1155_2021_9989471
crossref_primary_10_1016_j_ins_2022_08_050
crossref_primary_10_1016_j_patcog_2023_109899
crossref_primary_10_1007_s12559_021_09871_4
crossref_primary_10_1007_s13042_023_01878_7
crossref_primary_10_3233_JIFS_233070
crossref_primary_10_1007_s13042_023_02090_3
crossref_primary_10_1007_s13042_024_02406_x
crossref_primary_10_1109_ACCESS_2023_3271897
crossref_primary_10_3390_app142310965
crossref_primary_10_1109_TFUZZ_2024_3502073
crossref_primary_10_1016_j_eswa_2024_123633
crossref_primary_10_1016_j_eswa_2024_124600
crossref_primary_10_1109_TKDE_2024_3428485
crossref_primary_10_3233_JIFS_223384
crossref_primary_10_3390_s24186003
crossref_primary_10_1007_s00500_021_06722_0
crossref_primary_10_1007_s00607_022_01075_4
crossref_primary_10_1016_j_ijar_2022_09_007
crossref_primary_10_1016_j_ijar_2024_109253
crossref_primary_10_1007_s10489_024_05310_7
crossref_primary_10_1007_s12652_020_02588_6
crossref_primary_10_1007_s43674_021_00021_9
crossref_primary_10_1016_j_fss_2023_108683
crossref_primary_10_1016_j_ijar_2024_109256
crossref_primary_10_1007_s10489_024_05533_8
crossref_primary_10_3934_era_2022231
crossref_primary_10_1007_s40747_021_00356_3
crossref_primary_10_1109_ACCESS_2020_3028469
crossref_primary_10_1109_ACCESS_2020_3048078
crossref_primary_10_1109_TETCI_2022_3171784
crossref_primary_10_1016_j_ins_2022_10_093
crossref_primary_10_3233_JIFS_210462
crossref_primary_10_1016_j_neucom_2023_126268
crossref_primary_10_1016_j_ins_2021_09_018
crossref_primary_10_1016_j_ins_2024_120589
crossref_primary_10_1109_ACCESS_2022_3162074
crossref_primary_10_1007_s13042_020_01142_2
crossref_primary_10_1016_j_ins_2022_10_133
crossref_primary_10_1007_s10489_024_05428_8
crossref_primary_10_1007_s10044_022_01067_2
crossref_primary_10_1016_j_ijar_2022_05_012
crossref_primary_10_1109_TSMC_2023_3321315
crossref_primary_10_1007_s40747_021_00636_y
crossref_primary_10_1007_s00500_021_06654_9
crossref_primary_10_1016_j_ijar_2022_05_011
crossref_primary_10_3390_e27010094
crossref_primary_10_1007_s40815_021_01230_7
crossref_primary_10_1109_TCYB_2020_2973379
crossref_primary_10_1016_j_asoc_2023_110100
crossref_primary_10_1109_TCYB_2022_3173374
crossref_primary_10_1016_j_asoc_2024_112664
crossref_primary_10_1016_j_ins_2021_10_063
crossref_primary_10_1007_s40747_024_01560_7
crossref_primary_10_3233_JIFS_239559
crossref_primary_10_1007_s13042_023_02002_5
crossref_primary_10_1109_ACCESS_2020_3014916
crossref_primary_10_1109_TFUZZ_2023_3272316
crossref_primary_10_1109_TFUZZ_2023_3347757
crossref_primary_10_1109_ACCESS_2020_3010314
crossref_primary_10_3233_JIFS_222832
crossref_primary_10_1016_j_eswa_2024_124227
crossref_primary_10_1109_TCYB_2021_3087776
crossref_primary_10_1016_j_ins_2022_07_063
crossref_primary_10_1016_j_neucom_2021_09_007
crossref_primary_10_1109_TKDE_2025_3536080
crossref_primary_10_3233_JIFS_230737
crossref_primary_10_1016_j_knosys_2022_109585
crossref_primary_10_1016_j_engappai_2023_107659
crossref_primary_10_1109_TFUZZ_2020_2989098
crossref_primary_10_3233_JIFS_236958
crossref_primary_10_1007_s13042_021_01483_6
crossref_primary_10_1016_j_knosys_2021_106908
crossref_primary_10_1186_s40537_022_00640_0
crossref_primary_10_1016_j_ins_2024_121099
crossref_primary_10_3233_JIFS_200482
crossref_primary_10_1016_j_asoc_2023_110877
crossref_primary_10_1016_j_patcog_2024_111141
crossref_primary_10_1016_j_ijar_2022_06_002
crossref_primary_10_1186_s13174_020_00127_2
crossref_primary_10_3390_app15073518
crossref_primary_10_1007_s10489_023_05194_z
crossref_primary_10_1016_j_ins_2021_08_032
crossref_primary_10_1016_j_engappai_2022_105226
crossref_primary_10_1109_ACCESS_2020_3039778
crossref_primary_10_1109_TCYB_2021_3054742
crossref_primary_10_1007_s13042_021_01321_9
crossref_primary_10_1109_TBDATA_2022_3215494
crossref_primary_10_1007_s10462_023_10642_w
crossref_primary_10_1038_s41598_024_55902_z
crossref_primary_10_1109_TCYB_2021_3058780
crossref_primary_10_1109_TCYB_2021_3112674
crossref_primary_10_1016_j_ins_2021_11_034
crossref_primary_10_1007_s10489_022_03657_3
crossref_primary_10_1007_s40815_024_01677_4
crossref_primary_10_1016_j_ins_2022_09_006
crossref_primary_10_1007_s10489_022_03371_0
crossref_primary_10_1007_s11227_024_06631_7
crossref_primary_10_1016_j_asoc_2023_110645
crossref_primary_10_1016_j_ijar_2022_01_015
crossref_primary_10_1002_int_22878
crossref_primary_10_3233_JIFS_202796
crossref_primary_10_1109_TFUZZ_2021_3078012
crossref_primary_10_1016_j_ijar_2021_08_004
crossref_primary_10_1016_j_ins_2021_12_079
crossref_primary_10_1007_s12652_022_04451_2
crossref_primary_10_1080_03081079_2022_2132491
crossref_primary_10_1109_TCYB_2020_3040803
crossref_primary_10_3233_JIFS_222777
crossref_primary_10_1016_j_ins_2023_119945
crossref_primary_10_1016_j_ins_2023_120011
crossref_primary_10_1016_j_ijar_2024_109210
crossref_primary_10_1016_j_ins_2021_07_042
crossref_primary_10_1016_j_ijar_2021_09_006
crossref_primary_10_1109_TCYB_2022_3208130
crossref_primary_10_1016_j_asoc_2025_112880
crossref_primary_10_3390_su16083484
crossref_primary_10_1016_j_ijar_2022_12_014
crossref_primary_10_1109_TNNLS_2022_3175922
crossref_primary_10_3233_JIFS_202086
crossref_primary_10_1016_j_ins_2022_02_053
crossref_primary_10_1007_s10462_022_10339_6
crossref_primary_10_1007_s10489_024_06075_9
crossref_primary_10_1016_j_ins_2023_01_058
crossref_primary_10_1007_s10489_022_04398_z
crossref_primary_10_1016_j_fss_2022_01_007
crossref_primary_10_1016_j_ins_2022_07_009
crossref_primary_10_1109_TETCI_2023_3314548
crossref_primary_10_1109_TFUZZ_2021_3096212
crossref_primary_10_1016_j_asoc_2021_108025
crossref_primary_10_1016_j_eswa_2024_125323
crossref_primary_10_1007_s10462_022_10311_4
crossref_primary_10_1016_j_fss_2023_108658
crossref_primary_10_1016_j_patcog_2024_110684
crossref_primary_10_1109_ACCESS_2020_3022735
crossref_primary_10_1016_j_knosys_2022_109394
crossref_primary_10_1007_s13042_021_01493_4
crossref_primary_10_1016_j_asoc_2024_112111
crossref_primary_10_1016_j_knosys_2021_107076
crossref_primary_10_1016_j_eswa_2022_118554
crossref_primary_10_1016_j_isci_2024_111270
crossref_primary_10_1016_j_knosys_2021_107595
crossref_primary_10_3390_e23060704
crossref_primary_10_1007_s10462_023_10518_z
crossref_primary_10_1007_s10462_023_10672_4
crossref_primary_10_1109_TFUZZ_2021_3082171
crossref_primary_10_1007_s40747_022_00763_0
crossref_primary_10_3390_electronics11203373
crossref_primary_10_1016_j_ins_2024_120552
crossref_primary_10_1007_s10489_024_05604_w
crossref_primary_10_1016_j_ijar_2022_10_014
crossref_primary_10_1109_ACCESS_2020_3039439
Cites_doi 10.1016/S0004-3702(03)00079-1
10.1214/aoms/1177731944
10.1016/j.knosys.2018.10.038
10.1007/s13042-018-0817-6
10.1109/TCYB.2015.2496425
10.1080/03081079008935107
10.1016/j.ins.2016.04.009
10.1109/TKDE.2005.66
10.1109/TKDE.2009.118
10.1002/int.20051
10.1109/TKDE.2012.146
10.1007/s13042-017-0758-5
10.1007/s13042-017-0729-x
10.1007/s13042-017-0696-2
10.1016/j.ins.2007.05.037
10.1007/s13042-014-0315-4
10.1016/j.knosys.2017.01.036
10.1109/TPAMI.2006.126
10.1007/BF01001956
10.1016/j.ijar.2017.11.015
10.1109/TFUZZ.2016.2581186
10.1007/s13042-016-0598-8
10.1016/j.ins.2013.06.012
10.1016/S0031-3203(00)00057-1
10.1007/s13042-017-0701-9
10.1007/s13042-017-0712-6
10.1007/s10489-018-1320-1
10.1109/TCYB.2016.2636339
10.1016/S0020-0255(98)10006-3
10.1109/TFUZZ.2011.2173695
10.1016/j.eswa.2011.01.023
10.1016/j.ins.2008.05.024
10.1142/S0218488508005121
10.1109/TPAMI.2005.159
10.1016/S0020-0255(02)00180-9
10.1016/j.jbi.2017.02.007
10.1016/S0004-3702(97)00043-X
10.1109/TCYB.2014.2361772
10.1109/72.977291
10.1109/69.842271
10.1002/j.1538-7305.1948.tb01338.x
10.1007/s13042-018-0857-y
10.1016/j.eswa.2006.10.043
10.1016/j.ins.2016.06.028
10.1109/TFUZZ.2017.2768044
10.1016/j.ijar.2018.12.013
10.1016/j.ins.2019.05.072
10.1016/j.ins.2016.05.025
10.1002/int.10014
10.1023/A:1025667309714
10.1016/j.fss.2018.07.006
10.1007/s13042-018-0791-z
10.1109/TNNLS.2015.2469100
10.1109/TFUZZ.2012.2231417
10.1016/j.knosys.2018.04.004
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2019.2923430
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
Aerospace Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 4042
ExternalDocumentID 31295137
10_1109_TCYB_2019_2923430
8758214
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Foundation of Educational Committee of Liaoning Province
  grantid: LZ2016003
– fundername: Natural Science Foundation of Liaoning Province
  grantid: 20170540012; 20170540004
  funderid: 10.13039/501100005047
– fundername: National Natural Science Foundation of China
  grantid: 61572082; 61673396; 61773349
  funderid: 10.13039/501100001809
– fundername: Liaoning Revitalization Talents Program
  grantid: 071717005
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c415t-41b3126776a778e5aa37a2ea9be40ae5abfb9aa390f78a66f39cc69cccc0f1aa3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Thu Jul 10 18:01:47 EDT 2025
Sun Jun 29 15:59:57 EDT 2025
Thu Apr 03 07:04:15 EDT 2025
Tue Jul 01 00:53:53 EDT 2025
Thu Apr 24 23:06:33 EDT 2025
Wed Aug 27 02:31:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-41b3126776a778e5aa37a2ea9be40ae5abfb9aa390f78a66f39cc69cccc0f1aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8690-987X
0000-0002-4136-2433
0000-0002-1135-9807
PMID 31295137
PQID 2436619932
PQPubID 85422
PageCount 12
ParticipantIDs proquest_journals_2436619932
ieee_primary_8758214
crossref_citationtrail_10_1109_TCYB_2019_2923430
proquest_miscellaneous_2257709560
crossref_primary_10_1109_TCYB_2019_2923430
pubmed_primary_31295137
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
hall (ref13) 2000
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref18
ref51
ref50
wang (ref56) 2018; 29
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
torkkola (ref19) 2003; 3
ref2
ref39
ref38
demšar (ref60) 2006; 7
ref24
ref23
ref26
ref25
ref20
ref22
ref21
guyon (ref1) 2003; 3
ref28
ref27
ref29
References_xml – ident: ref12
  doi: 10.1016/S0004-3702(03)00079-1
– ident: ref59
  doi: 10.1214/aoms/1177731944
– ident: ref16
  doi: 10.1016/j.knosys.2018.10.038
– ident: ref40
  doi: 10.1007/s13042-018-0817-6
– ident: ref30
  doi: 10.1109/TCYB.2015.2496425
– ident: ref46
  doi: 10.1080/03081079008935107
– ident: ref24
  doi: 10.1016/j.ins.2016.04.009
– ident: ref9
  doi: 10.1109/TKDE.2005.66
– ident: ref38
  doi: 10.1109/TKDE.2009.118
– ident: ref45
  doi: 10.1002/int.20051
– ident: ref7
  doi: 10.1109/TKDE.2012.146
– ident: ref35
  doi: 10.1007/s13042-017-0758-5
– ident: ref47
  doi: 10.1007/s13042-017-0729-x
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref1
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– ident: ref22
  doi: 10.1007/s13042-017-0696-2
– ident: ref52
  doi: 10.1016/j.ins.2007.05.037
– ident: ref5
  doi: 10.1007/s13042-014-0315-4
– ident: ref51
  doi: 10.1016/j.knosys.2017.01.036
– ident: ref4
  doi: 10.1109/TPAMI.2006.126
– ident: ref42
  doi: 10.1007/BF01001956
– ident: ref50
  doi: 10.1016/j.ijar.2017.11.015
– ident: ref36
  doi: 10.1109/TFUZZ.2016.2581186
– ident: ref48
  doi: 10.1007/s13042-016-0598-8
– volume: 3
  start-page: 1415
  year: 2003
  ident: ref19
  article-title: Feature extraction by non-parametric mutual information maximization
  publication-title: J Mach Learn Res
– ident: ref15
  doi: 10.1016/j.ins.2013.06.012
– ident: ref29
  doi: 10.1016/S0031-3203(00)00057-1
– ident: ref28
  doi: 10.1007/s13042-017-0701-9
– ident: ref55
  doi: 10.1007/s13042-017-0712-6
– volume: 7
  start-page: 1
  year: 2006
  ident: ref60
  article-title: Statistical comparison of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– ident: ref49
  doi: 10.1007/s10489-018-1320-1
– ident: ref34
  doi: 10.1109/TCYB.2016.2636339
– ident: ref26
  doi: 10.1016/S0020-0255(98)10006-3
– ident: ref31
  doi: 10.1109/TFUZZ.2011.2173695
– ident: ref54
  doi: 10.1016/j.eswa.2011.01.023
– start-page: 356
  year: 2000
  ident: ref13
  article-title: Correlation-based feature selection for discrete and numeric class machine learning
  publication-title: Proc 17th Int Conf Mach Learn
– ident: ref14
  doi: 10.1016/j.ins.2008.05.024
– ident: ref18
  doi: 10.1142/S0218488508005121
– ident: ref17
  doi: 10.1109/TPAMI.2005.159
– ident: ref25
  doi: 10.1016/S0020-0255(02)00180-9
– ident: ref32
  doi: 10.1016/j.jbi.2017.02.007
– ident: ref3
  doi: 10.1016/S0004-3702(97)00043-X
– ident: ref23
  doi: 10.1109/TCYB.2014.2361772
– ident: ref2
  doi: 10.1109/72.977291
– ident: ref43
  doi: 10.1109/69.842271
– ident: ref58
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: ref27
  doi: 10.1007/s13042-018-0857-y
– ident: ref53
  doi: 10.1016/j.eswa.2006.10.043
– ident: ref41
  doi: 10.1016/j.ins.2016.06.028
– ident: ref33
  doi: 10.1109/TFUZZ.2017.2768044
– ident: ref57
  doi: 10.1016/j.ijar.2018.12.013
– ident: ref8
  doi: 10.1016/j.ins.2019.05.072
– ident: ref39
  doi: 10.1016/j.ins.2016.05.025
– ident: ref44
  doi: 10.1002/int.10014
– ident: ref21
  doi: 10.1023/A:1025667309714
– ident: ref20
  doi: 10.1016/j.fss.2018.07.006
– ident: ref11
  doi: 10.1007/s13042-018-0791-z
– ident: ref6
  doi: 10.1109/TNNLS.2015.2469100
– volume: 29
  start-page: 2986
  year: 2018
  ident: ref56
  article-title: Feature selection based on neighborhood discrimination index
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref37
  doi: 10.1109/TFUZZ.2012.2231417
– ident: ref10
  doi: 10.1016/j.knosys.2018.04.004
SSID ssj0000816898
Score 2.615413
Snippet The concept of dependency in a neighborhood rough set model is an important evaluation function for the feature selection. This function considers only the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4031
SubjectTerms Algorithms
Approximation
Classification
Feature extraction
Feature selection
Greedy algorithms
Indexes
Machine learning algorithms
Mathematical analysis
Measurement uncertainty
neighborhood
Neighborhoods
rough approximation
rough set
Rough set models
Rough sets
self-information
Uncertainty
Title Feature Selection Based on Neighborhood Self-Information
URI https://ieeexplore.ieee.org/document/8758214
https://www.ncbi.nlm.nih.gov/pubmed/31295137
https://www.proquest.com/docview/2436619932
https://www.proquest.com/docview/2257709560
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8QwDLaAiYX343ipSAyA6NFL2iQdAYEQEiyABFPVps4CukPHdeHXY6e5CiFADJXSxn3ZTvwlcWyAA4kGUaOKM5nRAGVgJfWDWR1LYzJTV5VyKW9wvr1T14_pzVP2NAMn3V4YRPTOZ9jnol_Lr0e24amyU8LWRnDW6lkauLV7tbr5FJ9Awqe-FVSICVXosIg5SPLTh4vnc_bjyvuCEE3KPs9fzJDPq_I7xPSm5moRbqcf2XqYvPSbSdW3H9_iN_73L5ZgIWDO6KxVkmWYweEKLIdW_R4dhtDTR6tgGBE2Y4zufXockll0Tmaujqhwx5OopDEcB5nrXRy2MjHZGjxeXT5cXMcht0JsyWRPSCqVHBCPtCq1NpiVpdSlwDKvME1KOq9cldPFPHHalEo5mVur6LA2cQOqWIe54WiImxBlmXAqtRaVkakmuKaFrLV0opbaKV33IJmyurAh8Djnv3gt_AAkyQuWTsHSKYJ0enDc3fLWRt34i3iVmdwRBv72YGcqzyK0y_dCpJIACWEy0YP9rppaFC-TlEMcNURDvZjm-Iz05I1WD7pnE88Ikkq99fM7t2Fe8Hjc-6DtwNxk3OAugZZJtee19RO6X-Ve
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V7aFcgD6AhZYGqYeCyDax40eOtKLa0u5e2ErlFCXO-ALaRe3mwq9nxvFGVQWIQyQnnrxmbM9nex4AxxItokGdKqlogpI7SeOgalNprbJt02hfsIPzdKYnN8WXW3W7AR8HXxhEDMZnOOZi2Mtvl67jpbJTwtZWcNbqLdL7Ku-9tYYVlZBCIiS_FVRICVeYuI2ZZ-Xp_PzbGVtylWNBmKZgq-cHiihkVvk7yAzK5uIZTNef2duYfB93q2bsfj2K4Pi___EcnkbUmXzqm8kObOBiF3Ziv75PTmLw6fd7YBkTdneYfA0JckhqyRkpujahwoyXUanNcCRkrvdpdGZisn24ufg8P5-kMbtC6khpr0gujcyJR0bXxlhUdS1NLbAuGyyyms4b35R0scy8sbXWXpbOaTqcy3xOFS9gc7Fc4CtIlBJeF86htrIwBNiMkK2RXrTSeG3aEWRrVlcuhh7nDBg_qjAFycqKpVOxdKoonRF8GG752cfd-BfxHjN5IIz8HcHBWp5V7Jn3lSgkQRJCZWIE74Zq6lO8UVIvcNkRDY1jhiM00pNf9u1geDbxjECpNK___M4j2J7Mp9fV9eXs6g08ETw7DxZpB7C5uuvwkCDMqnkbWu5v2zPopw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Selection+Based+on+Neighborhood+Self-Information&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wang%2C+Changzhong&rft.au=Huang%2C+Yang&rft.au=Shao%2C+Mingwen&rft.au=Hu%2C+Qinghua&rft.date=2020-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=50&rft.issue=9&rft.spage=4031&rft_id=info:doi/10.1109%2FTCYB.2019.2923430&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon