Feature Selection Based on Neighborhood Self-Information
The concept of dependency in a neighborhood rough set model is an important evaluation function for the feature selection. This function considers only the classification information contained in the lower approximation of the decision while ignoring the upper approximation. In this paper, we constr...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 50; no. 9; pp. 4031 - 4042 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The concept of dependency in a neighborhood rough set model is an important evaluation function for the feature selection. This function considers only the classification information contained in the lower approximation of the decision while ignoring the upper approximation. In this paper, we construct a class of uncertainty measures: decision self-information for the feature selection. These measures take into account the uncertainty information in the lower and the upper approximations. The relationships between these measures and their properties are discussed in detail. It is proven that the fourth measure, called relative neighborhood self-information, is better for feature selection than the other measures, because not only does it consider both the lower and the upper approximations but also the change of its magnitude is largest with the variation of feature subsets. This helps to facilitate the selection of optimal feature subsets. Finally, a greedy algorithm for feature selection has been designed and a series of numerical experiments was carried out to verify the effectiveness of the proposed algorithm. The experimental results show that the proposed algorithm often chooses fewer features and improves the classification accuracy in most cases. |
---|---|
AbstractList | The concept of dependency in a neighborhood rough set model is an important evaluation function for the feature selection. This function considers only the classification information contained in the lower approximation of the decision while ignoring the upper approximation. In this paper, we construct a class of uncertainty measures: decision self-information for the feature selection. These measures take into account the uncertainty information in the lower and the upper approximations. The relationships between these measures and their properties are discussed in detail. It is proven that the fourth measure, called relative neighborhood self-information, is better for feature selection than the other measures, because not only does it consider both the lower and the upper approximations but also the change of its magnitude is largest with the variation of feature subsets. This helps to facilitate the selection of optimal feature subsets. Finally, a greedy algorithm for feature selection has been designed and a series of numerical experiments was carried out to verify the effectiveness of the proposed algorithm. The experimental results show that the proposed algorithm often chooses fewer features and improves the classification accuracy in most cases. The concept of dependency in a neighborhood rough set model is an important evaluation function for the feature selection. This function considers only the classification information contained in the lower approximation of the decision while ignoring the upper approximation. In this paper, we construct a class of uncertainty measures: decision self-information for the feature selection. These measures take into account the uncertainty information in the lower and the upper approximations. The relationships between these measures and their properties are discussed in detail. It is proven that the fourth measure, called relative neighborhood self-information, is better for feature selection than the other measures, because not only does it consider both the lower and the upper approximations but also the change of its magnitude is largest with the variation of feature subsets. This helps to facilitate the selection of optimal feature subsets. Finally, a greedy algorithm for feature selection has been designed and a series of numerical experiments was carried out to verify the effectiveness of the proposed algorithm. The experimental results show that the proposed algorithm often chooses fewer features and improves the classification accuracy in most cases.The concept of dependency in a neighborhood rough set model is an important evaluation function for the feature selection. This function considers only the classification information contained in the lower approximation of the decision while ignoring the upper approximation. In this paper, we construct a class of uncertainty measures: decision self-information for the feature selection. These measures take into account the uncertainty information in the lower and the upper approximations. The relationships between these measures and their properties are discussed in detail. It is proven that the fourth measure, called relative neighborhood self-information, is better for feature selection than the other measures, because not only does it consider both the lower and the upper approximations but also the change of its magnitude is largest with the variation of feature subsets. This helps to facilitate the selection of optimal feature subsets. Finally, a greedy algorithm for feature selection has been designed and a series of numerical experiments was carried out to verify the effectiveness of the proposed algorithm. The experimental results show that the proposed algorithm often chooses fewer features and improves the classification accuracy in most cases. |
Author | Chen, Degang Huang, Yang Wang, Changzhong Hu, Qinghua Shao, Mingwen |
Author_xml | – sequence: 1 givenname: Changzhong orcidid: 0000-0002-4136-2433 surname: Wang fullname: Wang, Changzhong email: changzhongwang@126.com organization: Department of Mathematics, Bohai University, Jinzhou, China – sequence: 2 givenname: Yang surname: Huang fullname: Huang, Yang organization: Department of Mathematics, Bohai University, Jinzhou, China – sequence: 3 givenname: Mingwen surname: Shao fullname: Shao, Mingwen email: smw278@126.com organization: College of Computer and Communication Engineering, Chinese University of Petroleum, Qingdao – sequence: 4 givenname: Qinghua orcidid: 0000-0001-8690-987X surname: Hu fullname: Hu, Qinghua email: huqinghua@hit.edu.cn organization: School of Computer Science and Technology, Tianjin University, Tianjin, China – sequence: 5 givenname: Degang orcidid: 0000-0002-1135-9807 surname: Chen fullname: Chen, Degang email: chengdegang@263.net organization: Department of Mathematics and Physics, North China Electric Power University, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31295137$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kbtOwzAUhi1UREvpAyAkVImFJcWXxI5HWlGoVMFAGZgsxz2hqdK42MnA2-PQy9ABS5aPz_n-48t_iTqVrQCha4JHhGD5sJh8jkcUEzmikrKY4TPUo4SnEaUi6RxjLrpo4P0ah5GGlEwvUJcRKhPCRA-lU9B142D4DiWYurDVcKw9LIcheIXia5VZt7J22dbzaFbl1m10i12h81yXHgb7tY8-pk-LyUs0f3ueTR7nkYlJUkcxycJhXAiuhUgh0ZoJTUHLDGKswz7LMxmSEuci1ZznTBrDwzQG5yQU-uh-13fr7HcDvlabwhsoS12BbbyiNBECy4TjgN6doGvbuCrcTtGYcU6kZDRQt3uqyTawVFtXbLT7UYc_CYDYAcZZ7x3kyhT135trp4tSEaxaA1RrgGoNUHsDgpKcKA_N_9Pc7DQFABz5VCQpJTH7Be9ejss |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1016_j_ins_2021_08_067 crossref_primary_10_3390_make4040054 crossref_primary_10_1109_TCYB_2025_3538646 crossref_primary_10_3233_JIFS_240581 crossref_primary_10_1007_s10489_022_03987_2 crossref_primary_10_4018_IJWSR_353899 crossref_primary_10_1016_j_knosys_2021_106799 crossref_primary_10_3390_math11092084 crossref_primary_10_1016_j_ijar_2022_05_004 crossref_primary_10_1109_ACCESS_2021_3138961 crossref_primary_10_7717_peerj_cs_1711 crossref_primary_10_1016_j_asoc_2023_110679 crossref_primary_10_1109_ACCESS_2022_3228387 crossref_primary_10_3233_JIFS_237320 crossref_primary_10_1109_TFUZZ_2021_3093202 crossref_primary_10_1016_j_ins_2024_120403 crossref_primary_10_1109_ACCESS_2020_3015813 crossref_primary_10_1016_j_inffus_2024_102486 crossref_primary_10_1080_03081079_2024_2436887 crossref_primary_10_1109_TBDATA_2023_3342643 crossref_primary_10_1016_j_knosys_2022_109018 crossref_primary_10_1007_s10489_022_03760_5 crossref_primary_10_1109_TNNLS_2021_3132918 crossref_primary_10_1016_j_ijar_2024_109165 crossref_primary_10_1007_s10489_023_05115_0 crossref_primary_10_1016_j_neucom_2023_126990 crossref_primary_10_3233_JIFS_212037 crossref_primary_10_1016_j_ins_2022_07_133 crossref_primary_10_1016_j_ins_2024_121340 crossref_primary_10_1007_s12559_021_09921_x crossref_primary_10_1155_2021_9989471 crossref_primary_10_1016_j_ins_2022_08_050 crossref_primary_10_1016_j_patcog_2023_109899 crossref_primary_10_1007_s12559_021_09871_4 crossref_primary_10_1007_s13042_023_01878_7 crossref_primary_10_3233_JIFS_233070 crossref_primary_10_1007_s13042_023_02090_3 crossref_primary_10_1007_s13042_024_02406_x crossref_primary_10_1109_ACCESS_2023_3271897 crossref_primary_10_3390_app142310965 crossref_primary_10_1109_TFUZZ_2024_3502073 crossref_primary_10_1016_j_eswa_2024_123633 crossref_primary_10_1016_j_eswa_2024_124600 crossref_primary_10_1109_TKDE_2024_3428485 crossref_primary_10_3233_JIFS_223384 crossref_primary_10_3390_s24186003 crossref_primary_10_1007_s00500_021_06722_0 crossref_primary_10_1007_s00607_022_01075_4 crossref_primary_10_1016_j_ijar_2022_09_007 crossref_primary_10_1016_j_ijar_2024_109253 crossref_primary_10_1007_s10489_024_05310_7 crossref_primary_10_1007_s12652_020_02588_6 crossref_primary_10_1007_s43674_021_00021_9 crossref_primary_10_1016_j_fss_2023_108683 crossref_primary_10_1016_j_ijar_2024_109256 crossref_primary_10_1007_s10489_024_05533_8 crossref_primary_10_3934_era_2022231 crossref_primary_10_1007_s40747_021_00356_3 crossref_primary_10_1109_ACCESS_2020_3028469 crossref_primary_10_1109_ACCESS_2020_3048078 crossref_primary_10_1109_TETCI_2022_3171784 crossref_primary_10_1016_j_ins_2022_10_093 crossref_primary_10_3233_JIFS_210462 crossref_primary_10_1016_j_neucom_2023_126268 crossref_primary_10_1016_j_ins_2021_09_018 crossref_primary_10_1016_j_ins_2024_120589 crossref_primary_10_1109_ACCESS_2022_3162074 crossref_primary_10_1007_s13042_020_01142_2 crossref_primary_10_1016_j_ins_2022_10_133 crossref_primary_10_1007_s10489_024_05428_8 crossref_primary_10_1007_s10044_022_01067_2 crossref_primary_10_1016_j_ijar_2022_05_012 crossref_primary_10_1109_TSMC_2023_3321315 crossref_primary_10_1007_s40747_021_00636_y crossref_primary_10_1007_s00500_021_06654_9 crossref_primary_10_1016_j_ijar_2022_05_011 crossref_primary_10_3390_e27010094 crossref_primary_10_1007_s40815_021_01230_7 crossref_primary_10_1109_TCYB_2020_2973379 crossref_primary_10_1016_j_asoc_2023_110100 crossref_primary_10_1109_TCYB_2022_3173374 crossref_primary_10_1016_j_asoc_2024_112664 crossref_primary_10_1016_j_ins_2021_10_063 crossref_primary_10_1007_s40747_024_01560_7 crossref_primary_10_3233_JIFS_239559 crossref_primary_10_1007_s13042_023_02002_5 crossref_primary_10_1109_ACCESS_2020_3014916 crossref_primary_10_1109_TFUZZ_2023_3272316 crossref_primary_10_1109_TFUZZ_2023_3347757 crossref_primary_10_1109_ACCESS_2020_3010314 crossref_primary_10_3233_JIFS_222832 crossref_primary_10_1016_j_eswa_2024_124227 crossref_primary_10_1109_TCYB_2021_3087776 crossref_primary_10_1016_j_ins_2022_07_063 crossref_primary_10_1016_j_neucom_2021_09_007 crossref_primary_10_1109_TKDE_2025_3536080 crossref_primary_10_3233_JIFS_230737 crossref_primary_10_1016_j_knosys_2022_109585 crossref_primary_10_1016_j_engappai_2023_107659 crossref_primary_10_1109_TFUZZ_2020_2989098 crossref_primary_10_3233_JIFS_236958 crossref_primary_10_1007_s13042_021_01483_6 crossref_primary_10_1016_j_knosys_2021_106908 crossref_primary_10_1186_s40537_022_00640_0 crossref_primary_10_1016_j_ins_2024_121099 crossref_primary_10_3233_JIFS_200482 crossref_primary_10_1016_j_asoc_2023_110877 crossref_primary_10_1016_j_patcog_2024_111141 crossref_primary_10_1016_j_ijar_2022_06_002 crossref_primary_10_1186_s13174_020_00127_2 crossref_primary_10_3390_app15073518 crossref_primary_10_1007_s10489_023_05194_z crossref_primary_10_1016_j_ins_2021_08_032 crossref_primary_10_1016_j_engappai_2022_105226 crossref_primary_10_1109_ACCESS_2020_3039778 crossref_primary_10_1109_TCYB_2021_3054742 crossref_primary_10_1007_s13042_021_01321_9 crossref_primary_10_1109_TBDATA_2022_3215494 crossref_primary_10_1007_s10462_023_10642_w crossref_primary_10_1038_s41598_024_55902_z crossref_primary_10_1109_TCYB_2021_3058780 crossref_primary_10_1109_TCYB_2021_3112674 crossref_primary_10_1016_j_ins_2021_11_034 crossref_primary_10_1007_s10489_022_03657_3 crossref_primary_10_1007_s40815_024_01677_4 crossref_primary_10_1016_j_ins_2022_09_006 crossref_primary_10_1007_s10489_022_03371_0 crossref_primary_10_1007_s11227_024_06631_7 crossref_primary_10_1016_j_asoc_2023_110645 crossref_primary_10_1016_j_ijar_2022_01_015 crossref_primary_10_1002_int_22878 crossref_primary_10_3233_JIFS_202796 crossref_primary_10_1109_TFUZZ_2021_3078012 crossref_primary_10_1016_j_ijar_2021_08_004 crossref_primary_10_1016_j_ins_2021_12_079 crossref_primary_10_1007_s12652_022_04451_2 crossref_primary_10_1080_03081079_2022_2132491 crossref_primary_10_1109_TCYB_2020_3040803 crossref_primary_10_3233_JIFS_222777 crossref_primary_10_1016_j_ins_2023_119945 crossref_primary_10_1016_j_ins_2023_120011 crossref_primary_10_1016_j_ijar_2024_109210 crossref_primary_10_1016_j_ins_2021_07_042 crossref_primary_10_1016_j_ijar_2021_09_006 crossref_primary_10_1109_TCYB_2022_3208130 crossref_primary_10_1016_j_asoc_2025_112880 crossref_primary_10_3390_su16083484 crossref_primary_10_1016_j_ijar_2022_12_014 crossref_primary_10_1109_TNNLS_2022_3175922 crossref_primary_10_3233_JIFS_202086 crossref_primary_10_1016_j_ins_2022_02_053 crossref_primary_10_1007_s10462_022_10339_6 crossref_primary_10_1007_s10489_024_06075_9 crossref_primary_10_1016_j_ins_2023_01_058 crossref_primary_10_1007_s10489_022_04398_z crossref_primary_10_1016_j_fss_2022_01_007 crossref_primary_10_1016_j_ins_2022_07_009 crossref_primary_10_1109_TETCI_2023_3314548 crossref_primary_10_1109_TFUZZ_2021_3096212 crossref_primary_10_1016_j_asoc_2021_108025 crossref_primary_10_1016_j_eswa_2024_125323 crossref_primary_10_1007_s10462_022_10311_4 crossref_primary_10_1016_j_fss_2023_108658 crossref_primary_10_1016_j_patcog_2024_110684 crossref_primary_10_1109_ACCESS_2020_3022735 crossref_primary_10_1016_j_knosys_2022_109394 crossref_primary_10_1007_s13042_021_01493_4 crossref_primary_10_1016_j_asoc_2024_112111 crossref_primary_10_1016_j_knosys_2021_107076 crossref_primary_10_1016_j_eswa_2022_118554 crossref_primary_10_1016_j_isci_2024_111270 crossref_primary_10_1016_j_knosys_2021_107595 crossref_primary_10_3390_e23060704 crossref_primary_10_1007_s10462_023_10518_z crossref_primary_10_1007_s10462_023_10672_4 crossref_primary_10_1109_TFUZZ_2021_3082171 crossref_primary_10_1007_s40747_022_00763_0 crossref_primary_10_3390_electronics11203373 crossref_primary_10_1016_j_ins_2024_120552 crossref_primary_10_1007_s10489_024_05604_w crossref_primary_10_1016_j_ijar_2022_10_014 crossref_primary_10_1109_ACCESS_2020_3039439 |
Cites_doi | 10.1016/S0004-3702(03)00079-1 10.1214/aoms/1177731944 10.1016/j.knosys.2018.10.038 10.1007/s13042-018-0817-6 10.1109/TCYB.2015.2496425 10.1080/03081079008935107 10.1016/j.ins.2016.04.009 10.1109/TKDE.2005.66 10.1109/TKDE.2009.118 10.1002/int.20051 10.1109/TKDE.2012.146 10.1007/s13042-017-0758-5 10.1007/s13042-017-0729-x 10.1007/s13042-017-0696-2 10.1016/j.ins.2007.05.037 10.1007/s13042-014-0315-4 10.1016/j.knosys.2017.01.036 10.1109/TPAMI.2006.126 10.1007/BF01001956 10.1016/j.ijar.2017.11.015 10.1109/TFUZZ.2016.2581186 10.1007/s13042-016-0598-8 10.1016/j.ins.2013.06.012 10.1016/S0031-3203(00)00057-1 10.1007/s13042-017-0701-9 10.1007/s13042-017-0712-6 10.1007/s10489-018-1320-1 10.1109/TCYB.2016.2636339 10.1016/S0020-0255(98)10006-3 10.1109/TFUZZ.2011.2173695 10.1016/j.eswa.2011.01.023 10.1016/j.ins.2008.05.024 10.1142/S0218488508005121 10.1109/TPAMI.2005.159 10.1016/S0020-0255(02)00180-9 10.1016/j.jbi.2017.02.007 10.1016/S0004-3702(97)00043-X 10.1109/TCYB.2014.2361772 10.1109/72.977291 10.1109/69.842271 10.1002/j.1538-7305.1948.tb01338.x 10.1007/s13042-018-0857-y 10.1016/j.eswa.2006.10.043 10.1016/j.ins.2016.06.028 10.1109/TFUZZ.2017.2768044 10.1016/j.ijar.2018.12.013 10.1016/j.ins.2019.05.072 10.1016/j.ins.2016.05.025 10.1002/int.10014 10.1023/A:1025667309714 10.1016/j.fss.2018.07.006 10.1007/s13042-018-0791-z 10.1109/TNNLS.2015.2469100 10.1109/TFUZZ.2012.2231417 10.1016/j.knosys.2018.04.004 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2019.2923430 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed Aerospace Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 4042 |
ExternalDocumentID | 31295137 10_1109_TCYB_2019_2923430 8758214 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Foundation of Educational Committee of Liaoning Province grantid: LZ2016003 – fundername: Natural Science Foundation of Liaoning Province grantid: 20170540012; 20170540004 funderid: 10.13039/501100005047 – fundername: National Natural Science Foundation of China grantid: 61572082; 61673396; 61773349 funderid: 10.13039/501100001809 – fundername: Liaoning Revitalization Talents Program grantid: 071717005 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c415t-41b3126776a778e5aa37a2ea9be40ae5abfb9aa390f78a66f39cc69cccc0f1aa3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Thu Jul 10 18:01:47 EDT 2025 Sun Jun 29 15:59:57 EDT 2025 Thu Apr 03 07:04:15 EDT 2025 Tue Jul 01 00:53:53 EDT 2025 Thu Apr 24 23:06:33 EDT 2025 Wed Aug 27 02:31:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-41b3126776a778e5aa37a2ea9be40ae5abfb9aa390f78a66f39cc69cccc0f1aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8690-987X 0000-0002-4136-2433 0000-0002-1135-9807 |
PMID | 31295137 |
PQID | 2436619932 |
PQPubID | 85422 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2436619932 ieee_primary_8758214 crossref_citationtrail_10_1109_TCYB_2019_2923430 proquest_miscellaneous_2257709560 crossref_primary_10_1109_TCYB_2019_2923430 pubmed_primary_31295137 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 hall (ref13) 2000 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref18 ref51 ref50 wang (ref56) 2018; 29 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 torkkola (ref19) 2003; 3 ref2 ref39 ref38 demšar (ref60) 2006; 7 ref24 ref23 ref26 ref25 ref20 ref22 ref21 guyon (ref1) 2003; 3 ref28 ref27 ref29 |
References_xml | – ident: ref12 doi: 10.1016/S0004-3702(03)00079-1 – ident: ref59 doi: 10.1214/aoms/1177731944 – ident: ref16 doi: 10.1016/j.knosys.2018.10.038 – ident: ref40 doi: 10.1007/s13042-018-0817-6 – ident: ref30 doi: 10.1109/TCYB.2015.2496425 – ident: ref46 doi: 10.1080/03081079008935107 – ident: ref24 doi: 10.1016/j.ins.2016.04.009 – ident: ref9 doi: 10.1109/TKDE.2005.66 – ident: ref38 doi: 10.1109/TKDE.2009.118 – ident: ref45 doi: 10.1002/int.20051 – ident: ref7 doi: 10.1109/TKDE.2012.146 – ident: ref35 doi: 10.1007/s13042-017-0758-5 – ident: ref47 doi: 10.1007/s13042-017-0729-x – volume: 3 start-page: 1157 year: 2003 ident: ref1 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – ident: ref22 doi: 10.1007/s13042-017-0696-2 – ident: ref52 doi: 10.1016/j.ins.2007.05.037 – ident: ref5 doi: 10.1007/s13042-014-0315-4 – ident: ref51 doi: 10.1016/j.knosys.2017.01.036 – ident: ref4 doi: 10.1109/TPAMI.2006.126 – ident: ref42 doi: 10.1007/BF01001956 – ident: ref50 doi: 10.1016/j.ijar.2017.11.015 – ident: ref36 doi: 10.1109/TFUZZ.2016.2581186 – ident: ref48 doi: 10.1007/s13042-016-0598-8 – volume: 3 start-page: 1415 year: 2003 ident: ref19 article-title: Feature extraction by non-parametric mutual information maximization publication-title: J Mach Learn Res – ident: ref15 doi: 10.1016/j.ins.2013.06.012 – ident: ref29 doi: 10.1016/S0031-3203(00)00057-1 – ident: ref28 doi: 10.1007/s13042-017-0701-9 – ident: ref55 doi: 10.1007/s13042-017-0712-6 – volume: 7 start-page: 1 year: 2006 ident: ref60 article-title: Statistical comparison of classifiers over multiple data sets publication-title: J Mach Learn Res – ident: ref49 doi: 10.1007/s10489-018-1320-1 – ident: ref34 doi: 10.1109/TCYB.2016.2636339 – ident: ref26 doi: 10.1016/S0020-0255(98)10006-3 – ident: ref31 doi: 10.1109/TFUZZ.2011.2173695 – ident: ref54 doi: 10.1016/j.eswa.2011.01.023 – start-page: 356 year: 2000 ident: ref13 article-title: Correlation-based feature selection for discrete and numeric class machine learning publication-title: Proc 17th Int Conf Mach Learn – ident: ref14 doi: 10.1016/j.ins.2008.05.024 – ident: ref18 doi: 10.1142/S0218488508005121 – ident: ref17 doi: 10.1109/TPAMI.2005.159 – ident: ref25 doi: 10.1016/S0020-0255(02)00180-9 – ident: ref32 doi: 10.1016/j.jbi.2017.02.007 – ident: ref3 doi: 10.1016/S0004-3702(97)00043-X – ident: ref23 doi: 10.1109/TCYB.2014.2361772 – ident: ref2 doi: 10.1109/72.977291 – ident: ref43 doi: 10.1109/69.842271 – ident: ref58 doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: ref27 doi: 10.1007/s13042-018-0857-y – ident: ref53 doi: 10.1016/j.eswa.2006.10.043 – ident: ref41 doi: 10.1016/j.ins.2016.06.028 – ident: ref33 doi: 10.1109/TFUZZ.2017.2768044 – ident: ref57 doi: 10.1016/j.ijar.2018.12.013 – ident: ref8 doi: 10.1016/j.ins.2019.05.072 – ident: ref39 doi: 10.1016/j.ins.2016.05.025 – ident: ref44 doi: 10.1002/int.10014 – ident: ref21 doi: 10.1023/A:1025667309714 – ident: ref20 doi: 10.1016/j.fss.2018.07.006 – ident: ref11 doi: 10.1007/s13042-018-0791-z – ident: ref6 doi: 10.1109/TNNLS.2015.2469100 – volume: 29 start-page: 2986 year: 2018 ident: ref56 article-title: Feature selection based on neighborhood discrimination index publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref37 doi: 10.1109/TFUZZ.2012.2231417 – ident: ref10 doi: 10.1016/j.knosys.2018.04.004 |
SSID | ssj0000816898 |
Score | 2.615413 |
Snippet | The concept of dependency in a neighborhood rough set model is an important evaluation function for the feature selection. This function considers only the... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4031 |
SubjectTerms | Algorithms Approximation Classification Feature extraction Feature selection Greedy algorithms Indexes Machine learning algorithms Mathematical analysis Measurement uncertainty neighborhood Neighborhoods rough approximation rough set Rough set models Rough sets self-information Uncertainty |
Title | Feature Selection Based on Neighborhood Self-Information |
URI | https://ieeexplore.ieee.org/document/8758214 https://www.ncbi.nlm.nih.gov/pubmed/31295137 https://www.proquest.com/docview/2436619932 https://www.proquest.com/docview/2257709560 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8QwDLaAiYX343ipSAyA6NFL2iQdAYEQEiyABFPVps4CukPHdeHXY6e5CiFADJXSxn3ZTvwlcWyAA4kGUaOKM5nRAGVgJfWDWR1LYzJTV5VyKW9wvr1T14_pzVP2NAMn3V4YRPTOZ9jnol_Lr0e24amyU8LWRnDW6lkauLV7tbr5FJ9Awqe-FVSICVXosIg5SPLTh4vnc_bjyvuCEE3KPs9fzJDPq_I7xPSm5moRbqcf2XqYvPSbSdW3H9_iN_73L5ZgIWDO6KxVkmWYweEKLIdW_R4dhtDTR6tgGBE2Y4zufXockll0Tmaujqhwx5OopDEcB5nrXRy2MjHZGjxeXT5cXMcht0JsyWRPSCqVHBCPtCq1NpiVpdSlwDKvME1KOq9cldPFPHHalEo5mVur6LA2cQOqWIe54WiImxBlmXAqtRaVkakmuKaFrLV0opbaKV33IJmyurAh8Djnv3gt_AAkyQuWTsHSKYJ0enDc3fLWRt34i3iVmdwRBv72YGcqzyK0y_dCpJIACWEy0YP9rppaFC-TlEMcNURDvZjm-Iz05I1WD7pnE88Ikkq99fM7t2Fe8Hjc-6DtwNxk3OAugZZJtee19RO6X-Ve |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V7aFcgD6AhZYGqYeCyDax40eOtKLa0u5e2ErlFCXO-ALaRe3mwq9nxvFGVQWIQyQnnrxmbM9nex4AxxItokGdKqlogpI7SeOgalNprbJt02hfsIPzdKYnN8WXW3W7AR8HXxhEDMZnOOZi2Mtvl67jpbJTwtZWcNbqLdL7Ku-9tYYVlZBCIiS_FVRICVeYuI2ZZ-Xp_PzbGVtylWNBmKZgq-cHiihkVvk7yAzK5uIZTNef2duYfB93q2bsfj2K4Pi___EcnkbUmXzqm8kObOBiF3Ziv75PTmLw6fd7YBkTdneYfA0JckhqyRkpujahwoyXUanNcCRkrvdpdGZisn24ufg8P5-kMbtC6khpr0gujcyJR0bXxlhUdS1NLbAuGyyyms4b35R0scy8sbXWXpbOaTqcy3xOFS9gc7Fc4CtIlBJeF86htrIwBNiMkK2RXrTSeG3aEWRrVlcuhh7nDBg_qjAFycqKpVOxdKoonRF8GG752cfd-BfxHjN5IIz8HcHBWp5V7Jn3lSgkQRJCZWIE74Zq6lO8UVIvcNkRDY1jhiM00pNf9u1geDbxjECpNK___M4j2J7Mp9fV9eXs6g08ETw7DxZpB7C5uuvwkCDMqnkbWu5v2zPopw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Selection+Based+on+Neighborhood+Self-Information&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wang%2C+Changzhong&rft.au=Huang%2C+Yang&rft.au=Shao%2C+Mingwen&rft.au=Hu%2C+Qinghua&rft.date=2020-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=50&rft.issue=9&rft.spage=4031&rft_id=info:doi/10.1109%2FTCYB.2019.2923430&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |