First-passage failure and its feedback minimization of quasi-partially integrable Hamiltonian systems
An n degree-of-freedom Hamiltonian system with r (1<r<n) independent first integrals which are in involution is called partially integrable Hamiltonian system. A partially integrable Hamiltonian system subject to light dampings and weak stochastic excitations is called quasi-partially integrab...
Saved in:
Published in | International journal of non-linear mechanics Vol. 38; no. 8; pp. 1133 - 1148 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.10.2003
Elsevier Science |
Subjects | |
Online Access | Get full text |
ISSN | 0020-7462 1878-5638 |
DOI | 10.1016/S0020-7462(02)00058-6 |
Cover
Loading…
Abstract | An
n degree-of-freedom Hamiltonian system with
r
(1<r<n)
independent first integrals which are in involution is called partially integrable Hamiltonian system. A partially integrable Hamiltonian system subject to light dampings and weak stochastic excitations is called quasi-partially integrable Hamiltonian system. In the present paper, the procedures for studying the first-passage failure and its feedback minimization of quasi-partially integrable Hamiltonian systems are proposed. First, the stochastic averaging method for quasi-partially integrable Hamiltonian systems is briefly reviewed. Then, based on the averaged Itô equations, a backward Kolmogorov equation governing the conditional reliability function, a set of generalized Pontryagin equations governing the conditional moments of first-passage time and their boundary and initial conditions are established. After that, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximization of reliability and of maximization of mean first-passage time are formulated. The relationship between the backward Kolmogorov equation and the dynamical programming equation for reliability maximization, and that between the Pontryagin equation and the dynamical programming equation for maximization of mean first-passage time are discussed. Finally, an example is worked out to illustrate the proposed procedures and the effectiveness of feedback control in reducing first-passage failure. |
---|---|
AbstractList | An n degree-of-freedom Hamiltonian system with *g(1 < *g < n) independent first integrals which are in involution is called partially integrable Hamiltonian system. A partially integrable Hamiltonian system subject to light dampings and weak stochastic excitations is called quasi-partially integrable Hamiltonian system. In the present paper, the procedures for studying the first-passage failure and its feedback minimization of quasi-partially integrable Hamiltonian systems are proposed. First, the stochastic averaging method for quasi-partially integrable Hamiltonian systems is briefly reviewed. Then, based on the averaged Ito equations, a backward Kolmogorov equation governing the conditional reliability function, a set of generalized Pontryagin equations governing the conditional moments of first-passage time and their boundary and initial conditions are established. After that, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximization of reliability and of maximization of mean first-passage time are formulated. The relationship between the backward Kolmogorov equation and the dynamical programming equation for reliability maximization, and that between the Pontryagin equation and the dynamical programming equation for maximization of mean first-passage time are discussed. Finally, an example is worked out to illustrate the proposed procedures and the effectiveness of feedback control in reducing first-passage failure. An n degree-of-freedom Hamiltonian system with r (1<r<n) independent first integrals which are in involution is called partially integrable Hamiltonian system. A partially integrable Hamiltonian system subject to light dampings and weak stochastic excitations is called quasi-partially integrable Hamiltonian system. In the present paper, the procedures for studying the first-passage failure and its feedback minimization of quasi-partially integrable Hamiltonian systems are proposed. First, the stochastic averaging method for quasi-partially integrable Hamiltonian systems is briefly reviewed. Then, based on the averaged Itô equations, a backward Kolmogorov equation governing the conditional reliability function, a set of generalized Pontryagin equations governing the conditional moments of first-passage time and their boundary and initial conditions are established. After that, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximization of reliability and of maximization of mean first-passage time are formulated. The relationship between the backward Kolmogorov equation and the dynamical programming equation for reliability maximization, and that between the Pontryagin equation and the dynamical programming equation for maximization of mean first-passage time are discussed. Finally, an example is worked out to illustrate the proposed procedures and the effectiveness of feedback control in reducing first-passage failure. |
Author | Deng, M.L. Zhu, W.Q. Huang, Z.L. |
Author_xml | – sequence: 1 givenname: W.Q. surname: Zhu fullname: Zhu, W.Q. email: wqzhu@yahoo.com organization: Department of Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China – sequence: 2 givenname: Z.L. surname: Huang fullname: Huang, Z.L. organization: Department of Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China – sequence: 3 givenname: M.L. surname: Deng fullname: Deng, M.L. organization: Department of Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14622150$$DView record in Pascal Francis |
BookMark | eNqFkUFrFTEQx4NU8LX6EYRcFD2sJtnsbsSDlGKtUPCgnsNsMimju9nXTJ7w_PTu6ys9eCkMzOX3m4H__1Sc5CWjEC-1eqeV7t9_V8qoZrC9eaPMW6VU55r-idhoN7im61t3IjYPyDNxyvxLrZ5Vw0bgJRWuzRaY4QZlApp2BSXkKKmyTIhxhPBbzpRppr9QaclySfJ2B0yrVirBNO0l5Yo3BcYJ5RXMNNUlE2TJe64483PxNMHE-OJ-n4mfl59_XFw119--fL04v26C1V1t2tDbEUYbY0DVBdM6E63qjOvcmHoE5UxyNtpkgx7G-GHQKcQUjNatTrbt2jPx-nh3W5bbHXL1M3HAaYKMy469GZzrW3MAX92DwAGmVCAHYr8tNEPZe70GZXSnVu7jkQtlYS6YfKB6F0Ita1ReK3-owN9V4A_5erXOoQLfr3b3n_3w4BHv09HDNas_hMVzIMwBIxUM1ceFHrnwD61wobc |
CODEN | IJNMAG |
CitedBy_id | crossref_primary_10_1016_j_chaos_2019_06_031 crossref_primary_10_1016_j_ijnonlinmec_2024_104993 crossref_primary_10_1177_1077546312456057 crossref_primary_10_1016_j_ijnonlinmec_2015_02_002 crossref_primary_10_1007_s10409_007_0079_0 crossref_primary_10_1016_j_apm_2016_06_009 crossref_primary_10_1007_s10483_024_3189_8 crossref_primary_10_1016_j_probengmech_2005_05_001 crossref_primary_10_1016_j_jsv_2004_01_008 crossref_primary_10_1115_1_2193137 crossref_primary_10_1016_j_mechrescom_2008_06_004 crossref_primary_10_1016_j_jsv_2008_02_021 crossref_primary_10_1177_10775463241248979 crossref_primary_10_1177_1077546307086893 crossref_primary_10_1016_j_probengmech_2009_06_001 crossref_primary_10_1007_s10409_007_0087_0 crossref_primary_10_1016_j_ijnonlinmec_2009_09_002 crossref_primary_10_1007_s00707_008_0091_x crossref_primary_10_1007_s11071_014_1727_0 crossref_primary_10_1142_S0217984918503396 crossref_primary_10_1115_1_4042277 crossref_primary_10_2478_s13540_013_0013_z crossref_primary_10_1007_s00419_008_0218_5 crossref_primary_10_1007_s00707_011_0533_8 crossref_primary_10_1007_s11431_010_4070_9 crossref_primary_10_1115_1_4054437 crossref_primary_10_1007_s00419_009_0346_6 crossref_primary_10_1007_s11431_011_4474_1 crossref_primary_10_1016_j_probengmech_2010_07_008 crossref_primary_10_1007_s11071_025_10866_1 crossref_primary_10_1007_s10409_008_0140_7 crossref_primary_10_1016_j_probengmech_2004_04_004 crossref_primary_10_1016_S0022_460X_03_00746_6 crossref_primary_10_1007_s00419_013_0788_8 crossref_primary_10_1016_j_ijnonlinmec_2004_02_004 crossref_primary_10_1016_j_probengmech_2008_04_002 crossref_primary_10_1177_1077546308091456 |
Cites_doi | 10.1007/BF02875989 10.1002/zamm.19790590203 10.1061/JMCEA3.0002165 10.1115/1.2787267 10.1016/0020-7462(82)90001-4 10.1115/1.1460912 10.1016/0266-8920(86)90008-1 10.1080/00207177308932489 10.1061/(ASCE)0733-9399(1984)110:1(20) 10.1016/S0020-7462(00)00006-8 10.1115/1.2901427 10.1115/1.2789009 10.1061/(ASCE)0733-9399(2000)126:10(1027) 10.1016/0022-460X(78)90571-0 10.1016/S0020-7462(01)00030-0 10.1016/S0022-460X(86)80020-7 10.1023/A:1026527404183 10.1016/S0020-7462(01)00018-X 10.1115/1.3423390 |
ContentType | Journal Article |
Copyright | 2002 Elsevier Science Ltd 2003 INIST-CNRS |
Copyright_xml | – notice: 2002 Elsevier Science Ltd – notice: 2003 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7TB 8FD FR3 KR7 |
DOI | 10.1016/S0020-7462(02)00058-6 |
DatabaseName | CrossRef Pascal-Francis Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Physics |
EISSN | 1878-5638 |
EndPage | 1148 |
ExternalDocumentID | 14622150 10_1016_S0020_7462_02_00058_6 S0020746202000586 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMJ HMV HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M25 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SME SPC SPCBC SPD SPG SSQ SST SSZ T5K T9H TN5 UNMZH VH1 WUQ XFK XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7TB 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c415t-3c64bab4ddce05c2382d4052858bf6ea082f84d4f4c17bd971fcdfc21131f4353 |
IEDL.DBID | AIKHN |
ISSN | 0020-7462 |
IngestDate | Mon Jul 21 11:49:41 EDT 2025 Mon Jul 21 09:15:07 EDT 2025 Thu Apr 24 23:00:48 EDT 2025 Tue Jul 01 01:06:30 EDT 2025 Fri Feb 23 02:34:35 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | First-passage time Non-linear system Stochastic excitation First-passage failure Stochastic optimal control Dynamical programming Reliability Stochastic averaging Averaging method Itô equation Probabilistic approach Random excitation Rupture Modeling Stochastic integral First passage time Hamiltonian mechanics Hamiltonian system Dynamic programming Random vibration |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-3c64bab4ddce05c2382d4052858bf6ea082f84d4f4c17bd971fcdfc21131f4353 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | http://dspace.imech.ac.cn/bitstream/311007/17571/1/id_185.pdf |
PQID | 27886325 |
PQPubID | 23500 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_27886325 pascalfrancis_primary_14622150 crossref_citationtrail_10_1016_S0020_7462_02_00058_6 crossref_primary_10_1016_S0020_7462_02_00058_6 elsevier_sciencedirect_doi_10_1016_S0020_7462_02_00058_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2003-10-01 |
PublicationDateYYYYMMDD | 2003-10-01 |
PublicationDate_xml | – month: 10 year: 2003 text: 2003-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of non-linear mechanics |
PublicationYear | 2003 |
Publisher | Elsevier Ltd Elsevier Science |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science |
References | Roberts (BIB7) 1976; 102 W.Q. Zhu, Y. Lei, First passage time for state transition of randomly excited systems, Proceedings of the 47th Session of International Statistical Institute, Vol. LIII, Book 3, 1989, pp. 517–531 (Invited Papers). Cox, Miller (BIB2) 1965 Roberts (BIB9) 1986; 1 Zhu, Huang, Suzuki (BIB23) 2002; 37 Zhu, Ying, Soong (BIB19) 2001; 24 Ariaratnam, Tam (BIB5) 1979; 59 W.Q. Zhu, Z.L. Huang, M.L. Deng, Feedback minimization of first-passage failure of quasi integrable Hamiltonian systems, Optional Control Applications and Methods, submitted for publication. Zhu, Ying, Ni, Ko (BIB22) 2000; 126 Gan, Zhu (BIB16) 2001; 36 W.Q. Zhu, M.L. Deng, Z.L. Huang, First-passage failure of quasi integrable Hamiltonian systems, J. Appl. Mech. ASME, 69 (2000), in press. Zhu, Huang, Deng (BIB20) 2002; 37 Zhu, Huang, Yang (BIB15) 1997; 64 Ariaratnam, Pi (BIB3) 1973; 18 Lennox, Fraser (BIB4) 1974; 41 Zhu, Yang (BIB14) 1997; 64 Afanas'ev, Kolmanovski, Nosov (BIB24) 1996 Spanos, Solomos (BIB6) 1984; 110 Roberts (BIB10) 1986; 109 Spanos (BIB11) 1982; 17 Roberts (BIB8) 1978; 56 Bharucha-Reid (BIB1) 1960 Cai, Lin (BIB13) 1994; 61 Zhu, Ying (BIB18) 1999; 42 Zhu (10.1016/S0020-7462(02)00058-6_BIB19) 2001; 24 Spanos (10.1016/S0020-7462(02)00058-6_BIB11) 1982; 17 Gan (10.1016/S0020-7462(02)00058-6_BIB16) 2001; 36 Zhu (10.1016/S0020-7462(02)00058-6_BIB20) 2002; 37 Spanos (10.1016/S0020-7462(02)00058-6_BIB6) 1984; 110 Roberts (10.1016/S0020-7462(02)00058-6_BIB9) 1986; 1 Cai (10.1016/S0020-7462(02)00058-6_BIB13) 1994; 61 Zhu (10.1016/S0020-7462(02)00058-6_BIB15) 1997; 64 Zhu (10.1016/S0020-7462(02)00058-6_BIB14) 1997; 64 Roberts (10.1016/S0020-7462(02)00058-6_BIB7) 1976; 102 10.1016/S0020-7462(02)00058-6_BIB21 Afanas'ev (10.1016/S0020-7462(02)00058-6_BIB24) 1996 Cox (10.1016/S0020-7462(02)00058-6_BIB2) 1965 Ariaratnam (10.1016/S0020-7462(02)00058-6_BIB3) 1973; 18 Ariaratnam (10.1016/S0020-7462(02)00058-6_BIB5) 1979; 59 Lennox (10.1016/S0020-7462(02)00058-6_BIB4) 1974; 41 Roberts (10.1016/S0020-7462(02)00058-6_BIB8) 1978; 56 Roberts (10.1016/S0020-7462(02)00058-6_BIB10) 1986; 109 10.1016/S0020-7462(02)00058-6_BIB17 Zhu (10.1016/S0020-7462(02)00058-6_BIB23) 2002; 37 10.1016/S0020-7462(02)00058-6_BIB12 Bharucha-Reid (10.1016/S0020-7462(02)00058-6_BIB1) 1960 Zhu (10.1016/S0020-7462(02)00058-6_BIB18) 1999; 42 Zhu (10.1016/S0020-7462(02)00058-6_BIB22) 2000; 126 |
References_xml | – volume: 61 start-page: 93 year: 1994 end-page: 99 ident: BIB13 article-title: On statistics of first-passage failure publication-title: J. Appl. Mech. ASME – year: 1960 ident: BIB1 publication-title: Elements of Markov Processes and their Applications – volume: 1 start-page: 40 year: 1986 end-page: 48 ident: BIB9 article-title: Response of an oscillator with nonlinear damping and a softening spring to non-white random excitation publication-title: Prob. Eng. Mech. – volume: 37 start-page: 419 year: 2002 end-page: 437 ident: BIB23 article-title: Stochastic averaging and Lyapunov exponent of quasi partially integrable Hamiltonian system publication-title: Int. J. Non-Linear Mech. – reference: W.Q. Zhu, M.L. Deng, Z.L. Huang, First-passage failure of quasi integrable Hamiltonian systems, J. Appl. Mech. ASME, 69 (2000), in press. – volume: 64 start-page: 157 year: 1997 end-page: 164 ident: BIB14 article-title: Stochastic averaging of quasi-non-integrable-Hamiltonian systems publication-title: J. Appl. Mech. ASME – volume: 102 start-page: 851 year: 1976 end-page: 866 ident: BIB7 article-title: First passage probability for nonlinear oscillator publication-title: J. Eng. Mech. Div. ASCE – volume: 18 start-page: 89 year: 1973 end-page: 96 ident: BIB3 article-title: On the first-passage time for envelope crossing for a linear oscillator publication-title: Int. J. Control – year: 1996 ident: BIB24 publication-title: Mathematical Theory of Control System Design – volume: 41 start-page: 793 year: 1974 end-page: 797 ident: BIB4 article-title: On the first passage distribution for the envelope of a non-stationary narrow-band stochastic process publication-title: J. Appl. Mech. ASME – volume: 42 start-page: 1213 year: 1999 end-page: 1219 ident: BIB18 article-title: Optimal nonlinear feedback control of quasi-Hamiltonian systems publication-title: Sci. China (Ser. A) – year: 1965 ident: BIB2 publication-title: The Theory of Stochastic Processes – volume: 17 start-page: 303 year: 1982 end-page: 317 ident: BIB11 article-title: Survival probability of non-linear oscillators subjected to broad-band random disturbance publication-title: Int. J. Non-Linear Mech. – volume: 24 start-page: 31 year: 2001 end-page: 51 ident: BIB19 article-title: An optimal nonlinear feedback control strategy for randomly excited structural systems publication-title: Nonlinear Dyn. – volume: 37 start-page: 1057 year: 2002 end-page: 1071 ident: BIB20 article-title: Feedback minimization of first-passage failure of quasi non-integrable Hamiltonian systems publication-title: Int. J. Non-Linear Mech. – reference: W.Q. Zhu, Z.L. Huang, M.L. Deng, Feedback minimization of first-passage failure of quasi integrable Hamiltonian systems, Optional Control Applications and Methods, submitted for publication. – volume: 110 start-page: 20 year: 1984 end-page: 36 ident: BIB6 article-title: Barrier crossing due to transient excitation publication-title: J. Eng. Mech. Div. ASCE – reference: W.Q. Zhu, Y. Lei, First passage time for state transition of randomly excited systems, Proceedings of the 47th Session of International Statistical Institute, Vol. LIII, Book 3, 1989, pp. 517–531 (Invited Papers). – volume: 59 start-page: 79 year: 1979 end-page: 84 ident: BIB5 article-title: Random vibration and stability of a linear parametrically excited oscillator publication-title: Z. Angew. Math. Mech. – volume: 64 start-page: 975 year: 1997 end-page: 984 ident: BIB15 article-title: Stochastic averaging of quasi-integrable Hamiltonian systems publication-title: J. Appl. Mech. ASME – volume: 126 start-page: 1027 year: 2000 end-page: 1032 ident: BIB22 article-title: Optimal nonlinear stochastic control of hysteretic systems publication-title: J. Eng. Mech. ASCE – volume: 56 start-page: 71 year: 1978 end-page: 86 ident: BIB8 article-title: First-passage time for oscillator with nonlinear restoring forces publication-title: J. Sound Vib. – volume: 109 start-page: 33 year: 1986 end-page: 50 ident: BIB10 article-title: First-passage time for randomly excited nonlinear oscillator publication-title: J. Sound Vib. – volume: 36 start-page: 209 year: 2001 end-page: 220 ident: BIB16 article-title: First-passage failure of quasi-non-integrable-Hamiltonian systems publication-title: Int. J. Non-Linear Mech. – volume: 42 start-page: 1213 year: 1999 ident: 10.1016/S0020-7462(02)00058-6_BIB18 article-title: Optimal nonlinear feedback control of quasi-Hamiltonian systems publication-title: Sci. China (Ser. A) doi: 10.1007/BF02875989 – volume: 59 start-page: 79 year: 1979 ident: 10.1016/S0020-7462(02)00058-6_BIB5 article-title: Random vibration and stability of a linear parametrically excited oscillator publication-title: Z. Angew. Math. Mech. doi: 10.1002/zamm.19790590203 – volume: 102 start-page: 851 year: 1976 ident: 10.1016/S0020-7462(02)00058-6_BIB7 article-title: First passage probability for nonlinear oscillator publication-title: J. Eng. Mech. Div. ASCE doi: 10.1061/JMCEA3.0002165 – volume: 64 start-page: 157 year: 1997 ident: 10.1016/S0020-7462(02)00058-6_BIB14 article-title: Stochastic averaging of quasi-non-integrable-Hamiltonian systems publication-title: J. Appl. Mech. ASME doi: 10.1115/1.2787267 – volume: 17 start-page: 303 year: 1982 ident: 10.1016/S0020-7462(02)00058-6_BIB11 article-title: Survival probability of non-linear oscillators subjected to broad-band random disturbance publication-title: Int. J. Non-Linear Mech. doi: 10.1016/0020-7462(82)90001-4 – ident: 10.1016/S0020-7462(02)00058-6_BIB17 doi: 10.1115/1.1460912 – ident: 10.1016/S0020-7462(02)00058-6_BIB21 – volume: 1 start-page: 40 year: 1986 ident: 10.1016/S0020-7462(02)00058-6_BIB9 article-title: Response of an oscillator with nonlinear damping and a softening spring to non-white random excitation publication-title: Prob. Eng. Mech. doi: 10.1016/0266-8920(86)90008-1 – year: 1996 ident: 10.1016/S0020-7462(02)00058-6_BIB24 – year: 1960 ident: 10.1016/S0020-7462(02)00058-6_BIB1 – volume: 18 start-page: 89 year: 1973 ident: 10.1016/S0020-7462(02)00058-6_BIB3 article-title: On the first-passage time for envelope crossing for a linear oscillator publication-title: Int. J. Control doi: 10.1080/00207177308932489 – year: 1965 ident: 10.1016/S0020-7462(02)00058-6_BIB2 – volume: 110 start-page: 20 year: 1984 ident: 10.1016/S0020-7462(02)00058-6_BIB6 article-title: Barrier crossing due to transient excitation publication-title: J. Eng. Mech. Div. ASCE doi: 10.1061/(ASCE)0733-9399(1984)110:1(20) – volume: 36 start-page: 209 year: 2001 ident: 10.1016/S0020-7462(02)00058-6_BIB16 article-title: First-passage failure of quasi-non-integrable-Hamiltonian systems publication-title: Int. J. Non-Linear Mech. doi: 10.1016/S0020-7462(00)00006-8 – ident: 10.1016/S0020-7462(02)00058-6_BIB12 – volume: 61 start-page: 93 year: 1994 ident: 10.1016/S0020-7462(02)00058-6_BIB13 article-title: On statistics of first-passage failure publication-title: J. Appl. Mech. ASME doi: 10.1115/1.2901427 – volume: 64 start-page: 975 year: 1997 ident: 10.1016/S0020-7462(02)00058-6_BIB15 article-title: Stochastic averaging of quasi-integrable Hamiltonian systems publication-title: J. Appl. Mech. ASME doi: 10.1115/1.2789009 – volume: 126 start-page: 1027 year: 2000 ident: 10.1016/S0020-7462(02)00058-6_BIB22 article-title: Optimal nonlinear stochastic control of hysteretic systems publication-title: J. Eng. Mech. ASCE doi: 10.1061/(ASCE)0733-9399(2000)126:10(1027) – volume: 56 start-page: 71 year: 1978 ident: 10.1016/S0020-7462(02)00058-6_BIB8 article-title: First-passage time for oscillator with nonlinear restoring forces publication-title: J. Sound Vib. doi: 10.1016/0022-460X(78)90571-0 – volume: 37 start-page: 1057 year: 2002 ident: 10.1016/S0020-7462(02)00058-6_BIB20 article-title: Feedback minimization of first-passage failure of quasi non-integrable Hamiltonian systems publication-title: Int. J. Non-Linear Mech. doi: 10.1016/S0020-7462(01)00030-0 – volume: 109 start-page: 33 year: 1986 ident: 10.1016/S0020-7462(02)00058-6_BIB10 article-title: First-passage time for randomly excited nonlinear oscillator publication-title: J. Sound Vib. doi: 10.1016/S0022-460X(86)80020-7 – volume: 24 start-page: 31 year: 2001 ident: 10.1016/S0020-7462(02)00058-6_BIB19 article-title: An optimal nonlinear feedback control strategy for randomly excited structural systems publication-title: Nonlinear Dyn. doi: 10.1023/A:1026527404183 – volume: 37 start-page: 419 year: 2002 ident: 10.1016/S0020-7462(02)00058-6_BIB23 article-title: Stochastic averaging and Lyapunov exponent of quasi partially integrable Hamiltonian system publication-title: Int. J. Non-Linear Mech. doi: 10.1016/S0020-7462(01)00018-X – volume: 41 start-page: 793 year: 1974 ident: 10.1016/S0020-7462(02)00058-6_BIB4 article-title: On the first passage distribution for the envelope of a non-stationary narrow-band stochastic process publication-title: J. Appl. Mech. ASME doi: 10.1115/1.3423390 |
SSID | ssj0016407 |
Score | 1.8564942 |
Snippet | An
n degree-of-freedom Hamiltonian system with
r
(1<r<n)
independent first integrals which are in involution is called partially integrable Hamiltonian system.... An n degree-of-freedom Hamiltonian system with *g(1 < *g < n) independent first integrals which are in involution is called partially integrable Hamiltonian... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1133 |
SubjectTerms | Dynamical programming Exact sciences and technology First-passage failure First-passage time Fracture mechanics (crack, fatigue, damage...) Fracture mechanics, fatigue and cracks Fundamental areas of phenomenology (including applications) Non-linear system Physics Reliability Solid mechanics Stochastic averaging Stochastic excitation Stochastic optimal control Structural and continuum mechanics |
Title | First-passage failure and its feedback minimization of quasi-partially integrable Hamiltonian systems |
URI | https://dx.doi.org/10.1016/S0020-7462(02)00058-6 https://www.proquest.com/docview/27886325 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH-CcgFNiPGhFbbOBw7bwZA4ieMeEVrVbYLTkLhZ_pQiStot7YELfzvPidsOIYTEMVaeHfn38t4v8fsAOHUejVxRFHQohKe5dyXVLimp9VnBvWGaiZA7fHXNxzf5r9vidgMul7kwIawy2v7OprfWOo6cx908n1VVyPFloVkGfr0H4iH4JmyxbMhRtbcufv4eX68OE8JZVRfpkdAgsE7k6SZpB78l7Hs7D-WvuagPM9Xgxvmu48UL4916pNEe7EYqSS66p_0IG67eh53_Cgzi1dWqKmtzAG5UIdejOH-IJiNeVSEmnajakmreEI-OTCtzR0K5kfuYn0mmnvxdqKZCMVxITSYPJJaY0BNHxuH_CNJHVDLSFYVuDuFm9OPP5ZjGNgvUoPee08zwXCudW2tcUhj04cwijWOiENpzp5AkeJHb3OcmLbUdlqk3FmFM0yz1yLayI-jV09p9AoLcMTUIiNAlShiunEF-VTKnODrL1PYhX-6sNLEGeWiFMZHrYDMERAZAZMJkC4jkfThbic26IhxvCYglbPKZNkl0FG-JDp7BvF4Q70N-lPTh6xJ3ia9iOF9RtZsuGslKIXjGiuP3r34C2-towc_Qm_9buC_IeuZ6AJtnj-kg6vYTmZn8JQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH8CdgCEpjGYKGzgA4ftYEgcxzFHhKg6oJxA4mb5U4ro0m5pD7vsb-c5SVsQmpA4xvKzI__s936J3wfAsQ-o5PI8p2dSBsqDL6jxSUFdyHIRLDNMxtjh4a0Y3POrh_xhBS7msTDRrbLT_a1Ob7R113LarebppCxjjC-LxTLw6z0SDylW4QPH4xtP58m_hZ9HGm-qWj-PhMbuyzCedoim8XvCfjSjUPE_A7U10TUuW2jrXbxS3Y096n-Cjx2RJOftu27Diq8-w-az9IL4NFzkZK13wPdLZHoUx4--ZCToMnqkE105Uk5rEtCMGW0fSUw28quLziTjQH7PdF2iGE6kR6O_pEswYUaeDOLfESSPuMVImxK63oX7_uXdxYB2RRaoRds9pZkV3GjDnbM-yS1acOaQxDGZSxOE10gRguSOB27TwrizIg3WIYhpmqUBuVb2BdaqceX3gCBzTC3CIU2BElZob5FdFcxrgaYydT3g85VVtstAHgthjNTS1QwBUREQlTDVAKJED04WYpM2BcdbAnIOm3qxlxSaibdED1_AvJwQ-yE7SnpwNMdd4UGMtyu68uNZrVghpchYvv_-2Y9gfXA3vFE3P2-vD2Bj6Tf4Fdamf2b-G_KfqTls9vcTn2j86Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First-passage+failure+and+its+feedback+minimization+of+quasi-partially+integrable+Hamiltonian+systems&rft.jtitle=International+journal+of+non-linear+mechanics&rft.au=Zhu%2C+W.Q.&rft.au=Huang%2C+Z.L.&rft.au=Deng%2C+M.L.&rft.date=2003-10-01&rft.issn=0020-7462&rft.volume=38&rft.issue=8&rft.spage=1133&rft.epage=1148&rft_id=info:doi/10.1016%2FS0020-7462%2802%2900058-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0020_7462_02_00058_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7462&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7462&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7462&client=summon |