First-passage failure and its feedback minimization of quasi-partially integrable Hamiltonian systems

An n degree-of-freedom Hamiltonian system with r (1<r<n) independent first integrals which are in involution is called partially integrable Hamiltonian system. A partially integrable Hamiltonian system subject to light dampings and weak stochastic excitations is called quasi-partially integrab...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of non-linear mechanics Vol. 38; no. 8; pp. 1133 - 1148
Main Authors Zhu, W.Q., Huang, Z.L., Deng, M.L.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.10.2003
Elsevier Science
Subjects
Online AccessGet full text
ISSN0020-7462
1878-5638
DOI10.1016/S0020-7462(02)00058-6

Cover

Loading…
Abstract An n degree-of-freedom Hamiltonian system with r (1<r<n) independent first integrals which are in involution is called partially integrable Hamiltonian system. A partially integrable Hamiltonian system subject to light dampings and weak stochastic excitations is called quasi-partially integrable Hamiltonian system. In the present paper, the procedures for studying the first-passage failure and its feedback minimization of quasi-partially integrable Hamiltonian systems are proposed. First, the stochastic averaging method for quasi-partially integrable Hamiltonian systems is briefly reviewed. Then, based on the averaged Itô equations, a backward Kolmogorov equation governing the conditional reliability function, a set of generalized Pontryagin equations governing the conditional moments of first-passage time and their boundary and initial conditions are established. After that, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximization of reliability and of maximization of mean first-passage time are formulated. The relationship between the backward Kolmogorov equation and the dynamical programming equation for reliability maximization, and that between the Pontryagin equation and the dynamical programming equation for maximization of mean first-passage time are discussed. Finally, an example is worked out to illustrate the proposed procedures and the effectiveness of feedback control in reducing first-passage failure.
AbstractList An n degree-of-freedom Hamiltonian system with *g(1 < *g < n) independent first integrals which are in involution is called partially integrable Hamiltonian system. A partially integrable Hamiltonian system subject to light dampings and weak stochastic excitations is called quasi-partially integrable Hamiltonian system. In the present paper, the procedures for studying the first-passage failure and its feedback minimization of quasi-partially integrable Hamiltonian systems are proposed. First, the stochastic averaging method for quasi-partially integrable Hamiltonian systems is briefly reviewed. Then, based on the averaged Ito equations, a backward Kolmogorov equation governing the conditional reliability function, a set of generalized Pontryagin equations governing the conditional moments of first-passage time and their boundary and initial conditions are established. After that, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximization of reliability and of maximization of mean first-passage time are formulated. The relationship between the backward Kolmogorov equation and the dynamical programming equation for reliability maximization, and that between the Pontryagin equation and the dynamical programming equation for maximization of mean first-passage time are discussed. Finally, an example is worked out to illustrate the proposed procedures and the effectiveness of feedback control in reducing first-passage failure.
An n degree-of-freedom Hamiltonian system with r (1<r<n) independent first integrals which are in involution is called partially integrable Hamiltonian system. A partially integrable Hamiltonian system subject to light dampings and weak stochastic excitations is called quasi-partially integrable Hamiltonian system. In the present paper, the procedures for studying the first-passage failure and its feedback minimization of quasi-partially integrable Hamiltonian systems are proposed. First, the stochastic averaging method for quasi-partially integrable Hamiltonian systems is briefly reviewed. Then, based on the averaged Itô equations, a backward Kolmogorov equation governing the conditional reliability function, a set of generalized Pontryagin equations governing the conditional moments of first-passage time and their boundary and initial conditions are established. After that, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximization of reliability and of maximization of mean first-passage time are formulated. The relationship between the backward Kolmogorov equation and the dynamical programming equation for reliability maximization, and that between the Pontryagin equation and the dynamical programming equation for maximization of mean first-passage time are discussed. Finally, an example is worked out to illustrate the proposed procedures and the effectiveness of feedback control in reducing first-passage failure.
Author Deng, M.L.
Zhu, W.Q.
Huang, Z.L.
Author_xml – sequence: 1
  givenname: W.Q.
  surname: Zhu
  fullname: Zhu, W.Q.
  email: wqzhu@yahoo.com
  organization: Department of Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
– sequence: 2
  givenname: Z.L.
  surname: Huang
  fullname: Huang, Z.L.
  organization: Department of Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
– sequence: 3
  givenname: M.L.
  surname: Deng
  fullname: Deng, M.L.
  organization: Department of Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14622150$$DView record in Pascal Francis
BookMark eNqFkUFrFTEQx4NU8LX6EYRcFD2sJtnsbsSDlGKtUPCgnsNsMimju9nXTJ7w_PTu6ys9eCkMzOX3m4H__1Sc5CWjEC-1eqeV7t9_V8qoZrC9eaPMW6VU55r-idhoN7im61t3IjYPyDNxyvxLrZ5Vw0bgJRWuzRaY4QZlApp2BSXkKKmyTIhxhPBbzpRppr9QaclySfJ2B0yrVirBNO0l5Yo3BcYJ5RXMNNUlE2TJe64483PxNMHE-OJ-n4mfl59_XFw119--fL04v26C1V1t2tDbEUYbY0DVBdM6E63qjOvcmHoE5UxyNtpkgx7G-GHQKcQUjNatTrbt2jPx-nh3W5bbHXL1M3HAaYKMy469GZzrW3MAX92DwAGmVCAHYr8tNEPZe70GZXSnVu7jkQtlYS6YfKB6F0Ita1ReK3-owN9V4A_5erXOoQLfr3b3n_3w4BHv09HDNas_hMVzIMwBIxUM1ceFHrnwD61wobc
CODEN IJNMAG
CitedBy_id crossref_primary_10_1016_j_chaos_2019_06_031
crossref_primary_10_1016_j_ijnonlinmec_2024_104993
crossref_primary_10_1177_1077546312456057
crossref_primary_10_1016_j_ijnonlinmec_2015_02_002
crossref_primary_10_1007_s10409_007_0079_0
crossref_primary_10_1016_j_apm_2016_06_009
crossref_primary_10_1007_s10483_024_3189_8
crossref_primary_10_1016_j_probengmech_2005_05_001
crossref_primary_10_1016_j_jsv_2004_01_008
crossref_primary_10_1115_1_2193137
crossref_primary_10_1016_j_mechrescom_2008_06_004
crossref_primary_10_1016_j_jsv_2008_02_021
crossref_primary_10_1177_10775463241248979
crossref_primary_10_1177_1077546307086893
crossref_primary_10_1016_j_probengmech_2009_06_001
crossref_primary_10_1007_s10409_007_0087_0
crossref_primary_10_1016_j_ijnonlinmec_2009_09_002
crossref_primary_10_1007_s00707_008_0091_x
crossref_primary_10_1007_s11071_014_1727_0
crossref_primary_10_1142_S0217984918503396
crossref_primary_10_1115_1_4042277
crossref_primary_10_2478_s13540_013_0013_z
crossref_primary_10_1007_s00419_008_0218_5
crossref_primary_10_1007_s00707_011_0533_8
crossref_primary_10_1007_s11431_010_4070_9
crossref_primary_10_1115_1_4054437
crossref_primary_10_1007_s00419_009_0346_6
crossref_primary_10_1007_s11431_011_4474_1
crossref_primary_10_1016_j_probengmech_2010_07_008
crossref_primary_10_1007_s11071_025_10866_1
crossref_primary_10_1007_s10409_008_0140_7
crossref_primary_10_1016_j_probengmech_2004_04_004
crossref_primary_10_1016_S0022_460X_03_00746_6
crossref_primary_10_1007_s00419_013_0788_8
crossref_primary_10_1016_j_ijnonlinmec_2004_02_004
crossref_primary_10_1016_j_probengmech_2008_04_002
crossref_primary_10_1177_1077546308091456
Cites_doi 10.1007/BF02875989
10.1002/zamm.19790590203
10.1061/JMCEA3.0002165
10.1115/1.2787267
10.1016/0020-7462(82)90001-4
10.1115/1.1460912
10.1016/0266-8920(86)90008-1
10.1080/00207177308932489
10.1061/(ASCE)0733-9399(1984)110:1(20)
10.1016/S0020-7462(00)00006-8
10.1115/1.2901427
10.1115/1.2789009
10.1061/(ASCE)0733-9399(2000)126:10(1027)
10.1016/0022-460X(78)90571-0
10.1016/S0020-7462(01)00030-0
10.1016/S0022-460X(86)80020-7
10.1023/A:1026527404183
10.1016/S0020-7462(01)00018-X
10.1115/1.3423390
ContentType Journal Article
Copyright 2002 Elsevier Science Ltd
2003 INIST-CNRS
Copyright_xml – notice: 2002 Elsevier Science Ltd
– notice: 2003 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TB
8FD
FR3
KR7
DOI 10.1016/S0020-7462(02)00058-6
DatabaseName CrossRef
Pascal-Francis
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Physics
EISSN 1878-5638
EndPage 1148
ExternalDocumentID 14622150
10_1016_S0020_7462_02_00058_6
S0020746202000586
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMJ
HMV
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M25
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SME
SPC
SPCBC
SPD
SPG
SSQ
SST
SSZ
T5K
T9H
TN5
UNMZH
VH1
WUQ
XFK
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c415t-3c64bab4ddce05c2382d4052858bf6ea082f84d4f4c17bd971fcdfc21131f4353
IEDL.DBID AIKHN
ISSN 0020-7462
IngestDate Mon Jul 21 11:49:41 EDT 2025
Mon Jul 21 09:15:07 EDT 2025
Thu Apr 24 23:00:48 EDT 2025
Tue Jul 01 01:06:30 EDT 2025
Fri Feb 23 02:34:35 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords First-passage time
Non-linear system
Stochastic excitation
First-passage failure
Stochastic optimal control
Dynamical programming
Reliability
Stochastic averaging
Averaging method
Itô equation
Probabilistic approach
Random excitation
Rupture
Modeling
Stochastic integral
First passage time
Hamiltonian mechanics
Hamiltonian system
Dynamic programming
Random vibration
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-3c64bab4ddce05c2382d4052858bf6ea082f84d4f4c17bd971fcdfc21131f4353
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://dspace.imech.ac.cn/bitstream/311007/17571/1/id_185.pdf
PQID 27886325
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_27886325
pascalfrancis_primary_14622150
crossref_citationtrail_10_1016_S0020_7462_02_00058_6
crossref_primary_10_1016_S0020_7462_02_00058_6
elsevier_sciencedirect_doi_10_1016_S0020_7462_02_00058_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-10-01
PublicationDateYYYYMMDD 2003-10-01
PublicationDate_xml – month: 10
  year: 2003
  text: 2003-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of non-linear mechanics
PublicationYear 2003
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References Roberts (BIB7) 1976; 102
W.Q. Zhu, Y. Lei, First passage time for state transition of randomly excited systems, Proceedings of the 47th Session of International Statistical Institute, Vol. LIII, Book 3, 1989, pp. 517–531 (Invited Papers).
Cox, Miller (BIB2) 1965
Roberts (BIB9) 1986; 1
Zhu, Huang, Suzuki (BIB23) 2002; 37
Zhu, Ying, Soong (BIB19) 2001; 24
Ariaratnam, Tam (BIB5) 1979; 59
W.Q. Zhu, Z.L. Huang, M.L. Deng, Feedback minimization of first-passage failure of quasi integrable Hamiltonian systems, Optional Control Applications and Methods, submitted for publication.
Zhu, Ying, Ni, Ko (BIB22) 2000; 126
Gan, Zhu (BIB16) 2001; 36
W.Q. Zhu, M.L. Deng, Z.L. Huang, First-passage failure of quasi integrable Hamiltonian systems, J. Appl. Mech. ASME, 69 (2000), in press.
Zhu, Huang, Deng (BIB20) 2002; 37
Zhu, Huang, Yang (BIB15) 1997; 64
Ariaratnam, Pi (BIB3) 1973; 18
Lennox, Fraser (BIB4) 1974; 41
Zhu, Yang (BIB14) 1997; 64
Afanas'ev, Kolmanovski, Nosov (BIB24) 1996
Spanos, Solomos (BIB6) 1984; 110
Roberts (BIB10) 1986; 109
Spanos (BIB11) 1982; 17
Roberts (BIB8) 1978; 56
Bharucha-Reid (BIB1) 1960
Cai, Lin (BIB13) 1994; 61
Zhu, Ying (BIB18) 1999; 42
Zhu (10.1016/S0020-7462(02)00058-6_BIB19) 2001; 24
Spanos (10.1016/S0020-7462(02)00058-6_BIB11) 1982; 17
Gan (10.1016/S0020-7462(02)00058-6_BIB16) 2001; 36
Zhu (10.1016/S0020-7462(02)00058-6_BIB20) 2002; 37
Spanos (10.1016/S0020-7462(02)00058-6_BIB6) 1984; 110
Roberts (10.1016/S0020-7462(02)00058-6_BIB9) 1986; 1
Cai (10.1016/S0020-7462(02)00058-6_BIB13) 1994; 61
Zhu (10.1016/S0020-7462(02)00058-6_BIB15) 1997; 64
Zhu (10.1016/S0020-7462(02)00058-6_BIB14) 1997; 64
Roberts (10.1016/S0020-7462(02)00058-6_BIB7) 1976; 102
10.1016/S0020-7462(02)00058-6_BIB21
Afanas'ev (10.1016/S0020-7462(02)00058-6_BIB24) 1996
Cox (10.1016/S0020-7462(02)00058-6_BIB2) 1965
Ariaratnam (10.1016/S0020-7462(02)00058-6_BIB3) 1973; 18
Ariaratnam (10.1016/S0020-7462(02)00058-6_BIB5) 1979; 59
Lennox (10.1016/S0020-7462(02)00058-6_BIB4) 1974; 41
Roberts (10.1016/S0020-7462(02)00058-6_BIB8) 1978; 56
Roberts (10.1016/S0020-7462(02)00058-6_BIB10) 1986; 109
10.1016/S0020-7462(02)00058-6_BIB17
Zhu (10.1016/S0020-7462(02)00058-6_BIB23) 2002; 37
10.1016/S0020-7462(02)00058-6_BIB12
Bharucha-Reid (10.1016/S0020-7462(02)00058-6_BIB1) 1960
Zhu (10.1016/S0020-7462(02)00058-6_BIB18) 1999; 42
Zhu (10.1016/S0020-7462(02)00058-6_BIB22) 2000; 126
References_xml – volume: 61
  start-page: 93
  year: 1994
  end-page: 99
  ident: BIB13
  article-title: On statistics of first-passage failure
  publication-title: J. Appl. Mech. ASME
– year: 1960
  ident: BIB1
  publication-title: Elements of Markov Processes and their Applications
– volume: 1
  start-page: 40
  year: 1986
  end-page: 48
  ident: BIB9
  article-title: Response of an oscillator with nonlinear damping and a softening spring to non-white random excitation
  publication-title: Prob. Eng. Mech.
– volume: 37
  start-page: 419
  year: 2002
  end-page: 437
  ident: BIB23
  article-title: Stochastic averaging and Lyapunov exponent of quasi partially integrable Hamiltonian system
  publication-title: Int. J. Non-Linear Mech.
– reference: W.Q. Zhu, M.L. Deng, Z.L. Huang, First-passage failure of quasi integrable Hamiltonian systems, J. Appl. Mech. ASME, 69 (2000), in press.
– volume: 64
  start-page: 157
  year: 1997
  end-page: 164
  ident: BIB14
  article-title: Stochastic averaging of quasi-non-integrable-Hamiltonian systems
  publication-title: J. Appl. Mech. ASME
– volume: 102
  start-page: 851
  year: 1976
  end-page: 866
  ident: BIB7
  article-title: First passage probability for nonlinear oscillator
  publication-title: J. Eng. Mech. Div. ASCE
– volume: 18
  start-page: 89
  year: 1973
  end-page: 96
  ident: BIB3
  article-title: On the first-passage time for envelope crossing for a linear oscillator
  publication-title: Int. J. Control
– year: 1996
  ident: BIB24
  publication-title: Mathematical Theory of Control System Design
– volume: 41
  start-page: 793
  year: 1974
  end-page: 797
  ident: BIB4
  article-title: On the first passage distribution for the envelope of a non-stationary narrow-band stochastic process
  publication-title: J. Appl. Mech. ASME
– volume: 42
  start-page: 1213
  year: 1999
  end-page: 1219
  ident: BIB18
  article-title: Optimal nonlinear feedback control of quasi-Hamiltonian systems
  publication-title: Sci. China (Ser. A)
– year: 1965
  ident: BIB2
  publication-title: The Theory of Stochastic Processes
– volume: 17
  start-page: 303
  year: 1982
  end-page: 317
  ident: BIB11
  article-title: Survival probability of non-linear oscillators subjected to broad-band random disturbance
  publication-title: Int. J. Non-Linear Mech.
– volume: 24
  start-page: 31
  year: 2001
  end-page: 51
  ident: BIB19
  article-title: An optimal nonlinear feedback control strategy for randomly excited structural systems
  publication-title: Nonlinear Dyn.
– volume: 37
  start-page: 1057
  year: 2002
  end-page: 1071
  ident: BIB20
  article-title: Feedback minimization of first-passage failure of quasi non-integrable Hamiltonian systems
  publication-title: Int. J. Non-Linear Mech.
– reference: W.Q. Zhu, Z.L. Huang, M.L. Deng, Feedback minimization of first-passage failure of quasi integrable Hamiltonian systems, Optional Control Applications and Methods, submitted for publication.
– volume: 110
  start-page: 20
  year: 1984
  end-page: 36
  ident: BIB6
  article-title: Barrier crossing due to transient excitation
  publication-title: J. Eng. Mech. Div. ASCE
– reference: W.Q. Zhu, Y. Lei, First passage time for state transition of randomly excited systems, Proceedings of the 47th Session of International Statistical Institute, Vol. LIII, Book 3, 1989, pp. 517–531 (Invited Papers).
– volume: 59
  start-page: 79
  year: 1979
  end-page: 84
  ident: BIB5
  article-title: Random vibration and stability of a linear parametrically excited oscillator
  publication-title: Z. Angew. Math. Mech.
– volume: 64
  start-page: 975
  year: 1997
  end-page: 984
  ident: BIB15
  article-title: Stochastic averaging of quasi-integrable Hamiltonian systems
  publication-title: J. Appl. Mech. ASME
– volume: 126
  start-page: 1027
  year: 2000
  end-page: 1032
  ident: BIB22
  article-title: Optimal nonlinear stochastic control of hysteretic systems
  publication-title: J. Eng. Mech. ASCE
– volume: 56
  start-page: 71
  year: 1978
  end-page: 86
  ident: BIB8
  article-title: First-passage time for oscillator with nonlinear restoring forces
  publication-title: J. Sound Vib.
– volume: 109
  start-page: 33
  year: 1986
  end-page: 50
  ident: BIB10
  article-title: First-passage time for randomly excited nonlinear oscillator
  publication-title: J. Sound Vib.
– volume: 36
  start-page: 209
  year: 2001
  end-page: 220
  ident: BIB16
  article-title: First-passage failure of quasi-non-integrable-Hamiltonian systems
  publication-title: Int. J. Non-Linear Mech.
– volume: 42
  start-page: 1213
  year: 1999
  ident: 10.1016/S0020-7462(02)00058-6_BIB18
  article-title: Optimal nonlinear feedback control of quasi-Hamiltonian systems
  publication-title: Sci. China (Ser. A)
  doi: 10.1007/BF02875989
– volume: 59
  start-page: 79
  year: 1979
  ident: 10.1016/S0020-7462(02)00058-6_BIB5
  article-title: Random vibration and stability of a linear parametrically excited oscillator
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.19790590203
– volume: 102
  start-page: 851
  year: 1976
  ident: 10.1016/S0020-7462(02)00058-6_BIB7
  article-title: First passage probability for nonlinear oscillator
  publication-title: J. Eng. Mech. Div. ASCE
  doi: 10.1061/JMCEA3.0002165
– volume: 64
  start-page: 157
  year: 1997
  ident: 10.1016/S0020-7462(02)00058-6_BIB14
  article-title: Stochastic averaging of quasi-non-integrable-Hamiltonian systems
  publication-title: J. Appl. Mech. ASME
  doi: 10.1115/1.2787267
– volume: 17
  start-page: 303
  year: 1982
  ident: 10.1016/S0020-7462(02)00058-6_BIB11
  article-title: Survival probability of non-linear oscillators subjected to broad-band random disturbance
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/0020-7462(82)90001-4
– ident: 10.1016/S0020-7462(02)00058-6_BIB17
  doi: 10.1115/1.1460912
– ident: 10.1016/S0020-7462(02)00058-6_BIB21
– volume: 1
  start-page: 40
  year: 1986
  ident: 10.1016/S0020-7462(02)00058-6_BIB9
  article-title: Response of an oscillator with nonlinear damping and a softening spring to non-white random excitation
  publication-title: Prob. Eng. Mech.
  doi: 10.1016/0266-8920(86)90008-1
– year: 1996
  ident: 10.1016/S0020-7462(02)00058-6_BIB24
– year: 1960
  ident: 10.1016/S0020-7462(02)00058-6_BIB1
– volume: 18
  start-page: 89
  year: 1973
  ident: 10.1016/S0020-7462(02)00058-6_BIB3
  article-title: On the first-passage time for envelope crossing for a linear oscillator
  publication-title: Int. J. Control
  doi: 10.1080/00207177308932489
– year: 1965
  ident: 10.1016/S0020-7462(02)00058-6_BIB2
– volume: 110
  start-page: 20
  year: 1984
  ident: 10.1016/S0020-7462(02)00058-6_BIB6
  article-title: Barrier crossing due to transient excitation
  publication-title: J. Eng. Mech. Div. ASCE
  doi: 10.1061/(ASCE)0733-9399(1984)110:1(20)
– volume: 36
  start-page: 209
  year: 2001
  ident: 10.1016/S0020-7462(02)00058-6_BIB16
  article-title: First-passage failure of quasi-non-integrable-Hamiltonian systems
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/S0020-7462(00)00006-8
– ident: 10.1016/S0020-7462(02)00058-6_BIB12
– volume: 61
  start-page: 93
  year: 1994
  ident: 10.1016/S0020-7462(02)00058-6_BIB13
  article-title: On statistics of first-passage failure
  publication-title: J. Appl. Mech. ASME
  doi: 10.1115/1.2901427
– volume: 64
  start-page: 975
  year: 1997
  ident: 10.1016/S0020-7462(02)00058-6_BIB15
  article-title: Stochastic averaging of quasi-integrable Hamiltonian systems
  publication-title: J. Appl. Mech. ASME
  doi: 10.1115/1.2789009
– volume: 126
  start-page: 1027
  year: 2000
  ident: 10.1016/S0020-7462(02)00058-6_BIB22
  article-title: Optimal nonlinear stochastic control of hysteretic systems
  publication-title: J. Eng. Mech. ASCE
  doi: 10.1061/(ASCE)0733-9399(2000)126:10(1027)
– volume: 56
  start-page: 71
  year: 1978
  ident: 10.1016/S0020-7462(02)00058-6_BIB8
  article-title: First-passage time for oscillator with nonlinear restoring forces
  publication-title: J. Sound Vib.
  doi: 10.1016/0022-460X(78)90571-0
– volume: 37
  start-page: 1057
  year: 2002
  ident: 10.1016/S0020-7462(02)00058-6_BIB20
  article-title: Feedback minimization of first-passage failure of quasi non-integrable Hamiltonian systems
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/S0020-7462(01)00030-0
– volume: 109
  start-page: 33
  year: 1986
  ident: 10.1016/S0020-7462(02)00058-6_BIB10
  article-title: First-passage time for randomly excited nonlinear oscillator
  publication-title: J. Sound Vib.
  doi: 10.1016/S0022-460X(86)80020-7
– volume: 24
  start-page: 31
  year: 2001
  ident: 10.1016/S0020-7462(02)00058-6_BIB19
  article-title: An optimal nonlinear feedback control strategy for randomly excited structural systems
  publication-title: Nonlinear Dyn.
  doi: 10.1023/A:1026527404183
– volume: 37
  start-page: 419
  year: 2002
  ident: 10.1016/S0020-7462(02)00058-6_BIB23
  article-title: Stochastic averaging and Lyapunov exponent of quasi partially integrable Hamiltonian system
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/S0020-7462(01)00018-X
– volume: 41
  start-page: 793
  year: 1974
  ident: 10.1016/S0020-7462(02)00058-6_BIB4
  article-title: On the first passage distribution for the envelope of a non-stationary narrow-band stochastic process
  publication-title: J. Appl. Mech. ASME
  doi: 10.1115/1.3423390
SSID ssj0016407
Score 1.8564942
Snippet An n degree-of-freedom Hamiltonian system with r (1<r<n) independent first integrals which are in involution is called partially integrable Hamiltonian system....
An n degree-of-freedom Hamiltonian system with *g(1 < *g < n) independent first integrals which are in involution is called partially integrable Hamiltonian...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1133
SubjectTerms Dynamical programming
Exact sciences and technology
First-passage failure
First-passage time
Fracture mechanics (crack, fatigue, damage...)
Fracture mechanics, fatigue and cracks
Fundamental areas of phenomenology (including applications)
Non-linear system
Physics
Reliability
Solid mechanics
Stochastic averaging
Stochastic excitation
Stochastic optimal control
Structural and continuum mechanics
Title First-passage failure and its feedback minimization of quasi-partially integrable Hamiltonian systems
URI https://dx.doi.org/10.1016/S0020-7462(02)00058-6
https://www.proquest.com/docview/27886325
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH-CcgFNiPGhFbbOBw7bwZA4ieMeEVrVbYLTkLhZ_pQiStot7YELfzvPidsOIYTEMVaeHfn38t4v8fsAOHUejVxRFHQohKe5dyXVLimp9VnBvWGaiZA7fHXNxzf5r9vidgMul7kwIawy2v7OprfWOo6cx908n1VVyPFloVkGfr0H4iH4JmyxbMhRtbcufv4eX68OE8JZVRfpkdAgsE7k6SZpB78l7Hs7D-WvuagPM9Xgxvmu48UL4916pNEe7EYqSS66p_0IG67eh53_Cgzi1dWqKmtzAG5UIdejOH-IJiNeVSEmnajakmreEI-OTCtzR0K5kfuYn0mmnvxdqKZCMVxITSYPJJaY0BNHxuH_CNJHVDLSFYVuDuFm9OPP5ZjGNgvUoPee08zwXCudW2tcUhj04cwijWOiENpzp5AkeJHb3OcmLbUdlqk3FmFM0yz1yLayI-jV09p9AoLcMTUIiNAlShiunEF-VTKnODrL1PYhX-6sNLEGeWiFMZHrYDMERAZAZMJkC4jkfThbic26IhxvCYglbPKZNkl0FG-JDp7BvF4Q70N-lPTh6xJ3ia9iOF9RtZsuGslKIXjGiuP3r34C2-towc_Qm_9buC_IeuZ6AJtnj-kg6vYTmZn8JQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH8CdgCEpjGYKGzgA4ftYEgcxzFHhKg6oJxA4mb5U4ro0m5pD7vsb-c5SVsQmpA4xvKzI__s936J3wfAsQ-o5PI8p2dSBsqDL6jxSUFdyHIRLDNMxtjh4a0Y3POrh_xhBS7msTDRrbLT_a1Ob7R113LarebppCxjjC-LxTLw6z0SDylW4QPH4xtP58m_hZ9HGm-qWj-PhMbuyzCedoim8XvCfjSjUPE_A7U10TUuW2jrXbxS3Y096n-Cjx2RJOftu27Diq8-w-az9IL4NFzkZK13wPdLZHoUx4--ZCToMnqkE105Uk5rEtCMGW0fSUw28quLziTjQH7PdF2iGE6kR6O_pEswYUaeDOLfESSPuMVImxK63oX7_uXdxYB2RRaoRds9pZkV3GjDnbM-yS1acOaQxDGZSxOE10gRguSOB27TwrizIg3WIYhpmqUBuVb2BdaqceX3gCBzTC3CIU2BElZob5FdFcxrgaYydT3g85VVtstAHgthjNTS1QwBUREQlTDVAKJED04WYpM2BcdbAnIOm3qxlxSaibdED1_AvJwQ-yE7SnpwNMdd4UGMtyu68uNZrVghpchYvv_-2Y9gfXA3vFE3P2-vD2Bj6Tf4Fdamf2b-G_KfqTls9vcTn2j86Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First-passage+failure+and+its+feedback+minimization+of+quasi-partially+integrable+Hamiltonian+systems&rft.jtitle=International+journal+of+non-linear+mechanics&rft.au=Zhu%2C+W.Q.&rft.au=Huang%2C+Z.L.&rft.au=Deng%2C+M.L.&rft.date=2003-10-01&rft.issn=0020-7462&rft.volume=38&rft.issue=8&rft.spage=1133&rft.epage=1148&rft_id=info:doi/10.1016%2FS0020-7462%2802%2900058-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0020_7462_02_00058_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7462&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7462&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7462&client=summon