Support vector regression based metamodeling for structural reliability analysis
Various metamodeling approaches e.g. polynomial response surface method artificial neural network, Kriging method etc. have been emerged as an effective alternative for solving computationally challenging complex reliability analysis problems involving finite element response analysis. However, such...
Saved in:
Published in | Probabilistic engineering mechanics Vol. 55; pp. 78 - 89 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.01.2019
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Various metamodeling approaches e.g. polynomial response surface method artificial neural network, Kriging method etc. have been emerged as an effective alternative for solving computationally challenging complex reliability analysis problems involving finite element response analysis. However, such approaches are primarily based on the principle of empirical risk minimization. The support vector machine for regression i.e. the support vector regression (SVR) which is based on structural risk minimization has revealed improved abilities of response approximation using small sample learning. The implementation of SVR model requires to optimize a loss function involving the loss function parameter, regularization parameter and also kernel function parameter(s) to tackle nonlinear problems. The success of SVR largely depends on proper choice of such parameters. A simple yet effective algorithm by solving an optimization sub-problem to minimize the mean square error value obtained by cross-validation method is investigated in the present study to construct SVR model for structural reliability analysis. The effectiveness of the algorithm is demonstrated numerically by comparing various computed statistical metrics obtained by the most accurate direct Monte Carlo Simulation (MCS) technique. The performance of SVR based metamodel to estimate the reliability is also studied by comparing the results with the direct MCS based results. |
---|---|
AbstractList | Various metamodeling approaches e.g. polynomial response surface method artificial neural network, Kriging method etc. have been emerged as an effective alternative for solving computationally challenging complex reliability analysis problems involving finite element response analysis. However, such approaches are primarily based on the principle of empirical risk minimization. The support vector machine for regression i.e. the support vector regression (SVR) which is based on structural risk minimization has revealed improved abilities of response approximation using small sample learning. The implementation of SVR model requires to optimize a loss function involving the loss function parameter, regularization parameter and also kernel function parameter(s) to tackle nonlinear problems. The success of SVR largely depends on proper choice of such parameters. A simple yet effective algorithm by solving an optimization sub-problem to minimize the mean square error value obtained by cross-validation method is investigated in the present study to construct SVR model for structural reliability analysis. The effectiveness of the algorithm is demonstrated numerically by comparing various computed statistical metrics obtained by the most accurate direct Monte Carlo Simulation (MCS) technique. The performance of SVR based metamodel to estimate the reliability is also studied by comparing the results with the direct MCS based results. |
Author | Chakraborty, Subrata Manna, Ramkrishna Roy, Atin |
Author_xml | – sequence: 1 givenname: Atin surname: Roy fullname: Roy, Atin – sequence: 2 givenname: Ramkrishna surname: Manna fullname: Manna, Ramkrishna – sequence: 3 givenname: Subrata orcidid: 0000-0002-4792-3844 surname: Chakraborty fullname: Chakraborty, Subrata email: schak@civil.iiests.ac.in |
BookMark | eNqNkF1LwzAUhoNMcJv-h4rXrTlpm7ZXIsMvGCi4-5CkpzOja2aSDvbvzZgX4tWuzs3zvpz3mZHJYAck5BZoBhT4_SbbOatwWG9Rf2WMQp0BZJTCBZlCXdVpwapyQqaUcZ7WDaNXZOb9JgIVFM2UfHyOu511IdmjDtYlDtcOvTd2SJT02CZbDHJrW-zNsE66SPjgRh1GJ_sI90Yq05twSOQg-4M3_ppcdrL3ePN752T1_LRavKbL95e3xeMy1QWUIc1ly0rOZK4a1VVYSQ1di1QXXdEwVKBUVeQtdgxyXhVc1aCBNlzKkrFOyXxO7k61cf73iD6IjR1d_MELxihnPOe8iNTDidLOeu-wE9oEGeK64KTpBVBxtCg24o9FcbQoAESUFBuafw07Z7bSHc7KLk5ZjB72Bp3w2uCgsTUu2hatNWe0_AAt2Zkq |
CitedBy_id | crossref_primary_10_1016_j_probengmech_2022_103372 crossref_primary_10_1016_j_probengmech_2023_103533 crossref_primary_10_1007_s00158_020_02743_9 crossref_primary_10_1016_j_ress_2020_106975 crossref_primary_10_2514_1_J062121 crossref_primary_10_1007_s11571_022_09919_7 crossref_primary_10_1016_j_ress_2022_108639 crossref_primary_10_1061__ASCE_ST_1943_541X_0002881 crossref_primary_10_3390_buildings14103286 crossref_primary_10_1080_13287982_2023_2225338 crossref_primary_10_1007_s00158_020_02526_2 crossref_primary_10_1016_j_ress_2023_109126 crossref_primary_10_3390_s22249735 crossref_primary_10_1016_j_autcon_2020_103517 crossref_primary_10_1007_s00466_023_02386_9 crossref_primary_10_1080_02626667_2022_2082876 crossref_primary_10_1177_09670335241242644 crossref_primary_10_1007_s00158_022_03431_6 crossref_primary_10_1002_nme_7228 crossref_primary_10_1016_j_cma_2023_116303 crossref_primary_10_1016_j_apm_2020_01_053 crossref_primary_10_1115_1_4065857 crossref_primary_10_1007_s00158_022_03475_8 crossref_primary_10_1108_EC_12_2021_0705 crossref_primary_10_1016_j_cma_2024_117377 crossref_primary_10_1016_j_simpa_2023_100515 crossref_primary_10_1016_j_strusafe_2024_102470 crossref_primary_10_1016_j_cma_2020_113371 crossref_primary_10_1016_j_strusafe_2021_102172 crossref_primary_10_3390_pr11113229 crossref_primary_10_1109_ACCESS_2022_3206384 crossref_primary_10_1016_j_ghm_2024_06_001 crossref_primary_10_1007_s00158_020_02606_3 crossref_primary_10_1002_cpe_5713 crossref_primary_10_3389_feart_2022_1053634 crossref_primary_10_1590_1679_7825_e8408 crossref_primary_10_1016_j_ress_2023_109730 crossref_primary_10_1016_j_istruc_2022_09_072 crossref_primary_10_1016_j_probengmech_2024_103701 crossref_primary_10_1061__ASCE_EM_1943_7889_0002088 crossref_primary_10_1080_13632469_2019_1570395 crossref_primary_10_2478_amns_2023_1_00195 crossref_primary_10_1007_s00707_020_02906_1 crossref_primary_10_1016_j_probengmech_2022_103351 crossref_primary_10_1080_19401493_2019_1707875 crossref_primary_10_1016_j_probengmech_2024_103595 crossref_primary_10_1016_j_probengmech_2024_103672 crossref_primary_10_1016_j_engappai_2019_06_015 crossref_primary_10_1016_j_engappai_2023_107157 crossref_primary_10_1080_13632469_2023_2242975 crossref_primary_10_1016_j_probengmech_2022_103270 crossref_primary_10_1007_s11071_024_10229_2 crossref_primary_10_1016_j_ymssp_2023_110986 crossref_primary_10_1016_j_cma_2020_113555 crossref_primary_10_1016_j_ress_2020_107124 crossref_primary_10_1002_for_3118 crossref_primary_10_1177_1748006X221108825 crossref_primary_10_1016_j_apm_2022_03_029 crossref_primary_10_1016_j_tws_2024_112541 crossref_primary_10_1016_j_apm_2020_08_042 crossref_primary_10_1016_j_probengmech_2023_103514 crossref_primary_10_1016_j_ress_2020_106906 crossref_primary_10_1016_j_probengmech_2023_103421 crossref_primary_10_1631_jzus_A2300340 crossref_primary_10_1177_1687814019836849 crossref_primary_10_1016_j_ress_2020_106948 crossref_primary_10_1016_j_oceaneng_2024_118175 crossref_primary_10_1061_JENMDT_EMENG_6964 crossref_primary_10_1007_s00158_023_03547_3 crossref_primary_10_1016_j_ress_2021_108223 crossref_primary_10_1016_j_istruc_2024_106773 crossref_primary_10_1016_j_strusafe_2020_102019 crossref_primary_10_1007_s00158_021_02973_5 crossref_primary_10_1016_j_compstruc_2023_107014 crossref_primary_10_1016_j_ress_2021_108260 crossref_primary_10_1016_j_ress_2023_109233 crossref_primary_10_1016_j_ress_2023_109750 crossref_primary_10_1016_j_strusafe_2022_102216 crossref_primary_10_1016_j_compgeo_2024_106418 crossref_primary_10_1016_j_ress_2022_109014 crossref_primary_10_1002_qre_3171 crossref_primary_10_1016_j_cma_2020_113309 crossref_primary_10_1007_s00158_021_03144_2 crossref_primary_10_1016_j_probengmech_2022_103406 crossref_primary_10_1680_jstbu_20_00220 crossref_primary_10_1016_j_apm_2019_10_007 crossref_primary_10_1016_j_cma_2022_114835 crossref_primary_10_1177_13694332241291255 |
Cites_doi | 10.1016/j.ress.2012.04.011 10.1016/S0893-6080(98)00032-X 10.1016/j.ress.2012.09.006 10.1016/j.strusafe.2017.04.006 10.1137/1114019 10.1016/0167-4730(93)90003-J 10.1109/TNNLS.2014.2336679 10.1016/j.strusafe.2016.10.002 10.1016/j.probengmech.2015.04.001 10.1016/j.strusafe.2014.12.004 10.1016/j.engstruct.2012.02.007 10.1007/s00158-017-1739-8 10.1111/mice.12257 10.1007/s10483-006-1001-z 10.1016/0167-4730(90)90012-E 10.1016/j.apm.2017.02.020 10.1016/j.apm.2016.12.027 10.1080/00401706.2000.10486045 10.1016/j.apm.2018.07.054 10.1016/S1000-9361(08)60082-5 10.1016/j.strusafe.2005.12.002 10.2514/1.12366 10.1016/j.strusafe.2012.05.001 10.1016/j.ijforecast.2006.03.001 10.1080/13632469.2017.1401566 10.1016/j.engstruct.2017.03.076 10.1016/j.strusafe.2004.09.001 10.1016/j.compgeo.2010.11.002 10.1016/j.probengmech.2005.07.002 10.1016/j.strusafe.2014.09.002 10.1016/S0951-8320(02)00015-7 10.1061/(ASCE)0733-9399(1989)115:12(2763) 10.1061/(ASCE)0733-9445(2003)129:8(1141) 10.1016/j.jrmge.2012.06.003 10.1016/j.strusafe.2016.02.002 10.1002/stc.1767 10.1016/j.ress.2011.06.006 10.1109/NNSP.1997.622433 10.1214/ss/1177012413 10.1007/s10518-018-0329-5 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier Science Ltd. Jan 2019 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Jan 2019 |
DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.probengmech.2018.11.001 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1878-4275 |
EndPage | 89 |
ExternalDocumentID | 10_1016_j_probengmech_2018_11_001 S0266892017301923 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 KR7 |
ID | FETCH-LOGICAL-c415t-3ad2562a3b9bf7e7ac1fde0c4f492eb1bb743def2136746b81c1096aa522fba3 |
IEDL.DBID | .~1 |
ISSN | 0266-8920 |
IngestDate | Fri Jul 25 04:06:49 EDT 2025 Thu Apr 24 22:53:57 EDT 2025 Tue Jul 01 04:09:51 EDT 2025 Fri Feb 23 02:30:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Support vector regression Reliability analysis Parameter optimization Metamodel |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-3ad2562a3b9bf7e7ac1fde0c4f492eb1bb743def2136746b81c1096aa522fba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4792-3844 |
PQID | 2206263664 |
PQPubID | 2047568 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2206263664 crossref_citationtrail_10_1016_j_probengmech_2018_11_001 crossref_primary_10_1016_j_probengmech_2018_11_001 elsevier_sciencedirect_doi_10_1016_j_probengmech_2018_11_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 2019-01-00 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Probabilistic engineering mechanics |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Chojaczyk, Teixeira, Neves, Cardoso, Soares (b9) 2015; 52 Ghosh, Roy, Chakraborty (b15) 2018; 64 Santner, Williams, Notz (b51) 2003 Jiang, Luo, Liao, Zhao, Zhang (b32) 2015; 54 Ghosh, Chakraborty (b13) 2017; 12 Goswami, Ghosh, Chakraborty (b8) 2016; 60 Jiang, Zhao, Beer, Patelli, Broggi, Luo, He, Zhang (b35) 2017; 64 Bucher, Bourgund (b5) 1990; 7 Gunn (b38) 1998; 14 Khatibinia, Fadaee, Salajegheh, Salajegheh (b28) 2013; 110 Hyndman, Koehler (b47) 2006; 22 Hurtado, Alvarez (b22) 2003; 129 Geisser (b54) 1993 Wang, Zhao, Wang (b29) 2013; 5 Boyd, Vandenberghe (b46) 2004 Rocco, Moreno (b21) 2002; 76 Alibrandi, Alani, Ricciardi (b31) 2015; 41 Lemaire, Mohamed (b3) 2000 Faravelli (b4) 1989; 115 Gaxiola-Camacho, Azizsoltani, Villegas-Mercado, Haldar (b12) 2017; 142 Vapnik (b41) 1998 10 Design of Experiments Guide, 2012. Cary, NC USA: SAS Institute Inc. ISBN 978-1-61290-196-1. Azizsoltani, Haldar (b14) 2017 Kim, Wang, Choi (b7) 2005; 43 Casanova, Jason, Davenne (b2) 2012; 39 S. Mukherjee, E. Osuna, F. Girosi, Nonlinear prediction of chaotic time series using support vector machines, in: Proceedings of the 1997 IEEE Signal Processing Society Workshop. Neural Networks for Signal Processing VII. Amelia Island (FL, USA), 1997. Guo, Bai (b24) 2009; 22 V. Vapnik, S.E. Golowich, A.J. Smola, Support vector method for function approximation, regression estimation and signal processing, in: Advances in neural information processing systems, 1997, pp. 281-287. Keshtegar (b53) 2017; 45 Boubouli, Theodoridis, Mavroforakis, Dalla (b44) 2014; 26 Haldar, Mahadevan (b40) 2000 Rajashekhar M.R. Ellingwood (b6) 1993; 12 Cristianini, Shawe-Taylor (b18) 2000 Epanechnikov (b20) 1969; 14 Tan, Bi, Hou, Wang (b25) 2011; 38 Richard, Cremona, Adelaide (b1) 2012; 39 Liu, Ong, Cai (b48) 2018; 57 Azizsoltani, Gaxiola-Camacho, Haldar (b16) 2018; 16 Moura, Zio, Lins, Droguett (b26) 2011; 96 Fang, Lin, Winker, Zhang (b52) 2000; 42 Dai, Cao (b37) 2017; 32 Elhewy, Mesbahi, Pu (b10) 2006; 21 Zhao, Li, Ru (b36) 2017; 44 Smola, Schölkopf, Müller (b45) 1998; 11 Hurtado (b17) 2007; 29 Kaymaz (b11) 2005; 27 A.J. Smola, B. Schölkopf, A Tutorial on Support Vector Regression, NeuroCOLT2 Technical Report Series, NC2-TR-1998-030, Berlin, Germany, 1998. Li, Lü, Yue (b23) 2006; 27 JMP Chen (b30) 2004; 36 Su, Chen, Wen (b33) 2016; 23 Dai, Zhang, Wanga (b27) 2012; 106 Ditlevsen, Madsen (b39) 1996 Sacks, Welch, Mitchell, Wynn (b49) 1989; 4 Pan, Dias (b34) 2017; 67 Jiang (10.1016/j.probengmech.2018.11.001_b32) 2015; 54 Ditlevsen (10.1016/j.probengmech.2018.11.001_b39) 1996 Chojaczyk (10.1016/j.probengmech.2018.11.001_b9) 2015; 52 Smola (10.1016/j.probengmech.2018.11.001_b45) 1998; 11 Boubouli (10.1016/j.probengmech.2018.11.001_b44) 2014; 26 Fang (10.1016/j.probengmech.2018.11.001_b52) 2000; 42 Dai (10.1016/j.probengmech.2018.11.001_b37) 2017; 32 Sacks (10.1016/j.probengmech.2018.11.001_b49) 1989; 4 Pan (10.1016/j.probengmech.2018.11.001_b34) 2017; 67 Keshtegar (10.1016/j.probengmech.2018.11.001_b53) 2017; 45 Hurtado (10.1016/j.probengmech.2018.11.001_b22) 2003; 129 Vapnik (10.1016/j.probengmech.2018.11.001_b41) 1998 Santner (10.1016/j.probengmech.2018.11.001_b51) 2003 Khatibinia (10.1016/j.probengmech.2018.11.001_b28) 2013; 110 Boyd (10.1016/j.probengmech.2018.11.001_b46) 2004 Casanova (10.1016/j.probengmech.2018.11.001_b2) 2012; 39 Gunn (10.1016/j.probengmech.2018.11.001_b38) 1998; 14 Su (10.1016/j.probengmech.2018.11.001_b33) 2016; 23 Rocco (10.1016/j.probengmech.2018.11.001_b21) 2002; 76 Hurtado (10.1016/j.probengmech.2018.11.001_b17) 2007; 29 Jiang (10.1016/j.probengmech.2018.11.001_b35) 2017; 64 Alibrandi (10.1016/j.probengmech.2018.11.001_b31) 2015; 41 Haldar (10.1016/j.probengmech.2018.11.001_b40) 2000 Faravelli (10.1016/j.probengmech.2018.11.001_b4) 1989; 115 Epanechnikov (10.1016/j.probengmech.2018.11.001_b20) 1969; 14 Lemaire (10.1016/j.probengmech.2018.11.001_b3) 2000 Cristianini (10.1016/j.probengmech.2018.11.001_b18) 2000 Goswami (10.1016/j.probengmech.2018.11.001_b8) 2016; 60 Moura (10.1016/j.probengmech.2018.11.001_b26) 2011; 96 Kim (10.1016/j.probengmech.2018.11.001_b7) 2005; 43 10.1016/j.probengmech.2018.11.001_b43 10.1016/j.probengmech.2018.11.001_b42 Guo (10.1016/j.probengmech.2018.11.001_b24) 2009; 22 Tan (10.1016/j.probengmech.2018.11.001_b25) 2011; 38 Zhao (10.1016/j.probengmech.2018.11.001_b36) 2017; 44 Liu (10.1016/j.probengmech.2018.11.001_b48) 2018; 57 Chen (10.1016/j.probengmech.2018.11.001_b30) 2004; 36 Wang (10.1016/j.probengmech.2018.11.001_b29) 2013; 5 Elhewy (10.1016/j.probengmech.2018.11.001_b10) 2006; 21 Geisser (10.1016/j.probengmech.2018.11.001_b54) 1993 Gaxiola-Camacho (10.1016/j.probengmech.2018.11.001_b12) 2017; 142 10.1016/j.probengmech.2018.11.001_b19 Li (10.1016/j.probengmech.2018.11.001_b23) 2006; 27 10.1016/j.probengmech.2018.11.001_b50 Kaymaz (10.1016/j.probengmech.2018.11.001_b11) 2005; 27 Richard (10.1016/j.probengmech.2018.11.001_b1) 2012; 39 Azizsoltani (10.1016/j.probengmech.2018.11.001_b16) 2018; 16 Dai (10.1016/j.probengmech.2018.11.001_b27) 2012; 106 Azizsoltani (10.1016/j.probengmech.2018.11.001_b14) 2017 Ghosh (10.1016/j.probengmech.2018.11.001_b13) 2017; 12 Hyndman (10.1016/j.probengmech.2018.11.001_b47) 2006; 22 Bucher (10.1016/j.probengmech.2018.11.001_b5) 1990; 7 Rajashekhar M.R. Ellingwood (10.1016/j.probengmech.2018.11.001_b6) 1993; 12 Ghosh (10.1016/j.probengmech.2018.11.001_b15) 2018; 64 |
References_xml | – volume: 12 start-page: 569 year: 2017 end-page: 581 ident: b13 article-title: Simulation based efficient seismic fragility analysis of existing structures publication-title: Earthq. Struct. – volume: 42 start-page: 237 year: 2000 end-page: 248 ident: b52 article-title: Uniform design: Theory and application publication-title: Technometrics – volume: 7 start-page: 57 year: 1990 end-page: 66 ident: b5 article-title: A fast and efficient response surface approach for structural reliability problems publication-title: Struct. Saf. – volume: 27 start-page: 1295 year: 2006 end-page: 1303 ident: b23 article-title: Support vector machine for structural reliability analysis publication-title: Appl. Math. Mech. – volume: 41 start-page: 1 year: 2015 end-page: 12 ident: b31 article-title: A new sampling strategy for SVM-based response surface for structural reliability analysis publication-title: Probab. Eng. Mech. – volume: 12 start-page: 205 year: 1993 end-page: 220 ident: b6 article-title: A new look at the response surface approach for reliability analysis publication-title: Struct. Saf. – year: 1996 ident: b39 article-title: Structural Reliability Methods – year: 2000 ident: b40 article-title: Reliability Assessment using Stochastic Finite Element Analysis – volume: 64 start-page: 584 year: 2018 end-page: 602 ident: b15 article-title: Support vector regression based metamodeling for seismic reliability analysis of structures publication-title: Appl. Math. Model. – year: 2004 ident: b46 article-title: Convex Optimization – reference: 10 Design of Experiments Guide, 2012. Cary, NC USA: SAS Institute Inc. ISBN 978-1-61290-196-1. – volume: 39 start-page: 66 year: 2012 end-page: 78 ident: b2 article-title: Bond slip model for the simulation of reinforced concrete structures publication-title: Eng. Struct. – volume: 44 start-page: 508 year: 2017 end-page: 522 ident: b36 article-title: Adaptive reliability analysis based on a support vector machine and its application to rock engineering publication-title: Appl. Math. Model. – year: 1993 ident: b54 article-title: Predictive Inference: An Introduction – reference: A.J. Smola, B. Schölkopf, A Tutorial on Support Vector Regression, NeuroCOLT2 Technical Report Series, NC2-TR-1998-030, Berlin, Germany, 1998. – reference: S. Mukherjee, E. Osuna, F. Girosi, Nonlinear prediction of chaotic time series using support vector machines, in: Proceedings of the 1997 IEEE Signal Processing Society Workshop. Neural Networks for Signal Processing VII. Amelia Island (FL, USA), 1997. – volume: 45 start-page: 226 year: 2017 end-page: 237 ident: b53 article-title: A hybrid conjugate finite-step length method for robust and efficient reliability analysis publication-title: Appl. Math. Model. – volume: 22 start-page: 160 year: 2009 end-page: 166 ident: b24 article-title: Application of least squares support vector machine for regression to reliability analysis publication-title: Chin. J. Aeronaut. – volume: 64 start-page: 87 year: 2017 end-page: 97 ident: b35 article-title: Multiple response surfaces method with advanced classification of samples for structural failure function fitting publication-title: Struct. Saf. – reference: JMP – volume: 5 start-page: 312 year: 2013 end-page: 317 ident: b29 article-title: LS-SVM and Monte Carlo methods based reliability analysis for settlement of soft clayey foundation publication-title: J. Rock Mech. Geotech. Eng. – volume: 32 start-page: 344 year: 2017 end-page: 357 ident: b37 article-title: A wavelet support vector machine-based neural network metamodel for structural reliability assessment publication-title: Comput.-Aided Civ. Infrastruct. Eng. – volume: 14 start-page: 153 year: 1969 end-page: 158 ident: b20 article-title: Non-parametric estimation of a multivariate probability density publication-title: Theory Probab. Appl. – volume: 76 start-page: 237 year: 2002 end-page: 243 ident: b21 article-title: Fast Monte Carlo reliability evaluation using support vector machine publication-title: Reliab. Eng. Syst. Saf. – volume: 21 start-page: 44 year: 2006 end-page: 53 ident: b10 article-title: Reliability analysis of structures using neural network method publication-title: Probab. Eng. Mech. – volume: 52 start-page: 78 year: 2015 end-page: 89 ident: b9 article-title: Review and application of artificial neural networks models in reliability analysis of steel structures publication-title: Struct. Saf. – volume: 22 start-page: 679 year: 2006 end-page: 688 ident: b47 article-title: Another look at measures of forecast accuracy publication-title: Int. J. Forecast. – reference: V. Vapnik, S.E. Golowich, A.J. Smola, Support vector method for function approximation, regression estimation and signal processing, in: Advances in neural information processing systems, 1997, pp. 281-287. – volume: 142 start-page: 137 year: 2017 end-page: 147 ident: b12 article-title: A novel reliability technique for implementation of performance-based seismic design of structures publication-title: Eng. Struct. – year: 2017 ident: b14 article-title: Intelligent computational schemes for designing more seismic damage-tolerant structures publication-title: J. Earthq. Eng. – volume: 23 start-page: 252 year: 2016 end-page: 266 ident: b33 article-title: Performance improvement method of support vector machine-based model monitoring dam safety publication-title: Struct. Contr. Health Monit. – volume: 29 start-page: 2 year: 2007 end-page: 15 ident: b17 article-title: Filtered importance sampling with support vector margin: a powerful method for structural reliability analysis publication-title: Struct. Saf. – volume: 4 start-page: 409 year: 1989 end-page: 423 ident: b49 article-title: Design and analysis of computer experiments publication-title: Statist. Sci. – volume: 43 start-page: 2404 year: 2005 end-page: 2411 ident: b7 article-title: Efficient response surface modeling by using moving least-squares method and sensitivity publication-title: AIAA J. – volume: 36 start-page: 117 year: 2004 end-page: 120 ident: b30 article-title: Ant colony system for continuous function optimization publication-title: J. Sichuan Univ. – volume: 54 start-page: 1 year: 2015 end-page: 9 ident: b32 article-title: An efficient method for generation of uniform support vector and its application in structural failure function fitting publication-title: Struct. Saf. – volume: 39 start-page: 14 year: 2012 end-page: 21 ident: b1 article-title: A response surface method based on support vector machines trained with an adaptive experimental design publication-title: Struct. Saf. – volume: 27 start-page: 133 year: 2005 end-page: 151 ident: b11 article-title: Application of Kriging method to structural reliability problems publication-title: Struct. Saf. – volume: 38 start-page: 178 year: 2011 end-page: 186 ident: b25 article-title: Reliability analysis using radial basis function networks and support vector machines publication-title: Comput. Geotech. – volume: 106 start-page: 86 year: 2012 end-page: 93 ident: b27 article-title: A support vector density-based importance sampling for reliability assessment publication-title: Reliab. Eng. Syst. Saf. – volume: 96 start-page: 1527 year: 2011 end-page: 1534 ident: b26 article-title: Failure and reliability prediction by support vector machines regression of time series data publication-title: Reliab. Eng. Syst. Saf. – volume: 129 start-page: 1141 year: 2003 end-page: 1149 ident: b22 article-title: Classification approach for reliability analysis with stochastic finite element modelling publication-title: J. Struct. Eng. ASCE – volume: 26 start-page: 1260 year: 2014 end-page: 1274 ident: b44 article-title: Complex support vector machines for regression and quaternary classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2000 ident: b18 article-title: An Introduction to Support Vector Machines and other Kernel-based Learning Methods – volume: 60 start-page: 56 year: 2016 end-page: 66 ident: b8 article-title: Reliability analysis of structures by iterative improved response surface method publication-title: Struct. Saf. – volume: 16 start-page: 3819 year: 2018 end-page: 3843 ident: b16 article-title: Site-specific seismic design of damage tolerant structural systems using a novel concept publication-title: Bull. Earthq. Eng. – volume: 110 start-page: 22 year: 2013 end-page: 33 ident: b28 article-title: Seismic reliability assessment of RC structures including soil–structure interaction using wavelet weighted least squares support vector machine publication-title: Reliab. Eng. Syst. Saf. – volume: 67 start-page: 85 year: 2017 end-page: 95 ident: b34 article-title: An efficient reliability method combining adaptive Support Vector Machine and Monte Carlo Simulation publication-title: Struct. Saf. – start-page: 121 year: 2003 end-page: 161 ident: b51 article-title: Space-filling designs for computer experiments publication-title: The Design and Analysis of Computer Experiments – volume: 115 start-page: 2763 year: 1989 end-page: 2781 ident: b4 article-title: Response surface approach for reliability analyses publication-title: J. Eng. Mech. ASCE – volume: 57 start-page: 393 year: 2018 end-page: 416 ident: b48 article-title: A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design publication-title: Struct. Multidisc. Optim. – year: 2000 ident: b3 article-title: Finite element and reliability: a happy marriage? publication-title: Reliability and Optimization of Structural Systems – year: 1998 ident: b41 article-title: Statistical Learning Theory – volume: 11 start-page: 637 year: 1998 end-page: 649 ident: b45 article-title: The connection between regularization operators and Support Vector Kernels publication-title: Neural Netw. – volume: 14 start-page: 5 year: 1998 end-page: 16 ident: b38 article-title: Support vector machines for classification and regression publication-title: ISIS Techn. Rep. – volume: 106 start-page: 86 year: 2012 ident: 10.1016/j.probengmech.2018.11.001_b27 article-title: A support vector density-based importance sampling for reliability assessment publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2012.04.011 – volume: 11 start-page: 637 issue: 4 year: 1998 ident: 10.1016/j.probengmech.2018.11.001_b45 article-title: The connection between regularization operators and Support Vector Kernels publication-title: Neural Netw. doi: 10.1016/S0893-6080(98)00032-X – volume: 110 start-page: 22 year: 2013 ident: 10.1016/j.probengmech.2018.11.001_b28 article-title: Seismic reliability assessment of RC structures including soil–structure interaction using wavelet weighted least squares support vector machine publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2012.09.006 – year: 2000 ident: 10.1016/j.probengmech.2018.11.001_b40 – ident: 10.1016/j.probengmech.2018.11.001_b50 – volume: 67 start-page: 85 year: 2017 ident: 10.1016/j.probengmech.2018.11.001_b34 article-title: An efficient reliability method combining adaptive Support Vector Machine and Monte Carlo Simulation publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2017.04.006 – year: 1993 ident: 10.1016/j.probengmech.2018.11.001_b54 – volume: 12 start-page: 569 issue: 5 year: 2017 ident: 10.1016/j.probengmech.2018.11.001_b13 article-title: Simulation based efficient seismic fragility analysis of existing structures publication-title: Earthq. Struct. – volume: 14 start-page: 153 issue: 1 year: 1969 ident: 10.1016/j.probengmech.2018.11.001_b20 article-title: Non-parametric estimation of a multivariate probability density publication-title: Theory Probab. Appl. doi: 10.1137/1114019 – year: 2004 ident: 10.1016/j.probengmech.2018.11.001_b46 – volume: 12 start-page: 205 year: 1993 ident: 10.1016/j.probengmech.2018.11.001_b6 article-title: A new look at the response surface approach for reliability analysis publication-title: Struct. Saf. doi: 10.1016/0167-4730(93)90003-J – volume: 26 start-page: 1260 issue: 6 year: 2014 ident: 10.1016/j.probengmech.2018.11.001_b44 article-title: Complex support vector machines for regression and quaternary classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2336679 – volume: 64 start-page: 87 year: 2017 ident: 10.1016/j.probengmech.2018.11.001_b35 article-title: Multiple response surfaces method with advanced classification of samples for structural failure function fitting publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2016.10.002 – ident: 10.1016/j.probengmech.2018.11.001_b43 – year: 2000 ident: 10.1016/j.probengmech.2018.11.001_b3 article-title: Finite element and reliability: a happy marriage? – volume: 41 start-page: 1 year: 2015 ident: 10.1016/j.probengmech.2018.11.001_b31 article-title: A new sampling strategy for SVM-based response surface for structural reliability analysis publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2015.04.001 – volume: 54 start-page: 1 year: 2015 ident: 10.1016/j.probengmech.2018.11.001_b32 article-title: An efficient method for generation of uniform support vector and its application in structural failure function fitting publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2014.12.004 – volume: 39 start-page: 66 year: 2012 ident: 10.1016/j.probengmech.2018.11.001_b2 article-title: Bond slip model for the simulation of reinforced concrete structures publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2012.02.007 – volume: 57 start-page: 393 issue: 1 year: 2018 ident: 10.1016/j.probengmech.2018.11.001_b48 article-title: A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design publication-title: Struct. Multidisc. Optim. doi: 10.1007/s00158-017-1739-8 – volume: 32 start-page: 344 issue: 4 year: 2017 ident: 10.1016/j.probengmech.2018.11.001_b37 article-title: A wavelet support vector machine-based neural network metamodel for structural reliability assessment publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12257 – volume: 27 start-page: 1295 issue: 10 year: 2006 ident: 10.1016/j.probengmech.2018.11.001_b23 article-title: Support vector machine for structural reliability analysis publication-title: Appl. Math. Mech. doi: 10.1007/s10483-006-1001-z – volume: 7 start-page: 57 year: 1990 ident: 10.1016/j.probengmech.2018.11.001_b5 article-title: A fast and efficient response surface approach for structural reliability problems publication-title: Struct. Saf. doi: 10.1016/0167-4730(90)90012-E – volume: 44 start-page: 508 year: 2017 ident: 10.1016/j.probengmech.2018.11.001_b36 article-title: Adaptive reliability analysis based on a support vector machine and its application to rock engineering publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2017.02.020 – volume: 45 start-page: 226 year: 2017 ident: 10.1016/j.probengmech.2018.11.001_b53 article-title: A hybrid conjugate finite-step length method for robust and efficient reliability analysis publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2016.12.027 – volume: 42 start-page: 237 issue: 3 year: 2000 ident: 10.1016/j.probengmech.2018.11.001_b52 article-title: Uniform design: Theory and application publication-title: Technometrics doi: 10.1080/00401706.2000.10486045 – volume: 64 start-page: 584 year: 2018 ident: 10.1016/j.probengmech.2018.11.001_b15 article-title: Support vector regression based metamodeling for seismic reliability analysis of structures publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2018.07.054 – volume: 22 start-page: 160 issue: 2 year: 2009 ident: 10.1016/j.probengmech.2018.11.001_b24 article-title: Application of least squares support vector machine for regression to reliability analysis publication-title: Chin. J. Aeronaut. doi: 10.1016/S1000-9361(08)60082-5 – volume: 29 start-page: 2 year: 2007 ident: 10.1016/j.probengmech.2018.11.001_b17 article-title: Filtered importance sampling with support vector margin: a powerful method for structural reliability analysis publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2005.12.002 – year: 1996 ident: 10.1016/j.probengmech.2018.11.001_b39 – volume: 43 start-page: 2404 issue: 1 year: 2005 ident: 10.1016/j.probengmech.2018.11.001_b7 article-title: Efficient response surface modeling by using moving least-squares method and sensitivity publication-title: AIAA J. doi: 10.2514/1.12366 – volume: 39 start-page: 14 year: 2012 ident: 10.1016/j.probengmech.2018.11.001_b1 article-title: A response surface method based on support vector machines trained with an adaptive experimental design publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2012.05.001 – volume: 22 start-page: 679 issue: 4 year: 2006 ident: 10.1016/j.probengmech.2018.11.001_b47 article-title: Another look at measures of forecast accuracy publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2006.03.001 – year: 2017 ident: 10.1016/j.probengmech.2018.11.001_b14 article-title: Intelligent computational schemes for designing more seismic damage-tolerant structures publication-title: J. Earthq. Eng. doi: 10.1080/13632469.2017.1401566 – volume: 142 start-page: 137 year: 2017 ident: 10.1016/j.probengmech.2018.11.001_b12 article-title: A novel reliability technique for implementation of performance-based seismic design of structures publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2017.03.076 – volume: 27 start-page: 133 year: 2005 ident: 10.1016/j.probengmech.2018.11.001_b11 article-title: Application of Kriging method to structural reliability problems publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2004.09.001 – volume: 38 start-page: 178 issue: 2 year: 2011 ident: 10.1016/j.probengmech.2018.11.001_b25 article-title: Reliability analysis using radial basis function networks and support vector machines publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2010.11.002 – volume: 21 start-page: 44 year: 2006 ident: 10.1016/j.probengmech.2018.11.001_b10 article-title: Reliability analysis of structures using neural network method publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2005.07.002 – volume: 14 start-page: 5 issue: 1 year: 1998 ident: 10.1016/j.probengmech.2018.11.001_b38 article-title: Support vector machines for classification and regression publication-title: ISIS Techn. Rep. – ident: 10.1016/j.probengmech.2018.11.001_b42 – volume: 52 start-page: 78 year: 2015 ident: 10.1016/j.probengmech.2018.11.001_b9 article-title: Review and application of artificial neural networks models in reliability analysis of steel structures publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2014.09.002 – volume: 76 start-page: 237 issue: 3 year: 2002 ident: 10.1016/j.probengmech.2018.11.001_b21 article-title: Fast Monte Carlo reliability evaluation using support vector machine publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/S0951-8320(02)00015-7 – volume: 115 start-page: 2763 issue: 2 year: 1989 ident: 10.1016/j.probengmech.2018.11.001_b4 article-title: Response surface approach for reliability analyses publication-title: J. Eng. Mech. ASCE doi: 10.1061/(ASCE)0733-9399(1989)115:12(2763) – volume: 129 start-page: 1141 issue: 8 year: 2003 ident: 10.1016/j.probengmech.2018.11.001_b22 article-title: Classification approach for reliability analysis with stochastic finite element modelling publication-title: J. Struct. Eng. ASCE doi: 10.1061/(ASCE)0733-9445(2003)129:8(1141) – volume: 5 start-page: 312 year: 2013 ident: 10.1016/j.probengmech.2018.11.001_b29 article-title: LS-SVM and Monte Carlo methods based reliability analysis for settlement of soft clayey foundation publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2012.06.003 – volume: 60 start-page: 56 year: 2016 ident: 10.1016/j.probengmech.2018.11.001_b8 article-title: Reliability analysis of structures by iterative improved response surface method publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2016.02.002 – volume: 23 start-page: 252 year: 2016 ident: 10.1016/j.probengmech.2018.11.001_b33 article-title: Performance improvement method of support vector machine-based model monitoring dam safety publication-title: Struct. Contr. Health Monit. doi: 10.1002/stc.1767 – volume: 96 start-page: 1527 year: 2011 ident: 10.1016/j.probengmech.2018.11.001_b26 article-title: Failure and reliability prediction by support vector machines regression of time series data publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2011.06.006 – year: 1998 ident: 10.1016/j.probengmech.2018.11.001_b41 – ident: 10.1016/j.probengmech.2018.11.001_b19 doi: 10.1109/NNSP.1997.622433 – volume: 4 start-page: 409 issue: 4 year: 1989 ident: 10.1016/j.probengmech.2018.11.001_b49 article-title: Design and analysis of computer experiments publication-title: Statist. Sci. doi: 10.1214/ss/1177012413 – year: 2000 ident: 10.1016/j.probengmech.2018.11.001_b18 – volume: 16 start-page: 3819 issue: 9 year: 2018 ident: 10.1016/j.probengmech.2018.11.001_b16 article-title: Site-specific seismic design of damage tolerant structural systems using a novel concept publication-title: Bull. Earthq. Eng. doi: 10.1007/s10518-018-0329-5 – volume: 36 start-page: 117 issue: 6 year: 2004 ident: 10.1016/j.probengmech.2018.11.001_b30 article-title: Ant colony system for continuous function optimization publication-title: J. Sichuan Univ. – start-page: 121 year: 2003 ident: 10.1016/j.probengmech.2018.11.001_b51 article-title: Space-filling designs for computer experiments |
SSID | ssj0017149 |
Score | 2.4998229 |
Snippet | Various metamodeling approaches e.g. polynomial response surface method artificial neural network, Kriging method etc. have been emerged as an effective... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 78 |
SubjectTerms | Algorithms Artificial neural networks Computer simulation Empirical analysis Finite element analysis Finite element method Kernel functions Kriging Mathematical models Metamodel Metamodels Monte Carlo simulation Neural networks Optimization Parameter optimization Parameters Polynomials Regression analysis Regularization Reliability Reliability analysis Reliability engineering Response surface methodology Statistical analysis Structural reliability Support vector machines Support vector regression |
Title | Support vector regression based metamodeling for structural reliability analysis |
URI | https://dx.doi.org/10.1016/j.probengmech.2018.11.001 https://www.proquest.com/docview/2206263664 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KgnjxLVZrWcFr2ryaZMFLKZZqoYhW7G3ZV0qljcUWwYu_3ZlkUx94KHgKCTsh7M7O9-1m9htCLlMpI5HoxAEwwCM5ijnCZ64Tpx6LkeRHOs_yHUS9x_B21BpVSKc8C4NplTb2FzE9j9b2SdP2ZnM-mTQfYPUQJQwADJ0UeAqeYA9j9PLGxyrNA-t7s2KfJXKw9Ra5-MrxwqItJhvPTP5fwksaKOhp68P8gVG_onUOQd09smO5I20Xn7dPKiY7ILuWR1I7SxeH5A5LdQKtpm_5ljx9NeMi2zWjCFqazsxS5CVwALcosFZaqMiiAgc0nk4K7e53KqxiyREZdq-HnZ5jKyc4CgB56QRCA5XxRSCZTGMTC-Wl2rgqTEPmQ3SWEoiDNqmPgm1hJBNPebCWEQLYWCpFcEw2spfMnBCatJQEc1doYFaGeVK7JlGhxJkcB1JXSVJ2FVdWVRyLW0x5mT72zL_1MsdehlUHptJVib8ynRfSGusYXZXjwX_4CQcIWMe8Vo4ht5N1wX3fRU2eKApP__f2M7INd6zYoamRDRg7cw6cZSnruVPWyWb7pt8b4LV__9T_BEzh8R0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7MCeqLd_FuBF_relvbgC8yHJvOIThhbyFp0jGZVXQI_nvPadN5wYeBr21OKSfJ-b4kJ98BOMuUimSiEwfBgK7kpNyRPnedOPN4TCQ_0kWWbz_qPITXw-awBq3qLgylVdrYX8b0IlrbJw3rzcbLeNy4x9VDlHAEMBqkyFMWYJHUqZp1WLzs3nT6s8OE2CtZMLZ3yGAJTr_SvKhui8lHT6Y4mvCSc9L0tCVi_oCpXwG7QKH2Oqxa-sguyz_cgJrJN2HNUklmJ-rbFtxRtU5k1uy92JVnr2ZUJrzmjHBLsyczlUUVHIQuhsSVlUKyJMKBjSfjUr77g0krWrINg_bVoNVxbPEEJ0VMnjqB1MhmfBkorrLYxDL1Mm3cNMxC7mOAVgq5gzaZT5ptYaQSL_VwOSMlErJMyWAH6vlzbnaBJc1UobkrNZIrwz2lXZOkoaLJHAdK70FSuUqkVlic6ltMRJVB9ii-eVmQl3HhQdl0e-DPTF9KdY15jC6q_hA_hopAFJjH_LDqQ2Hn65vwfZdkeaIo3P_f109guTO47Ylet39zACv4hpcbNodQx340R0hhpurYDtFP977yKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Support+vector+regression+based+metamodeling+for+structural+reliability+analysis&rft.jtitle=Probabilistic+engineering+mechanics&rft.au=Roy%2C+Atin&rft.au=Manna%2C+Ramkrishna&rft.au=Chakraborty%2C+Subrata&rft.date=2019-01-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0266-8920&rft.eissn=1878-4275&rft.volume=55&rft.spage=78&rft_id=info:doi/10.1016%2Fj.probengmech.2018.11.001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-8920&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-8920&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-8920&client=summon |