Support vector regression based metamodeling for structural reliability analysis

Various metamodeling approaches e.g. polynomial response surface method artificial neural network, Kriging method etc. have been emerged as an effective alternative for solving computationally challenging complex reliability analysis problems involving finite element response analysis. However, such...

Full description

Saved in:
Bibliographic Details
Published inProbabilistic engineering mechanics Vol. 55; pp. 78 - 89
Main Authors Roy, Atin, Manna, Ramkrishna, Chakraborty, Subrata
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.01.2019
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Various metamodeling approaches e.g. polynomial response surface method artificial neural network, Kriging method etc. have been emerged as an effective alternative for solving computationally challenging complex reliability analysis problems involving finite element response analysis. However, such approaches are primarily based on the principle of empirical risk minimization. The support vector machine for regression i.e. the support vector regression (SVR) which is based on structural risk minimization has revealed improved abilities of response approximation using small sample learning. The implementation of SVR model requires to optimize a loss function involving the loss function parameter, regularization parameter and also kernel function parameter(s) to tackle nonlinear problems. The success of SVR largely depends on proper choice of such parameters. A simple yet effective algorithm by solving an optimization sub-problem to minimize the mean square error value obtained by cross-validation method is investigated in the present study to construct SVR model for structural reliability analysis. The effectiveness of the algorithm is demonstrated numerically by comparing various computed statistical metrics obtained by the most accurate direct Monte Carlo Simulation (MCS) technique. The performance of SVR based metamodel to estimate the reliability is also studied by comparing the results with the direct MCS based results.
AbstractList Various metamodeling approaches e.g. polynomial response surface method artificial neural network, Kriging method etc. have been emerged as an effective alternative for solving computationally challenging complex reliability analysis problems involving finite element response analysis. However, such approaches are primarily based on the principle of empirical risk minimization. The support vector machine for regression i.e. the support vector regression (SVR) which is based on structural risk minimization has revealed improved abilities of response approximation using small sample learning. The implementation of SVR model requires to optimize a loss function involving the loss function parameter, regularization parameter and also kernel function parameter(s) to tackle nonlinear problems. The success of SVR largely depends on proper choice of such parameters. A simple yet effective algorithm by solving an optimization sub-problem to minimize the mean square error value obtained by cross-validation method is investigated in the present study to construct SVR model for structural reliability analysis. The effectiveness of the algorithm is demonstrated numerically by comparing various computed statistical metrics obtained by the most accurate direct Monte Carlo Simulation (MCS) technique. The performance of SVR based metamodel to estimate the reliability is also studied by comparing the results with the direct MCS based results.
Author Chakraborty, Subrata
Manna, Ramkrishna
Roy, Atin
Author_xml – sequence: 1
  givenname: Atin
  surname: Roy
  fullname: Roy, Atin
– sequence: 2
  givenname: Ramkrishna
  surname: Manna
  fullname: Manna, Ramkrishna
– sequence: 3
  givenname: Subrata
  orcidid: 0000-0002-4792-3844
  surname: Chakraborty
  fullname: Chakraborty, Subrata
  email: schak@civil.iiests.ac.in
BookMark eNqNkF1LwzAUhoNMcJv-h4rXrTlpm7ZXIsMvGCi4-5CkpzOja2aSDvbvzZgX4tWuzs3zvpz3mZHJYAck5BZoBhT4_SbbOatwWG9Rf2WMQp0BZJTCBZlCXdVpwapyQqaUcZ7WDaNXZOb9JgIVFM2UfHyOu511IdmjDtYlDtcOvTd2SJT02CZbDHJrW-zNsE66SPjgRh1GJ_sI90Yq05twSOQg-4M3_ppcdrL3ePN752T1_LRavKbL95e3xeMy1QWUIc1ly0rOZK4a1VVYSQ1di1QXXdEwVKBUVeQtdgxyXhVc1aCBNlzKkrFOyXxO7k61cf73iD6IjR1d_MELxihnPOe8iNTDidLOeu-wE9oEGeK64KTpBVBxtCg24o9FcbQoAESUFBuafw07Z7bSHc7KLk5ZjB72Bp3w2uCgsTUu2hatNWe0_AAt2Zkq
CitedBy_id crossref_primary_10_1016_j_probengmech_2022_103372
crossref_primary_10_1016_j_probengmech_2023_103533
crossref_primary_10_1007_s00158_020_02743_9
crossref_primary_10_1016_j_ress_2020_106975
crossref_primary_10_2514_1_J062121
crossref_primary_10_1007_s11571_022_09919_7
crossref_primary_10_1016_j_ress_2022_108639
crossref_primary_10_1061__ASCE_ST_1943_541X_0002881
crossref_primary_10_3390_buildings14103286
crossref_primary_10_1080_13287982_2023_2225338
crossref_primary_10_1007_s00158_020_02526_2
crossref_primary_10_1016_j_ress_2023_109126
crossref_primary_10_3390_s22249735
crossref_primary_10_1016_j_autcon_2020_103517
crossref_primary_10_1007_s00466_023_02386_9
crossref_primary_10_1080_02626667_2022_2082876
crossref_primary_10_1177_09670335241242644
crossref_primary_10_1007_s00158_022_03431_6
crossref_primary_10_1002_nme_7228
crossref_primary_10_1016_j_cma_2023_116303
crossref_primary_10_1016_j_apm_2020_01_053
crossref_primary_10_1115_1_4065857
crossref_primary_10_1007_s00158_022_03475_8
crossref_primary_10_1108_EC_12_2021_0705
crossref_primary_10_1016_j_cma_2024_117377
crossref_primary_10_1016_j_simpa_2023_100515
crossref_primary_10_1016_j_strusafe_2024_102470
crossref_primary_10_1016_j_cma_2020_113371
crossref_primary_10_1016_j_strusafe_2021_102172
crossref_primary_10_3390_pr11113229
crossref_primary_10_1109_ACCESS_2022_3206384
crossref_primary_10_1016_j_ghm_2024_06_001
crossref_primary_10_1007_s00158_020_02606_3
crossref_primary_10_1002_cpe_5713
crossref_primary_10_3389_feart_2022_1053634
crossref_primary_10_1590_1679_7825_e8408
crossref_primary_10_1016_j_ress_2023_109730
crossref_primary_10_1016_j_istruc_2022_09_072
crossref_primary_10_1016_j_probengmech_2024_103701
crossref_primary_10_1061__ASCE_EM_1943_7889_0002088
crossref_primary_10_1080_13632469_2019_1570395
crossref_primary_10_2478_amns_2023_1_00195
crossref_primary_10_1007_s00707_020_02906_1
crossref_primary_10_1016_j_probengmech_2022_103351
crossref_primary_10_1080_19401493_2019_1707875
crossref_primary_10_1016_j_probengmech_2024_103595
crossref_primary_10_1016_j_probengmech_2024_103672
crossref_primary_10_1016_j_engappai_2019_06_015
crossref_primary_10_1016_j_engappai_2023_107157
crossref_primary_10_1080_13632469_2023_2242975
crossref_primary_10_1016_j_probengmech_2022_103270
crossref_primary_10_1007_s11071_024_10229_2
crossref_primary_10_1016_j_ymssp_2023_110986
crossref_primary_10_1016_j_cma_2020_113555
crossref_primary_10_1016_j_ress_2020_107124
crossref_primary_10_1002_for_3118
crossref_primary_10_1177_1748006X221108825
crossref_primary_10_1016_j_apm_2022_03_029
crossref_primary_10_1016_j_tws_2024_112541
crossref_primary_10_1016_j_apm_2020_08_042
crossref_primary_10_1016_j_probengmech_2023_103514
crossref_primary_10_1016_j_ress_2020_106906
crossref_primary_10_1016_j_probengmech_2023_103421
crossref_primary_10_1631_jzus_A2300340
crossref_primary_10_1177_1687814019836849
crossref_primary_10_1016_j_ress_2020_106948
crossref_primary_10_1016_j_oceaneng_2024_118175
crossref_primary_10_1061_JENMDT_EMENG_6964
crossref_primary_10_1007_s00158_023_03547_3
crossref_primary_10_1016_j_ress_2021_108223
crossref_primary_10_1016_j_istruc_2024_106773
crossref_primary_10_1016_j_strusafe_2020_102019
crossref_primary_10_1007_s00158_021_02973_5
crossref_primary_10_1016_j_compstruc_2023_107014
crossref_primary_10_1016_j_ress_2021_108260
crossref_primary_10_1016_j_ress_2023_109233
crossref_primary_10_1016_j_ress_2023_109750
crossref_primary_10_1016_j_strusafe_2022_102216
crossref_primary_10_1016_j_compgeo_2024_106418
crossref_primary_10_1016_j_ress_2022_109014
crossref_primary_10_1002_qre_3171
crossref_primary_10_1016_j_cma_2020_113309
crossref_primary_10_1007_s00158_021_03144_2
crossref_primary_10_1016_j_probengmech_2022_103406
crossref_primary_10_1680_jstbu_20_00220
crossref_primary_10_1016_j_apm_2019_10_007
crossref_primary_10_1016_j_cma_2022_114835
crossref_primary_10_1177_13694332241291255
Cites_doi 10.1016/j.ress.2012.04.011
10.1016/S0893-6080(98)00032-X
10.1016/j.ress.2012.09.006
10.1016/j.strusafe.2017.04.006
10.1137/1114019
10.1016/0167-4730(93)90003-J
10.1109/TNNLS.2014.2336679
10.1016/j.strusafe.2016.10.002
10.1016/j.probengmech.2015.04.001
10.1016/j.strusafe.2014.12.004
10.1016/j.engstruct.2012.02.007
10.1007/s00158-017-1739-8
10.1111/mice.12257
10.1007/s10483-006-1001-z
10.1016/0167-4730(90)90012-E
10.1016/j.apm.2017.02.020
10.1016/j.apm.2016.12.027
10.1080/00401706.2000.10486045
10.1016/j.apm.2018.07.054
10.1016/S1000-9361(08)60082-5
10.1016/j.strusafe.2005.12.002
10.2514/1.12366
10.1016/j.strusafe.2012.05.001
10.1016/j.ijforecast.2006.03.001
10.1080/13632469.2017.1401566
10.1016/j.engstruct.2017.03.076
10.1016/j.strusafe.2004.09.001
10.1016/j.compgeo.2010.11.002
10.1016/j.probengmech.2005.07.002
10.1016/j.strusafe.2014.09.002
10.1016/S0951-8320(02)00015-7
10.1061/(ASCE)0733-9399(1989)115:12(2763)
10.1061/(ASCE)0733-9445(2003)129:8(1141)
10.1016/j.jrmge.2012.06.003
10.1016/j.strusafe.2016.02.002
10.1002/stc.1767
10.1016/j.ress.2011.06.006
10.1109/NNSP.1997.622433
10.1214/ss/1177012413
10.1007/s10518-018-0329-5
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier Science Ltd. Jan 2019
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Jan 2019
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.probengmech.2018.11.001
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1878-4275
EndPage 89
ExternalDocumentID 10_1016_j_probengmech_2018_11_001
S0266892017301923
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
EFKBS
FR3
KR7
ID FETCH-LOGICAL-c415t-3ad2562a3b9bf7e7ac1fde0c4f492eb1bb743def2136746b81c1096aa522fba3
IEDL.DBID .~1
ISSN 0266-8920
IngestDate Fri Jul 25 04:06:49 EDT 2025
Thu Apr 24 22:53:57 EDT 2025
Tue Jul 01 04:09:51 EDT 2025
Fri Feb 23 02:30:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Support vector regression
Reliability analysis
Parameter optimization
Metamodel
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-3ad2562a3b9bf7e7ac1fde0c4f492eb1bb743def2136746b81c1096aa522fba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4792-3844
PQID 2206263664
PQPubID 2047568
PageCount 12
ParticipantIDs proquest_journals_2206263664
crossref_citationtrail_10_1016_j_probengmech_2018_11_001
crossref_primary_10_1016_j_probengmech_2018_11_001
elsevier_sciencedirect_doi_10_1016_j_probengmech_2018_11_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Probabilistic engineering mechanics
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Chojaczyk, Teixeira, Neves, Cardoso, Soares (b9) 2015; 52
Ghosh, Roy, Chakraborty (b15) 2018; 64
Santner, Williams, Notz (b51) 2003
Jiang, Luo, Liao, Zhao, Zhang (b32) 2015; 54
Ghosh, Chakraborty (b13) 2017; 12
Goswami, Ghosh, Chakraborty (b8) 2016; 60
Jiang, Zhao, Beer, Patelli, Broggi, Luo, He, Zhang (b35) 2017; 64
Bucher, Bourgund (b5) 1990; 7
Gunn (b38) 1998; 14
Khatibinia, Fadaee, Salajegheh, Salajegheh (b28) 2013; 110
Hyndman, Koehler (b47) 2006; 22
Hurtado, Alvarez (b22) 2003; 129
Geisser (b54) 1993
Wang, Zhao, Wang (b29) 2013; 5
Boyd, Vandenberghe (b46) 2004
Rocco, Moreno (b21) 2002; 76
Alibrandi, Alani, Ricciardi (b31) 2015; 41
Lemaire, Mohamed (b3) 2000
Faravelli (b4) 1989; 115
Gaxiola-Camacho, Azizsoltani, Villegas-Mercado, Haldar (b12) 2017; 142
Vapnik (b41) 1998
10 Design of Experiments Guide, 2012. Cary, NC USA: SAS Institute Inc. ISBN 978-1-61290-196-1.
Azizsoltani, Haldar (b14) 2017
Kim, Wang, Choi (b7) 2005; 43
Casanova, Jason, Davenne (b2) 2012; 39
S. Mukherjee, E. Osuna, F. Girosi, Nonlinear prediction of chaotic time series using support vector machines, in: Proceedings of the 1997 IEEE Signal Processing Society Workshop. Neural Networks for Signal Processing VII. Amelia Island (FL, USA), 1997.
Guo, Bai (b24) 2009; 22
V. Vapnik, S.E. Golowich, A.J. Smola, Support vector method for function approximation, regression estimation and signal processing, in: Advances in neural information processing systems, 1997, pp. 281-287.
Keshtegar (b53) 2017; 45
Boubouli, Theodoridis, Mavroforakis, Dalla (b44) 2014; 26
Haldar, Mahadevan (b40) 2000
Rajashekhar M.R. Ellingwood (b6) 1993; 12
Cristianini, Shawe-Taylor (b18) 2000
Epanechnikov (b20) 1969; 14
Tan, Bi, Hou, Wang (b25) 2011; 38
Richard, Cremona, Adelaide (b1) 2012; 39
Liu, Ong, Cai (b48) 2018; 57
Azizsoltani, Gaxiola-Camacho, Haldar (b16) 2018; 16
Moura, Zio, Lins, Droguett (b26) 2011; 96
Fang, Lin, Winker, Zhang (b52) 2000; 42
Dai, Cao (b37) 2017; 32
Elhewy, Mesbahi, Pu (b10) 2006; 21
Zhao, Li, Ru (b36) 2017; 44
Smola, Schölkopf, Müller (b45) 1998; 11
Hurtado (b17) 2007; 29
Kaymaz (b11) 2005; 27
A.J. Smola, B. Schölkopf, A Tutorial on Support Vector Regression, NeuroCOLT2 Technical Report Series, NC2-TR-1998-030, Berlin, Germany, 1998.
Li, Lü, Yue (b23) 2006; 27
JMP
Chen (b30) 2004; 36
Su, Chen, Wen (b33) 2016; 23
Dai, Zhang, Wanga (b27) 2012; 106
Ditlevsen, Madsen (b39) 1996
Sacks, Welch, Mitchell, Wynn (b49) 1989; 4
Pan, Dias (b34) 2017; 67
Jiang (10.1016/j.probengmech.2018.11.001_b32) 2015; 54
Ditlevsen (10.1016/j.probengmech.2018.11.001_b39) 1996
Chojaczyk (10.1016/j.probengmech.2018.11.001_b9) 2015; 52
Smola (10.1016/j.probengmech.2018.11.001_b45) 1998; 11
Boubouli (10.1016/j.probengmech.2018.11.001_b44) 2014; 26
Fang (10.1016/j.probengmech.2018.11.001_b52) 2000; 42
Dai (10.1016/j.probengmech.2018.11.001_b37) 2017; 32
Sacks (10.1016/j.probengmech.2018.11.001_b49) 1989; 4
Pan (10.1016/j.probengmech.2018.11.001_b34) 2017; 67
Keshtegar (10.1016/j.probengmech.2018.11.001_b53) 2017; 45
Hurtado (10.1016/j.probengmech.2018.11.001_b22) 2003; 129
Vapnik (10.1016/j.probengmech.2018.11.001_b41) 1998
Santner (10.1016/j.probengmech.2018.11.001_b51) 2003
Khatibinia (10.1016/j.probengmech.2018.11.001_b28) 2013; 110
Boyd (10.1016/j.probengmech.2018.11.001_b46) 2004
Casanova (10.1016/j.probengmech.2018.11.001_b2) 2012; 39
Gunn (10.1016/j.probengmech.2018.11.001_b38) 1998; 14
Su (10.1016/j.probengmech.2018.11.001_b33) 2016; 23
Rocco (10.1016/j.probengmech.2018.11.001_b21) 2002; 76
Hurtado (10.1016/j.probengmech.2018.11.001_b17) 2007; 29
Jiang (10.1016/j.probengmech.2018.11.001_b35) 2017; 64
Alibrandi (10.1016/j.probengmech.2018.11.001_b31) 2015; 41
Haldar (10.1016/j.probengmech.2018.11.001_b40) 2000
Faravelli (10.1016/j.probengmech.2018.11.001_b4) 1989; 115
Epanechnikov (10.1016/j.probengmech.2018.11.001_b20) 1969; 14
Lemaire (10.1016/j.probengmech.2018.11.001_b3) 2000
Cristianini (10.1016/j.probengmech.2018.11.001_b18) 2000
Goswami (10.1016/j.probengmech.2018.11.001_b8) 2016; 60
Moura (10.1016/j.probengmech.2018.11.001_b26) 2011; 96
Kim (10.1016/j.probengmech.2018.11.001_b7) 2005; 43
10.1016/j.probengmech.2018.11.001_b43
10.1016/j.probengmech.2018.11.001_b42
Guo (10.1016/j.probengmech.2018.11.001_b24) 2009; 22
Tan (10.1016/j.probengmech.2018.11.001_b25) 2011; 38
Zhao (10.1016/j.probengmech.2018.11.001_b36) 2017; 44
Liu (10.1016/j.probengmech.2018.11.001_b48) 2018; 57
Chen (10.1016/j.probengmech.2018.11.001_b30) 2004; 36
Wang (10.1016/j.probengmech.2018.11.001_b29) 2013; 5
Elhewy (10.1016/j.probengmech.2018.11.001_b10) 2006; 21
Geisser (10.1016/j.probengmech.2018.11.001_b54) 1993
Gaxiola-Camacho (10.1016/j.probengmech.2018.11.001_b12) 2017; 142
10.1016/j.probengmech.2018.11.001_b19
Li (10.1016/j.probengmech.2018.11.001_b23) 2006; 27
10.1016/j.probengmech.2018.11.001_b50
Kaymaz (10.1016/j.probengmech.2018.11.001_b11) 2005; 27
Richard (10.1016/j.probengmech.2018.11.001_b1) 2012; 39
Azizsoltani (10.1016/j.probengmech.2018.11.001_b16) 2018; 16
Dai (10.1016/j.probengmech.2018.11.001_b27) 2012; 106
Azizsoltani (10.1016/j.probengmech.2018.11.001_b14) 2017
Ghosh (10.1016/j.probengmech.2018.11.001_b13) 2017; 12
Hyndman (10.1016/j.probengmech.2018.11.001_b47) 2006; 22
Bucher (10.1016/j.probengmech.2018.11.001_b5) 1990; 7
Rajashekhar M.R. Ellingwood (10.1016/j.probengmech.2018.11.001_b6) 1993; 12
Ghosh (10.1016/j.probengmech.2018.11.001_b15) 2018; 64
References_xml – volume: 12
  start-page: 569
  year: 2017
  end-page: 581
  ident: b13
  article-title: Simulation based efficient seismic fragility analysis of existing structures
  publication-title: Earthq. Struct.
– volume: 42
  start-page: 237
  year: 2000
  end-page: 248
  ident: b52
  article-title: Uniform design: Theory and application
  publication-title: Technometrics
– volume: 7
  start-page: 57
  year: 1990
  end-page: 66
  ident: b5
  article-title: A fast and efficient response surface approach for structural reliability problems
  publication-title: Struct. Saf.
– volume: 27
  start-page: 1295
  year: 2006
  end-page: 1303
  ident: b23
  article-title: Support vector machine for structural reliability analysis
  publication-title: Appl. Math. Mech.
– volume: 41
  start-page: 1
  year: 2015
  end-page: 12
  ident: b31
  article-title: A new sampling strategy for SVM-based response surface for structural reliability analysis
  publication-title: Probab. Eng. Mech.
– volume: 12
  start-page: 205
  year: 1993
  end-page: 220
  ident: b6
  article-title: A new look at the response surface approach for reliability analysis
  publication-title: Struct. Saf.
– year: 1996
  ident: b39
  article-title: Structural Reliability Methods
– year: 2000
  ident: b40
  article-title: Reliability Assessment using Stochastic Finite Element Analysis
– volume: 64
  start-page: 584
  year: 2018
  end-page: 602
  ident: b15
  article-title: Support vector regression based metamodeling for seismic reliability analysis of structures
  publication-title: Appl. Math. Model.
– year: 2004
  ident: b46
  article-title: Convex Optimization
– reference: 10 Design of Experiments Guide, 2012. Cary, NC USA: SAS Institute Inc. ISBN 978-1-61290-196-1.
– volume: 39
  start-page: 66
  year: 2012
  end-page: 78
  ident: b2
  article-title: Bond slip model for the simulation of reinforced concrete structures
  publication-title: Eng. Struct.
– volume: 44
  start-page: 508
  year: 2017
  end-page: 522
  ident: b36
  article-title: Adaptive reliability analysis based on a support vector machine and its application to rock engineering
  publication-title: Appl. Math. Model.
– year: 1993
  ident: b54
  article-title: Predictive Inference: An Introduction
– reference: A.J. Smola, B. Schölkopf, A Tutorial on Support Vector Regression, NeuroCOLT2 Technical Report Series, NC2-TR-1998-030, Berlin, Germany, 1998.
– reference: S. Mukherjee, E. Osuna, F. Girosi, Nonlinear prediction of chaotic time series using support vector machines, in: Proceedings of the 1997 IEEE Signal Processing Society Workshop. Neural Networks for Signal Processing VII. Amelia Island (FL, USA), 1997.
– volume: 45
  start-page: 226
  year: 2017
  end-page: 237
  ident: b53
  article-title: A hybrid conjugate finite-step length method for robust and efficient reliability analysis
  publication-title: Appl. Math. Model.
– volume: 22
  start-page: 160
  year: 2009
  end-page: 166
  ident: b24
  article-title: Application of least squares support vector machine for regression to reliability analysis
  publication-title: Chin. J. Aeronaut.
– volume: 64
  start-page: 87
  year: 2017
  end-page: 97
  ident: b35
  article-title: Multiple response surfaces method with advanced classification of samples for structural failure function fitting
  publication-title: Struct. Saf.
– reference: JMP
– volume: 5
  start-page: 312
  year: 2013
  end-page: 317
  ident: b29
  article-title: LS-SVM and Monte Carlo methods based reliability analysis for settlement of soft clayey foundation
  publication-title: J. Rock Mech. Geotech. Eng.
– volume: 32
  start-page: 344
  year: 2017
  end-page: 357
  ident: b37
  article-title: A wavelet support vector machine-based neural network metamodel for structural reliability assessment
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
– volume: 14
  start-page: 153
  year: 1969
  end-page: 158
  ident: b20
  article-title: Non-parametric estimation of a multivariate probability density
  publication-title: Theory Probab. Appl.
– volume: 76
  start-page: 237
  year: 2002
  end-page: 243
  ident: b21
  article-title: Fast Monte Carlo reliability evaluation using support vector machine
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 21
  start-page: 44
  year: 2006
  end-page: 53
  ident: b10
  article-title: Reliability analysis of structures using neural network method
  publication-title: Probab. Eng. Mech.
– volume: 52
  start-page: 78
  year: 2015
  end-page: 89
  ident: b9
  article-title: Review and application of artificial neural networks models in reliability analysis of steel structures
  publication-title: Struct. Saf.
– volume: 22
  start-page: 679
  year: 2006
  end-page: 688
  ident: b47
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast.
– reference: V. Vapnik, S.E. Golowich, A.J. Smola, Support vector method for function approximation, regression estimation and signal processing, in: Advances in neural information processing systems, 1997, pp. 281-287.
– volume: 142
  start-page: 137
  year: 2017
  end-page: 147
  ident: b12
  article-title: A novel reliability technique for implementation of performance-based seismic design of structures
  publication-title: Eng. Struct.
– year: 2017
  ident: b14
  article-title: Intelligent computational schemes for designing more seismic damage-tolerant structures
  publication-title: J. Earthq. Eng.
– volume: 23
  start-page: 252
  year: 2016
  end-page: 266
  ident: b33
  article-title: Performance improvement method of support vector machine-based model monitoring dam safety
  publication-title: Struct. Contr. Health Monit.
– volume: 29
  start-page: 2
  year: 2007
  end-page: 15
  ident: b17
  article-title: Filtered importance sampling with support vector margin: a powerful method for structural reliability analysis
  publication-title: Struct. Saf.
– volume: 4
  start-page: 409
  year: 1989
  end-page: 423
  ident: b49
  article-title: Design and analysis of computer experiments
  publication-title: Statist. Sci.
– volume: 43
  start-page: 2404
  year: 2005
  end-page: 2411
  ident: b7
  article-title: Efficient response surface modeling by using moving least-squares method and sensitivity
  publication-title: AIAA J.
– volume: 36
  start-page: 117
  year: 2004
  end-page: 120
  ident: b30
  article-title: Ant colony system for continuous function optimization
  publication-title: J. Sichuan Univ.
– volume: 54
  start-page: 1
  year: 2015
  end-page: 9
  ident: b32
  article-title: An efficient method for generation of uniform support vector and its application in structural failure function fitting
  publication-title: Struct. Saf.
– volume: 39
  start-page: 14
  year: 2012
  end-page: 21
  ident: b1
  article-title: A response surface method based on support vector machines trained with an adaptive experimental design
  publication-title: Struct. Saf.
– volume: 27
  start-page: 133
  year: 2005
  end-page: 151
  ident: b11
  article-title: Application of Kriging method to structural reliability problems
  publication-title: Struct. Saf.
– volume: 38
  start-page: 178
  year: 2011
  end-page: 186
  ident: b25
  article-title: Reliability analysis using radial basis function networks and support vector machines
  publication-title: Comput. Geotech.
– volume: 106
  start-page: 86
  year: 2012
  end-page: 93
  ident: b27
  article-title: A support vector density-based importance sampling for reliability assessment
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 96
  start-page: 1527
  year: 2011
  end-page: 1534
  ident: b26
  article-title: Failure and reliability prediction by support vector machines regression of time series data
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 129
  start-page: 1141
  year: 2003
  end-page: 1149
  ident: b22
  article-title: Classification approach for reliability analysis with stochastic finite element modelling
  publication-title: J. Struct. Eng. ASCE
– volume: 26
  start-page: 1260
  year: 2014
  end-page: 1274
  ident: b44
  article-title: Complex support vector machines for regression and quaternary classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2000
  ident: b18
  article-title: An Introduction to Support Vector Machines and other Kernel-based Learning Methods
– volume: 60
  start-page: 56
  year: 2016
  end-page: 66
  ident: b8
  article-title: Reliability analysis of structures by iterative improved response surface method
  publication-title: Struct. Saf.
– volume: 16
  start-page: 3819
  year: 2018
  end-page: 3843
  ident: b16
  article-title: Site-specific seismic design of damage tolerant structural systems using a novel concept
  publication-title: Bull. Earthq. Eng.
– volume: 110
  start-page: 22
  year: 2013
  end-page: 33
  ident: b28
  article-title: Seismic reliability assessment of RC structures including soil–structure interaction using wavelet weighted least squares support vector machine
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 67
  start-page: 85
  year: 2017
  end-page: 95
  ident: b34
  article-title: An efficient reliability method combining adaptive Support Vector Machine and Monte Carlo Simulation
  publication-title: Struct. Saf.
– start-page: 121
  year: 2003
  end-page: 161
  ident: b51
  article-title: Space-filling designs for computer experiments
  publication-title: The Design and Analysis of Computer Experiments
– volume: 115
  start-page: 2763
  year: 1989
  end-page: 2781
  ident: b4
  article-title: Response surface approach for reliability analyses
  publication-title: J. Eng. Mech. ASCE
– volume: 57
  start-page: 393
  year: 2018
  end-page: 416
  ident: b48
  article-title: A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design
  publication-title: Struct. Multidisc. Optim.
– year: 2000
  ident: b3
  article-title: Finite element and reliability: a happy marriage?
  publication-title: Reliability and Optimization of Structural Systems
– year: 1998
  ident: b41
  article-title: Statistical Learning Theory
– volume: 11
  start-page: 637
  year: 1998
  end-page: 649
  ident: b45
  article-title: The connection between regularization operators and Support Vector Kernels
  publication-title: Neural Netw.
– volume: 14
  start-page: 5
  year: 1998
  end-page: 16
  ident: b38
  article-title: Support vector machines for classification and regression
  publication-title: ISIS Techn. Rep.
– volume: 106
  start-page: 86
  year: 2012
  ident: 10.1016/j.probengmech.2018.11.001_b27
  article-title: A support vector density-based importance sampling for reliability assessment
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2012.04.011
– volume: 11
  start-page: 637
  issue: 4
  year: 1998
  ident: 10.1016/j.probengmech.2018.11.001_b45
  article-title: The connection between regularization operators and Support Vector Kernels
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(98)00032-X
– volume: 110
  start-page: 22
  year: 2013
  ident: 10.1016/j.probengmech.2018.11.001_b28
  article-title: Seismic reliability assessment of RC structures including soil–structure interaction using wavelet weighted least squares support vector machine
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2012.09.006
– year: 2000
  ident: 10.1016/j.probengmech.2018.11.001_b40
– ident: 10.1016/j.probengmech.2018.11.001_b50
– volume: 67
  start-page: 85
  year: 2017
  ident: 10.1016/j.probengmech.2018.11.001_b34
  article-title: An efficient reliability method combining adaptive Support Vector Machine and Monte Carlo Simulation
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2017.04.006
– year: 1993
  ident: 10.1016/j.probengmech.2018.11.001_b54
– volume: 12
  start-page: 569
  issue: 5
  year: 2017
  ident: 10.1016/j.probengmech.2018.11.001_b13
  article-title: Simulation based efficient seismic fragility analysis of existing structures
  publication-title: Earthq. Struct.
– volume: 14
  start-page: 153
  issue: 1
  year: 1969
  ident: 10.1016/j.probengmech.2018.11.001_b20
  article-title: Non-parametric estimation of a multivariate probability density
  publication-title: Theory Probab. Appl.
  doi: 10.1137/1114019
– year: 2004
  ident: 10.1016/j.probengmech.2018.11.001_b46
– volume: 12
  start-page: 205
  year: 1993
  ident: 10.1016/j.probengmech.2018.11.001_b6
  article-title: A new look at the response surface approach for reliability analysis
  publication-title: Struct. Saf.
  doi: 10.1016/0167-4730(93)90003-J
– volume: 26
  start-page: 1260
  issue: 6
  year: 2014
  ident: 10.1016/j.probengmech.2018.11.001_b44
  article-title: Complex support vector machines for regression and quaternary classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2336679
– volume: 64
  start-page: 87
  year: 2017
  ident: 10.1016/j.probengmech.2018.11.001_b35
  article-title: Multiple response surfaces method with advanced classification of samples for structural failure function fitting
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2016.10.002
– ident: 10.1016/j.probengmech.2018.11.001_b43
– year: 2000
  ident: 10.1016/j.probengmech.2018.11.001_b3
  article-title: Finite element and reliability: a happy marriage?
– volume: 41
  start-page: 1
  year: 2015
  ident: 10.1016/j.probengmech.2018.11.001_b31
  article-title: A new sampling strategy for SVM-based response surface for structural reliability analysis
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/j.probengmech.2015.04.001
– volume: 54
  start-page: 1
  year: 2015
  ident: 10.1016/j.probengmech.2018.11.001_b32
  article-title: An efficient method for generation of uniform support vector and its application in structural failure function fitting
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2014.12.004
– volume: 39
  start-page: 66
  year: 2012
  ident: 10.1016/j.probengmech.2018.11.001_b2
  article-title: Bond slip model for the simulation of reinforced concrete structures
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2012.02.007
– volume: 57
  start-page: 393
  issue: 1
  year: 2018
  ident: 10.1016/j.probengmech.2018.11.001_b48
  article-title: A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design
  publication-title: Struct. Multidisc. Optim.
  doi: 10.1007/s00158-017-1739-8
– volume: 32
  start-page: 344
  issue: 4
  year: 2017
  ident: 10.1016/j.probengmech.2018.11.001_b37
  article-title: A wavelet support vector machine-based neural network metamodel for structural reliability assessment
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12257
– volume: 27
  start-page: 1295
  issue: 10
  year: 2006
  ident: 10.1016/j.probengmech.2018.11.001_b23
  article-title: Support vector machine for structural reliability analysis
  publication-title: Appl. Math. Mech.
  doi: 10.1007/s10483-006-1001-z
– volume: 7
  start-page: 57
  year: 1990
  ident: 10.1016/j.probengmech.2018.11.001_b5
  article-title: A fast and efficient response surface approach for structural reliability problems
  publication-title: Struct. Saf.
  doi: 10.1016/0167-4730(90)90012-E
– volume: 44
  start-page: 508
  year: 2017
  ident: 10.1016/j.probengmech.2018.11.001_b36
  article-title: Adaptive reliability analysis based on a support vector machine and its application to rock engineering
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2017.02.020
– volume: 45
  start-page: 226
  year: 2017
  ident: 10.1016/j.probengmech.2018.11.001_b53
  article-title: A hybrid conjugate finite-step length method for robust and efficient reliability analysis
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2016.12.027
– volume: 42
  start-page: 237
  issue: 3
  year: 2000
  ident: 10.1016/j.probengmech.2018.11.001_b52
  article-title: Uniform design: Theory and application
  publication-title: Technometrics
  doi: 10.1080/00401706.2000.10486045
– volume: 64
  start-page: 584
  year: 2018
  ident: 10.1016/j.probengmech.2018.11.001_b15
  article-title: Support vector regression based metamodeling for seismic reliability analysis of structures
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.07.054
– volume: 22
  start-page: 160
  issue: 2
  year: 2009
  ident: 10.1016/j.probengmech.2018.11.001_b24
  article-title: Application of least squares support vector machine for regression to reliability analysis
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/S1000-9361(08)60082-5
– volume: 29
  start-page: 2
  year: 2007
  ident: 10.1016/j.probengmech.2018.11.001_b17
  article-title: Filtered importance sampling with support vector margin: a powerful method for structural reliability analysis
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2005.12.002
– year: 1996
  ident: 10.1016/j.probengmech.2018.11.001_b39
– volume: 43
  start-page: 2404
  issue: 1
  year: 2005
  ident: 10.1016/j.probengmech.2018.11.001_b7
  article-title: Efficient response surface modeling by using moving least-squares method and sensitivity
  publication-title: AIAA J.
  doi: 10.2514/1.12366
– volume: 39
  start-page: 14
  year: 2012
  ident: 10.1016/j.probengmech.2018.11.001_b1
  article-title: A response surface method based on support vector machines trained with an adaptive experimental design
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2012.05.001
– volume: 22
  start-page: 679
  issue: 4
  year: 2006
  ident: 10.1016/j.probengmech.2018.11.001_b47
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2006.03.001
– year: 2017
  ident: 10.1016/j.probengmech.2018.11.001_b14
  article-title: Intelligent computational schemes for designing more seismic damage-tolerant structures
  publication-title: J. Earthq. Eng.
  doi: 10.1080/13632469.2017.1401566
– volume: 142
  start-page: 137
  year: 2017
  ident: 10.1016/j.probengmech.2018.11.001_b12
  article-title: A novel reliability technique for implementation of performance-based seismic design of structures
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2017.03.076
– volume: 27
  start-page: 133
  year: 2005
  ident: 10.1016/j.probengmech.2018.11.001_b11
  article-title: Application of Kriging method to structural reliability problems
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2004.09.001
– volume: 38
  start-page: 178
  issue: 2
  year: 2011
  ident: 10.1016/j.probengmech.2018.11.001_b25
  article-title: Reliability analysis using radial basis function networks and support vector machines
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2010.11.002
– volume: 21
  start-page: 44
  year: 2006
  ident: 10.1016/j.probengmech.2018.11.001_b10
  article-title: Reliability analysis of structures using neural network method
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/j.probengmech.2005.07.002
– volume: 14
  start-page: 5
  issue: 1
  year: 1998
  ident: 10.1016/j.probengmech.2018.11.001_b38
  article-title: Support vector machines for classification and regression
  publication-title: ISIS Techn. Rep.
– ident: 10.1016/j.probengmech.2018.11.001_b42
– volume: 52
  start-page: 78
  year: 2015
  ident: 10.1016/j.probengmech.2018.11.001_b9
  article-title: Review and application of artificial neural networks models in reliability analysis of steel structures
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2014.09.002
– volume: 76
  start-page: 237
  issue: 3
  year: 2002
  ident: 10.1016/j.probengmech.2018.11.001_b21
  article-title: Fast Monte Carlo reliability evaluation using support vector machine
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/S0951-8320(02)00015-7
– volume: 115
  start-page: 2763
  issue: 2
  year: 1989
  ident: 10.1016/j.probengmech.2018.11.001_b4
  article-title: Response surface approach for reliability analyses
  publication-title: J. Eng. Mech. ASCE
  doi: 10.1061/(ASCE)0733-9399(1989)115:12(2763)
– volume: 129
  start-page: 1141
  issue: 8
  year: 2003
  ident: 10.1016/j.probengmech.2018.11.001_b22
  article-title: Classification approach for reliability analysis with stochastic finite element modelling
  publication-title: J. Struct. Eng. ASCE
  doi: 10.1061/(ASCE)0733-9445(2003)129:8(1141)
– volume: 5
  start-page: 312
  year: 2013
  ident: 10.1016/j.probengmech.2018.11.001_b29
  article-title: LS-SVM and Monte Carlo methods based reliability analysis for settlement of soft clayey foundation
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2012.06.003
– volume: 60
  start-page: 56
  year: 2016
  ident: 10.1016/j.probengmech.2018.11.001_b8
  article-title: Reliability analysis of structures by iterative improved response surface method
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2016.02.002
– volume: 23
  start-page: 252
  year: 2016
  ident: 10.1016/j.probengmech.2018.11.001_b33
  article-title: Performance improvement method of support vector machine-based model monitoring dam safety
  publication-title: Struct. Contr. Health Monit.
  doi: 10.1002/stc.1767
– volume: 96
  start-page: 1527
  year: 2011
  ident: 10.1016/j.probengmech.2018.11.001_b26
  article-title: Failure and reliability prediction by support vector machines regression of time series data
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2011.06.006
– year: 1998
  ident: 10.1016/j.probengmech.2018.11.001_b41
– ident: 10.1016/j.probengmech.2018.11.001_b19
  doi: 10.1109/NNSP.1997.622433
– volume: 4
  start-page: 409
  issue: 4
  year: 1989
  ident: 10.1016/j.probengmech.2018.11.001_b49
  article-title: Design and analysis of computer experiments
  publication-title: Statist. Sci.
  doi: 10.1214/ss/1177012413
– year: 2000
  ident: 10.1016/j.probengmech.2018.11.001_b18
– volume: 16
  start-page: 3819
  issue: 9
  year: 2018
  ident: 10.1016/j.probengmech.2018.11.001_b16
  article-title: Site-specific seismic design of damage tolerant structural systems using a novel concept
  publication-title: Bull. Earthq. Eng.
  doi: 10.1007/s10518-018-0329-5
– volume: 36
  start-page: 117
  issue: 6
  year: 2004
  ident: 10.1016/j.probengmech.2018.11.001_b30
  article-title: Ant colony system for continuous function optimization
  publication-title: J. Sichuan Univ.
– start-page: 121
  year: 2003
  ident: 10.1016/j.probengmech.2018.11.001_b51
  article-title: Space-filling designs for computer experiments
SSID ssj0017149
Score 2.4998229
Snippet Various metamodeling approaches e.g. polynomial response surface method artificial neural network, Kriging method etc. have been emerged as an effective...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 78
SubjectTerms Algorithms
Artificial neural networks
Computer simulation
Empirical analysis
Finite element analysis
Finite element method
Kernel functions
Kriging
Mathematical models
Metamodel
Metamodels
Monte Carlo simulation
Neural networks
Optimization
Parameter optimization
Parameters
Polynomials
Regression analysis
Regularization
Reliability
Reliability analysis
Reliability engineering
Response surface methodology
Statistical analysis
Structural reliability
Support vector machines
Support vector regression
Title Support vector regression based metamodeling for structural reliability analysis
URI https://dx.doi.org/10.1016/j.probengmech.2018.11.001
https://www.proquest.com/docview/2206263664
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KgnjxLVZrWcFr2ryaZMFLKZZqoYhW7G3ZV0qljcUWwYu_3ZlkUx94KHgKCTsh7M7O9-1m9htCLlMpI5HoxAEwwCM5ijnCZ64Tpx6LkeRHOs_yHUS9x_B21BpVSKc8C4NplTb2FzE9j9b2SdP2ZnM-mTQfYPUQJQwADJ0UeAqeYA9j9PLGxyrNA-t7s2KfJXKw9Ra5-MrxwqItJhvPTP5fwksaKOhp68P8gVG_onUOQd09smO5I20Xn7dPKiY7ILuWR1I7SxeH5A5LdQKtpm_5ljx9NeMi2zWjCFqazsxS5CVwALcosFZaqMiiAgc0nk4K7e53KqxiyREZdq-HnZ5jKyc4CgB56QRCA5XxRSCZTGMTC-Wl2rgqTEPmQ3SWEoiDNqmPgm1hJBNPebCWEQLYWCpFcEw2spfMnBCatJQEc1doYFaGeVK7JlGhxJkcB1JXSVJ2FVdWVRyLW0x5mT72zL_1MsdehlUHptJVib8ynRfSGusYXZXjwX_4CQcIWMe8Vo4ht5N1wX3fRU2eKApP__f2M7INd6zYoamRDRg7cw6cZSnruVPWyWb7pt8b4LV__9T_BEzh8R0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7MCeqLd_FuBF_relvbgC8yHJvOIThhbyFp0jGZVXQI_nvPadN5wYeBr21OKSfJ-b4kJ98BOMuUimSiEwfBgK7kpNyRPnedOPN4TCQ_0kWWbz_qPITXw-awBq3qLgylVdrYX8b0IlrbJw3rzcbLeNy4x9VDlHAEMBqkyFMWYJHUqZp1WLzs3nT6s8OE2CtZMLZ3yGAJTr_SvKhui8lHT6Y4mvCSc9L0tCVi_oCpXwG7QKH2Oqxa-sguyz_cgJrJN2HNUklmJ-rbFtxRtU5k1uy92JVnr2ZUJrzmjHBLsyczlUUVHIQuhsSVlUKyJMKBjSfjUr77g0krWrINg_bVoNVxbPEEJ0VMnjqB1MhmfBkorrLYxDL1Mm3cNMxC7mOAVgq5gzaZT5ptYaQSL_VwOSMlErJMyWAH6vlzbnaBJc1UobkrNZIrwz2lXZOkoaLJHAdK70FSuUqkVlic6ltMRJVB9ii-eVmQl3HhQdl0e-DPTF9KdY15jC6q_hA_hopAFJjH_LDqQ2Hn65vwfZdkeaIo3P_f109guTO47Ylet39zACv4hpcbNodQx340R0hhpurYDtFP977yKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Support+vector+regression+based+metamodeling+for+structural+reliability+analysis&rft.jtitle=Probabilistic+engineering+mechanics&rft.au=Roy%2C+Atin&rft.au=Manna%2C+Ramkrishna&rft.au=Chakraborty%2C+Subrata&rft.date=2019-01-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0266-8920&rft.eissn=1878-4275&rft.volume=55&rft.spage=78&rft_id=info:doi/10.1016%2Fj.probengmech.2018.11.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-8920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-8920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-8920&client=summon