Superexchange interaction regulates Ni/Mn spin states triggering Ni-t2g/O-2p reductive coupling enabling stable lithium-rich cathode
Lithium-rich layer oxides are expected to be high-capacity cathodes for next-generation lithium-ion batteries, but their performance is hindered by irreversible anionic redox, leading to voltage decay, lag, and slow kinetics. In order to solve these problems, we regulate the Ni/Mn spin state in Li 1...
Saved in:
Published in | Nature communications Vol. 16; no. 1; pp. 3900 - 13 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.04.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-025-59159-6 |
Cover
Loading…
Abstract | Lithium-rich layer oxides are expected to be high-capacity cathodes for next-generation lithium-ion batteries, but their performance is hindered by irreversible anionic redox, leading to voltage decay, lag, and slow kinetics. In order to solve these problems, we regulate the Ni/Mn spin state in Li
1.2
Mn
0.6
Ni
0.2
O
2
by Be doping, which generates the superexchange interaction and activates Ni-t
2g
orbitals. The activation of Ni-t
2g
orbitals triggers the reductive coupling mechanism between Ni/O, which improves the reversibility and kinetics of anionic redox. The strong π-type Ni-t
2g
/O-2
p
interaction forms a stable Ni-(O–O) configuration, suppressing excessive anion oxidation. In this work, the Be modified cathodes have good cycle stability, 0.04 mAh/g and 0.5 mV decay per cycle over 400 cycles at 1 C (60 min, 250 mA g
−1
), with a rate performance of 187 mAh/g at 10 C (6 min, 2500 mA g
−1
), providing a strategy for stabilising oxygen redox chemistry and designing high performance lithium-rich cathodes.
Li-rich oxides face challenges such as voltage decay and slow kinetics due to irreversible anionic reaction. Here, authors activated the Ni-t2g orbitals through generating superexchange interactions via Be doping. By triggering the reduction coupling mechanism, the reversibility and kinetics of the anionic reaction are effectively improved. |
---|---|
AbstractList | Lithium-rich layer oxides are expected to be high-capacity cathodes for next-generation lithium-ion batteries, but their performance is hindered by irreversible anionic redox, leading to voltage decay, lag, and slow kinetics. In order to solve these problems, we regulate the Ni/Mn spin state in Li
1.2
Mn
0.6
Ni
0.2
O
2
by Be doping, which generates the superexchange interaction and activates Ni-t
2g
orbitals. The activation of Ni-t
2g
orbitals triggers the reductive coupling mechanism between Ni/O, which improves the reversibility and kinetics of anionic redox. The strong π-type Ni-t
2g
/O-2
p
interaction forms a stable Ni-(O–O) configuration, suppressing excessive anion oxidation. In this work, the Be modified cathodes have good cycle stability, 0.04 mAh/g and 0.5 mV decay per cycle over 400 cycles at 1 C (60 min, 250 mA g
−1
), with a rate performance of 187 mAh/g at 10 C (6 min, 2500 mA g
−1
), providing a strategy for stabilising oxygen redox chemistry and designing high performance lithium-rich cathodes.
Li-rich oxides face challenges such as voltage decay and slow kinetics due to irreversible anionic reaction. Here, authors activated the Ni-t2g orbitals through generating superexchange interactions via Be doping. By triggering the reduction coupling mechanism, the reversibility and kinetics of the anionic reaction are effectively improved. Abstract Lithium-rich layer oxides are expected to be high-capacity cathodes for next-generation lithium-ion batteries, but their performance is hindered by irreversible anionic redox, leading to voltage decay, lag, and slow kinetics. In order to solve these problems, we regulate the Ni/Mn spin state in Li1.2Mn0.6Ni0.2O2 by Be doping, which generates the superexchange interaction and activates Ni-t2g orbitals. The activation of Ni-t2g orbitals triggers the reductive coupling mechanism between Ni/O, which improves the reversibility and kinetics of anionic redox. The strong π-type Ni-t2g/O-2p interaction forms a stable Ni-(O–O) configuration, suppressing excessive anion oxidation. In this work, the Be modified cathodes have good cycle stability, 0.04 mAh/g and 0.5 mV decay per cycle over 400 cycles at 1 C (60 min, 250 mA g−1), with a rate performance of 187 mAh/g at 10 C (6 min, 2500 mA g−1), providing a strategy for stabilising oxygen redox chemistry and designing high performance lithium-rich cathodes. Lithium-rich layer oxides are expected to be high-capacity cathodes for next-generation lithium-ion batteries, but their performance is hindered by irreversible anionic redox, leading to voltage decay, lag, and slow kinetics. In order to solve these problems, we regulate the Ni/Mn spin state in Li1.2Mn0.6Ni0.2O2 by Be doping, which generates the superexchange interaction and activates Ni-t2g orbitals. The activation of Ni-t2g orbitals triggers the reductive coupling mechanism between Ni/O, which improves the reversibility and kinetics of anionic redox. The strong π-type Ni-t2g/O-2p interaction forms a stable Ni-(O-O) configuration, suppressing excessive anion oxidation. In this work, the Be modified cathodes have good cycle stability, 0.04 mAh/g and 0.5 mV decay per cycle over 400 cycles at 1 C (60 min, 250 mA g-1), with a rate performance of 187 mAh/g at 10 C (6 min, 2500 mA g-1), providing a strategy for stabilising oxygen redox chemistry and designing high performance lithium-rich cathodes.Lithium-rich layer oxides are expected to be high-capacity cathodes for next-generation lithium-ion batteries, but their performance is hindered by irreversible anionic redox, leading to voltage decay, lag, and slow kinetics. In order to solve these problems, we regulate the Ni/Mn spin state in Li1.2Mn0.6Ni0.2O2 by Be doping, which generates the superexchange interaction and activates Ni-t2g orbitals. The activation of Ni-t2g orbitals triggers the reductive coupling mechanism between Ni/O, which improves the reversibility and kinetics of anionic redox. The strong π-type Ni-t2g/O-2p interaction forms a stable Ni-(O-O) configuration, suppressing excessive anion oxidation. In this work, the Be modified cathodes have good cycle stability, 0.04 mAh/g and 0.5 mV decay per cycle over 400 cycles at 1 C (60 min, 250 mA g-1), with a rate performance of 187 mAh/g at 10 C (6 min, 2500 mA g-1), providing a strategy for stabilising oxygen redox chemistry and designing high performance lithium-rich cathodes. Lithium-rich layer oxides are expected to be high-capacity cathodes for next-generation lithium-ion batteries, but their performance is hindered by irreversible anionic redox, leading to voltage decay, lag, and slow kinetics. In order to solve these problems, we regulate the Ni/Mn spin state in Li1.2Mn0.6Ni0.2O2 by Be doping, which generates the superexchange interaction and activates Ni-t2g orbitals. The activation of Ni-t2g orbitals triggers the reductive coupling mechanism between Ni/O, which improves the reversibility and kinetics of anionic redox. The strong π-type Ni-t2g/O-2p interaction forms a stable Ni-(O–O) configuration, suppressing excessive anion oxidation. In this work, the Be modified cathodes have good cycle stability, 0.04 mAh/g and 0.5 mV decay per cycle over 400 cycles at 1 C (60 min, 250 mA g−1), with a rate performance of 187 mAh/g at 10 C (6 min, 2500 mA g−1), providing a strategy for stabilising oxygen redox chemistry and designing high performance lithium-rich cathodes.Li-rich oxides face challenges such as voltage decay and slow kinetics due to irreversible anionic reaction. Here, authors activated the Ni-t2g orbitals through generating superexchange interactions via Be doping. By triggering the reduction coupling mechanism, the reversibility and kinetics of the anionic reaction are effectively improved. |
ArticleNumber | 3900 |
Author | Mao, Huican Li, Jianling Zhang, Juan Wang, Yaqing Wang, Xindong Li, Jie Zheng, Chaoliang Yang, Xiaoxu Zhang, Di Kang, Feiyu |
Author_xml | – sequence: 1 givenname: Chaoliang surname: Zheng fullname: Zheng, Chaoliang organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing – sequence: 2 givenname: Yaqing surname: Wang fullname: Wang, Yaqing organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing – sequence: 3 givenname: Huican orcidid: 0000-0001-6772-2313 surname: Mao fullname: Mao, Huican email: hcmao@ustb.edu.cn organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing – sequence: 4 givenname: Juan surname: Zhang fullname: Zhang, Juan email: zhangjuan85@ustb.edu.cn organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing – sequence: 5 givenname: Xiaoxu surname: Yang fullname: Yang, Xiaoxu organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing – sequence: 6 givenname: Jie surname: Li fullname: Li, Jie organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing – sequence: 7 givenname: Di surname: Zhang fullname: Zhang, Di organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing – sequence: 8 givenname: Xindong surname: Wang fullname: Wang, Xindong organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing – sequence: 9 givenname: Feiyu surname: Kang fullname: Kang, Feiyu email: fykang@tsinghua.edu.cn organization: Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University – sequence: 10 givenname: Jianling orcidid: 0000-0003-2609-3084 surname: Li fullname: Li, Jianling email: lijianling@ustb.edu.cn organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing |
BookMark | eNp9UU2PFCEQ7Zg1cV33D3jqxIsXHD6b5mg2fmyyugf1TICu7mHSAy3QZr37w2WmjRoPEkJVqt57FLynzUWIAZrmOcGvCGb9LnPCO4kwFUgoIhTqHjWXFHOCiKTs4q_8SXOd8wHXxRTpOb9sfnxaF0jw4PYmTND6UCAZV3wMbYJpnU2B3H70uw-hzYuvRzlXSvLTBMmHqTZRodPuHtGlUoa1kr9B6-K6zKc2BGPPSWXaGdrZl71fjyh5t2-dKfs4wLPm8WjmDNe_4lXz5e2bzzfv0d39u9ub13fIcSIKYlRyxzAjqrNAZQejdcp1eAQsRilrnfYYOzsoB9bW7TpwppfGmsEqoOyqud10h2gOekn-aNJ3HY3X50JMkzapeDeDlpSaYVBCDARz19OeK84tJVSNY_1oWbVeblpLil9XyEUffXYwzyZAXLOu0_BOUKVEhb74B3qIawr1pZpRwiSvLnYVRTeUSzHnBOPvAQnWJ5_15rOu1-uzz_pEYhspLyczIP2R_g_rJ2hXrfk |
Cites_doi | 10.1002/ange.202404834 10.1103/PhysRevB.78.064413 10.1038/s41560-021-00780-2 10.1038/s41586-022-04689-y 10.1002/admi.202300903 10.1021/jacs.0c05498 10.1016/j.jmrt.2020.04.098 10.1038/nmat4864 10.1021/jacs.6b10225 10.1021/acsenergylett.2c00353 10.1021/jacs.2c11640 10.1016/j.mattod.2021.10.020 10.1021/acs.chemmater.6b04743 10.1038/s41467-022-33846-0 10.1002/adfm.202112394 10.1038/nchem.2471 10.1038/s41560-018-0207-z 10.1016/j.cej.2025.159727 10.1016/j.ensm.2019.07.032 10.1039/D1EE03503G 10.1002/adfm.201700982 10.1002/adfm.202402639 10.1038/s41563-023-01679-x 10.1016/j.chempr.2022.04.012 10.1021/jacs.3c01999 10.1063/1.1323224 10.1039/D3CS00550J 10.1103/PhysRevLett.77.3865 10.1038/s41467-022-28793-9 10.1002/aenm.201901530 10.1002/adfm.201504836 10.1002/aenm.202400461 10.1021/jacs.8b11413 10.1038/s41560-018-0097-0 10.1021/acsami.7b09835 10.1016/j.ensm.2024.103383 10.1002/ange.202309049 10.1021/jacs.4c01787 10.1038/natrevmats.2016.13 10.1002/ange.202315371 10.1103/PhysRevB.50.17953 10.1149/1.2133112 10.1038/s41560-021-00832-7 10.1038/s41560-023-01289-6 10.1038/s41467-017-02041-x 10.1002/adma.202201152 10.1038/s41563-022-01467-z 10.1021/acs.jpcc.5b09948 10.1002/ange.201606154 10.1021/acscatal.4c01091 10.1038/s41560-019-0508-x 10.1038/s41467-020-15355-0 10.1021/acs.jpclett.7b02498 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Nature Publishing Group 2025 2025. The Author(s). |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Nature Publishing Group 2025 – notice: 2025. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 DOA |
DOI | 10.1038/s41467-025-59159-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_722add955d104c8284944b2129ff0257 10_1038_s41467_025_59159_6 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 51972023 and 52272184 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZT PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AARCD AAYXX CITATION PHGZM PJZUB PPXIY PQGLB 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO |
ID | FETCH-LOGICAL-c415t-3274c303196be276efbc9c60fe05f773192800cbd9cebbebbc6eca87abadb9e23 |
IEDL.DBID | C6C |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:21:42 EDT 2025 Fri Jul 11 18:29:48 EDT 2025 Sat Aug 23 12:43:34 EDT 2025 Tue Aug 05 12:02:28 EDT 2025 Fri Apr 25 03:13:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-3274c303196be276efbc9c60fe05f773192800cbd9cebbebbc6eca87abadb9e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6772-2313 0000-0003-2609-3084 |
OpenAccessLink | https://www.nature.com/articles/s41467-025-59159-6 |
PQID | 3213741036 |
PQPubID | 546298 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_722add955d104c8284944b2129ff0257 proquest_miscellaneous_3194652995 proquest_journals_3213741036 crossref_primary_10_1038_s41467_025_59159_6 springer_journals_10_1038_s41467_025_59159_6 |
PublicationCentury | 2000 |
PublicationDate | 2025-04-25 |
PublicationDateYYYYMMDD | 2025-04-25 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | S Liu (59159_CR24) 2019; 9 H-L Yu (59159_CR26) 2022; 32 B Li (59159_CR18) 2016; 26 M Qian (59159_CR51) 2025; 505 Z Zhu (59159_CR8) 2019; 4 Y Zuo (59159_CR19) 2023; 145 K Kawai (59159_CR48) 2022; 15 S Wang (59159_CR22) 2024; 53 Q Zhang (59159_CR32) 2016; 128 J Guo (59159_CR35) 2024; 69 Y Bai (59159_CR38) 2022; 13 JP Perdew (59159_CR52) 1996; 77 C Yin (59159_CR36) 2021; 51 B Zhang (59159_CR6) 2023; 145 R House (59159_CR45) 2021; 6 Q Li (59159_CR4) 2022; 13 B Li (59159_CR17) 2017; 29 KM Dunia (59159_CR34) 2016; 57 Y Wang (59159_CR42) 2016; 138 J Huang (59159_CR11) 2023; 22 T Cao (59159_CR12) 2015; 119 A Manthiram (59159_CR2) 2020; 11 W Huang (59159_CR7) 2022; 8 B Li (59159_CR23) 2023; 22 M Okubo (59159_CR27) 2017; 9 A Tang (59159_CR13) 2024; 34 J Zheng (59159_CR30) 2017; 8 X-Y Huo (59159_CR15) 2022; 7 E Zhao (59159_CR37) 2020; 24 T Cui (59159_CR29) 2024; 146 PE Blöchl (59159_CR53) 1994; 50 G Henkelman (59159_CR54) 2000; 113 D Luo (59159_CR5) 2023; 8 D Lan (59159_CR41) 2024; 11 G Liu (59159_CR31) 2024; 14 K Luo (59159_CR46) 2016; 8 Y Wu (59159_CR40) 2008; 78 C Chen (59159_CR49) 2022; 34 Q Wang (59159_CR14) 2023; 135 Y He (59159_CR43) 2024; 136 MY Yang (59159_CR21) 2017; 27 P Csenica (59159_CR9) 2021; 6 PE Pearce (59159_CR16) 2017; 16 L Wang (59159_CR25) 2020; 142 W Weppner (59159_CR50) 1977; 124 WE Gent (59159_CR47) 2017; 8 Q Jacquet (59159_CR20) 2019; 141 JW Choi (59159_CR1) 2016; 1 TA Taha (59159_CR33) 2020; 9 S Yao (59159_CR39) 2024; 136 Y Zheng (59159_CR44) 2024; 14 T Liu (59159_CR10) 2022; 606 E Hu (59159_CR28) 2018; 3 G Assat (59159_CR3) 2018; 3 |
References_xml | – volume: 136 year: 2024 ident: 59159_CR39 publication-title: Angew. Chem. doi: 10.1002/ange.202404834 – volume: 78 year: 2008 ident: 59159_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.064413 – volume: 6 start-page: 781 year: 2021 ident: 59159_CR45 publication-title: Nat. Energy doi: 10.1038/s41560-021-00780-2 – volume: 606 start-page: 305 year: 2022 ident: 59159_CR10 publication-title: Nature doi: 10.1038/s41586-022-04689-y – volume: 11 start-page: 2300903 year: 2024 ident: 59159_CR41 publication-title: Adv. Mater. Interfaces. doi: 10.1002/admi.202300903 – volume: 142 start-page: 14966 year: 2020 ident: 59159_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05498 – volume: 9 start-page: 7955 year: 2020 ident: 59159_CR33 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2020.04.098 – volume: 16 start-page: 580 year: 2017 ident: 59159_CR16 publication-title: Nat. Mater. doi: 10.1038/nmat4864 – volume: 138 start-page: 15751 year: 2016 ident: 59159_CR42 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10225 – volume: 7 start-page: 1687 year: 2022 ident: 59159_CR15 publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.2c00353 – volume: 145 start-page: 5174 year: 2023 ident: 59159_CR19 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c11640 – volume: 51 start-page: 15 year: 2021 ident: 59159_CR36 publication-title: Mater. Today doi: 10.1016/j.mattod.2021.10.020 – volume: 29 start-page: 2811 year: 2017 ident: 59159_CR17 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b04743 – volume: 13 year: 2022 ident: 59159_CR38 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33846-0 – volume: 32 start-page: 2112394 year: 2022 ident: 59159_CR26 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202112394 – volume: 8 start-page: 684 year: 2016 ident: 59159_CR46 publication-title: Nat. Chem. doi: 10.1038/nchem.2471 – volume: 3 start-page: 690 year: 2018 ident: 59159_CR28 publication-title: Nat. Energy doi: 10.1038/s41560-018-0207-z – volume: 505 start-page: 159727 year: 2025 ident: 59159_CR51 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2025.159727 – volume: 24 start-page: 384 year: 2020 ident: 59159_CR37 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.07.032 – volume: 15 start-page: 2591 year: 2022 ident: 59159_CR48 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE03503G – volume: 27 start-page: 1700982 year: 2017 ident: 59159_CR21 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700982 – volume: 34 start-page: 2402639 year: 2024 ident: 59159_CR13 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202402639 – volume: 22 start-page: 1370 year: 2023 ident: 59159_CR23 publication-title: Nat. Mater. doi: 10.1038/s41563-023-01679-x – volume: 8 start-page: 2163 year: 2022 ident: 59159_CR7 publication-title: Chem doi: 10.1016/j.chempr.2022.04.012 – volume: 145 start-page: 8700 year: 2023 ident: 59159_CR6 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c01999 – volume: 113 start-page: 9978 year: 2000 ident: 59159_CR54 publication-title: J. Chem. Phys. doi: 10.1063/1.1323224 – volume: 53 start-page: 3516 year: 2024 ident: 59159_CR22 publication-title: Chem. Soc. Rev. doi: 10.1039/D3CS00550J – volume: 77 start-page: 3865 year: 1996 ident: 59159_CR52 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 13 year: 2022 ident: 59159_CR4 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28793-9 – volume: 9 year: 2019 ident: 59159_CR24 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901530 – volume: 26 start-page: 1330 year: 2016 ident: 59159_CR18 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504836 – volume: 14 start-page: 2400460 year: 2024 ident: 59159_CR44 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202400461 – volume: 141 start-page: 11452 year: 2019 ident: 59159_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11413 – volume: 3 start-page: 373 year: 2018 ident: 59159_CR3 publication-title: Nat. Energy doi: 10.1038/s41560-018-0097-0 – volume: 9 start-page: 36463 year: 2017 ident: 59159_CR27 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b09835 – volume: 69 year: 2024 ident: 59159_CR35 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2024.103383 – volume: 135 start-page: e202309049 year: 2023 ident: 59159_CR14 publication-title: Angew. Chem. doi: 10.1002/ange.202309049 – volume: 146 start-page: 13924 year: 2024 ident: 59159_CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.4c01787 – volume: 57 start-page: 404 year: 2016 ident: 59159_CR34 publication-title: Porcelain. Iraqi J. Sci. – volume: 1 start-page: 16013 year: 2016 ident: 59159_CR1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.13 – volume: 136 year: 2024 ident: 59159_CR43 publication-title: Angew. Chem. doi: 10.1002/ange.202315371 – volume: 50 start-page: 17953 year: 1994 ident: 59159_CR53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 124 start-page: 1569 year: 1977 ident: 59159_CR50 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2133112 – volume: 6 start-page: 642 year: 2021 ident: 59159_CR9 publication-title: Nat. Energy doi: 10.1038/s41560-021-00832-7 – volume: 8 start-page: 1078 year: 2023 ident: 59159_CR5 publication-title: Nat. Energy doi: 10.1038/s41560-023-01289-6 – volume: 8 year: 2017 ident: 59159_CR47 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02041-x – volume: 34 start-page: 2201152 year: 2022 ident: 59159_CR49 publication-title: Adv. Mater. doi: 10.1002/adma.202201152 – volume: 22 start-page: 353 year: 2023 ident: 59159_CR11 publication-title: Nat. Mater. doi: 10.1038/s41563-022-01467-z – volume: 119 start-page: 28749 year: 2015 ident: 59159_CR12 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b09948 – volume: 128 start-page: 11021 year: 2016 ident: 59159_CR32 publication-title: Angew. Chem. doi: 10.1002/ange.201606154 – volume: 14 start-page: 8652 year: 2024 ident: 59159_CR31 publication-title: ACS Catal doi: 10.1021/acscatal.4c01091 – volume: 4 start-page: 1049 year: 2019 ident: 59159_CR8 publication-title: Nat. Energy doi: 10.1038/s41560-019-0508-x – volume: 11 year: 2020 ident: 59159_CR2 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15355-0 – volume: 8 start-page: 5537 year: 2017 ident: 59159_CR30 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b02498 |
SSID | ssj0000391844 |
Score | 2.4799757 |
Snippet | Lithium-rich layer oxides are expected to be high-capacity cathodes for next-generation lithium-ion batteries, but their performance is hindered by... Abstract Lithium-rich layer oxides are expected to be high-capacity cathodes for next-generation lithium-ion batteries, but their performance is hindered by... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 3900 |
SubjectTerms | 119/118 140/131 140/133 140/146 140/58 147/135 147/143 639/4077/4079/891 639/638/161/891 Cathodes Coupling Decay Decay rate Doping Electric potential Humanities and Social Sciences Kinetics Lithium Lithium-ion batteries Manganese multidisciplinary Nickel Orbitals Oxidation Science Science (multidisciplinary) Voltage |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEF5KQeiLqFWMVtlC3-xyuf2V20cVSym0PthC35bsZnI90Nxxl4C-9w_vzG6utoL4IoQjJJuwZGbn-4a9-YaxI-ToUsaqFsGEKBBva0EtXoQhrW85VY0JVCh8fmFPr_TZtbl-0OqL_hOW5YHzh5tUUuISdMY0mDhEzA-00zpgwHVti3id6sgR8x4kUykGK4epix6rZEo1m2x0ignUvdU4xHBhHyFREux_xDL_2BhNeHPyjD0diSL_mCf4nO1A94I9ya0jf-2z22_DCtbwMxfuclJ9WOcaBb7O7eVhwy8Wk_OOb1YL_EmkkveYjM-T-iDeFL2cT74KucJHSPYVAx-Py4FqdOccqKiKTvDJ8B040vWbxfBDYNy84ST2umzgJbs6-XL5-VSMHRVERKDuhcIcNCoqXLIBZGWhDdFFW7ZQmraq8LpEAhlD4yKEgEe0EOtZVYe6CQ6kesV2u2UHrxmvoZWqhqltY6lbHAtIHQCTqypYo6ppwT5sv65fZeEMnza81cxnW3i0hU-28LZgn8gA9yNJ9DpdQFfwoyv4f7lCwQ625vPjStx4cjhkTQjUBTu8v41riDZG6g6WA46ZOm0NArMp2PHW7L9f8fdpv_kf037L9iS5ZamFNAdst18P8A6ZTh_eJ6e-A0ko-Qw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zi9RAEG50RfBFPDHrKi34ps1kOn1MnmRXXBZh1wddmLcm3anMDmiSzQH67g-3qpOZZQWFEEJfOaq7jq7UV4y9RR1dymAL4bUPAuVtISjFi9CE9S2XWak9BQqfX5izS_V5rdfzhls__1a544mRUZdNoD3yBXVE6YcM90N7LShrFHlX5xQad9k9gi4j48uu7X6PhdDPV0rNsTJptlr0KnIGyuGqc5TkwtySRxG2_5au-Zd7NEqd00fs4awu8uOJvo_ZHaifsPtTAslfT9nvr2MLHfycwnc5YT90U6QC76Yk89Dzi-3ivOZ9u8VTVC35gO-1iRiEWCkGuVl8EbLFLgT-iuyPh2akSN0NBwqtogvs6b8DR6X9ajv-EMg9rzhBvjYlPGOXp5--fTwTc14FEVBcDyJDSzRkFL5kPEhroPIhDyatINWVtVguUY0MvswDeI9HMBCKlS18UfocZPacHdRNDS8YL6CSWQFLU4VUVdgWUIEANLGsNzqzy4S9231d107wGS66vbOVm2jhkBYu0sKZhJ0QAfYtCfo6FjTdxs0ryVkpkSfnWpdoSQY0GFWulEcJnFcVjmUTdrQjn5vXY-9uZk_C3uyrcSWRe6SooRmxzTJXRqN41gl7vyP7zRD_fuzD_9_xJXsgacKlSkh9xA6GboRXqMkM_nWcrn8AnHPx2g priority: 102 providerName: ProQuest |
Title | Superexchange interaction regulates Ni/Mn spin states triggering Ni-t2g/O-2p reductive coupling enabling stable lithium-rich cathode |
URI | https://link.springer.com/article/10.1038/s41467-025-59159-6 https://www.proquest.com/docview/3213741036 https://www.proquest.com/docview/3194652995 https://doaj.org/article/722add955d104c8284944b2129ff0257 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9swEBb7oNBL6ZO63QYVemtFElkP-5gNmy6BTUu3C7kJSx5nA1s7ODa09_7wjmQ7ZUt7KBjb2CNhPJLmG0nzDSHvEKNz7nTGrLSOob3NmE_xwqTn-ubTOJfWBwpfrdTljViu5fqI8CEWJmzaD5SWYZgedoeN9yJ0aZ98VaZogpk6Jqeeut1v45ur-WFexTOeJ0L08TGTOPlL0Xs2KFD138OXfyyJBkuzeEwe9RCRzrqPekKOoHxKHnRJI388Iz-v2x3U8L0L2aWe76HuohNo3SWWhz1dbcdXJd3vtngKcJI26IZvAu8gvmQN34w_Mb7DIp7wFYc86qrWR-duKPhwKn-DJe0dUATqt9v2G8MR85Z6mtcqh-fkZnHxdX7J-lwKzKGJbliM3qeLfciSssC1gsK61KlJARNZaI3POUJHZ_PUgbV4OAUuS3Rms9ymwOMX5KSsSnhJaAYFjzOYqsJNRIGygKAB0K3SVslYTyPyfvi7ZtdRZpiw1B0nptOFQV2YoAujInLuFXCQ9HTX4UFVb0yvfqM5x3E4lTJH79GhkyhSISxa3bQosC4dkbNBfabvg3vjmxriJTTREXl7eI29xy-JZCVULcpMU6EkmmQZkQ-D2n9X8e_PfvV_4q_JQ-4b4EQwLs_ISVO38AbRTGNH5FivNZ6TxccROZ3NltdLvJ5frD5_GYWmPQrzBL8ACkb1ug |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFOkLWAkOIG1WcfO44AQr2VLu8uBVurNxM5kuxJNluxG0Du_h9_IjLPZqkhwqxRFUWInkWc8802c-YaxZ4jRpXRJLqy2TqC_zQWVeBGauL7lMCq0pUThyTQeH6tPJ_pki_3uc2Hot8reJnpDXdSOvpEPqCN6PzS4rxffBVWNotXVvoRGpxYHcP4DQ7blq_33KN_nUo4-HL0bi3VVAeHQWa1EhHGYiyh5J7YgkxhK6zIXhyWEukwSPC8RRDlbZA6sxc3F4PI0yW1e2AyI6ABN_jUVRRn9QpiOPm6-6RDbeqrUOjcnjNLBUnlLRDVjdYbIQcSX_J8vE3AJ2_61HOu93Og2u7WGp_xNp0932BZUd9n1rmDl-T3260u7gAZ-dunCnLgmmi4zgjddUXtY8ul8MKn4cjHHnYeyfIXjOPOch3hRrORs8FnIBXYhslk0t9zVLWUGzzhQKhcdYE_7DTgGCafz9kygtT7lRDFbF3CfHV_JiD9g21VdwUPGcyhllMMwLl2oSmwLCFgAQ7rExjpKhgF70Y-uWXR0HcYvs0ep6WRhUBbGy8LEAXtLAti0JKptf6JuZmY9c00iJfqATOsCI1eHAarKlLLo8bOyxHslAdvrxWfW839pLrQ1YE83l3Hm0nJMXkHdYpthpmKNcEAH7GUv9otb_Pu1d_7_xCfsxvhocmgO96cHu-ymJOULlZB6j22vmhYeIYpa2cdedTn7etVz5Q--BzEf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB5KRfFFvGJs1RH0SYfsTjKZzYOIWpfW2lXQwr6NmcnJdkGTNBe07_4qf53n5LKlgr4VQgiTmSTMuWfmfIexp-ijS-l0IqyyTqC9TQSVeBGKsL7lNEiVpUTho0W0fxy-X6rlFvs95sLQtspRJ3aKOi0c_SP3aSBaP1S4fjZsi_i0N39VngqqIEUrrWM5jZ5FDuHsB4Zv9cuDPaT1Mynn77683RdDhQHh0HA1IsCYzAWUyBNZkDqCzLrYRZMMJirTGtslOlTOprEDa_FwEbhkphObpDYGAj1A9X9FB2g2UZb0Um_-7xDy-iwMhzydSTDz67DTSlQ_VsXoRYjogi3sSgZc8HP_WprtLN78JrsxuKr8dc9bt9gW5LfZ1b545dkd9utzW0IFP_vUYU64E1WfJcGrvsA91Hyx9o9yXpdrPHVuLW9wHlcd_iHeFI1c-R-FLHEIAc-i6uWuaClLeMWB0rroAkfab8AxYDhZt98Fau4TTnCzRQp32fGlzPg9tp0XOdxnPIFMBglMo8xNwgz7AlIBMLzTNlKBnnrs-Ti7puyhO0y35B7MTE8Lg7QwHS1M5LE3RIBNT4Ld7hqKamUGKTZaSrQHsVIpRrEOg9UwDkOL1j_OMnyW9tjuSD4z6ILanHOux55sbqMU09JMkkPRYp9pHEYKXQPlsRcj2c8f8e_PfvD_Nz5m11BKzIeDxeEOuy6J9yahkGqXbTdVCw_RoWrso45zOft62aLyB5XiNUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superexchange+interaction+regulates+Ni%2FMn+spin+states+triggering+Ni-t2g%2FO-2p+reductive+coupling+enabling+stable+lithium-rich+cathode&rft.jtitle=Nature+communications&rft.au=Zheng%2C+Chaoliang&rft.au=Wang%2C+Yaqing&rft.au=Mao%2C+Huican&rft.au=Zhang%2C+Juan&rft.date=2025-04-25&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-025-59159-6&rft.externalDocID=10_1038_s41467_025_59159_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |