Superexchange interaction regulates Ni/Mn spin states triggering Ni-t2g/O-2p reductive coupling enabling stable lithium-rich cathode

Lithium-rich layer oxides are expected to be high-capacity cathodes for next-generation lithium-ion batteries, but their performance is hindered by irreversible anionic redox, leading to voltage decay, lag, and slow kinetics. In order to solve these problems, we regulate the Ni/Mn spin state in Li 1...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 16; no. 1; pp. 3900 - 13
Main Authors Zheng, Chaoliang, Wang, Yaqing, Mao, Huican, Zhang, Juan, Yang, Xiaoxu, Li, Jie, Zhang, Di, Wang, Xindong, Kang, Feiyu, Li, Jianling
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.04.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-025-59159-6

Cover

Loading…
Abstract Lithium-rich layer oxides are expected to be high-capacity cathodes for next-generation lithium-ion batteries, but their performance is hindered by irreversible anionic redox, leading to voltage decay, lag, and slow kinetics. In order to solve these problems, we regulate the Ni/Mn spin state in Li 1.2 Mn 0.6 Ni 0.2 O 2 by Be doping, which generates the superexchange interaction and activates Ni-t 2g orbitals. The activation of Ni-t 2g orbitals triggers the reductive coupling mechanism between Ni/O, which improves the reversibility and kinetics of anionic redox. The strong π-type Ni-t 2g /O-2 p interaction forms a stable Ni-(O–O) configuration, suppressing excessive anion oxidation. In this work, the Be modified cathodes have good cycle stability, 0.04 mAh/g and 0.5 mV decay per cycle over 400 cycles at 1 C (60 min, 250 mA g −1 ), with a rate performance of 187 mAh/g at 10 C (6 min, 2500 mA g −1 ), providing a strategy for stabilising oxygen redox chemistry and designing high performance lithium-rich cathodes. Li-rich oxides face challenges such as voltage decay and slow kinetics due to irreversible anionic reaction. Here, authors activated the Ni-t2g orbitals through generating superexchange interactions via Be doping. By triggering the reduction coupling mechanism, the reversibility and kinetics of the anionic reaction are effectively improved.
AbstractList Lithium-rich layer oxides are expected to be high-capacity cathodes for next-generation lithium-ion batteries, but their performance is hindered by irreversible anionic redox, leading to voltage decay, lag, and slow kinetics. In order to solve these problems, we regulate the Ni/Mn spin state in Li 1.2 Mn 0.6 Ni 0.2 O 2 by Be doping, which generates the superexchange interaction and activates Ni-t 2g orbitals. The activation of Ni-t 2g orbitals triggers the reductive coupling mechanism between Ni/O, which improves the reversibility and kinetics of anionic redox. The strong π-type Ni-t 2g /O-2 p interaction forms a stable Ni-(O–O) configuration, suppressing excessive anion oxidation. In this work, the Be modified cathodes have good cycle stability, 0.04 mAh/g and 0.5 mV decay per cycle over 400 cycles at 1 C (60 min, 250 mA g −1 ), with a rate performance of 187 mAh/g at 10 C (6 min, 2500 mA g −1 ), providing a strategy for stabilising oxygen redox chemistry and designing high performance lithium-rich cathodes. Li-rich oxides face challenges such as voltage decay and slow kinetics due to irreversible anionic reaction. Here, authors activated the Ni-t2g orbitals through generating superexchange interactions via Be doping. By triggering the reduction coupling mechanism, the reversibility and kinetics of the anionic reaction are effectively improved.
Abstract Lithium-rich layer oxides are expected to be high-capacity cathodes for next-generation lithium-ion batteries, but their performance is hindered by irreversible anionic redox, leading to voltage decay, lag, and slow kinetics. In order to solve these problems, we regulate the Ni/Mn spin state in Li1.2Mn0.6Ni0.2O2 by Be doping, which generates the superexchange interaction and activates Ni-t2g orbitals. The activation of Ni-t2g orbitals triggers the reductive coupling mechanism between Ni/O, which improves the reversibility and kinetics of anionic redox. The strong π-type Ni-t2g/O-2p interaction forms a stable Ni-(O–O) configuration, suppressing excessive anion oxidation. In this work, the Be modified cathodes have good cycle stability, 0.04 mAh/g and 0.5 mV decay per cycle over 400 cycles at 1 C (60 min, 250 mA g−1), with a rate performance of 187 mAh/g at 10 C (6 min, 2500 mA g−1), providing a strategy for stabilising oxygen redox chemistry and designing high performance lithium-rich cathodes.
Lithium-rich layer oxides are expected to be high-capacity cathodes for next-generation lithium-ion batteries, but their performance is hindered by irreversible anionic redox, leading to voltage decay, lag, and slow kinetics. In order to solve these problems, we regulate the Ni/Mn spin state in Li1.2Mn0.6Ni0.2O2 by Be doping, which generates the superexchange interaction and activates Ni-t2g orbitals. The activation of Ni-t2g orbitals triggers the reductive coupling mechanism between Ni/O, which improves the reversibility and kinetics of anionic redox. The strong π-type Ni-t2g/O-2p interaction forms a stable Ni-(O-O) configuration, suppressing excessive anion oxidation. In this work, the Be modified cathodes have good cycle stability, 0.04 mAh/g and 0.5 mV decay per cycle over 400 cycles at 1 C (60 min, 250 mA g-1), with a rate performance of 187 mAh/g at 10 C (6 min, 2500 mA g-1), providing a strategy for stabilising oxygen redox chemistry and designing high performance lithium-rich cathodes.Lithium-rich layer oxides are expected to be high-capacity cathodes for next-generation lithium-ion batteries, but their performance is hindered by irreversible anionic redox, leading to voltage decay, lag, and slow kinetics. In order to solve these problems, we regulate the Ni/Mn spin state in Li1.2Mn0.6Ni0.2O2 by Be doping, which generates the superexchange interaction and activates Ni-t2g orbitals. The activation of Ni-t2g orbitals triggers the reductive coupling mechanism between Ni/O, which improves the reversibility and kinetics of anionic redox. The strong π-type Ni-t2g/O-2p interaction forms a stable Ni-(O-O) configuration, suppressing excessive anion oxidation. In this work, the Be modified cathodes have good cycle stability, 0.04 mAh/g and 0.5 mV decay per cycle over 400 cycles at 1 C (60 min, 250 mA g-1), with a rate performance of 187 mAh/g at 10 C (6 min, 2500 mA g-1), providing a strategy for stabilising oxygen redox chemistry and designing high performance lithium-rich cathodes.
Lithium-rich layer oxides are expected to be high-capacity cathodes for next-generation lithium-ion batteries, but their performance is hindered by irreversible anionic redox, leading to voltage decay, lag, and slow kinetics. In order to solve these problems, we regulate the Ni/Mn spin state in Li1.2Mn0.6Ni0.2O2 by Be doping, which generates the superexchange interaction and activates Ni-t2g orbitals. The activation of Ni-t2g orbitals triggers the reductive coupling mechanism between Ni/O, which improves the reversibility and kinetics of anionic redox. The strong π-type Ni-t2g/O-2p interaction forms a stable Ni-(O–O) configuration, suppressing excessive anion oxidation. In this work, the Be modified cathodes have good cycle stability, 0.04 mAh/g and 0.5 mV decay per cycle over 400 cycles at 1 C (60 min, 250 mA g−1), with a rate performance of 187 mAh/g at 10 C (6 min, 2500 mA g−1), providing a strategy for stabilising oxygen redox chemistry and designing high performance lithium-rich cathodes.Li-rich oxides face challenges such as voltage decay and slow kinetics due to irreversible anionic reaction. Here, authors activated the Ni-t2g orbitals through generating superexchange interactions via Be doping. By triggering the reduction coupling mechanism, the reversibility and kinetics of the anionic reaction are effectively improved.
ArticleNumber 3900
Author Mao, Huican
Li, Jianling
Zhang, Juan
Wang, Yaqing
Wang, Xindong
Li, Jie
Zheng, Chaoliang
Yang, Xiaoxu
Zhang, Di
Kang, Feiyu
Author_xml – sequence: 1
  givenname: Chaoliang
  surname: Zheng
  fullname: Zheng, Chaoliang
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing
– sequence: 2
  givenname: Yaqing
  surname: Wang
  fullname: Wang, Yaqing
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing
– sequence: 3
  givenname: Huican
  orcidid: 0000-0001-6772-2313
  surname: Mao
  fullname: Mao, Huican
  email: hcmao@ustb.edu.cn
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing
– sequence: 4
  givenname: Juan
  surname: Zhang
  fullname: Zhang, Juan
  email: zhangjuan85@ustb.edu.cn
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing
– sequence: 5
  givenname: Xiaoxu
  surname: Yang
  fullname: Yang, Xiaoxu
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing
– sequence: 6
  givenname: Jie
  surname: Li
  fullname: Li, Jie
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing
– sequence: 7
  givenname: Di
  surname: Zhang
  fullname: Zhang, Di
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing
– sequence: 8
  givenname: Xindong
  surname: Wang
  fullname: Wang, Xindong
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing
– sequence: 9
  givenname: Feiyu
  surname: Kang
  fullname: Kang, Feiyu
  email: fykang@tsinghua.edu.cn
  organization: Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University
– sequence: 10
  givenname: Jianling
  orcidid: 0000-0003-2609-3084
  surname: Li
  fullname: Li, Jianling
  email: lijianling@ustb.edu.cn
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing
BookMark eNp9UU2PFCEQ7Zg1cV33D3jqxIsXHD6b5mg2fmyyugf1TICu7mHSAy3QZr37w2WmjRoPEkJVqt57FLynzUWIAZrmOcGvCGb9LnPCO4kwFUgoIhTqHjWXFHOCiKTs4q_8SXOd8wHXxRTpOb9sfnxaF0jw4PYmTND6UCAZV3wMbYJpnU2B3H70uw-hzYuvRzlXSvLTBMmHqTZRodPuHtGlUoa1kr9B6-K6zKc2BGPPSWXaGdrZl71fjyh5t2-dKfs4wLPm8WjmDNe_4lXz5e2bzzfv0d39u9ub13fIcSIKYlRyxzAjqrNAZQejdcp1eAQsRilrnfYYOzsoB9bW7TpwppfGmsEqoOyqud10h2gOekn-aNJ3HY3X50JMkzapeDeDlpSaYVBCDARz19OeK84tJVSNY_1oWbVeblpLil9XyEUffXYwzyZAXLOu0_BOUKVEhb74B3qIawr1pZpRwiSvLnYVRTeUSzHnBOPvAQnWJ5_15rOu1-uzz_pEYhspLyczIP2R_g_rJ2hXrfk
Cites_doi 10.1002/ange.202404834
10.1103/PhysRevB.78.064413
10.1038/s41560-021-00780-2
10.1038/s41586-022-04689-y
10.1002/admi.202300903
10.1021/jacs.0c05498
10.1016/j.jmrt.2020.04.098
10.1038/nmat4864
10.1021/jacs.6b10225
10.1021/acsenergylett.2c00353
10.1021/jacs.2c11640
10.1016/j.mattod.2021.10.020
10.1021/acs.chemmater.6b04743
10.1038/s41467-022-33846-0
10.1002/adfm.202112394
10.1038/nchem.2471
10.1038/s41560-018-0207-z
10.1016/j.cej.2025.159727
10.1016/j.ensm.2019.07.032
10.1039/D1EE03503G
10.1002/adfm.201700982
10.1002/adfm.202402639
10.1038/s41563-023-01679-x
10.1016/j.chempr.2022.04.012
10.1021/jacs.3c01999
10.1063/1.1323224
10.1039/D3CS00550J
10.1103/PhysRevLett.77.3865
10.1038/s41467-022-28793-9
10.1002/aenm.201901530
10.1002/adfm.201504836
10.1002/aenm.202400461
10.1021/jacs.8b11413
10.1038/s41560-018-0097-0
10.1021/acsami.7b09835
10.1016/j.ensm.2024.103383
10.1002/ange.202309049
10.1021/jacs.4c01787
10.1038/natrevmats.2016.13
10.1002/ange.202315371
10.1103/PhysRevB.50.17953
10.1149/1.2133112
10.1038/s41560-021-00832-7
10.1038/s41560-023-01289-6
10.1038/s41467-017-02041-x
10.1002/adma.202201152
10.1038/s41563-022-01467-z
10.1021/acs.jpcc.5b09948
10.1002/ange.201606154
10.1021/acscatal.4c01091
10.1038/s41560-019-0508-x
10.1038/s41467-020-15355-0
10.1021/acs.jpclett.7b02498
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Nature Publishing Group 2025
2025. The Author(s).
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Nature Publishing Group 2025
– notice: 2025. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
DOA
DOI 10.1038/s41467-025-59159-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 13
ExternalDocumentID oai_doaj_org_article_722add955d104c8284944b2129ff0257
10_1038_s41467_025_59159_6
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 51972023 and 52272184
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AARCD
AAYXX
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
ID FETCH-LOGICAL-c415t-3274c303196be276efbc9c60fe05f773192800cbd9cebbebbc6eca87abadb9e23
IEDL.DBID C6C
ISSN 2041-1723
IngestDate Wed Aug 27 01:21:42 EDT 2025
Fri Jul 11 18:29:48 EDT 2025
Sat Aug 23 12:43:34 EDT 2025
Tue Aug 05 12:02:28 EDT 2025
Fri Apr 25 03:13:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-3274c303196be276efbc9c60fe05f773192800cbd9cebbebbc6eca87abadb9e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6772-2313
0000-0003-2609-3084
OpenAccessLink https://www.nature.com/articles/s41467-025-59159-6
PQID 3213741036
PQPubID 546298
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_722add955d104c8284944b2129ff0257
proquest_miscellaneous_3194652995
proquest_journals_3213741036
crossref_primary_10_1038_s41467_025_59159_6
springer_journals_10_1038_s41467_025_59159_6
PublicationCentury 2000
PublicationDate 2025-04-25
PublicationDateYYYYMMDD 2025-04-25
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References S Liu (59159_CR24) 2019; 9
H-L Yu (59159_CR26) 2022; 32
B Li (59159_CR18) 2016; 26
M Qian (59159_CR51) 2025; 505
Z Zhu (59159_CR8) 2019; 4
Y Zuo (59159_CR19) 2023; 145
K Kawai (59159_CR48) 2022; 15
S Wang (59159_CR22) 2024; 53
Q Zhang (59159_CR32) 2016; 128
J Guo (59159_CR35) 2024; 69
Y Bai (59159_CR38) 2022; 13
JP Perdew (59159_CR52) 1996; 77
C Yin (59159_CR36) 2021; 51
B Zhang (59159_CR6) 2023; 145
R House (59159_CR45) 2021; 6
Q Li (59159_CR4) 2022; 13
B Li (59159_CR17) 2017; 29
KM Dunia (59159_CR34) 2016; 57
Y Wang (59159_CR42) 2016; 138
J Huang (59159_CR11) 2023; 22
T Cao (59159_CR12) 2015; 119
A Manthiram (59159_CR2) 2020; 11
W Huang (59159_CR7) 2022; 8
B Li (59159_CR23) 2023; 22
M Okubo (59159_CR27) 2017; 9
A Tang (59159_CR13) 2024; 34
J Zheng (59159_CR30) 2017; 8
X-Y Huo (59159_CR15) 2022; 7
E Zhao (59159_CR37) 2020; 24
T Cui (59159_CR29) 2024; 146
PE Blöchl (59159_CR53) 1994; 50
G Henkelman (59159_CR54) 2000; 113
D Luo (59159_CR5) 2023; 8
D Lan (59159_CR41) 2024; 11
G Liu (59159_CR31) 2024; 14
K Luo (59159_CR46) 2016; 8
Y Wu (59159_CR40) 2008; 78
C Chen (59159_CR49) 2022; 34
Q Wang (59159_CR14) 2023; 135
Y He (59159_CR43) 2024; 136
MY Yang (59159_CR21) 2017; 27
P Csenica (59159_CR9) 2021; 6
PE Pearce (59159_CR16) 2017; 16
L Wang (59159_CR25) 2020; 142
W Weppner (59159_CR50) 1977; 124
WE Gent (59159_CR47) 2017; 8
Q Jacquet (59159_CR20) 2019; 141
JW Choi (59159_CR1) 2016; 1
TA Taha (59159_CR33) 2020; 9
S Yao (59159_CR39) 2024; 136
Y Zheng (59159_CR44) 2024; 14
T Liu (59159_CR10) 2022; 606
E Hu (59159_CR28) 2018; 3
G Assat (59159_CR3) 2018; 3
References_xml – volume: 136
  year: 2024
  ident: 59159_CR39
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202404834
– volume: 78
  year: 2008
  ident: 59159_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.064413
– volume: 6
  start-page: 781
  year: 2021
  ident: 59159_CR45
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00780-2
– volume: 606
  start-page: 305
  year: 2022
  ident: 59159_CR10
  publication-title: Nature
  doi: 10.1038/s41586-022-04689-y
– volume: 11
  start-page: 2300903
  year: 2024
  ident: 59159_CR41
  publication-title: Adv. Mater. Interfaces.
  doi: 10.1002/admi.202300903
– volume: 142
  start-page: 14966
  year: 2020
  ident: 59159_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05498
– volume: 9
  start-page: 7955
  year: 2020
  ident: 59159_CR33
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2020.04.098
– volume: 16
  start-page: 580
  year: 2017
  ident: 59159_CR16
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4864
– volume: 138
  start-page: 15751
  year: 2016
  ident: 59159_CR42
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10225
– volume: 7
  start-page: 1687
  year: 2022
  ident: 59159_CR15
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.2c00353
– volume: 145
  start-page: 5174
  year: 2023
  ident: 59159_CR19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c11640
– volume: 51
  start-page: 15
  year: 2021
  ident: 59159_CR36
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2021.10.020
– volume: 29
  start-page: 2811
  year: 2017
  ident: 59159_CR17
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04743
– volume: 13
  year: 2022
  ident: 59159_CR38
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33846-0
– volume: 32
  start-page: 2112394
  year: 2022
  ident: 59159_CR26
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202112394
– volume: 8
  start-page: 684
  year: 2016
  ident: 59159_CR46
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2471
– volume: 3
  start-page: 690
  year: 2018
  ident: 59159_CR28
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0207-z
– volume: 505
  start-page: 159727
  year: 2025
  ident: 59159_CR51
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2025.159727
– volume: 24
  start-page: 384
  year: 2020
  ident: 59159_CR37
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.07.032
– volume: 15
  start-page: 2591
  year: 2022
  ident: 59159_CR48
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE03503G
– volume: 27
  start-page: 1700982
  year: 2017
  ident: 59159_CR21
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700982
– volume: 34
  start-page: 2402639
  year: 2024
  ident: 59159_CR13
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202402639
– volume: 22
  start-page: 1370
  year: 2023
  ident: 59159_CR23
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-023-01679-x
– volume: 8
  start-page: 2163
  year: 2022
  ident: 59159_CR7
  publication-title: Chem
  doi: 10.1016/j.chempr.2022.04.012
– volume: 145
  start-page: 8700
  year: 2023
  ident: 59159_CR6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c01999
– volume: 113
  start-page: 9978
  year: 2000
  ident: 59159_CR54
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1323224
– volume: 53
  start-page: 3516
  year: 2024
  ident: 59159_CR22
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D3CS00550J
– volume: 77
  start-page: 3865
  year: 1996
  ident: 59159_CR52
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 13
  year: 2022
  ident: 59159_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28793-9
– volume: 9
  year: 2019
  ident: 59159_CR24
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901530
– volume: 26
  start-page: 1330
  year: 2016
  ident: 59159_CR18
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504836
– volume: 14
  start-page: 2400460
  year: 2024
  ident: 59159_CR44
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202400461
– volume: 141
  start-page: 11452
  year: 2019
  ident: 59159_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11413
– volume: 3
  start-page: 373
  year: 2018
  ident: 59159_CR3
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0097-0
– volume: 9
  start-page: 36463
  year: 2017
  ident: 59159_CR27
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b09835
– volume: 69
  year: 2024
  ident: 59159_CR35
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2024.103383
– volume: 135
  start-page: e202309049
  year: 2023
  ident: 59159_CR14
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202309049
– volume: 146
  start-page: 13924
  year: 2024
  ident: 59159_CR29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.4c01787
– volume: 57
  start-page: 404
  year: 2016
  ident: 59159_CR34
  publication-title: Porcelain. Iraqi J. Sci.
– volume: 1
  start-page: 16013
  year: 2016
  ident: 59159_CR1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.13
– volume: 136
  year: 2024
  ident: 59159_CR43
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202315371
– volume: 50
  start-page: 17953
  year: 1994
  ident: 59159_CR53
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 124
  start-page: 1569
  year: 1977
  ident: 59159_CR50
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2133112
– volume: 6
  start-page: 642
  year: 2021
  ident: 59159_CR9
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00832-7
– volume: 8
  start-page: 1078
  year: 2023
  ident: 59159_CR5
  publication-title: Nat. Energy
  doi: 10.1038/s41560-023-01289-6
– volume: 8
  year: 2017
  ident: 59159_CR47
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02041-x
– volume: 34
  start-page: 2201152
  year: 2022
  ident: 59159_CR49
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202201152
– volume: 22
  start-page: 353
  year: 2023
  ident: 59159_CR11
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-022-01467-z
– volume: 119
  start-page: 28749
  year: 2015
  ident: 59159_CR12
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b09948
– volume: 128
  start-page: 11021
  year: 2016
  ident: 59159_CR32
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201606154
– volume: 14
  start-page: 8652
  year: 2024
  ident: 59159_CR31
  publication-title: ACS Catal
  doi: 10.1021/acscatal.4c01091
– volume: 4
  start-page: 1049
  year: 2019
  ident: 59159_CR8
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0508-x
– volume: 11
  year: 2020
  ident: 59159_CR2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15355-0
– volume: 8
  start-page: 5537
  year: 2017
  ident: 59159_CR30
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b02498
SSID ssj0000391844
Score 2.4799757
Snippet Lithium-rich layer oxides are expected to be high-capacity cathodes for next-generation lithium-ion batteries, but their performance is hindered by...
Abstract Lithium-rich layer oxides are expected to be high-capacity cathodes for next-generation lithium-ion batteries, but their performance is hindered by...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 3900
SubjectTerms 119/118
140/131
140/133
140/146
140/58
147/135
147/143
639/4077/4079/891
639/638/161/891
Cathodes
Coupling
Decay
Decay rate
Doping
Electric potential
Humanities and Social Sciences
Kinetics
Lithium
Lithium-ion batteries
Manganese
multidisciplinary
Nickel
Orbitals
Oxidation
Science
Science (multidisciplinary)
Voltage
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEF5KQeiLqFWMVtlC3-xyuf2V20cVSym0PthC35bsZnI90Nxxl4C-9w_vzG6utoL4IoQjJJuwZGbn-4a9-YaxI-ToUsaqFsGEKBBva0EtXoQhrW85VY0JVCh8fmFPr_TZtbl-0OqL_hOW5YHzh5tUUuISdMY0mDhEzA-00zpgwHVti3id6sgR8x4kUykGK4epix6rZEo1m2x0ignUvdU4xHBhHyFREux_xDL_2BhNeHPyjD0diSL_mCf4nO1A94I9ya0jf-2z22_DCtbwMxfuclJ9WOcaBb7O7eVhwy8Wk_OOb1YL_EmkkveYjM-T-iDeFL2cT74KucJHSPYVAx-Py4FqdOccqKiKTvDJ8B040vWbxfBDYNy84ST2umzgJbs6-XL5-VSMHRVERKDuhcIcNCoqXLIBZGWhDdFFW7ZQmraq8LpEAhlD4yKEgEe0EOtZVYe6CQ6kesV2u2UHrxmvoZWqhqltY6lbHAtIHQCTqypYo6ppwT5sv65fZeEMnza81cxnW3i0hU-28LZgn8gA9yNJ9DpdQFfwoyv4f7lCwQ625vPjStx4cjhkTQjUBTu8v41riDZG6g6WA46ZOm0NArMp2PHW7L9f8fdpv_kf037L9iS5ZamFNAdst18P8A6ZTh_eJ6e-A0ko-Qw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zi9RAEG50RfBFPDHrKi34ps1kOn1MnmRXXBZh1wddmLcm3anMDmiSzQH67g-3qpOZZQWFEEJfOaq7jq7UV4y9RR1dymAL4bUPAuVtISjFi9CE9S2XWak9BQqfX5izS_V5rdfzhls__1a544mRUZdNoD3yBXVE6YcM90N7LShrFHlX5xQad9k9gi4j48uu7X6PhdDPV0rNsTJptlr0KnIGyuGqc5TkwtySRxG2_5au-Zd7NEqd00fs4awu8uOJvo_ZHaifsPtTAslfT9nvr2MLHfycwnc5YT90U6QC76Yk89Dzi-3ivOZ9u8VTVC35gO-1iRiEWCkGuVl8EbLFLgT-iuyPh2akSN0NBwqtogvs6b8DR6X9ajv-EMg9rzhBvjYlPGOXp5--fTwTc14FEVBcDyJDSzRkFL5kPEhroPIhDyatINWVtVguUY0MvswDeI9HMBCKlS18UfocZPacHdRNDS8YL6CSWQFLU4VUVdgWUIEANLGsNzqzy4S9231d107wGS66vbOVm2jhkBYu0sKZhJ0QAfYtCfo6FjTdxs0ryVkpkSfnWpdoSQY0GFWulEcJnFcVjmUTdrQjn5vXY-9uZk_C3uyrcSWRe6SooRmxzTJXRqN41gl7vyP7zRD_fuzD_9_xJXsgacKlSkh9xA6GboRXqMkM_nWcrn8AnHPx2g
  priority: 102
  providerName: ProQuest
Title Superexchange interaction regulates Ni/Mn spin states triggering Ni-t2g/O-2p reductive coupling enabling stable lithium-rich cathode
URI https://link.springer.com/article/10.1038/s41467-025-59159-6
https://www.proquest.com/docview/3213741036
https://www.proquest.com/docview/3194652995
https://doaj.org/article/722add955d104c8284944b2129ff0257
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9swEBb7oNBL6ZO63QYVemtFElkP-5gNmy6BTUu3C7kJSx5nA1s7ODa09_7wjmQ7ZUt7KBjb2CNhPJLmG0nzDSHvEKNz7nTGrLSOob3NmE_xwqTn-ubTOJfWBwpfrdTljViu5fqI8CEWJmzaD5SWYZgedoeN9yJ0aZ98VaZogpk6Jqeeut1v45ur-WFexTOeJ0L08TGTOPlL0Xs2KFD138OXfyyJBkuzeEwe9RCRzrqPekKOoHxKHnRJI388Iz-v2x3U8L0L2aWe76HuohNo3SWWhz1dbcdXJd3vtngKcJI26IZvAu8gvmQN34w_Mb7DIp7wFYc86qrWR-duKPhwKn-DJe0dUATqt9v2G8MR85Z6mtcqh-fkZnHxdX7J-lwKzKGJbliM3qeLfciSssC1gsK61KlJARNZaI3POUJHZ_PUgbV4OAUuS3Rms9ymwOMX5KSsSnhJaAYFjzOYqsJNRIGygKAB0K3SVslYTyPyfvi7ZtdRZpiw1B0nptOFQV2YoAujInLuFXCQ9HTX4UFVb0yvfqM5x3E4lTJH79GhkyhSISxa3bQosC4dkbNBfabvg3vjmxriJTTREXl7eI29xy-JZCVULcpMU6EkmmQZkQ-D2n9X8e_PfvV_4q_JQ-4b4EQwLs_ISVO38AbRTGNH5FivNZ6TxccROZ3NltdLvJ5frD5_GYWmPQrzBL8ACkb1ug
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFOkLWAkOIG1WcfO44AQr2VLu8uBVurNxM5kuxJNluxG0Du_h9_IjLPZqkhwqxRFUWInkWc8802c-YaxZ4jRpXRJLqy2TqC_zQWVeBGauL7lMCq0pUThyTQeH6tPJ_pki_3uc2Hot8reJnpDXdSOvpEPqCN6PzS4rxffBVWNotXVvoRGpxYHcP4DQ7blq_33KN_nUo4-HL0bi3VVAeHQWa1EhHGYiyh5J7YgkxhK6zIXhyWEukwSPC8RRDlbZA6sxc3F4PI0yW1e2AyI6ABN_jUVRRn9QpiOPm6-6RDbeqrUOjcnjNLBUnlLRDVjdYbIQcSX_J8vE3AJ2_61HOu93Og2u7WGp_xNp0932BZUd9n1rmDl-T3260u7gAZ-dunCnLgmmi4zgjddUXtY8ul8MKn4cjHHnYeyfIXjOPOch3hRrORs8FnIBXYhslk0t9zVLWUGzzhQKhcdYE_7DTgGCafz9kygtT7lRDFbF3CfHV_JiD9g21VdwUPGcyhllMMwLl2oSmwLCFgAQ7rExjpKhgF70Y-uWXR0HcYvs0ep6WRhUBbGy8LEAXtLAti0JKptf6JuZmY9c00iJfqATOsCI1eHAarKlLLo8bOyxHslAdvrxWfW839pLrQ1YE83l3Hm0nJMXkHdYpthpmKNcEAH7GUv9otb_Pu1d_7_xCfsxvhocmgO96cHu-ymJOULlZB6j22vmhYeIYpa2cdedTn7etVz5Q--BzEf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB5KRfFFvGJs1RH0SYfsTjKZzYOIWpfW2lXQwr6NmcnJdkGTNBe07_4qf53n5LKlgr4VQgiTmSTMuWfmfIexp-ijS-l0IqyyTqC9TQSVeBGKsL7lNEiVpUTho0W0fxy-X6rlFvs95sLQtspRJ3aKOi0c_SP3aSBaP1S4fjZsi_i0N39VngqqIEUrrWM5jZ5FDuHsB4Zv9cuDPaT1Mynn77683RdDhQHh0HA1IsCYzAWUyBNZkDqCzLrYRZMMJirTGtslOlTOprEDa_FwEbhkphObpDYGAj1A9X9FB2g2UZb0Um_-7xDy-iwMhzydSTDz67DTSlQ_VsXoRYjogi3sSgZc8HP_WprtLN78JrsxuKr8dc9bt9gW5LfZ1b545dkd9utzW0IFP_vUYU64E1WfJcGrvsA91Hyx9o9yXpdrPHVuLW9wHlcd_iHeFI1c-R-FLHEIAc-i6uWuaClLeMWB0rroAkfab8AxYDhZt98Fau4TTnCzRQp32fGlzPg9tp0XOdxnPIFMBglMo8xNwgz7AlIBMLzTNlKBnnrs-Ti7puyhO0y35B7MTE8Lg7QwHS1M5LE3RIBNT4Ld7hqKamUGKTZaSrQHsVIpRrEOg9UwDkOL1j_OMnyW9tjuSD4z6ILanHOux55sbqMU09JMkkPRYp9pHEYKXQPlsRcj2c8f8e_PfvD_Nz5m11BKzIeDxeEOuy6J9yahkGqXbTdVCw_RoWrso45zOft62aLyB5XiNUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superexchange+interaction+regulates+Ni%2FMn+spin+states+triggering+Ni-t2g%2FO-2p+reductive+coupling+enabling+stable+lithium-rich+cathode&rft.jtitle=Nature+communications&rft.au=Zheng%2C+Chaoliang&rft.au=Wang%2C+Yaqing&rft.au=Mao%2C+Huican&rft.au=Zhang%2C+Juan&rft.date=2025-04-25&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-025-59159-6&rft.externalDocID=10_1038_s41467_025_59159_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon