Transferring Subspaces Between Subjects in Brain--Computer Interfacing

Compensating changes between a subjects' training and testing session in brain-computer interfacing (BCI) is challenging but of great importance for a robust BCI operation. We show that such changes are very similar between subjects, and thus can be reliably estimated using data from other user...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 60; no. 8; pp. 2289 - 2298
Main Authors Samek, Wojciech, Meinecke, Frank C., Muller, Klaus-Robert
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2013.2253608

Cover

Loading…
Abstract Compensating changes between a subjects' training and testing session in brain-computer interfacing (BCI) is challenging but of great importance for a robust BCI operation. We show that such changes are very similar between subjects, and thus can be reliably estimated using data from other users and utilized to construct an invariant feature space. This novel approach to learning from other subjects aims to reduce the adverse effects of common nonstationarities, but does not transfer discriminative information. This is an important conceptual difference to standard multi-subject methods that, e.g., improve the covariance matrix estimation by shrinking it toward the average of other users or construct a global feature space. These methods do not reduces the shift between training and test data and may produce poor results when subjects have very different signal characteristics. In this paper, we compare our approach to two state-of-the-art multi-subject methods on toy data and two datasets of EEG recordings from subjects performing motor imagery. We show that it can not only achieve a significant increase in performance, but also that the extracted change patterns allow for a neurophysiologically meaningful interpretation.
AbstractList Compensating changes between a subjects' training and testing session in brain-computer interfacing (BCI) is challenging but of great importance for a robust BCI operation. We show that such changes are very similar between subjects, and thus can be reliably estimated using data from other users and utilized to construct an invariant feature space. This novel approach to learning from other subjects aims to reduce the adverse effects of common nonstationarities, but does not transfer discriminative information. This is an important conceptual difference to standard multisubject methods that, e.g., improve the covariance matrix estimation by shrinking it toward the average of other users or construct a global feature space. These methods do not reduces the shift between training and test data and may produce poor results when subjects have very different signal characteristics. In this paper, we compare our approach to two state-of-the-art multisubject methods on toy data and two datasets of EEG recordings from subjects performing motor imagery. We show that it can not only achieve a significant increase in performance, but also that the extracted change patterns allow for a neurophysiologically meaningful interpretation.
Compensating changes between a subjects' training and testing session in brain-computer interfacing (BCI) is challenging but of great importance for a robust BCI operation. We show that such changes are very similar between subjects, and thus can be reliably estimated using data from other users and utilized to construct an invariant feature space. This novel approach to learning from other subjects aims to reduce the adverse effects of common nonstationarities, but does not transfer discriminative information. This is an important conceptual difference to standard multisubject methods that, e.g., improve the covariance matrix estimation by shrinking it toward the average of other users or construct a global feature space. These methods do not reduces the shift between training and test data and may produce poor results when subjects have very different signal characteristics. In this paper, we compare our approach to two state-of-the-art multisubject methods on toy data and two datasets of EEG recordings from subjects performing motor imagery. We show that it can not only achieve a significant increase in performance, but also that the extracted change patterns allow for a neurophysiologically meaningful interpretation.Compensating changes between a subjects' training and testing session in brain-computer interfacing (BCI) is challenging but of great importance for a robust BCI operation. We show that such changes are very similar between subjects, and thus can be reliably estimated using data from other users and utilized to construct an invariant feature space. This novel approach to learning from other subjects aims to reduce the adverse effects of common nonstationarities, but does not transfer discriminative information. This is an important conceptual difference to standard multisubject methods that, e.g., improve the covariance matrix estimation by shrinking it toward the average of other users or construct a global feature space. These methods do not reduces the shift between training and test data and may produce poor results when subjects have very different signal characteristics. In this paper, we compare our approach to two state-of-the-art multisubject methods on toy data and two datasets of EEG recordings from subjects performing motor imagery. We show that it can not only achieve a significant increase in performance, but also that the extracted change patterns allow for a neurophysiologically meaningful interpretation.
Compensating changes between a subjects' training and testing session in brain-computer interfacing (BCI) is challenging but of great importance for a robust BCI operation. We show that such changes are very similar between subjects, and thus can be reliably estimated using data from other users and utilized to construct an invariant feature space. This novel approach to learning from other subjects aims to reduce the adverse effects of common nonstationarities, but does not transfer discriminative information. This is an important conceptual difference to standard multi-subject methods that, e.g., improve the covariance matrix estimation by shrinking it toward the average of other users or construct a global feature space. These methods do not reduces the shift between training and test data and may produce poor results when subjects have very different signal characteristics. In this paper, we compare our approach to two state-of-the-art multi-subject methods on toy data and two datasets of EEG recordings from subjects performing motor imagery. We show that it can not only achieve a significant increase in performance, but also that the extracted change patterns allow for a neurophysiologically meaningful interpretation.
Author Meinecke, Frank C.
Muller, Klaus-Robert
Samek, Wojciech
Author_xml – sequence: 1
  givenname: Wojciech
  surname: Samek
  fullname: Samek, Wojciech
  email: wojciech.samek@tu-berlin.de
  organization: Berlin Institute of Technology, Germany
– sequence: 2
  givenname: Frank C.
  surname: Meinecke
  fullname: Meinecke, Frank C.
  email: frank.meinecke@tu-berlin.de
  organization: Berlin Institute of Technology, Germany
– sequence: 3
  givenname: Klaus-Robert
  surname: Muller
  fullname: Muller, Klaus-Robert
  email: klaus-robert.mueller@tu-berlin.de
  organization: Berlin Institute of Technology, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23529075$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LwzAYx4NM3It-ABGk4MVLZ96bHt3YdDDx4DyXNHsqHW06kxbx25uy6WEHL0me8Ps9Cc9_jAa2sYDQNcFTQnD6sJm9LKYUEzalVDCJ1RkaESFUHCoyQCOMiYpTmvIhGnu_CyVXXF6gIWWCpjgRI7TcOG19Ac6V9iN663K_1wZ8NIP2C8D2NzswrY9KG82cLm0cz5t637XgopUNa6FNMC_ReaErD1fHfYLel4vN_Dlevz6t5o_r2HAi2phhAxJDDkJxLFliUkb5lhpjVM4ZFzgcVC4LTYkEIQSXRgMrtiaVVEtN2ATdH_ruXfPZgW-zuvQGqkpbaDqfEc4SoahSaUDvTtBd0zkbfhcozHiScNY3vD1SXV7DNtu7stbuO_udUADIATCu8d5B8YcQnPUpZH0KWZ9CdkwhOMmJY8pWt2Vj2zDC6l_z5mCWAPD3kuSKSszYD0NFknY
CODEN IEBEAX
CitedBy_id crossref_primary_10_1088_1741_2552_abe357
crossref_primary_10_1109_TNNLS_2022_3220551
crossref_primary_10_1007_s10439_014_1143_0
crossref_primary_10_1109_TFUZZ_2016_2633379
crossref_primary_10_1109_ACCESS_2020_3045225
crossref_primary_10_1093_gigascience_giz002
crossref_primary_10_1093_gigascience_giz133
crossref_primary_10_1142_S233954781450023X
crossref_primary_10_1016_j_neunet_2024_106497
crossref_primary_10_1016_j_compbiomed_2015_03_023
crossref_primary_10_1109_TAFFC_2024_3433470
crossref_primary_10_1088_1741_2552_aa8232
crossref_primary_10_1016_j_jneumeth_2020_108855
crossref_primary_10_1109_TAI_2021_3097307
crossref_primary_10_1016_j_neucom_2016_10_055
crossref_primary_10_1371_journal_pone_0154136
crossref_primary_10_1371_journal_pone_0123727
crossref_primary_10_1109_TNNLS_2019_2946869
crossref_primary_10_1142_S0218001415590089
crossref_primary_10_1109_TAFFC_2017_2712143
crossref_primary_10_1109_TNNLS_2015_2402694
crossref_primary_10_1016_j_neucom_2023_01_087
crossref_primary_10_1049_htl_2016_0073
crossref_primary_10_1109_TNSRE_2019_2923315
crossref_primary_10_3390_app13179825
crossref_primary_10_1038_s41598_022_06805_4
crossref_primary_10_3389_fnins_2023_1122661
crossref_primary_10_3389_fnhum_2023_1033420
crossref_primary_10_1007_s10710_019_09352_6
crossref_primary_10_1016_j_neucom_2023_126659
crossref_primary_10_3389_fbioe_2024_1448903
crossref_primary_10_1007_s11571_023_10053_1
crossref_primary_10_1016_j_bspc_2020_102101
crossref_primary_10_1007_s12204_022_2488_4
crossref_primary_10_1007_s10548_014_0360_z
crossref_primary_10_3389_fnins_2024_1293962
crossref_primary_10_3390_e20010007
crossref_primary_10_1016_j_bspc_2021_102702
crossref_primary_10_1007_s00521_022_07748_7
crossref_primary_10_1088_1741_2560_13_2_026005
crossref_primary_10_3389_fnsys_2021_578875
crossref_primary_10_1088_1741_2552_ac2003
crossref_primary_10_1109_TBME_2019_2913914
crossref_primary_10_3389_fncom_2019_00087
crossref_primary_10_3389_fnins_2017_00226
crossref_primary_10_1016_j_compbiomed_2024_109260
crossref_primary_10_3390_s20216321
crossref_primary_10_1016_j_bspc_2024_106044
crossref_primary_10_1088_1741_2560_12_4_046006
crossref_primary_10_1109_RBME_2013_2290621
crossref_primary_10_1109_ACCESS_2019_2956018
crossref_primary_10_1109_TNSRE_2017_2778178
crossref_primary_10_1016_j_compbiomed_2024_108619
crossref_primary_10_1007_s11517_024_03036_9
crossref_primary_10_3389_fnhum_2017_00334
crossref_primary_10_1038_s41598_019_56962_2
crossref_primary_10_1007_s11571_016_9417_x
crossref_primary_10_1109_TNSRE_2016_2544108
crossref_primary_10_1155_2018_9871603
crossref_primary_10_1162_NECO_a_00544
crossref_primary_10_1088_1741_2552_ab6df3
crossref_primary_10_3390_brainsci13020221
crossref_primary_10_1088_1742_6596_1069_1_012090
crossref_primary_10_1007_s12559_017_9533_x
crossref_primary_10_1080_10255842_2024_2404541
crossref_primary_10_1109_TNSRE_2021_3083548
crossref_primary_10_1155_2014_627892
crossref_primary_10_3389_fninf_2019_00047
crossref_primary_10_1186_s12859_024_06024_w
crossref_primary_10_1016_j_neunet_2024_106338
crossref_primary_10_1088_1741_2552_abbd21
crossref_primary_10_1109_LSP_2020_2989663
crossref_primary_10_1016_j_jneumeth_2022_109489
crossref_primary_10_3389_fnhum_2017_00389
crossref_primary_10_1109_TNSRE_2019_2905894
crossref_primary_10_1109_TNSRE_2023_3285309
crossref_primary_10_1080_2326263X_2016_1275488
crossref_primary_10_1109_TNNLS_2016_2601084
crossref_primary_10_1109_JPROC_2015_2413993
crossref_primary_10_1109_TII_2024_3450010
crossref_primary_10_1088_1741_2560_12_4_046027
crossref_primary_10_3389_fnsys_2014_00138
crossref_primary_10_1016_j_neucom_2020_09_017
crossref_primary_10_1109_TBME_2015_2402252
crossref_primary_10_1002_adfm_202200457
crossref_primary_10_1080_2326263X_2016_1263916
crossref_primary_10_3389_fnhum_2016_00291
crossref_primary_10_1088_1741_2552_ab64a0
crossref_primary_10_1016_j_compbiomed_2022_106420
crossref_primary_10_1088_1741_2560_12_6_066009
crossref_primary_10_1088_2057_1976_ad90e8
crossref_primary_10_1007_s11042_023_16536_x
crossref_primary_10_1016_j_neunet_2024_106742
crossref_primary_10_1186_s12938_015_0087_4
crossref_primary_10_1016_j_neunet_2019_02_009
crossref_primary_10_1080_10255842_2024_2346356
crossref_primary_10_1088_1742_6596_699_1_012021
crossref_primary_10_1016_j_neunet_2023_08_008
crossref_primary_10_1109_ACCESS_2022_3178100
crossref_primary_10_1142_S0129065722500058
crossref_primary_10_1016_j_eswa_2020_114031
crossref_primary_10_1109_THMS_2016_2608931
crossref_primary_10_1016_j_bspc_2022_103555
crossref_primary_10_1109_TETCI_2022_3147030
crossref_primary_10_1109_ACCESS_2021_3134628
crossref_primary_10_1088_1741_2552_ac49a7
crossref_primary_10_1016_j_neuroimage_2023_120209
crossref_primary_10_1142_S0218126619501238
crossref_primary_10_1088_1741_2560_13_4_046017
crossref_primary_10_1155_2020_6056383
crossref_primary_10_1109_TNNLS_2020_3010780
crossref_primary_10_1109_ACCESS_2019_2939288
crossref_primary_10_1109_ACCESS_2024_3405652
crossref_primary_10_1109_TCBB_2021_3052811
crossref_primary_10_1016_j_neunet_2023_06_005
crossref_primary_10_1142_S0129065716500106
crossref_primary_10_1109_TNSRE_2015_2494378
crossref_primary_10_1007_s12021_018_9396_7
crossref_primary_10_1155_2018_6323414
crossref_primary_10_3389_fnins_2020_629572
crossref_primary_10_1088_1741_2552_ad546d
crossref_primary_10_1109_ACCESS_2019_2908851
Cites_doi 10.1088/1741-2560/9/2/026013
10.1109/ICASSP.2010.5495183
10.1162/NECO_a_00089
10.1016/j.neunet.2009.06.003
10.1109/TBME.2004.827088
10.1109/TNNLS.2013.2239310
10.1109/LSP.2009.2022557
10.1155/2011/217987
10.1088/1741-2560/3/1/R02
10.1016/j.neuroimage.2010.11.004
10.1109/86.895946
10.1109/MSP.2008.4408441
10.1016/j.neuroimage.2011.07.084
10.1103/PhysRevLett.103.214101
10.1109/TNSRE.2006.875642
10.1109/TBME.2010.2082539
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2013.2253608
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 2298
ExternalDocumentID 3023835121
23529075
10_1109_TBME_2013_2253608
6482603
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c415t-30ce60ebe5840637c9324d2ccc8b43450cc88b6fa216e55546cae3fdc962a6a13
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Fri Jul 11 05:59:00 EDT 2025
Mon Jun 30 08:28:57 EDT 2025
Wed Feb 19 02:16:13 EST 2025
Tue Jul 01 02:15:48 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
Wed Aug 27 02:52:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-30ce60ebe5840637c9324d2ccc8b43450cc88b6fa216e55546cae3fdc962a6a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 23529075
PQID 1403477431
PQPubID 85474
PageCount 10
ParticipantIDs crossref_primary_10_1109_TBME_2013_2253608
crossref_citationtrail_10_1109_TBME_2013_2253608
pubmed_primary_23529075
proquest_miscellaneous_1437582889
proquest_journals_1403477431
ieee_primary_6482603
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2013
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
(ref20) 0
ref14
ref11
ref2
(ref10) 0
blankertz (ref17) 2008
ref16
ref18
(ref1) 0
sugiyama (ref7) 2011
(ref26) 0
ref24
ref23
ref25
ref22
ref21
ref27
samek (ref19) 2012
ref8
alamgir (ref3) 2010; 9
ref4
ref5
sugiyama (ref9) 2007; 8
quionero-candela (ref6) 2009
References_xml – volume: 9
  start-page: 17
  year: 2010
  ident: ref3
  article-title: Multitask learning for brain?computer interfaces
  publication-title: Proc 13th Int Conf Artif Intell Stat
– ident: ref15
  doi: 10.1088/1741-2560/9/2/026013
– ident: ref4
  doi: 10.1109/ICASSP.2010.5495183
– start-page: 2873
  year: 2012
  ident: ref19
  article-title: Brain?computer interfacing in discriminative and stationary subspaces
  publication-title: Proc IEEE Int Conf Eng Med Biol Soc
– start-page: 113
  year: 2008
  ident: ref17
  publication-title: Advances in Neural Information Processing Systems 20
– year: 2011
  ident: ref7
  publication-title: Machine Learning in Non-Stationary Environments Introduction to Covariate Shift Adaptation
– ident: ref23
  doi: 10.1162/NECO_a_00089
– year: 0
  ident: ref10
– year: 0
  ident: ref1
– year: 0
  ident: ref20
– ident: ref21
  doi: 10.1016/j.neunet.2009.06.003
– volume: 8
  start-page: 985
  year: 2007
  ident: ref9
  article-title: Covariate shift adaptation by importance weighted cross validation
  publication-title: J Mach Learn Res
– year: 2009
  ident: ref6
  publication-title: Dataset Shift in Machine Learning
– ident: ref24
  doi: 10.1109/TBME.2004.827088
– ident: ref16
  doi: 10.1109/TNNLS.2013.2239310
– ident: ref5
  doi: 10.1109/LSP.2009.2022557
– ident: ref2
  doi: 10.1155/2011/217987
– ident: ref8
  doi: 10.1088/1741-2560/3/1/R02
– ident: ref13
  doi: 10.1016/j.neuroimage.2010.11.004
– ident: ref12
  doi: 10.1109/86.895946
– ident: ref11
  doi: 10.1109/MSP.2008.4408441
– ident: ref22
  doi: 10.1162/NECO_a_00089
– year: 0
  ident: ref26
– ident: ref27
  doi: 10.1016/j.neuroimage.2011.07.084
– ident: ref18
  doi: 10.1103/PhysRevLett.103.214101
– ident: ref25
  doi: 10.1109/TNSRE.2006.875642
– ident: ref14
  doi: 10.1109/TBME.2010.2082539
SSID ssj0014846
Score 2.510297
Snippet Compensating changes between a subjects' training and testing session in brain-computer interfacing (BCI) is challenging but of great importance for a robust...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2289
SubjectTerms Algorithms
Artificial Intelligence
Brain - physiology
Brain Mapping - methods
Brain-computer interface (BCI)
Brain-Computer Interfaces
common spatial patterns (CSP)
Covariance matrices
Electroencephalography
Electroencephalography - methods
Estimation
Evoked Potentials - physiology
Feature extraction
Humans
nonstationarity
Pattern Recognition, Automated - methods
Reproducibility of Results
Robustness
Sensitivity and Specificity
Studies
Training
transfer learning
Vectors
Title Transferring Subspaces Between Subjects in Brain--Computer Interfacing
URI https://ieeexplore.ieee.org/document/6482603
https://www.ncbi.nlm.nih.gov/pubmed/23529075
https://www.proquest.com/docview/1403477431
https://www.proquest.com/docview/1437582889
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ug-jB96O-qOBJzJo2abY5uuIiwnpS8FbSdCqidBfdvfjrzaQPVFS8lW027WYmO18yX74BOEEiPKWiYCZWgsnIaKY59pktChetMIlLr64_ulXX9_LmIXmYg7PuLAwievIZ9ujS5_KLsZ3RVtm5kg4Mk7TnvFu41We1uoyBTOtDOTxyEzjWsslgRlyf3w1GV0TiEj3nvEJxqtEXO-Dh1oXJl3Dk66v8DjV9yBmuwqh92Zpp8tybTfOeff-m4_jfX7MGKw32DC9qZ1mHOaw2YPmTIuEGLI6aXPsmDH0YK0m5sXoM6Q9mQvStcFAzu-gT2sN5C5-qcECFJhhrS0SEfp-xNK6jxy24H17dXV6zpuoCsy6YT5ngFhV3tnXQxOGXvnUITxaxtTbNpZAJdxdprkoTRwoTIrlZg6IsrFaxUSYS27BQjSvchRALZXVk00gUpOKTaiTAZ4wVKrdljgHwdvAz20iSU2WMl8wvTbjOyHQZmS5rTBfAafeVSa3H8VfjTRr2rmEz4gEctBbOmhn7lpFuoewTngrguLvt5holUEyF4xm1EX1KM6Y6gJ3aM7q-W4fa-_mZ-7AU-0IaRB08gIXp6wwPHZyZ5kfejz8A4Gfsfg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0hkKAcKIUWQqENEieEFyd2vPGxi1htKeG0SNwix5mgCpRFsHvh1-NxPgQVrXqLEsdJPOPMs2fmDcARUsBTKkpmYiWYjIxmmuOQ2bJ01gqTuPLs-tmVmlzLi5vkZglO-lwYRPTBZzigQ-_LL2d2QVtlp0o6MEzUnisJJeM22Vq9z0CmTVoOj9wUjrVsfZgR16fTUXZOYVxi4NRXKE5V-mIHPdzKMHljkHyFlb-DTW90xh8h6163iTW5GyzmxcA-_8Hk-L_fswkbLfoMfzTq8gmWsN6C9VechFuwmrXe9m0Ye0NWEXdjfRvSL-aBArjCURPbRWdoF-cp_F2HIyo1wVhXJCL0O42VcR3dfobr8fn0bMLaugvMOnM-Z4JbVNxJ14ETh2CG1mE8WcbW2rSQQibcHaSFqkwcKUwozM0aFFVptYqNMpH4Asv1rMZdCLFUVkc2jURJPD6pRoJ8xlihClsVGADvBj-3LSk51ca4z_3ihOucRJeT6PJWdAEc97c8NIwc_2q8TcPeN2xHPID9TsJ5O2efcmIulENCVAEc9pfdbCMXiqlxtqA2YkiOxlQHsNNoRt93p1B77z_zO6xNptllfvnz6tdX-BD7shoUSLgPy_PHBR44cDMvvnmdfgFc8-_G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transferring+Subspaces+Between+Subjects+in+Brain--Computer+Interfacing&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Samek%2C+Wojciech&rft.au=Meinecke%2C+Frank+C&rft.au=Muller%2C+Klaus-Robert&rft.date=2013-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=60&rft.issue=8&rft.spage=2289&rft_id=info:doi/10.1109%2FTBME.2013.2253608&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3023835121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon