Transferring Subspaces Between Subjects in Brain--Computer Interfacing
Compensating changes between a subjects' training and testing session in brain-computer interfacing (BCI) is challenging but of great importance for a robust BCI operation. We show that such changes are very similar between subjects, and thus can be reliably estimated using data from other user...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 60; no. 8; pp. 2289 - 2298 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 1558-2531 |
DOI | 10.1109/TBME.2013.2253608 |
Cover
Loading…
Abstract | Compensating changes between a subjects' training and testing session in brain-computer interfacing (BCI) is challenging but of great importance for a robust BCI operation. We show that such changes are very similar between subjects, and thus can be reliably estimated using data from other users and utilized to construct an invariant feature space. This novel approach to learning from other subjects aims to reduce the adverse effects of common nonstationarities, but does not transfer discriminative information. This is an important conceptual difference to standard multi-subject methods that, e.g., improve the covariance matrix estimation by shrinking it toward the average of other users or construct a global feature space. These methods do not reduces the shift between training and test data and may produce poor results when subjects have very different signal characteristics. In this paper, we compare our approach to two state-of-the-art multi-subject methods on toy data and two datasets of EEG recordings from subjects performing motor imagery. We show that it can not only achieve a significant increase in performance, but also that the extracted change patterns allow for a neurophysiologically meaningful interpretation. |
---|---|
AbstractList | Compensating changes between a subjects' training and testing session in brain-computer interfacing (BCI) is challenging but of great importance for a robust BCI operation. We show that such changes are very similar between subjects, and thus can be reliably estimated using data from other users and utilized to construct an invariant feature space. This novel approach to learning from other subjects aims to reduce the adverse effects of common nonstationarities, but does not transfer discriminative information. This is an important conceptual difference to standard multisubject methods that, e.g., improve the covariance matrix estimation by shrinking it toward the average of other users or construct a global feature space. These methods do not reduces the shift between training and test data and may produce poor results when subjects have very different signal characteristics. In this paper, we compare our approach to two state-of-the-art multisubject methods on toy data and two datasets of EEG recordings from subjects performing motor imagery. We show that it can not only achieve a significant increase in performance, but also that the extracted change patterns allow for a neurophysiologically meaningful interpretation. Compensating changes between a subjects' training and testing session in brain-computer interfacing (BCI) is challenging but of great importance for a robust BCI operation. We show that such changes are very similar between subjects, and thus can be reliably estimated using data from other users and utilized to construct an invariant feature space. This novel approach to learning from other subjects aims to reduce the adverse effects of common nonstationarities, but does not transfer discriminative information. This is an important conceptual difference to standard multisubject methods that, e.g., improve the covariance matrix estimation by shrinking it toward the average of other users or construct a global feature space. These methods do not reduces the shift between training and test data and may produce poor results when subjects have very different signal characteristics. In this paper, we compare our approach to two state-of-the-art multisubject methods on toy data and two datasets of EEG recordings from subjects performing motor imagery. We show that it can not only achieve a significant increase in performance, but also that the extracted change patterns allow for a neurophysiologically meaningful interpretation.Compensating changes between a subjects' training and testing session in brain-computer interfacing (BCI) is challenging but of great importance for a robust BCI operation. We show that such changes are very similar between subjects, and thus can be reliably estimated using data from other users and utilized to construct an invariant feature space. This novel approach to learning from other subjects aims to reduce the adverse effects of common nonstationarities, but does not transfer discriminative information. This is an important conceptual difference to standard multisubject methods that, e.g., improve the covariance matrix estimation by shrinking it toward the average of other users or construct a global feature space. These methods do not reduces the shift between training and test data and may produce poor results when subjects have very different signal characteristics. In this paper, we compare our approach to two state-of-the-art multisubject methods on toy data and two datasets of EEG recordings from subjects performing motor imagery. We show that it can not only achieve a significant increase in performance, but also that the extracted change patterns allow for a neurophysiologically meaningful interpretation. Compensating changes between a subjects' training and testing session in brain-computer interfacing (BCI) is challenging but of great importance for a robust BCI operation. We show that such changes are very similar between subjects, and thus can be reliably estimated using data from other users and utilized to construct an invariant feature space. This novel approach to learning from other subjects aims to reduce the adverse effects of common nonstationarities, but does not transfer discriminative information. This is an important conceptual difference to standard multi-subject methods that, e.g., improve the covariance matrix estimation by shrinking it toward the average of other users or construct a global feature space. These methods do not reduces the shift between training and test data and may produce poor results when subjects have very different signal characteristics. In this paper, we compare our approach to two state-of-the-art multi-subject methods on toy data and two datasets of EEG recordings from subjects performing motor imagery. We show that it can not only achieve a significant increase in performance, but also that the extracted change patterns allow for a neurophysiologically meaningful interpretation. |
Author | Meinecke, Frank C. Muller, Klaus-Robert Samek, Wojciech |
Author_xml | – sequence: 1 givenname: Wojciech surname: Samek fullname: Samek, Wojciech email: wojciech.samek@tu-berlin.de organization: Berlin Institute of Technology, Germany – sequence: 2 givenname: Frank C. surname: Meinecke fullname: Meinecke, Frank C. email: frank.meinecke@tu-berlin.de organization: Berlin Institute of Technology, Germany – sequence: 3 givenname: Klaus-Robert surname: Muller fullname: Muller, Klaus-Robert email: klaus-robert.mueller@tu-berlin.de organization: Berlin Institute of Technology, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23529075$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1LwzAYx4NM3It-ABGk4MVLZ96bHt3YdDDx4DyXNHsqHW06kxbx25uy6WEHL0me8Ps9Cc9_jAa2sYDQNcFTQnD6sJm9LKYUEzalVDCJ1RkaESFUHCoyQCOMiYpTmvIhGnu_CyVXXF6gIWWCpjgRI7TcOG19Ac6V9iN663K_1wZ8NIP2C8D2NzswrY9KG82cLm0cz5t637XgopUNa6FNMC_ReaErD1fHfYLel4vN_Dlevz6t5o_r2HAi2phhAxJDDkJxLFliUkb5lhpjVM4ZFzgcVC4LTYkEIQSXRgMrtiaVVEtN2ATdH_ruXfPZgW-zuvQGqkpbaDqfEc4SoahSaUDvTtBd0zkbfhcozHiScNY3vD1SXV7DNtu7stbuO_udUADIATCu8d5B8YcQnPUpZH0KWZ9CdkwhOMmJY8pWt2Vj2zDC6l_z5mCWAPD3kuSKSszYD0NFknY |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1088_1741_2552_abe357 crossref_primary_10_1109_TNNLS_2022_3220551 crossref_primary_10_1007_s10439_014_1143_0 crossref_primary_10_1109_TFUZZ_2016_2633379 crossref_primary_10_1109_ACCESS_2020_3045225 crossref_primary_10_1093_gigascience_giz002 crossref_primary_10_1093_gigascience_giz133 crossref_primary_10_1142_S233954781450023X crossref_primary_10_1016_j_neunet_2024_106497 crossref_primary_10_1016_j_compbiomed_2015_03_023 crossref_primary_10_1109_TAFFC_2024_3433470 crossref_primary_10_1088_1741_2552_aa8232 crossref_primary_10_1016_j_jneumeth_2020_108855 crossref_primary_10_1109_TAI_2021_3097307 crossref_primary_10_1016_j_neucom_2016_10_055 crossref_primary_10_1371_journal_pone_0154136 crossref_primary_10_1371_journal_pone_0123727 crossref_primary_10_1109_TNNLS_2019_2946869 crossref_primary_10_1142_S0218001415590089 crossref_primary_10_1109_TAFFC_2017_2712143 crossref_primary_10_1109_TNNLS_2015_2402694 crossref_primary_10_1016_j_neucom_2023_01_087 crossref_primary_10_1049_htl_2016_0073 crossref_primary_10_1109_TNSRE_2019_2923315 crossref_primary_10_3390_app13179825 crossref_primary_10_1038_s41598_022_06805_4 crossref_primary_10_3389_fnins_2023_1122661 crossref_primary_10_3389_fnhum_2023_1033420 crossref_primary_10_1007_s10710_019_09352_6 crossref_primary_10_1016_j_neucom_2023_126659 crossref_primary_10_3389_fbioe_2024_1448903 crossref_primary_10_1007_s11571_023_10053_1 crossref_primary_10_1016_j_bspc_2020_102101 crossref_primary_10_1007_s12204_022_2488_4 crossref_primary_10_1007_s10548_014_0360_z crossref_primary_10_3389_fnins_2024_1293962 crossref_primary_10_3390_e20010007 crossref_primary_10_1016_j_bspc_2021_102702 crossref_primary_10_1007_s00521_022_07748_7 crossref_primary_10_1088_1741_2560_13_2_026005 crossref_primary_10_3389_fnsys_2021_578875 crossref_primary_10_1088_1741_2552_ac2003 crossref_primary_10_1109_TBME_2019_2913914 crossref_primary_10_3389_fncom_2019_00087 crossref_primary_10_3389_fnins_2017_00226 crossref_primary_10_1016_j_compbiomed_2024_109260 crossref_primary_10_3390_s20216321 crossref_primary_10_1016_j_bspc_2024_106044 crossref_primary_10_1088_1741_2560_12_4_046006 crossref_primary_10_1109_RBME_2013_2290621 crossref_primary_10_1109_ACCESS_2019_2956018 crossref_primary_10_1109_TNSRE_2017_2778178 crossref_primary_10_1016_j_compbiomed_2024_108619 crossref_primary_10_1007_s11517_024_03036_9 crossref_primary_10_3389_fnhum_2017_00334 crossref_primary_10_1038_s41598_019_56962_2 crossref_primary_10_1007_s11571_016_9417_x crossref_primary_10_1109_TNSRE_2016_2544108 crossref_primary_10_1155_2018_9871603 crossref_primary_10_1162_NECO_a_00544 crossref_primary_10_1088_1741_2552_ab6df3 crossref_primary_10_3390_brainsci13020221 crossref_primary_10_1088_1742_6596_1069_1_012090 crossref_primary_10_1007_s12559_017_9533_x crossref_primary_10_1080_10255842_2024_2404541 crossref_primary_10_1109_TNSRE_2021_3083548 crossref_primary_10_1155_2014_627892 crossref_primary_10_3389_fninf_2019_00047 crossref_primary_10_1186_s12859_024_06024_w crossref_primary_10_1016_j_neunet_2024_106338 crossref_primary_10_1088_1741_2552_abbd21 crossref_primary_10_1109_LSP_2020_2989663 crossref_primary_10_1016_j_jneumeth_2022_109489 crossref_primary_10_3389_fnhum_2017_00389 crossref_primary_10_1109_TNSRE_2019_2905894 crossref_primary_10_1109_TNSRE_2023_3285309 crossref_primary_10_1080_2326263X_2016_1275488 crossref_primary_10_1109_TNNLS_2016_2601084 crossref_primary_10_1109_JPROC_2015_2413993 crossref_primary_10_1109_TII_2024_3450010 crossref_primary_10_1088_1741_2560_12_4_046027 crossref_primary_10_3389_fnsys_2014_00138 crossref_primary_10_1016_j_neucom_2020_09_017 crossref_primary_10_1109_TBME_2015_2402252 crossref_primary_10_1002_adfm_202200457 crossref_primary_10_1080_2326263X_2016_1263916 crossref_primary_10_3389_fnhum_2016_00291 crossref_primary_10_1088_1741_2552_ab64a0 crossref_primary_10_1016_j_compbiomed_2022_106420 crossref_primary_10_1088_1741_2560_12_6_066009 crossref_primary_10_1088_2057_1976_ad90e8 crossref_primary_10_1007_s11042_023_16536_x crossref_primary_10_1016_j_neunet_2024_106742 crossref_primary_10_1186_s12938_015_0087_4 crossref_primary_10_1016_j_neunet_2019_02_009 crossref_primary_10_1080_10255842_2024_2346356 crossref_primary_10_1088_1742_6596_699_1_012021 crossref_primary_10_1016_j_neunet_2023_08_008 crossref_primary_10_1109_ACCESS_2022_3178100 crossref_primary_10_1142_S0129065722500058 crossref_primary_10_1016_j_eswa_2020_114031 crossref_primary_10_1109_THMS_2016_2608931 crossref_primary_10_1016_j_bspc_2022_103555 crossref_primary_10_1109_TETCI_2022_3147030 crossref_primary_10_1109_ACCESS_2021_3134628 crossref_primary_10_1088_1741_2552_ac49a7 crossref_primary_10_1016_j_neuroimage_2023_120209 crossref_primary_10_1142_S0218126619501238 crossref_primary_10_1088_1741_2560_13_4_046017 crossref_primary_10_1155_2020_6056383 crossref_primary_10_1109_TNNLS_2020_3010780 crossref_primary_10_1109_ACCESS_2019_2939288 crossref_primary_10_1109_ACCESS_2024_3405652 crossref_primary_10_1109_TCBB_2021_3052811 crossref_primary_10_1016_j_neunet_2023_06_005 crossref_primary_10_1142_S0129065716500106 crossref_primary_10_1109_TNSRE_2015_2494378 crossref_primary_10_1007_s12021_018_9396_7 crossref_primary_10_1155_2018_6323414 crossref_primary_10_3389_fnins_2020_629572 crossref_primary_10_1088_1741_2552_ad546d crossref_primary_10_1109_ACCESS_2019_2908851 |
Cites_doi | 10.1088/1741-2560/9/2/026013 10.1109/ICASSP.2010.5495183 10.1162/NECO_a_00089 10.1016/j.neunet.2009.06.003 10.1109/TBME.2004.827088 10.1109/TNNLS.2013.2239310 10.1109/LSP.2009.2022557 10.1155/2011/217987 10.1088/1741-2560/3/1/R02 10.1016/j.neuroimage.2010.11.004 10.1109/86.895946 10.1109/MSP.2008.4408441 10.1016/j.neuroimage.2011.07.084 10.1103/PhysRevLett.103.214101 10.1109/TNSRE.2006.875642 10.1109/TBME.2010.2082539 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TBME.2013.2253608 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 2298 |
ExternalDocumentID | 3023835121 23529075 10_1109_TBME_2013_2253608 6482603 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c415t-30ce60ebe5840637c9324d2ccc8b43450cc88b6fa216e55546cae3fdc962a6a13 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Fri Jul 11 05:59:00 EDT 2025 Mon Jun 30 08:28:57 EDT 2025 Wed Feb 19 02:16:13 EST 2025 Tue Jul 01 02:15:48 EDT 2025 Thu Apr 24 23:01:40 EDT 2025 Wed Aug 27 02:52:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-30ce60ebe5840637c9324d2ccc8b43450cc88b6fa216e55546cae3fdc962a6a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 23529075 |
PQID | 1403477431 |
PQPubID | 85474 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1109_TBME_2013_2253608 crossref_citationtrail_10_1109_TBME_2013_2253608 pubmed_primary_23529075 proquest_miscellaneous_1437582889 proquest_journals_1403477431 ieee_primary_6482603 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-01 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2013 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 (ref20) 0 ref14 ref11 ref2 (ref10) 0 blankertz (ref17) 2008 ref16 ref18 (ref1) 0 sugiyama (ref7) 2011 (ref26) 0 ref24 ref23 ref25 ref22 ref21 ref27 samek (ref19) 2012 ref8 alamgir (ref3) 2010; 9 ref4 ref5 sugiyama (ref9) 2007; 8 quionero-candela (ref6) 2009 |
References_xml | – volume: 9 start-page: 17 year: 2010 ident: ref3 article-title: Multitask learning for brain?computer interfaces publication-title: Proc 13th Int Conf Artif Intell Stat – ident: ref15 doi: 10.1088/1741-2560/9/2/026013 – ident: ref4 doi: 10.1109/ICASSP.2010.5495183 – start-page: 2873 year: 2012 ident: ref19 article-title: Brain?computer interfacing in discriminative and stationary subspaces publication-title: Proc IEEE Int Conf Eng Med Biol Soc – start-page: 113 year: 2008 ident: ref17 publication-title: Advances in Neural Information Processing Systems 20 – year: 2011 ident: ref7 publication-title: Machine Learning in Non-Stationary Environments Introduction to Covariate Shift Adaptation – ident: ref23 doi: 10.1162/NECO_a_00089 – year: 0 ident: ref10 – year: 0 ident: ref1 – year: 0 ident: ref20 – ident: ref21 doi: 10.1016/j.neunet.2009.06.003 – volume: 8 start-page: 985 year: 2007 ident: ref9 article-title: Covariate shift adaptation by importance weighted cross validation publication-title: J Mach Learn Res – year: 2009 ident: ref6 publication-title: Dataset Shift in Machine Learning – ident: ref24 doi: 10.1109/TBME.2004.827088 – ident: ref16 doi: 10.1109/TNNLS.2013.2239310 – ident: ref5 doi: 10.1109/LSP.2009.2022557 – ident: ref2 doi: 10.1155/2011/217987 – ident: ref8 doi: 10.1088/1741-2560/3/1/R02 – ident: ref13 doi: 10.1016/j.neuroimage.2010.11.004 – ident: ref12 doi: 10.1109/86.895946 – ident: ref11 doi: 10.1109/MSP.2008.4408441 – ident: ref22 doi: 10.1162/NECO_a_00089 – year: 0 ident: ref26 – ident: ref27 doi: 10.1016/j.neuroimage.2011.07.084 – ident: ref18 doi: 10.1103/PhysRevLett.103.214101 – ident: ref25 doi: 10.1109/TNSRE.2006.875642 – ident: ref14 doi: 10.1109/TBME.2010.2082539 |
SSID | ssj0014846 |
Score | 2.510297 |
Snippet | Compensating changes between a subjects' training and testing session in brain-computer interfacing (BCI) is challenging but of great importance for a robust... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2289 |
SubjectTerms | Algorithms Artificial Intelligence Brain - physiology Brain Mapping - methods Brain-computer interface (BCI) Brain-Computer Interfaces common spatial patterns (CSP) Covariance matrices Electroencephalography Electroencephalography - methods Estimation Evoked Potentials - physiology Feature extraction Humans nonstationarity Pattern Recognition, Automated - methods Reproducibility of Results Robustness Sensitivity and Specificity Studies Training transfer learning Vectors |
Title | Transferring Subspaces Between Subjects in Brain--Computer Interfacing |
URI | https://ieeexplore.ieee.org/document/6482603 https://www.ncbi.nlm.nih.gov/pubmed/23529075 https://www.proquest.com/docview/1403477431 https://www.proquest.com/docview/1437582889 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ug-jB96O-qOBJzJo2abY5uuIiwnpS8FbSdCqidBfdvfjrzaQPVFS8lW027WYmO18yX74BOEEiPKWiYCZWgsnIaKY59pktChetMIlLr64_ulXX9_LmIXmYg7PuLAwievIZ9ujS5_KLsZ3RVtm5kg4Mk7TnvFu41We1uoyBTOtDOTxyEzjWsslgRlyf3w1GV0TiEj3nvEJxqtEXO-Dh1oXJl3Dk66v8DjV9yBmuwqh92Zpp8tybTfOeff-m4_jfX7MGKw32DC9qZ1mHOaw2YPmTIuEGLI6aXPsmDH0YK0m5sXoM6Q9mQvStcFAzu-gT2sN5C5-qcECFJhhrS0SEfp-xNK6jxy24H17dXV6zpuoCsy6YT5ngFhV3tnXQxOGXvnUITxaxtTbNpZAJdxdprkoTRwoTIrlZg6IsrFaxUSYS27BQjSvchRALZXVk00gUpOKTaiTAZ4wVKrdljgHwdvAz20iSU2WMl8wvTbjOyHQZmS5rTBfAafeVSa3H8VfjTRr2rmEz4gEctBbOmhn7lpFuoewTngrguLvt5holUEyF4xm1EX1KM6Y6gJ3aM7q-W4fa-_mZ-7AU-0IaRB08gIXp6wwPHZyZ5kfejz8A4Gfsfg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0hkKAcKIUWQqENEieEFyd2vPGxi1htKeG0SNwix5mgCpRFsHvh1-NxPgQVrXqLEsdJPOPMs2fmDcARUsBTKkpmYiWYjIxmmuOQ2bJ01gqTuPLs-tmVmlzLi5vkZglO-lwYRPTBZzigQ-_LL2d2QVtlp0o6MEzUnisJJeM22Vq9z0CmTVoOj9wUjrVsfZgR16fTUXZOYVxi4NRXKE5V-mIHPdzKMHljkHyFlb-DTW90xh8h6163iTW5GyzmxcA-_8Hk-L_fswkbLfoMfzTq8gmWsN6C9VechFuwmrXe9m0Ye0NWEXdjfRvSL-aBArjCURPbRWdoF-cp_F2HIyo1wVhXJCL0O42VcR3dfobr8fn0bMLaugvMOnM-Z4JbVNxJ14ETh2CG1mE8WcbW2rSQQibcHaSFqkwcKUwozM0aFFVptYqNMpH4Asv1rMZdCLFUVkc2jURJPD6pRoJ8xlihClsVGADvBj-3LSk51ca4z_3ihOucRJeT6PJWdAEc97c8NIwc_2q8TcPeN2xHPID9TsJ5O2efcmIulENCVAEc9pfdbCMXiqlxtqA2YkiOxlQHsNNoRt93p1B77z_zO6xNptllfvnz6tdX-BD7shoUSLgPy_PHBR44cDMvvnmdfgFc8-_G |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transferring+Subspaces+Between+Subjects+in+Brain--Computer+Interfacing&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Samek%2C+Wojciech&rft.au=Meinecke%2C+Frank+C&rft.au=Muller%2C+Klaus-Robert&rft.date=2013-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=60&rft.issue=8&rft.spage=2289&rft_id=info:doi/10.1109%2FTBME.2013.2253608&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3023835121 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |