A uniform asymptotic expansion for the incomplete gamma function
We describe a new uniform asymptotic expansion for the incomplete gamma function Γ( a, z) valid for large values of z. This expansion contains a complementary error function of an argument measuring transition across the point z= a (which is different from that in the well-known uniform expansion fo...
Saved in:
Published in | Journal of computational and applied mathematics Vol. 148; no. 2; pp. 323 - 339 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.11.2002
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We describe a new uniform asymptotic expansion for the incomplete gamma function
Γ(
a,
z) valid for large values of z. This expansion contains a complementary error function of an argument measuring transition across the point
z=
a (which is different from that in the well-known uniform expansion for large a of Temme), with easily computable coefficients that do not involve a removable singularity at
z=
a. Our expansion is, however, valid in a smaller domain of the parameters than that of Temme. Numerical examples are given to illustrate the accuracy of the expansion. |
---|---|
AbstractList | We describe a new uniform asymptotic expansion for the incomplete gamma function
Γ(
a,
z) valid for large values of z. This expansion contains a complementary error function of an argument measuring transition across the point
z=
a (which is different from that in the well-known uniform expansion for large a of Temme), with easily computable coefficients that do not involve a removable singularity at
z=
a. Our expansion is, however, valid in a smaller domain of the parameters than that of Temme. Numerical examples are given to illustrate the accuracy of the expansion. We describe a new uniform asymptotic expansion for the incomplete gamma function Gamma(a,z) valid for large values of z. This expansion contains a complementary error function of an argument measuring transition across the point z=a (which is different from that in the well-known uniform expansion for large a of Temme), with easily computable coefficients that do not involve a removable singularity at z=a. Our expansion is, however, valid in a smaller domain of the parameters than that of Temme. Numerical examples are given to illustrate the accuracy of the expansion. |
Author | Paris, R.B. |
Author_xml | – sequence: 1 givenname: R.B. surname: Paris fullname: Paris, R.B. email: r.paris@abertay.ac.uk organization: Division of Mathematical Sciences, University of Abertay Dundee, Dundee DD1 1HG, UK |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14511127$$DView record in Pascal Francis |
BookMark | eNqFkMtKAzEUhoNUsFYfQZiNoovRJHNJZqWleIOCC3Ud0syJRmaSMUnFvr3pBV26Oovz_efnfIdoZJ0FhE4IviSY1FfPuGAsxyVl55heYFxVRc730Jhw1uSEMT5C41_kAB2G8IExrhtSjtHNNFtao53vMxlW_RBdNCqD70HaYJzN0iaL75AZq1w_dBAhe5N9LzO9tCom4gjta9kFON7NCXq9u32ZPeTzp_vH2XSeq5JUMaesoqqWpCalZgVhjcIFFC0lXHNaM6qA1qVuJadYVw2UumkWDYGFxgVXLauLCTrb3h28-1xCiKI3QUHXSQtuGUQq4Cw9lcBqCyrvQvCgxeBNL_1KECzWvsTGl1jLEJiKjS_BU-50VyCDkp320ioT_sJlRQihLHHXWw7St18GvAjKgFXQGg8qitaZf5p-AM4ngEw |
CODEN | JCAMDI |
CitedBy_id | crossref_primary_10_1016_j_aam_2004_08_001 crossref_primary_10_1016_j_csda_2021_107404 crossref_primary_10_1142_S0219530517500099 crossref_primary_10_1007_s00208_023_02603_z crossref_primary_10_1016_j_spl_2024_110118 crossref_primary_10_1103_PhysRevLett_92_065002 crossref_primary_10_1016_j_jat_2008_09_004 crossref_primary_10_1007_s11242_010_9651_3 crossref_primary_10_1016_j_cam_2024_115764 crossref_primary_10_1109_JLT_2018_2836932 crossref_primary_10_1002_ett_4004 crossref_primary_10_1002_qua_10812 |
Cites_doi | 10.1007/978-1-4612-1088-7 10.4310/MAA.1997.v4.n4.a6 10.4310/MAA.1996.v3.n3.a3 10.1137/0510071 10.1063/1.530666 10.1016/0021-9045(73)90055-5 10.6028/jres.062.022 10.1007/BF03021175 10.1007/BF01162409 10.1145/22721.23109 10.1007/BF00250704 |
ContentType | Journal Article |
Copyright | 2002 Elsevier Science B.V. 2003 INIST-CNRS |
Copyright_xml | – notice: 2002 Elsevier Science B.V. – notice: 2003 INIST-CNRS |
DBID | 6I. AAFTH IQODW AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/S0377-0427(02)00553-8 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access Pascal-Francis CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1879-1778 |
EndPage | 339 |
ExternalDocumentID | 10_1016_S0377_0427_02_00553_8 14511127 S0377042702005538 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A NCXOZ NHB O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 UPT WUQ XPP YQT ZMT ZY4 ~02 ~G- 08R ABPIF IQODW 0SF AAXKI AAYXX ADVLN AFJKZ AKRWK CITATION 7TB 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c415t-2752c6a1614f73179c03e3d218f82672ce264fda820f59e4f99b91ebf038cd763 |
IEDL.DBID | AIKHN |
ISSN | 0377-0427 |
IngestDate | Fri Oct 25 08:52:03 EDT 2024 Thu Sep 26 17:39:12 EDT 2024 Sun Oct 22 16:02:40 EDT 2023 Fri Feb 23 02:30:16 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Incomplete gamma functions Uniform asymptotic expansions Incomplete Asymptotic approximation Asymptotic expansion Error estimation Gamma function Special function |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-2752c6a1614f73179c03e3d218f82672ce264fda820f59e4f99b91ebf038cd763 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0377042702005538 |
PQID | 27587069 |
PQPubID | 23500 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_27587069 crossref_primary_10_1016_S0377_0427_02_00553_8 pascalfrancis_primary_14511127 elsevier_sciencedirect_doi_10_1016_S0377_0427_02_00553_8 |
PublicationCentury | 2000 |
PublicationDate | 2002-11-15 |
PublicationDateYYYYMMDD | 2002-11-15 |
PublicationDate_xml | – month: 11 year: 2002 text: 2002-11-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of computational and applied mathematics |
PublicationYear | 2002 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Paris, Cang (BIB12) 1997; 4 Schell (BIB13) 1980; 22 Gradshteyn, Ryzhik (BIB7) 1980 Whittaker, Watson (BIB19) 1965 Temme (BIB16) 1996; 3 Erdélyi, Wyman (BIB5) 1963; 14 Paris (BIB11) 2000 Tricomi (BIB18) 1950; 53 B.C. Berndt, Ramanujan's Notebooks Part I, Springer, New York, 1985, p. 64. DiDonato, Morris (BIB2) 1986; 12 Dingle (BIB3) 1973 Temme (BIB14) 1979; 10 Wong (BIB20) 1973; 7 Gautschi (BIB6) 1959; 62 Mahler (BIB9) 1930; 54 Temme (BIB15) 1994; 119 H.P. Dopper, Asymptotische Ontwikkelingen van de Onvolledige Gammafuncties. Dissertation, University of Groningen, 1942. Temme (BIB17) 1996 Kowalenko, Frankel (BIB8) 1994; 35 Olver (BIB10) 1994; 119 Temme (10.1016/S0377-0427(02)00553-8_BIB17) 1996 Wong (10.1016/S0377-0427(02)00553-8_BIB20) 1973; 7 10.1016/S0377-0427(02)00553-8_BIB1 DiDonato (10.1016/S0377-0427(02)00553-8_BIB2) 1986; 12 Temme (10.1016/S0377-0427(02)00553-8_BIB15) 1994; 119 Gautschi (10.1016/S0377-0427(02)00553-8_BIB6) 1959; 62 Gradshteyn (10.1016/S0377-0427(02)00553-8_BIB7) 1980 Temme (10.1016/S0377-0427(02)00553-8_BIB16) 1996; 3 Kowalenko (10.1016/S0377-0427(02)00553-8_BIB8) 1994; 35 Paris (10.1016/S0377-0427(02)00553-8_BIB11) 2000 10.1016/S0377-0427(02)00553-8_BIB4 Whittaker (10.1016/S0377-0427(02)00553-8_BIB19) 1965 Olver (10.1016/S0377-0427(02)00553-8_BIB10) 1994; 119 Paris (10.1016/S0377-0427(02)00553-8_BIB12) 1997; 4 Erdélyi (10.1016/S0377-0427(02)00553-8_BIB5) 1963; 14 Schell (10.1016/S0377-0427(02)00553-8_BIB13) 1980; 22 Temme (10.1016/S0377-0427(02)00553-8_BIB14) 1979; 10 Tricomi (10.1016/S0377-0427(02)00553-8_BIB18) 1950; 53 Dingle (10.1016/S0377-0427(02)00553-8_BIB3) 1973 Mahler (10.1016/S0377-0427(02)00553-8_BIB9) 1930; 54 |
References_xml | – volume: 54 start-page: 1 year: 1930 end-page: 41 ident: BIB9 article-title: Ueber die Nullstellen der unvollstaendigen Gammafunktionen publication-title: Rend. Circ. Mat. Palermo contributor: fullname: Mahler – volume: 53 start-page: 136 year: 1950 end-page: 148 ident: BIB18 article-title: Asymptotische Eigenschaften der unvollständigen Gammafunktion publication-title: Math. Z. contributor: fullname: Tricomi – year: 2000 ident: BIB11 article-title: New asymptotic formulas for the Riemann zeta function on the critical line publication-title: Proceedings of the International Workshop on Special Functions, 21–25 June 1999, Hong Kong contributor: fullname: Paris – volume: 3 start-page: 335 year: 1996 end-page: 344 ident: BIB16 article-title: Uniform asymptotics for the incomplete gamma functions starting from negative values of the parameters publication-title: Methods Appl. Anal. contributor: fullname: Temme – year: 1965 ident: BIB19 publication-title: Modern Analysis contributor: fullname: Watson – year: 1973 ident: BIB3 publication-title: Asymptotic Expansions: Their Derivation and Interpretation contributor: fullname: Dingle – volume: 22 start-page: 477 year: 1980 end-page: 485 ident: BIB13 article-title: Asymptotische Entwicklungen für die unvollständige Gammafunktion publication-title: Wiss. Schr. Tech. Univ. Karl-Marx-Stadt contributor: fullname: Schell – volume: 62 start-page: 123 year: 1959 end-page: 125 ident: BIB6 article-title: Exponential integral publication-title: J. Res. Nat. Bur. Standards contributor: fullname: Gautschi – volume: 10 start-page: 757 year: 1979 end-page: 766 ident: BIB14 article-title: The asymptotic expansion of the incomplete gamma functions publication-title: SIAM J. Math. Anal. contributor: fullname: Temme – year: 1996 ident: BIB17 publication-title: Special Functions: An Introduction to the Classical Functions of Mathematical Physics contributor: fullname: Temme – volume: 14 start-page: 217 year: 1963 end-page: 260 ident: BIB5 article-title: The asymptotic evaluation of certain integrals publication-title: Arch. Rational Mech. Anal. contributor: fullname: Wyman – year: 1980 ident: BIB7 publication-title: Tables of Integrals, Series, and Products contributor: fullname: Ryzhik – volume: 7 start-page: 76 year: 1973 end-page: 86 ident: BIB20 article-title: On uniform asymptotic expansion of definite integrals publication-title: J. Approx. Theory contributor: fullname: Wong – volume: 119 start-page: 497 year: 1994 end-page: 510 ident: BIB10 article-title: The generalized exponential integral publication-title: Internat. Ser. Num. Math. contributor: fullname: Olver – volume: 35 start-page: 6179 year: 1994 end-page: 6198 ident: BIB8 article-title: Asymptotics for the Kummer function of Bose plasmas publication-title: J. Math. Phys. contributor: fullname: Frankel – volume: 12 start-page: 377 year: 1986 end-page: 393 ident: BIB2 article-title: Computation of the incomplete gamma functions publication-title: ACM Trans. Math. Software contributor: fullname: Morris – volume: 4 start-page: 449 year: 1997 end-page: 470 ident: BIB12 article-title: An asymptotic representation for publication-title: Methods Appl. Anal. contributor: fullname: Cang – volume: 119 start-page: 551 year: 1994 end-page: 562 ident: BIB15 article-title: Computational aspects of incomplete gamma functions with large complex parameters publication-title: Internat. Ser. Num. Math. contributor: fullname: Temme – ident: 10.1016/S0377-0427(02)00553-8_BIB1 doi: 10.1007/978-1-4612-1088-7 – volume: 119 start-page: 551 year: 1994 ident: 10.1016/S0377-0427(02)00553-8_BIB15 article-title: Computational aspects of incomplete gamma functions with large complex parameters publication-title: Internat. Ser. Num. Math. contributor: fullname: Temme – volume: 4 start-page: 449 year: 1997 ident: 10.1016/S0377-0427(02)00553-8_BIB12 article-title: An asymptotic representation for ζ(12+it) publication-title: Methods Appl. Anal. doi: 10.4310/MAA.1997.v4.n4.a6 contributor: fullname: Paris – year: 1996 ident: 10.1016/S0377-0427(02)00553-8_BIB17 contributor: fullname: Temme – volume: 3 start-page: 335 year: 1996 ident: 10.1016/S0377-0427(02)00553-8_BIB16 article-title: Uniform asymptotics for the incomplete gamma functions starting from negative values of the parameters publication-title: Methods Appl. Anal. doi: 10.4310/MAA.1996.v3.n3.a3 contributor: fullname: Temme – year: 1973 ident: 10.1016/S0377-0427(02)00553-8_BIB3 contributor: fullname: Dingle – volume: 10 start-page: 757 year: 1979 ident: 10.1016/S0377-0427(02)00553-8_BIB14 article-title: The asymptotic expansion of the incomplete gamma functions publication-title: SIAM J. Math. Anal. doi: 10.1137/0510071 contributor: fullname: Temme – year: 1980 ident: 10.1016/S0377-0427(02)00553-8_BIB7 contributor: fullname: Gradshteyn – volume: 119 start-page: 497 year: 1994 ident: 10.1016/S0377-0427(02)00553-8_BIB10 article-title: The generalized exponential integral publication-title: Internat. Ser. Num. Math. contributor: fullname: Olver – volume: 35 start-page: 6179 year: 1994 ident: 10.1016/S0377-0427(02)00553-8_BIB8 article-title: Asymptotics for the Kummer function of Bose plasmas publication-title: J. Math. Phys. doi: 10.1063/1.530666 contributor: fullname: Kowalenko – volume: 22 start-page: 477 year: 1980 ident: 10.1016/S0377-0427(02)00553-8_BIB13 article-title: Asymptotische Entwicklungen für die unvollständige Gammafunktion publication-title: Wiss. Schr. Tech. Univ. Karl-Marx-Stadt contributor: fullname: Schell – year: 1965 ident: 10.1016/S0377-0427(02)00553-8_BIB19 contributor: fullname: Whittaker – ident: 10.1016/S0377-0427(02)00553-8_BIB4 – volume: 7 start-page: 76 year: 1973 ident: 10.1016/S0377-0427(02)00553-8_BIB20 article-title: On uniform asymptotic expansion of definite integrals publication-title: J. Approx. Theory doi: 10.1016/0021-9045(73)90055-5 contributor: fullname: Wong – volume: 62 start-page: 123 year: 1959 ident: 10.1016/S0377-0427(02)00553-8_BIB6 article-title: Exponential integral ∫1∞ e−xtt−ndt for large values of n publication-title: J. Res. Nat. Bur. Standards doi: 10.6028/jres.062.022 contributor: fullname: Gautschi – volume: 54 start-page: 1 year: 1930 ident: 10.1016/S0377-0427(02)00553-8_BIB9 article-title: Ueber die Nullstellen der unvollstaendigen Gammafunktionen publication-title: Rend. Circ. Mat. Palermo doi: 10.1007/BF03021175 contributor: fullname: Mahler – volume: 53 start-page: 136 year: 1950 ident: 10.1016/S0377-0427(02)00553-8_BIB18 article-title: Asymptotische Eigenschaften der unvollständigen Gammafunktion publication-title: Math. Z. doi: 10.1007/BF01162409 contributor: fullname: Tricomi – year: 2000 ident: 10.1016/S0377-0427(02)00553-8_BIB11 article-title: New asymptotic formulas for the Riemann zeta function on the critical line contributor: fullname: Paris – volume: 12 start-page: 377 year: 1986 ident: 10.1016/S0377-0427(02)00553-8_BIB2 article-title: Computation of the incomplete gamma functions publication-title: ACM Trans. Math. Software doi: 10.1145/22721.23109 contributor: fullname: DiDonato – volume: 14 start-page: 217 year: 1963 ident: 10.1016/S0377-0427(02)00553-8_BIB5 article-title: The asymptotic evaluation of certain integrals publication-title: Arch. Rational Mech. Anal. doi: 10.1007/BF00250704 contributor: fullname: Erdélyi |
SSID | ssj0006914 |
Score | 1.8113631 |
Snippet | We describe a new uniform asymptotic expansion for the incomplete gamma function
Γ(
a,
z) valid for large values of z. This expansion contains a complementary... We describe a new uniform asymptotic expansion for the incomplete gamma function Gamma(a,z) valid for large values of z. This expansion contains a... |
SourceID | proquest crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 323 |
SubjectTerms | Exact sciences and technology Incomplete gamma functions Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical approximation Sciences and techniques of general use Special functions Uniform asymptotic expansions |
Title | A uniform asymptotic expansion for the incomplete gamma function |
URI | https://dx.doi.org/10.1016/S0377-0427(02)00553-8 https://search.proquest.com/docview/27587069 |
Volume | 148 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9owFH8qcNk0VWu3aeyD-tBDd3DJhxPbtwIaglLoYW2FdrGcxJ56IKARpO3Sv73PSQBV01Sppygvdhz9bP_ei-33HsBpqK3QSPs0EgGnqCF8KiLP0jjmqWQsk1o4B-fpLB7dsst5ND-AwdYXxh2rrLm_4vSSrWtJt0azu7q_7_7wQs5dpgjPLYzgvG1Aq9wkakKrN56MZjtCjmUV4hvLU1dh78hTvaQUnnnBt_I9VPxPRb1Z6TUCZ6uMF_-Qd6mRhm_hsDYlSa_62iM4MPkxvJ7u4rCu38FFj2xy53u1IHr9d7Eqlign5g9SgFslI_iEYHHiQjS4MMGFIb_0YqGJU3euy97D7fD7zWBE65wJNEWgCxrwKEhjjXYcsxxtA5l6oQkzVOQWfyR4kBq0gGymUfHbSBpmpUykbxLrhSLNkGw-QDNf5uYjkIRlOtSCsyzmTHpBkjC8WCPQKEOjwG_D-RYmtapCY6j9mbHQxRBHXJUXqBJXJdogtmCqJ32skL6fq9p5Av6-QRdfzQ94G062vaFwgrhdD52b5WatEBG3lys_vbz1z_CqSgLjUz_6As3i98Z8RVukSDrQOH_wOzji-neTq0498lA6nvfxbjaYX_98BMfl2y4 |
link.rule.ids | 315,783,787,3515,4511,24130,27583,27938,27939,45599,45677,45693,45888 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0BPQBCiFWU1QcOcDDN4sT2jYJABVouLOJmOYmNODStaCrB3zNO0lYIISROkRwv0XP85nmZMcBxqK3QSPs0EgGnaCF8KiLP0jjmqWQsk1o4B-fefdx5Yrcv0cscXE58Ydyxypr7K04v2bpOadVotoZvb60HL-Tc3RThuYURHLfz0EA1wHEG1mhfPN91p4QcyyrEN-anrsDMkaeqpEw88YLTsh4qfjNRK0M9QuBsdePFD_IuLdL1GqzWUpK0q69dhzmTb8BybxqHdbQJ520yzp3vVZ_o0Wd_WAwwnZgPpAC3SkbwDcHsxIVocGGCC0Nedb-viTN3rsu24On66vGyQ-s7E2iKQBc04FGQxhp1HLMctYFMvdCEGRpyixMJHqQGFZDNNBp-G0nDrJSJ9E1ivVCkGZLNNizkg9zsAElYpkMtOMtizqQXJAnDhzUCRRmKAr8JZxOY1LAKjaFmZ8ZCF0MccVVeoEpclWiCmICpvvWxQvr-q-jhN_BnDbr4an7Am3A06Q2FA8TteujcDMYjhYi4vVy5-__Wj2Cx89jrqu7N_d0eLFUXwvjUj_ZhoXgfmwPUJUVyWP93X4Jd2Os |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+uniform+asymptotic+expansion+for+the+incomplete+gamma+function&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=PARIS%2C+R.+B&rft.date=2002-11-15&rft.pub=Elsevier&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=148&rft.issue=2&rft.spage=323&rft.epage=339&rft_id=info:doi/10.1016%2FS0377-0427%2802%2900553-8&rft.externalDBID=n%2Fa&rft.externalDocID=14511127 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |