A uniform asymptotic expansion for the incomplete gamma function

We describe a new uniform asymptotic expansion for the incomplete gamma function Γ( a, z) valid for large values of z. This expansion contains a complementary error function of an argument measuring transition across the point z= a (which is different from that in the well-known uniform expansion fo...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 148; no. 2; pp. 323 - 339
Main Author Paris, R.B.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.11.2002
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We describe a new uniform asymptotic expansion for the incomplete gamma function Γ( a, z) valid for large values of z. This expansion contains a complementary error function of an argument measuring transition across the point z= a (which is different from that in the well-known uniform expansion for large a of Temme), with easily computable coefficients that do not involve a removable singularity at z= a. Our expansion is, however, valid in a smaller domain of the parameters than that of Temme. Numerical examples are given to illustrate the accuracy of the expansion.
AbstractList We describe a new uniform asymptotic expansion for the incomplete gamma function Γ( a, z) valid for large values of z. This expansion contains a complementary error function of an argument measuring transition across the point z= a (which is different from that in the well-known uniform expansion for large a of Temme), with easily computable coefficients that do not involve a removable singularity at z= a. Our expansion is, however, valid in a smaller domain of the parameters than that of Temme. Numerical examples are given to illustrate the accuracy of the expansion.
We describe a new uniform asymptotic expansion for the incomplete gamma function Gamma(a,z) valid for large values of z. This expansion contains a complementary error function of an argument measuring transition across the point z=a (which is different from that in the well-known uniform expansion for large a of Temme), with easily computable coefficients that do not involve a removable singularity at z=a. Our expansion is, however, valid in a smaller domain of the parameters than that of Temme. Numerical examples are given to illustrate the accuracy of the expansion.
Author Paris, R.B.
Author_xml – sequence: 1
  givenname: R.B.
  surname: Paris
  fullname: Paris, R.B.
  email: r.paris@abertay.ac.uk
  organization: Division of Mathematical Sciences, University of Abertay Dundee, Dundee DD1 1HG, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14511127$$DView record in Pascal Francis
BookMark eNqFkMtKAzEUhoNUsFYfQZiNoovRJHNJZqWleIOCC3Ud0syJRmaSMUnFvr3pBV26Oovz_efnfIdoZJ0FhE4IviSY1FfPuGAsxyVl55heYFxVRc730Jhw1uSEMT5C41_kAB2G8IExrhtSjtHNNFtao53vMxlW_RBdNCqD70HaYJzN0iaL75AZq1w_dBAhe5N9LzO9tCom4gjta9kFON7NCXq9u32ZPeTzp_vH2XSeq5JUMaesoqqWpCalZgVhjcIFFC0lXHNaM6qA1qVuJadYVw2UumkWDYGFxgVXLauLCTrb3h28-1xCiKI3QUHXSQtuGUQq4Cw9lcBqCyrvQvCgxeBNL_1KECzWvsTGl1jLEJiKjS_BU-50VyCDkp320ioT_sJlRQihLHHXWw7St18GvAjKgFXQGg8qitaZf5p-AM4ngEw
CODEN JCAMDI
CitedBy_id crossref_primary_10_1016_j_aam_2004_08_001
crossref_primary_10_1016_j_csda_2021_107404
crossref_primary_10_1142_S0219530517500099
crossref_primary_10_1007_s00208_023_02603_z
crossref_primary_10_1016_j_spl_2024_110118
crossref_primary_10_1103_PhysRevLett_92_065002
crossref_primary_10_1016_j_jat_2008_09_004
crossref_primary_10_1007_s11242_010_9651_3
crossref_primary_10_1016_j_cam_2024_115764
crossref_primary_10_1109_JLT_2018_2836932
crossref_primary_10_1002_ett_4004
crossref_primary_10_1002_qua_10812
Cites_doi 10.1007/978-1-4612-1088-7
10.4310/MAA.1997.v4.n4.a6
10.4310/MAA.1996.v3.n3.a3
10.1137/0510071
10.1063/1.530666
10.1016/0021-9045(73)90055-5
10.6028/jres.062.022
10.1007/BF03021175
10.1007/BF01162409
10.1145/22721.23109
10.1007/BF00250704
ContentType Journal Article
Copyright 2002 Elsevier Science B.V.
2003 INIST-CNRS
Copyright_xml – notice: 2002 Elsevier Science B.V.
– notice: 2003 INIST-CNRS
DBID 6I.
AAFTH
IQODW
AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/S0377-0427(02)00553-8
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Pascal-Francis
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
EndPage 339
ExternalDocumentID 10_1016_S0377_0427_02_00553_8
14511127
S0377042702005538
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
NHB
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZY4
~02
~G-
08R
ABPIF
IQODW
0SF
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c415t-2752c6a1614f73179c03e3d218f82672ce264fda820f59e4f99b91ebf038cd763
IEDL.DBID AIKHN
ISSN 0377-0427
IngestDate Fri Oct 25 08:52:03 EDT 2024
Thu Sep 26 17:39:12 EDT 2024
Sun Oct 22 16:02:40 EDT 2023
Fri Feb 23 02:30:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Incomplete gamma functions
Uniform asymptotic expansions
Incomplete
Asymptotic approximation
Asymptotic expansion
Error estimation
Gamma function
Special function
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-2752c6a1614f73179c03e3d218f82672ce264fda820f59e4f99b91ebf038cd763
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0377042702005538
PQID 27587069
PQPubID 23500
PageCount 17
ParticipantIDs proquest_miscellaneous_27587069
crossref_primary_10_1016_S0377_0427_02_00553_8
pascalfrancis_primary_14511127
elsevier_sciencedirect_doi_10_1016_S0377_0427_02_00553_8
PublicationCentury 2000
PublicationDate 2002-11-15
PublicationDateYYYYMMDD 2002-11-15
PublicationDate_xml – month: 11
  year: 2002
  text: 2002-11-15
  day: 15
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2002
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Paris, Cang (BIB12) 1997; 4
Schell (BIB13) 1980; 22
Gradshteyn, Ryzhik (BIB7) 1980
Whittaker, Watson (BIB19) 1965
Temme (BIB16) 1996; 3
Erdélyi, Wyman (BIB5) 1963; 14
Paris (BIB11) 2000
Tricomi (BIB18) 1950; 53
B.C. Berndt, Ramanujan's Notebooks Part I, Springer, New York, 1985, p. 64.
DiDonato, Morris (BIB2) 1986; 12
Dingle (BIB3) 1973
Temme (BIB14) 1979; 10
Wong (BIB20) 1973; 7
Gautschi (BIB6) 1959; 62
Mahler (BIB9) 1930; 54
Temme (BIB15) 1994; 119
H.P. Dopper, Asymptotische Ontwikkelingen van de Onvolledige Gammafuncties. Dissertation, University of Groningen, 1942.
Temme (BIB17) 1996
Kowalenko, Frankel (BIB8) 1994; 35
Olver (BIB10) 1994; 119
Temme (10.1016/S0377-0427(02)00553-8_BIB17) 1996
Wong (10.1016/S0377-0427(02)00553-8_BIB20) 1973; 7
10.1016/S0377-0427(02)00553-8_BIB1
DiDonato (10.1016/S0377-0427(02)00553-8_BIB2) 1986; 12
Temme (10.1016/S0377-0427(02)00553-8_BIB15) 1994; 119
Gautschi (10.1016/S0377-0427(02)00553-8_BIB6) 1959; 62
Gradshteyn (10.1016/S0377-0427(02)00553-8_BIB7) 1980
Temme (10.1016/S0377-0427(02)00553-8_BIB16) 1996; 3
Kowalenko (10.1016/S0377-0427(02)00553-8_BIB8) 1994; 35
Paris (10.1016/S0377-0427(02)00553-8_BIB11) 2000
10.1016/S0377-0427(02)00553-8_BIB4
Whittaker (10.1016/S0377-0427(02)00553-8_BIB19) 1965
Olver (10.1016/S0377-0427(02)00553-8_BIB10) 1994; 119
Paris (10.1016/S0377-0427(02)00553-8_BIB12) 1997; 4
Erdélyi (10.1016/S0377-0427(02)00553-8_BIB5) 1963; 14
Schell (10.1016/S0377-0427(02)00553-8_BIB13) 1980; 22
Temme (10.1016/S0377-0427(02)00553-8_BIB14) 1979; 10
Tricomi (10.1016/S0377-0427(02)00553-8_BIB18) 1950; 53
Dingle (10.1016/S0377-0427(02)00553-8_BIB3) 1973
Mahler (10.1016/S0377-0427(02)00553-8_BIB9) 1930; 54
References_xml – volume: 54
  start-page: 1
  year: 1930
  end-page: 41
  ident: BIB9
  article-title: Ueber die Nullstellen der unvollstaendigen Gammafunktionen
  publication-title: Rend. Circ. Mat. Palermo
  contributor:
    fullname: Mahler
– volume: 53
  start-page: 136
  year: 1950
  end-page: 148
  ident: BIB18
  article-title: Asymptotische Eigenschaften der unvollständigen Gammafunktion
  publication-title: Math. Z.
  contributor:
    fullname: Tricomi
– year: 2000
  ident: BIB11
  article-title: New asymptotic formulas for the Riemann zeta function on the critical line
  publication-title: Proceedings of the International Workshop on Special Functions, 21–25 June 1999, Hong Kong
  contributor:
    fullname: Paris
– volume: 3
  start-page: 335
  year: 1996
  end-page: 344
  ident: BIB16
  article-title: Uniform asymptotics for the incomplete gamma functions starting from negative values of the parameters
  publication-title: Methods Appl. Anal.
  contributor:
    fullname: Temme
– year: 1965
  ident: BIB19
  publication-title: Modern Analysis
  contributor:
    fullname: Watson
– year: 1973
  ident: BIB3
  publication-title: Asymptotic Expansions: Their Derivation and Interpretation
  contributor:
    fullname: Dingle
– volume: 22
  start-page: 477
  year: 1980
  end-page: 485
  ident: BIB13
  article-title: Asymptotische Entwicklungen für die unvollständige Gammafunktion
  publication-title: Wiss. Schr. Tech. Univ. Karl-Marx-Stadt
  contributor:
    fullname: Schell
– volume: 62
  start-page: 123
  year: 1959
  end-page: 125
  ident: BIB6
  article-title: Exponential integral
  publication-title: J. Res. Nat. Bur. Standards
  contributor:
    fullname: Gautschi
– volume: 10
  start-page: 757
  year: 1979
  end-page: 766
  ident: BIB14
  article-title: The asymptotic expansion of the incomplete gamma functions
  publication-title: SIAM J. Math. Anal.
  contributor:
    fullname: Temme
– year: 1996
  ident: BIB17
  publication-title: Special Functions: An Introduction to the Classical Functions of Mathematical Physics
  contributor:
    fullname: Temme
– volume: 14
  start-page: 217
  year: 1963
  end-page: 260
  ident: BIB5
  article-title: The asymptotic evaluation of certain integrals
  publication-title: Arch. Rational Mech. Anal.
  contributor:
    fullname: Wyman
– year: 1980
  ident: BIB7
  publication-title: Tables of Integrals, Series, and Products
  contributor:
    fullname: Ryzhik
– volume: 7
  start-page: 76
  year: 1973
  end-page: 86
  ident: BIB20
  article-title: On uniform asymptotic expansion of definite integrals
  publication-title: J. Approx. Theory
  contributor:
    fullname: Wong
– volume: 119
  start-page: 497
  year: 1994
  end-page: 510
  ident: BIB10
  article-title: The generalized exponential integral
  publication-title: Internat. Ser. Num. Math.
  contributor:
    fullname: Olver
– volume: 35
  start-page: 6179
  year: 1994
  end-page: 6198
  ident: BIB8
  article-title: Asymptotics for the Kummer function of Bose plasmas
  publication-title: J. Math. Phys.
  contributor:
    fullname: Frankel
– volume: 12
  start-page: 377
  year: 1986
  end-page: 393
  ident: BIB2
  article-title: Computation of the incomplete gamma functions
  publication-title: ACM Trans. Math. Software
  contributor:
    fullname: Morris
– volume: 4
  start-page: 449
  year: 1997
  end-page: 470
  ident: BIB12
  article-title: An asymptotic representation for
  publication-title: Methods Appl. Anal.
  contributor:
    fullname: Cang
– volume: 119
  start-page: 551
  year: 1994
  end-page: 562
  ident: BIB15
  article-title: Computational aspects of incomplete gamma functions with large complex parameters
  publication-title: Internat. Ser. Num. Math.
  contributor:
    fullname: Temme
– ident: 10.1016/S0377-0427(02)00553-8_BIB1
  doi: 10.1007/978-1-4612-1088-7
– volume: 119
  start-page: 551
  year: 1994
  ident: 10.1016/S0377-0427(02)00553-8_BIB15
  article-title: Computational aspects of incomplete gamma functions with large complex parameters
  publication-title: Internat. Ser. Num. Math.
  contributor:
    fullname: Temme
– volume: 4
  start-page: 449
  year: 1997
  ident: 10.1016/S0377-0427(02)00553-8_BIB12
  article-title: An asymptotic representation for ζ(12+it)
  publication-title: Methods Appl. Anal.
  doi: 10.4310/MAA.1997.v4.n4.a6
  contributor:
    fullname: Paris
– year: 1996
  ident: 10.1016/S0377-0427(02)00553-8_BIB17
  contributor:
    fullname: Temme
– volume: 3
  start-page: 335
  year: 1996
  ident: 10.1016/S0377-0427(02)00553-8_BIB16
  article-title: Uniform asymptotics for the incomplete gamma functions starting from negative values of the parameters
  publication-title: Methods Appl. Anal.
  doi: 10.4310/MAA.1996.v3.n3.a3
  contributor:
    fullname: Temme
– year: 1973
  ident: 10.1016/S0377-0427(02)00553-8_BIB3
  contributor:
    fullname: Dingle
– volume: 10
  start-page: 757
  year: 1979
  ident: 10.1016/S0377-0427(02)00553-8_BIB14
  article-title: The asymptotic expansion of the incomplete gamma functions
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0510071
  contributor:
    fullname: Temme
– year: 1980
  ident: 10.1016/S0377-0427(02)00553-8_BIB7
  contributor:
    fullname: Gradshteyn
– volume: 119
  start-page: 497
  year: 1994
  ident: 10.1016/S0377-0427(02)00553-8_BIB10
  article-title: The generalized exponential integral
  publication-title: Internat. Ser. Num. Math.
  contributor:
    fullname: Olver
– volume: 35
  start-page: 6179
  year: 1994
  ident: 10.1016/S0377-0427(02)00553-8_BIB8
  article-title: Asymptotics for the Kummer function of Bose plasmas
  publication-title: J. Math. Phys.
  doi: 10.1063/1.530666
  contributor:
    fullname: Kowalenko
– volume: 22
  start-page: 477
  year: 1980
  ident: 10.1016/S0377-0427(02)00553-8_BIB13
  article-title: Asymptotische Entwicklungen für die unvollständige Gammafunktion
  publication-title: Wiss. Schr. Tech. Univ. Karl-Marx-Stadt
  contributor:
    fullname: Schell
– year: 1965
  ident: 10.1016/S0377-0427(02)00553-8_BIB19
  contributor:
    fullname: Whittaker
– ident: 10.1016/S0377-0427(02)00553-8_BIB4
– volume: 7
  start-page: 76
  year: 1973
  ident: 10.1016/S0377-0427(02)00553-8_BIB20
  article-title: On uniform asymptotic expansion of definite integrals
  publication-title: J. Approx. Theory
  doi: 10.1016/0021-9045(73)90055-5
  contributor:
    fullname: Wong
– volume: 62
  start-page: 123
  year: 1959
  ident: 10.1016/S0377-0427(02)00553-8_BIB6
  article-title: Exponential integral ∫1∞ e−xtt−ndt for large values of n
  publication-title: J. Res. Nat. Bur. Standards
  doi: 10.6028/jres.062.022
  contributor:
    fullname: Gautschi
– volume: 54
  start-page: 1
  year: 1930
  ident: 10.1016/S0377-0427(02)00553-8_BIB9
  article-title: Ueber die Nullstellen der unvollstaendigen Gammafunktionen
  publication-title: Rend. Circ. Mat. Palermo
  doi: 10.1007/BF03021175
  contributor:
    fullname: Mahler
– volume: 53
  start-page: 136
  year: 1950
  ident: 10.1016/S0377-0427(02)00553-8_BIB18
  article-title: Asymptotische Eigenschaften der unvollständigen Gammafunktion
  publication-title: Math. Z.
  doi: 10.1007/BF01162409
  contributor:
    fullname: Tricomi
– year: 2000
  ident: 10.1016/S0377-0427(02)00553-8_BIB11
  article-title: New asymptotic formulas for the Riemann zeta function on the critical line
  contributor:
    fullname: Paris
– volume: 12
  start-page: 377
  year: 1986
  ident: 10.1016/S0377-0427(02)00553-8_BIB2
  article-title: Computation of the incomplete gamma functions
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/22721.23109
  contributor:
    fullname: DiDonato
– volume: 14
  start-page: 217
  year: 1963
  ident: 10.1016/S0377-0427(02)00553-8_BIB5
  article-title: The asymptotic evaluation of certain integrals
  publication-title: Arch. Rational Mech. Anal.
  doi: 10.1007/BF00250704
  contributor:
    fullname: Erdélyi
SSID ssj0006914
Score 1.8113631
Snippet We describe a new uniform asymptotic expansion for the incomplete gamma function Γ( a, z) valid for large values of z. This expansion contains a complementary...
We describe a new uniform asymptotic expansion for the incomplete gamma function Gamma(a,z) valid for large values of z. This expansion contains a...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 323
SubjectTerms Exact sciences and technology
Incomplete gamma functions
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation
Sciences and techniques of general use
Special functions
Uniform asymptotic expansions
Title A uniform asymptotic expansion for the incomplete gamma function
URI https://dx.doi.org/10.1016/S0377-0427(02)00553-8
https://search.proquest.com/docview/27587069
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9owFH8qcNk0VWu3aeyD-tBDd3DJhxPbtwIaglLoYW2FdrGcxJ56IKARpO3Sv73PSQBV01Sppygvdhz9bP_ei-33HsBpqK3QSPs0EgGnqCF8KiLP0jjmqWQsk1o4B-fpLB7dsst5ND-AwdYXxh2rrLm_4vSSrWtJt0azu7q_7_7wQs5dpgjPLYzgvG1Aq9wkakKrN56MZjtCjmUV4hvLU1dh78hTvaQUnnnBt_I9VPxPRb1Z6TUCZ6uMF_-Qd6mRhm_hsDYlSa_62iM4MPkxvJ7u4rCu38FFj2xy53u1IHr9d7Eqlign5g9SgFslI_iEYHHiQjS4MMGFIb_0YqGJU3euy97D7fD7zWBE65wJNEWgCxrwKEhjjXYcsxxtA5l6oQkzVOQWfyR4kBq0gGymUfHbSBpmpUykbxLrhSLNkGw-QDNf5uYjkIRlOtSCsyzmTHpBkjC8WCPQKEOjwG_D-RYmtapCY6j9mbHQxRBHXJUXqBJXJdogtmCqJ32skL6fq9p5Av6-QRdfzQ94G062vaFwgrhdD52b5WatEBG3lys_vbz1z_CqSgLjUz_6As3i98Z8RVukSDrQOH_wOzji-neTq0498lA6nvfxbjaYX_98BMfl2y4
link.rule.ids 315,783,787,3515,4511,24130,27583,27938,27939,45599,45677,45693,45888
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0BPQBCiFWU1QcOcDDN4sT2jYJABVouLOJmOYmNODStaCrB3zNO0lYIISROkRwv0XP85nmZMcBxqK3QSPs0EgGnaCF8KiLP0jjmqWQsk1o4B-fefdx5Yrcv0cscXE58Ydyxypr7K04v2bpOadVotoZvb60HL-Tc3RThuYURHLfz0EA1wHEG1mhfPN91p4QcyyrEN-anrsDMkaeqpEw88YLTsh4qfjNRK0M9QuBsdePFD_IuLdL1GqzWUpK0q69dhzmTb8BybxqHdbQJ520yzp3vVZ_o0Wd_WAwwnZgPpAC3SkbwDcHsxIVocGGCC0Nedb-viTN3rsu24On66vGyQ-s7E2iKQBc04FGQxhp1HLMctYFMvdCEGRpyixMJHqQGFZDNNBp-G0nDrJSJ9E1ivVCkGZLNNizkg9zsAElYpkMtOMtizqQXJAnDhzUCRRmKAr8JZxOY1LAKjaFmZ8ZCF0MccVVeoEpclWiCmICpvvWxQvr-q-jhN_BnDbr4an7Am3A06Q2FA8TteujcDMYjhYi4vVy5-__Wj2Cx89jrqu7N_d0eLFUXwvjUj_ZhoXgfmwPUJUVyWP93X4Jd2Os
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+uniform+asymptotic+expansion+for+the+incomplete+gamma+function&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=PARIS%2C+R.+B&rft.date=2002-11-15&rft.pub=Elsevier&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=148&rft.issue=2&rft.spage=323&rft.epage=339&rft_id=info:doi/10.1016%2FS0377-0427%2802%2900553-8&rft.externalDBID=n%2Fa&rft.externalDocID=14511127
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon