Abdominal, multi-organ, auto-contouring method for online adaptive magnetic resonance guided radiotherapy: An intelligent, multi-level fusion approach
•MR-ART consists of daily modification of the radiation therapy plan.•Manual contouring is laborious, subject to variability and inconvenient for MR-ART.•An auto-contouring method based on the human processing model is proposed.•The algorithm couples multi-level top-down and bottom-up information.•T...
Saved in:
Published in | Artificial intelligence in medicine Vol. 90; pp. 34 - 41 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0933-3657 1873-2860 1873-2860 |
DOI | 10.1016/j.artmed.2018.07.001 |
Cover
Abstract | •MR-ART consists of daily modification of the radiation therapy plan.•Manual contouring is laborious, subject to variability and inconvenient for MR-ART.•An auto-contouring method based on the human processing model is proposed.•The algorithm couples multi-level top-down and bottom-up information.•To our knowledge, this is the first automated contouring approach for T1 MR-ART.
Manual contouring remains the most laborious task in radiation therapy planning and is a major barrier to implementing routine Magnetic Resonance Imaging (MRI) Guided Adaptive Radiation Therapy (MR-ART). To address this, we propose a new artificial intelligence-based, auto-contouring method for abdominal MR-ART modeled after human brain cognition for manual contouring.
Our algorithm is based on two types of information flow, i.e. top-down and bottom-up. Top-down information is derived from simulation MR images. It grossly delineates the object based on its high-level information class by transferring the initial planning contours onto daily images. Bottom-up information is derived from pixel data by a supervised, self-adaptive, active learning based support vector machine. It uses low-level pixel features, such as intensity and location, to distinguish each target boundary from the background. The final result is obtained by fusing top-down and bottom-up outputs in a unified framework through artificial intelligence fusion. For evaluation, we used a dataset of four patients with locally advanced pancreatic cancer treated with MR-ART using a clinical system (MRIdian, Viewray, Oakwood Village, OH, USA). Each set included the simulation MRI and onboard T1 MRI corresponding to a randomly selected treatment session. Each MRI had 144 axial slices of 266 × 266 pixels. Using the Dice Similarity Index (DSI) and the Hausdorff Distance Index (HDI), we compared the manual and automated contours for the liver, left and right kidneys, and the spinal cord.
The average auto-segmentation time was two minutes per set. Visually, the automatic and manual contours were similar. Fused results achieved better accuracy than either the bottom-up or top-down method alone. The DSI values were above 0.86. The spinal canal contours yielded a low HDI value.
With a DSI significantly higher than the usually reported 0.7, our novel algorithm yields a high segmentation accuracy. To our knowledge, this is the first fully automated contouring approach using T1 MRI images for adaptive radiotherapy. |
---|---|
AbstractList | Manual contouring remains the most laborious task in radiation therapy planning and is a major barrier to implementing routine Magnetic Resonance Imaging (MRI) Guided Adaptive Radiation Therapy (MR-ART). To address this, we propose a new artificial intelligence-based, auto-contouring method for abdominal MR-ART modeled after human brain cognition for manual contouring.
Our algorithm is based on two types of information flow, i.e. top-down and bottom-up. Top-down information is derived from simulation MR images. It grossly delineates the object based on its high-level information class by transferring the initial planning contours onto daily images. Bottom-up information is derived from pixel data by a supervised, self-adaptive, active learning based support vector machine. It uses low-level pixel features, such as intensity and location, to distinguish each target boundary from the background. The final result is obtained by fusing top-down and bottom-up outputs in a unified framework through artificial intelligence fusion. For evaluation, we used a dataset of four patients with locally advanced pancreatic cancer treated with MR-ART using a clinical system (MRIdian, Viewray, Oakwood Village, OH, USA). Each set included the simulation MRI and onboard T1 MRI corresponding to a randomly selected treatment session. Each MRI had 144 axial slices of 266 × 266 pixels. Using the Dice Similarity Index (DSI) and the Hausdorff Distance Index (HDI), we compared the manual and automated contours for the liver, left and right kidneys, and the spinal cord.
The average auto-segmentation time was two minutes per set. Visually, the automatic and manual contours were similar. Fused results achieved better accuracy than either the bottom-up or top-down method alone. The DSI values were above 0.86. The spinal canal contours yielded a low HDI value.
With a DSI significantly higher than the usually reported 0.7, our novel algorithm yields a high segmentation accuracy. To our knowledge, this is the first fully automated contouring approach using T1 MRI images for adaptive radiotherapy. •MR-ART consists of daily modification of the radiation therapy plan.•Manual contouring is laborious, subject to variability and inconvenient for MR-ART.•An auto-contouring method based on the human processing model is proposed.•The algorithm couples multi-level top-down and bottom-up information.•To our knowledge, this is the first automated contouring approach for T1 MR-ART. Manual contouring remains the most laborious task in radiation therapy planning and is a major barrier to implementing routine Magnetic Resonance Imaging (MRI) Guided Adaptive Radiation Therapy (MR-ART). To address this, we propose a new artificial intelligence-based, auto-contouring method for abdominal MR-ART modeled after human brain cognition for manual contouring. Our algorithm is based on two types of information flow, i.e. top-down and bottom-up. Top-down information is derived from simulation MR images. It grossly delineates the object based on its high-level information class by transferring the initial planning contours onto daily images. Bottom-up information is derived from pixel data by a supervised, self-adaptive, active learning based support vector machine. It uses low-level pixel features, such as intensity and location, to distinguish each target boundary from the background. The final result is obtained by fusing top-down and bottom-up outputs in a unified framework through artificial intelligence fusion. For evaluation, we used a dataset of four patients with locally advanced pancreatic cancer treated with MR-ART using a clinical system (MRIdian, Viewray, Oakwood Village, OH, USA). Each set included the simulation MRI and onboard T1 MRI corresponding to a randomly selected treatment session. Each MRI had 144 axial slices of 266 × 266 pixels. Using the Dice Similarity Index (DSI) and the Hausdorff Distance Index (HDI), we compared the manual and automated contours for the liver, left and right kidneys, and the spinal cord. The average auto-segmentation time was two minutes per set. Visually, the automatic and manual contours were similar. Fused results achieved better accuracy than either the bottom-up or top-down method alone. The DSI values were above 0.86. The spinal canal contours yielded a low HDI value. With a DSI significantly higher than the usually reported 0.7, our novel algorithm yields a high segmentation accuracy. To our knowledge, this is the first fully automated contouring approach using T1 MRI images for adaptive radiotherapy. Manual contouring remains the most laborious task in radiation therapy planning and is a major barrier to implementing routine Magnetic Resonance Imaging (MRI) Guided Adaptive Radiation Therapy (MR-ART). To address this, we propose a new artificial intelligence-based, auto-contouring method for abdominal MR-ART modeled after human brain cognition for manual contouring.BACKGROUNDManual contouring remains the most laborious task in radiation therapy planning and is a major barrier to implementing routine Magnetic Resonance Imaging (MRI) Guided Adaptive Radiation Therapy (MR-ART). To address this, we propose a new artificial intelligence-based, auto-contouring method for abdominal MR-ART modeled after human brain cognition for manual contouring.Our algorithm is based on two types of information flow, i.e. top-down and bottom-up. Top-down information is derived from simulation MR images. It grossly delineates the object based on its high-level information class by transferring the initial planning contours onto daily images. Bottom-up information is derived from pixel data by a supervised, self-adaptive, active learning based support vector machine. It uses low-level pixel features, such as intensity and location, to distinguish each target boundary from the background. The final result is obtained by fusing top-down and bottom-up outputs in a unified framework through artificial intelligence fusion. For evaluation, we used a dataset of four patients with locally advanced pancreatic cancer treated with MR-ART using a clinical system (MRIdian, Viewray, Oakwood Village, OH, USA). Each set included the simulation MRI and onboard T1 MRI corresponding to a randomly selected treatment session. Each MRI had 144 axial slices of 266 × 266 pixels. Using the Dice Similarity Index (DSI) and the Hausdorff Distance Index (HDI), we compared the manual and automated contours for the liver, left and right kidneys, and the spinal cord.METHODS/MATERIALSOur algorithm is based on two types of information flow, i.e. top-down and bottom-up. Top-down information is derived from simulation MR images. It grossly delineates the object based on its high-level information class by transferring the initial planning contours onto daily images. Bottom-up information is derived from pixel data by a supervised, self-adaptive, active learning based support vector machine. It uses low-level pixel features, such as intensity and location, to distinguish each target boundary from the background. The final result is obtained by fusing top-down and bottom-up outputs in a unified framework through artificial intelligence fusion. For evaluation, we used a dataset of four patients with locally advanced pancreatic cancer treated with MR-ART using a clinical system (MRIdian, Viewray, Oakwood Village, OH, USA). Each set included the simulation MRI and onboard T1 MRI corresponding to a randomly selected treatment session. Each MRI had 144 axial slices of 266 × 266 pixels. Using the Dice Similarity Index (DSI) and the Hausdorff Distance Index (HDI), we compared the manual and automated contours for the liver, left and right kidneys, and the spinal cord.The average auto-segmentation time was two minutes per set. Visually, the automatic and manual contours were similar. Fused results achieved better accuracy than either the bottom-up or top-down method alone. The DSI values were above 0.86. The spinal canal contours yielded a low HDI value.RESULTSThe average auto-segmentation time was two minutes per set. Visually, the automatic and manual contours were similar. Fused results achieved better accuracy than either the bottom-up or top-down method alone. The DSI values were above 0.86. The spinal canal contours yielded a low HDI value.With a DSI significantly higher than the usually reported 0.7, our novel algorithm yields a high segmentation accuracy. To our knowledge, this is the first fully automated contouring approach using T1 MRI images for adaptive radiotherapy.CONCLUSIONWith a DSI significantly higher than the usually reported 0.7, our novel algorithm yields a high segmentation accuracy. To our knowledge, this is the first fully automated contouring approach using T1 MRI images for adaptive radiotherapy. |
Author | Su, Kuan-Hao Kuo, Jung-Wen Parikh, Parag Lu, Yonggang Muzic, Raymond F. Leisser, Asha Baydoun, Atallah Zhao, Kaifa Qian, Pengjiang Van Hedent, Steven Traughber, Bryan J. Liang, Fan |
Author_xml | – sequence: 1 givenname: Fan surname: Liang fullname: Liang, Fan email: bachelormd10@163.com organization: Department of Radiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA – sequence: 2 givenname: Pengjiang surname: Qian fullname: Qian, Pengjiang email: qianpjiang@jiangnan.edu.cn organization: School of Digital Media, Jiangnan University, Wuxi, Jiangsu, China – sequence: 3 givenname: Kuan-Hao surname: Su fullname: Su, Kuan-Hao email: kuan-hao.su@case.edu organization: Department of Radiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA – sequence: 4 givenname: Atallah orcidid: 0000-0003-0244-5583 surname: Baydoun fullname: Baydoun, Atallah email: atallah.baydoun@case.edu organization: Department of Internal Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA – sequence: 5 givenname: Asha surname: Leisser fullname: Leisser, Asha email: asha.leisser@meduniwien.ac.at organization: Department of Radiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA – sequence: 6 givenname: Steven surname: Van Hedent fullname: Van Hedent, Steven email: steven.vanhedent@case.edu organization: Department of Radiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA – sequence: 7 givenname: Jung-Wen surname: Kuo fullname: Kuo, Jung-Wen email: jung-wen.kuo@case.edu organization: Department of Radiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA – sequence: 8 givenname: Kaifa surname: Zhao fullname: Zhao, Kaifa email: zhaokaifa@qq.com organization: School of Digital Media, Jiangnan University, Wuxi, Jiangsu, China – sequence: 9 givenname: Parag surname: Parikh fullname: Parikh, Parag email: pparikh@radonc.wustl.edu organization: Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA – sequence: 10 givenname: Yonggang surname: Lu fullname: Lu, Yonggang email: yonggang.lu@wustl.edu organization: Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA – sequence: 11 givenname: Bryan J. surname: Traughber fullname: Traughber, Bryan J. email: bryan.traughber@case.edu organization: Case Center for Imaging Research, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA – sequence: 12 givenname: Raymond F. surname: Muzic fullname: Muzic, Raymond F. email: raymond.muzic@case.edu organization: Department of Radiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30054121$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFN0DISxZNsPOfCiGNKv6kSmxgbd3YNxkPjh1sZ6R5EZ4XV9Oy6GZW3pzvXOt8V-TCOouEvOUs54w3H_Y5-DijygvGu5y1OWP8Bdnwri2zomvYBdmwviyzsqnbS3IVwp4x1la8eUUuS8bqihd8Q_5uB-VmbcHc0Hk1UWfOT2BvKKzRZdLZ6Fav7URnjDun6Og8ddZoixQULFEfkM4wWYxaUo_BWbAS6bRqhYp6UNrFHXpYjrd0a6m2EY3RE9r4dM_gAQ0d16CdpbAs3oHcvSYvRzAB3zy-1-TXl88_775l9z--fr_b3mey4nXMiqarhqrBvh6HUkqAoahlxTgfWMeGQsqubLAZKxzbpoe26ytVDxKKgY_D2JdYXpP3p9509s-KIYpZB5m-CBbdGkTB2jQl63mRou8eo-uQZheL1zP4o3jaMgWqU0B6F4LH8X-EM_GgTOzFSZl4UCZYK5KyhN0-w6SOENMa0YM25-BPJxjTSAeNXgSpMRlQ2qOMQjl9ruDjswKZ5GoJ5jcez-P_AFwCzGQ |
CitedBy_id | crossref_primary_10_1016_j_cdtm_2018_11_004 crossref_primary_10_1016_j_radonc_2020_09_060 crossref_primary_10_1088_1361_6560_ad33b5 crossref_primary_10_1016_j_prro_2020_07_003 crossref_primary_10_1007_s11547_023_01708_4 crossref_primary_10_3389_fonc_2023_1209558 crossref_primary_10_35712_wjg_v1_i1_19 crossref_primary_10_1002_mp_13717 crossref_primary_10_1088_2057_1976_ac1c51 crossref_primary_10_3389_fonc_2022_910792 crossref_primary_10_1016_j_jacr_2019_06_001 crossref_primary_10_1007_s11042_024_18336_3 crossref_primary_10_1038_s41391_023_00684_0 crossref_primary_10_5114_pjr_2023_124434 crossref_primary_10_1016_j_bspc_2023_104583 crossref_primary_10_1002_mp_15534 crossref_primary_10_1016_j_phro_2023_100498 crossref_primary_10_24835_1607_0763_1500 crossref_primary_10_1007_s00066_024_02277_9 crossref_primary_10_1155_2021_7520862 crossref_primary_10_1007_s11042_022_12271_x crossref_primary_10_1109_TMI_2019_2935916 crossref_primary_10_35712_aig_v1_i1_19 crossref_primary_10_1186_s13014_023_02330_4 crossref_primary_10_1016_j_ejmp_2021_05_010 crossref_primary_10_1111_1754_9485_12968 crossref_primary_10_1002_mp_17580 crossref_primary_10_1016_j_engappai_2022_105532 crossref_primary_10_1016_j_semradonc_2023_10_015 crossref_primary_10_3389_fonc_2022_892171 crossref_primary_10_1088_1742_6596_1944_1_012016 crossref_primary_10_1155_2021_1885512 crossref_primary_10_1002_mp_16056 crossref_primary_10_1109_ACCESS_2021_3078430 crossref_primary_10_1016_j_dib_2024_111159 crossref_primary_10_1093_toxsci_kfaa021 crossref_primary_10_1002_acm2_14371 crossref_primary_10_37549_ARO1259 crossref_primary_10_1002_jmrs_712 crossref_primary_10_1177_15330338231206335 crossref_primary_10_1007_s00066_024_02358_9 crossref_primary_10_1016_j_ibmed_2021_100026 crossref_primary_10_1007_s11042_019_07974_7 crossref_primary_10_1109_TCBB_2020_2979841 crossref_primary_10_12688_f1000research_152312_1 crossref_primary_10_24060_2076_3093_2018_8_3_208_215 crossref_primary_10_1177_15330338211036325 crossref_primary_10_3390_app12073223 crossref_primary_10_2196_26601 |
Cites_doi | 10.1016/j.semradonc.2014.02.008 10.1613/jair.295 10.1016/j.ijrobp.2015.10.015 10.1016/0031-3203(95)00067-4 10.1186/1748-717X-7-160 10.1016/j.ijrobp.2004.06.004 10.1016/S1076-6332(03)00671-8 10.4236/jcc.2013.16009 10.1016/0020-0190(91)90233-8 10.1118/1.4955562 10.1088/0031-9155/54/12/N01 10.1118/1.4758068 10.1016/j.media.2013.10.005 10.1088/1361-6560/62/1/272 10.1016/j.ijrobp.2016.06.553 10.1109/TMI.2013.2265805 10.1118/1.3654160 10.1002/jmri.22478 10.1016/0146-664X(78)90116-8 10.1118/1.4871620 10.1118/1.3213099 10.1109/2945.817348 10.1016/S0165-0114(97)00077-8 10.1118/1.4921067 |
ContentType | Journal Article |
Copyright | 2018 Copyright © 2018. Published by Elsevier B.V. |
Copyright_xml | – notice: 2018 – notice: Copyright © 2018. Published by Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.artmed.2018.07.001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Computer Science |
EISSN | 1873-2860 |
EndPage | 41 |
ExternalDocumentID | 30054121 10_1016_j_artmed_2018_07_001 S0933365717302853 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77K 8P~ 9JM 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABFNM ABIVO ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HEA HMK HMO HVGLF HZ~ IHE J1W KOM LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WH7 WUQ Z5R ~G- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 77I 7X8 |
ID | FETCH-LOGICAL-c415t-2684b46e95fb3ccaab25c4011b080b2cc836e6f4ef769a7894d5bca2b1fbf93e3 |
IEDL.DBID | AIKHN |
ISSN | 0933-3657 1873-2860 |
IngestDate | Fri Sep 05 14:58:17 EDT 2025 Mon Jul 21 06:07:15 EDT 2025 Tue Jul 01 00:24:35 EDT 2025 Thu Apr 24 23:01:04 EDT 2025 Fri Feb 23 02:46:47 EST 2024 Tue Aug 26 17:11:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Auto-Contouring Image-guided Radiotherapy Machine learning Adaptive radiotherapy |
Language | English |
License | Copyright © 2018. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-2684b46e95fb3ccaab25c4011b080b2cc836e6f4ef769a7894d5bca2b1fbf93e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0244-5583 |
PMID | 30054121 |
PQID | 2078600912 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2078600912 pubmed_primary_30054121 crossref_primary_10_1016_j_artmed_2018_07_001 crossref_citationtrail_10_1016_j_artmed_2018_07_001 elsevier_sciencedirect_doi_10_1016_j_artmed_2018_07_001 elsevier_clinicalkey_doi_10_1016_j_artmed_2018_07_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2018 2018-08-00 20180801 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Artificial intelligence in medicine |
PublicationTitleAlternate | Artif Intell Med |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dung, Huang, Wu (bib0110) 2013; 1 Qazi, Pekar, Kim, Xie, Breen, Jaffray (bib0080) 2011; 38 Chang, Lin (bib0120) 2011; 2 Boykov, Jolly (bib0040) 2001 Mutic, Dempsey (bib0015) 2014; 24 Lu, Chen, Kashani (bib0035) 2016; 43 La Macchia, Fellin, Amichetti (bib0075) 2012; 7 Henke, Olsen, Green (bib0150) 2016; 96 Cohn, Ghahramani, Jordan (bib0125) 1996; 4 Day, Betler, Parda (bib0055) 2009; 36 Erdt, Knapp, Drechsler, Wesarg (bib0165) 2013 Weszka (bib0050) 1978; 7 Zadeh (bib0095) 1997; 90 Khan, Gerbi (bib0030) 2012 Timmerman, Xing (bib0010) 2012 Pekar, McNutt, Kaus (bib0085) 2004; 60 Leutenegger, Chli, Siegwart (bib0105) 2011 Hoyte, Ye, Brubaker (bib0145) 2011; 33 Zou, Warfield, Bharatha (bib0115) 2004; 11 Daily Online Adaptation Versus Localization for MRI-Guided SBRT for Unresectable Primary or Oligometastatic Abdominal Malignancies Sharp, Fritscher, Pekar (bib0065) 2014; 41 Depeursinge, Foncubierta-Rodriguez, Van De Ville, Müller (bib0160) 2014; 18 Devic (bib0025) 2012; 39 . Ojala, Pietikäinen, Harwood (bib0170) 1996; 29 Bay, Tuytelaars, Van Gool (bib0100) 2006 Acharya, Fischer-Valuck, Kashani (bib0005) 2016; 94 Mangan, Whitaker (bib0045) 1999; 5 Rote (bib0140) 1991; 38 Wolz, Chu, Misawa, Fujiwara, Mori, Rueckert (bib0155) 2013; 32 Li, Liu, Chen (bib0060) 2016; 62 Steinkraus, Buck, Simard (bib0090) 2005 Kim, Monroe, Lo (bib0135) 2015; 42 Han, Hoogeman, Levendag (bib0070) 2008 Raaymakers, Lagendijk, Overweg (bib0020) 2009; 54 Henke (10.1016/j.artmed.2018.07.001_bib0150) 2016; 96 Li (10.1016/j.artmed.2018.07.001_bib0060) 2016; 62 Depeursinge (10.1016/j.artmed.2018.07.001_bib0160) 2014; 18 Devic (10.1016/j.artmed.2018.07.001_bib0025) 2012; 39 10.1016/j.artmed.2018.07.001_bib0130 Weszka (10.1016/j.artmed.2018.07.001_bib0050) 1978; 7 Mutic (10.1016/j.artmed.2018.07.001_bib0015) 2014; 24 Cohn (10.1016/j.artmed.2018.07.001_bib0125) 1996; 4 Acharya (10.1016/j.artmed.2018.07.001_bib0005) 2016; 94 Steinkraus (10.1016/j.artmed.2018.07.001_bib0090) 2005 Wolz (10.1016/j.artmed.2018.07.001_bib0155) 2013; 32 Ojala (10.1016/j.artmed.2018.07.001_bib0170) 1996; 29 Boykov (10.1016/j.artmed.2018.07.001_bib0040) 2001 Pekar (10.1016/j.artmed.2018.07.001_bib0085) 2004; 60 La Macchia (10.1016/j.artmed.2018.07.001_bib0075) 2012; 7 Chang (10.1016/j.artmed.2018.07.001_bib0120) 2011; 2 Dung (10.1016/j.artmed.2018.07.001_bib0110) 2013; 1 Timmerman (10.1016/j.artmed.2018.07.001_bib0010) 2012 Bay (10.1016/j.artmed.2018.07.001_bib0100) 2006 Day (10.1016/j.artmed.2018.07.001_bib0055) 2009; 36 Erdt (10.1016/j.artmed.2018.07.001_bib0165) 2013 Khan (10.1016/j.artmed.2018.07.001_bib0030) 2012 Zou (10.1016/j.artmed.2018.07.001_bib0115) 2004; 11 Zadeh (10.1016/j.artmed.2018.07.001_bib0095) 1997; 90 Hoyte (10.1016/j.artmed.2018.07.001_bib0145) 2011; 33 Mangan (10.1016/j.artmed.2018.07.001_bib0045) 1999; 5 Lu (10.1016/j.artmed.2018.07.001_bib0035) 2016; 43 Qazi (10.1016/j.artmed.2018.07.001_bib0080) 2011; 38 Han (10.1016/j.artmed.2018.07.001_bib0070) 2008 Leutenegger (10.1016/j.artmed.2018.07.001_bib0105) 2011 Kim (10.1016/j.artmed.2018.07.001_bib0135) 2015; 42 Rote (10.1016/j.artmed.2018.07.001_bib0140) 1991; 38 Raaymakers (10.1016/j.artmed.2018.07.001_bib0020) 2009; 54 Sharp (10.1016/j.artmed.2018.07.001_bib0065) 2014; 41 |
References_xml | – volume: 24 start-page: 196 year: 2014 end-page: 199 ident: bib0015 article-title: The ViewRay system: magnetic resonance–guided and controlled radiotherapy publication-title: Semin Radiat Oncol – start-page: 404 year: 2006 end-page: 417 ident: bib0100 article-title: Surf: speeded up robust features publication-title: European conference on computer vision – volume: 94 start-page: 394 year: 2016 end-page: 403 ident: bib0005 article-title: Online magnetic resonance image guided adaptive radiation therapy: first clinical applications publication-title: Int J Radiat Oncol Biol Phys – volume: 39 start-page: 6701 year: 2012 end-page: 6711 ident: bib0025 article-title: MRI simulation for radiotherapy treatment planning publication-title: Med Phys – volume: 54 start-page: N229 year: 2009 ident: bib0020 article-title: Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept publication-title: Phys Med Biol – year: 2013 ident: bib0165 article-title: Region detection in medical images using HOG classifiers and a body landmark network publication-title: Medical imaging 2013: computer-aided diagnosis. Vol 8670: International society for optics and photonics – volume: 38 start-page: 6160 year: 2011 end-page: 6170 ident: bib0080 article-title: Auto‐segmentation of normal and target structures in head and neck CT images: a feature‐driven model‐based approach publication-title: Med Phys – volume: 29 start-page: 51 year: 1996 end-page: 59 ident: bib0170 article-title: A comparative study of texture measures with classification based on featured distributions publication-title: Pattern Recognit – start-page: 2548 year: 2011 end-page: 2555 ident: bib0105 article-title: BRISK: binary robust invariant scalable keypoints publication-title: Computer Vision (ICCV), 2011 IEEE International Conference on: IEEE – volume: 4 start-page: 129 year: 1996 end-page: 145 ident: bib0125 article-title: Active learning with statistical models publication-title: J Artif Intell Res – year: 2012 ident: bib0010 article-title: Image-guided and adaptive radiation therapy – volume: 11 start-page: 178 year: 2004 end-page: 189 ident: bib0115 article-title: Statistical validation of image segmentation quality based on a spatial overlap index 1: scientific reports publication-title: Acad Radiol – volume: 90 start-page: 111 year: 1997 end-page: 127 ident: bib0095 article-title: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic publication-title: Fuzzy Sets Syst – volume: 18 start-page: 176 year: 2014 end-page: 196 ident: bib0160 article-title: Three-dimensional solid texture analysis in biomedical imaging: review and opportunities publication-title: Med Image Anal – volume: 7 start-page: 160 year: 2012 ident: bib0075 article-title: Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer publication-title: Radiat Oncol – volume: 33 start-page: 684 year: 2011 end-page: 691 ident: bib0145 article-title: Segmentations of MRI images of the female pelvic floor: a study of inter‐and intra‐reader reliability publication-title: J Magn Reson Imaging – volume: 96 start-page: S222 year: 2016 ident: bib0150 article-title: Online adaptive magnetic resonance-guided (OAMR)-stereotactic body radiation therapy for abdominal malignancies: prospective dosimetric results from a phase 1 trial publication-title: Int J Radiat Oncol Biol Phys – volume: 43 start-page: 3320 year: 2016 end-page: 3321 ident: bib0035 article-title: SU‐C‐BRA‐01: interactive auto‐segmentation for bowel in online adaptive mri‐guided radiation therapy by using a multi‐region labeling algorithm publication-title: Med Phys – start-page: 105 year: 2001 end-page: 112 ident: bib0040 article-title: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images publication-title: Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on. Vol 1: IEEE – reference: Daily Online Adaptation Versus Localization for MRI-Guided SBRT for Unresectable Primary or Oligometastatic Abdominal Malignancies: – volume: 41 year: 2014 ident: bib0065 article-title: Vision 20/20: perspectives on automated image segmentation for radiotherapy publication-title: Med Phys – volume: 5 start-page: 308 year: 1999 end-page: 321 ident: bib0045 article-title: Partitioning 3D surface meshes using watershed segmentation publication-title: IEEE Trans Vis Comput Graph – year: 2012 ident: bib0030 article-title: Treatment planning in radiation oncology – start-page: 434 year: 2008 end-page: 441 ident: bib0070 article-title: Atlas-based auto-segmentation of head and neck CT images publication-title: International Conference on medical image computing and computer-assisted intervention – reference: . – volume: 32 start-page: 1723 year: 2013 end-page: 1730 ident: bib0155 article-title: Automated abdominal multi-organ segmentation with subject-specific atlas generation publication-title: IEEE Trans Med Imaging – volume: 2 start-page: 27 year: 2011 ident: bib0120 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans Intell Syst Technol (TIST). – volume: 36 start-page: 4349 year: 2009 end-page: 4358 ident: bib0055 article-title: A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients publication-title: Med Phys – volume: 60 start-page: 973 year: 2004 end-page: 980 ident: bib0085 article-title: Automated model-based organ delineation for radiotherapy planning in prostatic region publication-title: Int J Radiat Oncol Biol Phys – start-page: 1115 year: 2005 end-page: 1120 ident: bib0090 article-title: Using GPUs for machine learning algorithms publication-title: Document Analysis and Recognition, 2005. Proceedings. Eighth International Conference on: IEEE – volume: 1 start-page: 46 year: 2013 ident: bib0110 article-title: Implementation of RANSAC algorithm for feature-based image registration publication-title: J Comput Commun – volume: 42 start-page: 3013 year: 2015 end-page: 3023 ident: bib0135 article-title: Quantitative evaluation of image segmentation incorporating medical consideration functions publication-title: Med Phys – volume: 62 start-page: 272 year: 2016 ident: bib0060 article-title: Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours publication-title: Phys Med Biol – volume: 38 start-page: 123 year: 1991 end-page: 127 ident: bib0140 article-title: Computing the minimum Hausdorff distance between two point sets on a line under translation publication-title: Inf Process Lett – volume: 7 start-page: 259 year: 1978 end-page: 265 ident: bib0050 article-title: A survey of threshold selection techniques publication-title: Comput Graph Image Process – volume: 24 start-page: 196 year: 2014 ident: 10.1016/j.artmed.2018.07.001_bib0015 article-title: The ViewRay system: magnetic resonance–guided and controlled radiotherapy publication-title: Semin Radiat Oncol doi: 10.1016/j.semradonc.2014.02.008 – volume: 4 start-page: 129 year: 1996 ident: 10.1016/j.artmed.2018.07.001_bib0125 article-title: Active learning with statistical models publication-title: J Artif Intell Res doi: 10.1613/jair.295 – volume: 94 start-page: 394 year: 2016 ident: 10.1016/j.artmed.2018.07.001_bib0005 article-title: Online magnetic resonance image guided adaptive radiation therapy: first clinical applications publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2015.10.015 – volume: 29 start-page: 51 year: 1996 ident: 10.1016/j.artmed.2018.07.001_bib0170 article-title: A comparative study of texture measures with classification based on featured distributions publication-title: Pattern Recognit doi: 10.1016/0031-3203(95)00067-4 – start-page: 105 year: 2001 ident: 10.1016/j.artmed.2018.07.001_bib0040 article-title: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images – volume: 7 start-page: 160 year: 2012 ident: 10.1016/j.artmed.2018.07.001_bib0075 article-title: Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer publication-title: Radiat Oncol doi: 10.1186/1748-717X-7-160 – volume: 60 start-page: 973 year: 2004 ident: 10.1016/j.artmed.2018.07.001_bib0085 article-title: Automated model-based organ delineation for radiotherapy planning in prostatic region publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2004.06.004 – volume: 11 start-page: 178 year: 2004 ident: 10.1016/j.artmed.2018.07.001_bib0115 article-title: Statistical validation of image segmentation quality based on a spatial overlap index 1: scientific reports publication-title: Acad Radiol doi: 10.1016/S1076-6332(03)00671-8 – volume: 1 start-page: 46 year: 2013 ident: 10.1016/j.artmed.2018.07.001_bib0110 article-title: Implementation of RANSAC algorithm for feature-based image registration publication-title: J Comput Commun doi: 10.4236/jcc.2013.16009 – volume: 38 start-page: 123 year: 1991 ident: 10.1016/j.artmed.2018.07.001_bib0140 article-title: Computing the minimum Hausdorff distance between two point sets on a line under translation publication-title: Inf Process Lett doi: 10.1016/0020-0190(91)90233-8 – volume: 43 start-page: 3320 year: 2016 ident: 10.1016/j.artmed.2018.07.001_bib0035 article-title: SU‐C‐BRA‐01: interactive auto‐segmentation for bowel in online adaptive mri‐guided radiation therapy by using a multi‐region labeling algorithm publication-title: Med Phys doi: 10.1118/1.4955562 – start-page: 1115 year: 2005 ident: 10.1016/j.artmed.2018.07.001_bib0090 article-title: Using GPUs for machine learning algorithms – ident: 10.1016/j.artmed.2018.07.001_bib0130 – volume: 54 start-page: N229 year: 2009 ident: 10.1016/j.artmed.2018.07.001_bib0020 article-title: Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept publication-title: Phys Med Biol doi: 10.1088/0031-9155/54/12/N01 – volume: 39 start-page: 6701 year: 2012 ident: 10.1016/j.artmed.2018.07.001_bib0025 article-title: MRI simulation for radiotherapy treatment planning publication-title: Med Phys doi: 10.1118/1.4758068 – start-page: 2548 year: 2011 ident: 10.1016/j.artmed.2018.07.001_bib0105 article-title: BRISK: binary robust invariant scalable keypoints – year: 2012 ident: 10.1016/j.artmed.2018.07.001_bib0030 – volume: 18 start-page: 176 year: 2014 ident: 10.1016/j.artmed.2018.07.001_bib0160 article-title: Three-dimensional solid texture analysis in biomedical imaging: review and opportunities publication-title: Med Image Anal doi: 10.1016/j.media.2013.10.005 – start-page: 434 year: 2008 ident: 10.1016/j.artmed.2018.07.001_bib0070 article-title: Atlas-based auto-segmentation of head and neck CT images – volume: 62 start-page: 272 year: 2016 ident: 10.1016/j.artmed.2018.07.001_bib0060 article-title: Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours publication-title: Phys Med Biol doi: 10.1088/1361-6560/62/1/272 – volume: 96 start-page: S222 year: 2016 ident: 10.1016/j.artmed.2018.07.001_bib0150 article-title: Online adaptive magnetic resonance-guided (OAMR)-stereotactic body radiation therapy for abdominal malignancies: prospective dosimetric results from a phase 1 trial publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2016.06.553 – volume: 32 start-page: 1723 year: 2013 ident: 10.1016/j.artmed.2018.07.001_bib0155 article-title: Automated abdominal multi-organ segmentation with subject-specific atlas generation publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2013.2265805 – start-page: 404 year: 2006 ident: 10.1016/j.artmed.2018.07.001_bib0100 article-title: Surf: speeded up robust features – volume: 38 start-page: 6160 year: 2011 ident: 10.1016/j.artmed.2018.07.001_bib0080 article-title: Auto‐segmentation of normal and target structures in head and neck CT images: a feature‐driven model‐based approach publication-title: Med Phys doi: 10.1118/1.3654160 – volume: 33 start-page: 684 year: 2011 ident: 10.1016/j.artmed.2018.07.001_bib0145 article-title: Segmentations of MRI images of the female pelvic floor: a study of inter‐and intra‐reader reliability publication-title: J Magn Reson Imaging doi: 10.1002/jmri.22478 – volume: 2 start-page: 27 year: 2011 ident: 10.1016/j.artmed.2018.07.001_bib0120 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans Intell Syst Technol (TIST). – year: 2013 ident: 10.1016/j.artmed.2018.07.001_bib0165 article-title: Region detection in medical images using HOG classifiers and a body landmark network – volume: 7 start-page: 259 year: 1978 ident: 10.1016/j.artmed.2018.07.001_bib0050 article-title: A survey of threshold selection techniques publication-title: Comput Graph Image Process doi: 10.1016/0146-664X(78)90116-8 – volume: 41 year: 2014 ident: 10.1016/j.artmed.2018.07.001_bib0065 article-title: Vision 20/20: perspectives on automated image segmentation for radiotherapy publication-title: Med Phys doi: 10.1118/1.4871620 – volume: 36 start-page: 4349 year: 2009 ident: 10.1016/j.artmed.2018.07.001_bib0055 article-title: A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients publication-title: Med Phys doi: 10.1118/1.3213099 – year: 2012 ident: 10.1016/j.artmed.2018.07.001_bib0010 – volume: 5 start-page: 308 year: 1999 ident: 10.1016/j.artmed.2018.07.001_bib0045 article-title: Partitioning 3D surface meshes using watershed segmentation publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/2945.817348 – volume: 90 start-page: 111 year: 1997 ident: 10.1016/j.artmed.2018.07.001_bib0095 article-title: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic publication-title: Fuzzy Sets Syst doi: 10.1016/S0165-0114(97)00077-8 – volume: 42 start-page: 3013 year: 2015 ident: 10.1016/j.artmed.2018.07.001_bib0135 article-title: Quantitative evaluation of image segmentation incorporating medical consideration functions publication-title: Med Phys doi: 10.1118/1.4921067 |
SSID | ssj0007416 |
Score | 2.4271572 |
Snippet | •MR-ART consists of daily modification of the radiation therapy plan.•Manual contouring is laborious, subject to variability and inconvenient for MR-ART.•An... Manual contouring remains the most laborious task in radiation therapy planning and is a major barrier to implementing routine Magnetic Resonance Imaging (MRI)... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 34 |
SubjectTerms | Adaptive radiotherapy Auto-Contouring Humans Image Interpretation, Computer-Assisted - methods Image-guided Machine learning Magnetic Resonance Imaging - methods Multimodal Imaging Pancreatic Neoplasms - diagnostic imaging Pancreatic Neoplasms - pathology Pancreatic Neoplasms - radiotherapy Radiotherapy Radiotherapy Planning, Computer-Assisted - methods Radiotherapy, Image-Guided - methods Support Vector Machine Tomography, X-Ray Computed Workflow |
Title | Abdominal, multi-organ, auto-contouring method for online adaptive magnetic resonance guided radiotherapy: An intelligent, multi-level fusion approach |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0933365717302853 https://dx.doi.org/10.1016/j.artmed.2018.07.001 https://www.ncbi.nlm.nih.gov/pubmed/30054121 https://www.proquest.com/docview/2078600912 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61Wwlx4VFey6MyEsea3cSOs-G2qqgWUHuBSr1FtuNUqUqyapNDL_wMfi8zjh0JCVTEMZEnTjL2PDwz3wC8Uzka2XRyX1kpuay04CZZCi5TIxKDotI5qkY-OVWbM_n5PDvfgaNYC0NplUH2jzLdS-twZxH-5mLbNIuv5IsLlVEYGZVkJnZhLxWFymawt_70ZXM6CWQyOjzknhCcCGIFnU_zwkei2qEcr5VH8QzdYf6gof5mgXpNdPwIHgQTkq3Ht3wMO67dh4exPQMLu3Uf7p2EuPkT-Lk2Vefbdx0yn0LIfTenQ6aHvuOUrt75ckU2NpRmaMmyEUOD6UpvSSSy7_qipYpHhg56RzAdjl0MTeUqdq2rJhRy3X5g65Y1E85nH-e7ouQkVg90OMcikPlTODv--O1ow0NHBm5R0fecoGGMVK7IaiOQ99qkmUUPLTFoeJrU2pVQTtXS1bkqdL4qZJUZq1OT1KYuhBPPYNZ2rXsBTDlj0TEX0i5xlaRWF1qTQnUiR6mg9RxE5EJpA1w5dc24KmNe2mU58q4k3pVLiqMnc-AT1XaE67hjfBYZXMZSVBSeJeqTO-jyie635foPlG_jOipxJ1N4RreuG25wUL5C87NI0jk8HxfY9A3UVEAmafLyv-d9BffpasxdfA2z_npwb9Ce6s0B7L7_kRyEXfMLISwh6w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrQRceBQoy9NIHGvtJnaSTW-rimpLu3uhlXqzbMepgtpkVZIDf4Tfy0xiR6oEKuKaeOIkY8_DM_MNwOc0QyObTu4LKyWXhRbcRHPBZWxEZFBUOkfVyOtNurqQXy-Tyx04CrUwlFbpZf8g03tp7a_M_N-cbatq9o18cZEmFEZGJZmIB7ArE_T2JrC7PDldbUaBTEZHD7knBCeCUEHXp3nhI1HtUI7Xokfx9N1h_qCh_maB9pro-Bk88SYkWw5v-Rx2XL0HT0N7BuZ36x48XPu4-Qv4tTRF07fvOmB9CiHvuzkdMN21Dad09aYvV2RDQ2mGliwbMDSYLvSWRCK70Vc1VTwydNAbgulw7KqrClewW11UvpDr5yFb1qwacT7bMN81JSexsqPDORaAzF_CxfGX86MV9x0ZuEVF33KChjEydXlSGoG81yZOLHpokUHD08TWLkTq0lK6MktznS1yWSTG6thEpSlz4cQrmNRN7V4DS52x6JgLaee4SmKrc61JoTqRoVTQegoicEFZD1dOXTOuVchL-64G3ininZpTHD2aAh-ptgNcxz3jk8BgFUpRUXgq1Cf30GUj3Z3l-g-Un8I6UriTKTyja9d0P3BQtkDzM4_iKewPC2z8BmoqIKM4evPf836ER6vz9Zk6O9mcvoXHdGfIY3wHk_a2c-_RtmrNB793fgMPMyPa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abdominal%2C+multi-organ%2C+auto-contouring+method+for+online+adaptive+magnetic+resonance+guided+radiotherapy%3A+An+intelligent%2C+multi-level+fusion+approach&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Liang%2C+Fan&rft.au=Qian%2C+Pengjiang&rft.au=Su%2C+Kuan-Hao&rft.au=Baydoun%2C+Atallah&rft.date=2018-08-01&rft.issn=0933-3657&rft.volume=90&rft.spage=34&rft.epage=41&rft_id=info:doi/10.1016%2Fj.artmed.2018.07.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_artmed_2018_07_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon |