Abdominal, multi-organ, auto-contouring method for online adaptive magnetic resonance guided radiotherapy: An intelligent, multi-level fusion approach

•MR-ART consists of daily modification of the radiation therapy plan.•Manual contouring is laborious, subject to variability and inconvenient for MR-ART.•An auto-contouring method based on the human processing model is proposed.•The algorithm couples multi-level top-down and bottom-up information.•T...

Full description

Saved in:
Bibliographic Details
Published inArtificial intelligence in medicine Vol. 90; pp. 34 - 41
Main Authors Liang, Fan, Qian, Pengjiang, Su, Kuan-Hao, Baydoun, Atallah, Leisser, Asha, Van Hedent, Steven, Kuo, Jung-Wen, Zhao, Kaifa, Parikh, Parag, Lu, Yonggang, Traughber, Bryan J., Muzic, Raymond F.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.08.2018
Subjects
Online AccessGet full text
ISSN0933-3657
1873-2860
1873-2860
DOI10.1016/j.artmed.2018.07.001

Cover

Abstract •MR-ART consists of daily modification of the radiation therapy plan.•Manual contouring is laborious, subject to variability and inconvenient for MR-ART.•An auto-contouring method based on the human processing model is proposed.•The algorithm couples multi-level top-down and bottom-up information.•To our knowledge, this is the first automated contouring approach for T1 MR-ART. Manual contouring remains the most laborious task in radiation therapy planning and is a major barrier to implementing routine Magnetic Resonance Imaging (MRI) Guided Adaptive Radiation Therapy (MR-ART). To address this, we propose a new artificial intelligence-based, auto-contouring method for abdominal MR-ART modeled after human brain cognition for manual contouring. Our algorithm is based on two types of information flow, i.e. top-down and bottom-up. Top-down information is derived from simulation MR images. It grossly delineates the object based on its high-level information class by transferring the initial planning contours onto daily images. Bottom-up information is derived from pixel data by a supervised, self-adaptive, active learning based support vector machine. It uses low-level pixel features, such as intensity and location, to distinguish each target boundary from the background. The final result is obtained by fusing top-down and bottom-up outputs in a unified framework through artificial intelligence fusion. For evaluation, we used a dataset of four patients with locally advanced pancreatic cancer treated with MR-ART using a clinical system (MRIdian, Viewray, Oakwood Village, OH, USA). Each set included the simulation MRI and onboard T1 MRI corresponding to a randomly selected treatment session. Each MRI had 144 axial slices of 266 × 266 pixels. Using the Dice Similarity Index (DSI) and the Hausdorff Distance Index (HDI), we compared the manual and automated contours for the liver, left and right kidneys, and the spinal cord. The average auto-segmentation time was two minutes per set. Visually, the automatic and manual contours were similar. Fused results achieved better accuracy than either the bottom-up or top-down method alone. The DSI values were above 0.86. The spinal canal contours yielded a low HDI value. With a DSI significantly higher than the usually reported 0.7, our novel algorithm yields a high segmentation accuracy. To our knowledge, this is the first fully automated contouring approach using T1 MRI images for adaptive radiotherapy.
AbstractList Manual contouring remains the most laborious task in radiation therapy planning and is a major barrier to implementing routine Magnetic Resonance Imaging (MRI) Guided Adaptive Radiation Therapy (MR-ART). To address this, we propose a new artificial intelligence-based, auto-contouring method for abdominal MR-ART modeled after human brain cognition for manual contouring. Our algorithm is based on two types of information flow, i.e. top-down and bottom-up. Top-down information is derived from simulation MR images. It grossly delineates the object based on its high-level information class by transferring the initial planning contours onto daily images. Bottom-up information is derived from pixel data by a supervised, self-adaptive, active learning based support vector machine. It uses low-level pixel features, such as intensity and location, to distinguish each target boundary from the background. The final result is obtained by fusing top-down and bottom-up outputs in a unified framework through artificial intelligence fusion. For evaluation, we used a dataset of four patients with locally advanced pancreatic cancer treated with MR-ART using a clinical system (MRIdian, Viewray, Oakwood Village, OH, USA). Each set included the simulation MRI and onboard T1 MRI corresponding to a randomly selected treatment session. Each MRI had 144 axial slices of 266 × 266 pixels. Using the Dice Similarity Index (DSI) and the Hausdorff Distance Index (HDI), we compared the manual and automated contours for the liver, left and right kidneys, and the spinal cord. The average auto-segmentation time was two minutes per set. Visually, the automatic and manual contours were similar. Fused results achieved better accuracy than either the bottom-up or top-down method alone. The DSI values were above 0.86. The spinal canal contours yielded a low HDI value. With a DSI significantly higher than the usually reported 0.7, our novel algorithm yields a high segmentation accuracy. To our knowledge, this is the first fully automated contouring approach using T1 MRI images for adaptive radiotherapy.
•MR-ART consists of daily modification of the radiation therapy plan.•Manual contouring is laborious, subject to variability and inconvenient for MR-ART.•An auto-contouring method based on the human processing model is proposed.•The algorithm couples multi-level top-down and bottom-up information.•To our knowledge, this is the first automated contouring approach for T1 MR-ART. Manual contouring remains the most laborious task in radiation therapy planning and is a major barrier to implementing routine Magnetic Resonance Imaging (MRI) Guided Adaptive Radiation Therapy (MR-ART). To address this, we propose a new artificial intelligence-based, auto-contouring method for abdominal MR-ART modeled after human brain cognition for manual contouring. Our algorithm is based on two types of information flow, i.e. top-down and bottom-up. Top-down information is derived from simulation MR images. It grossly delineates the object based on its high-level information class by transferring the initial planning contours onto daily images. Bottom-up information is derived from pixel data by a supervised, self-adaptive, active learning based support vector machine. It uses low-level pixel features, such as intensity and location, to distinguish each target boundary from the background. The final result is obtained by fusing top-down and bottom-up outputs in a unified framework through artificial intelligence fusion. For evaluation, we used a dataset of four patients with locally advanced pancreatic cancer treated with MR-ART using a clinical system (MRIdian, Viewray, Oakwood Village, OH, USA). Each set included the simulation MRI and onboard T1 MRI corresponding to a randomly selected treatment session. Each MRI had 144 axial slices of 266 × 266 pixels. Using the Dice Similarity Index (DSI) and the Hausdorff Distance Index (HDI), we compared the manual and automated contours for the liver, left and right kidneys, and the spinal cord. The average auto-segmentation time was two minutes per set. Visually, the automatic and manual contours were similar. Fused results achieved better accuracy than either the bottom-up or top-down method alone. The DSI values were above 0.86. The spinal canal contours yielded a low HDI value. With a DSI significantly higher than the usually reported 0.7, our novel algorithm yields a high segmentation accuracy. To our knowledge, this is the first fully automated contouring approach using T1 MRI images for adaptive radiotherapy.
Manual contouring remains the most laborious task in radiation therapy planning and is a major barrier to implementing routine Magnetic Resonance Imaging (MRI) Guided Adaptive Radiation Therapy (MR-ART). To address this, we propose a new artificial intelligence-based, auto-contouring method for abdominal MR-ART modeled after human brain cognition for manual contouring.BACKGROUNDManual contouring remains the most laborious task in radiation therapy planning and is a major barrier to implementing routine Magnetic Resonance Imaging (MRI) Guided Adaptive Radiation Therapy (MR-ART). To address this, we propose a new artificial intelligence-based, auto-contouring method for abdominal MR-ART modeled after human brain cognition for manual contouring.Our algorithm is based on two types of information flow, i.e. top-down and bottom-up. Top-down information is derived from simulation MR images. It grossly delineates the object based on its high-level information class by transferring the initial planning contours onto daily images. Bottom-up information is derived from pixel data by a supervised, self-adaptive, active learning based support vector machine. It uses low-level pixel features, such as intensity and location, to distinguish each target boundary from the background. The final result is obtained by fusing top-down and bottom-up outputs in a unified framework through artificial intelligence fusion. For evaluation, we used a dataset of four patients with locally advanced pancreatic cancer treated with MR-ART using a clinical system (MRIdian, Viewray, Oakwood Village, OH, USA). Each set included the simulation MRI and onboard T1 MRI corresponding to a randomly selected treatment session. Each MRI had 144 axial slices of 266 × 266 pixels. Using the Dice Similarity Index (DSI) and the Hausdorff Distance Index (HDI), we compared the manual and automated contours for the liver, left and right kidneys, and the spinal cord.METHODS/MATERIALSOur algorithm is based on two types of information flow, i.e. top-down and bottom-up. Top-down information is derived from simulation MR images. It grossly delineates the object based on its high-level information class by transferring the initial planning contours onto daily images. Bottom-up information is derived from pixel data by a supervised, self-adaptive, active learning based support vector machine. It uses low-level pixel features, such as intensity and location, to distinguish each target boundary from the background. The final result is obtained by fusing top-down and bottom-up outputs in a unified framework through artificial intelligence fusion. For evaluation, we used a dataset of four patients with locally advanced pancreatic cancer treated with MR-ART using a clinical system (MRIdian, Viewray, Oakwood Village, OH, USA). Each set included the simulation MRI and onboard T1 MRI corresponding to a randomly selected treatment session. Each MRI had 144 axial slices of 266 × 266 pixels. Using the Dice Similarity Index (DSI) and the Hausdorff Distance Index (HDI), we compared the manual and automated contours for the liver, left and right kidneys, and the spinal cord.The average auto-segmentation time was two minutes per set. Visually, the automatic and manual contours were similar. Fused results achieved better accuracy than either the bottom-up or top-down method alone. The DSI values were above 0.86. The spinal canal contours yielded a low HDI value.RESULTSThe average auto-segmentation time was two minutes per set. Visually, the automatic and manual contours were similar. Fused results achieved better accuracy than either the bottom-up or top-down method alone. The DSI values were above 0.86. The spinal canal contours yielded a low HDI value.With a DSI significantly higher than the usually reported 0.7, our novel algorithm yields a high segmentation accuracy. To our knowledge, this is the first fully automated contouring approach using T1 MRI images for adaptive radiotherapy.CONCLUSIONWith a DSI significantly higher than the usually reported 0.7, our novel algorithm yields a high segmentation accuracy. To our knowledge, this is the first fully automated contouring approach using T1 MRI images for adaptive radiotherapy.
Author Su, Kuan-Hao
Kuo, Jung-Wen
Parikh, Parag
Lu, Yonggang
Muzic, Raymond F.
Leisser, Asha
Baydoun, Atallah
Zhao, Kaifa
Qian, Pengjiang
Van Hedent, Steven
Traughber, Bryan J.
Liang, Fan
Author_xml – sequence: 1
  givenname: Fan
  surname: Liang
  fullname: Liang, Fan
  email: bachelormd10@163.com
  organization: Department of Radiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
– sequence: 2
  givenname: Pengjiang
  surname: Qian
  fullname: Qian, Pengjiang
  email: qianpjiang@jiangnan.edu.cn
  organization: School of Digital Media, Jiangnan University, Wuxi, Jiangsu, China
– sequence: 3
  givenname: Kuan-Hao
  surname: Su
  fullname: Su, Kuan-Hao
  email: kuan-hao.su@case.edu
  organization: Department of Radiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
– sequence: 4
  givenname: Atallah
  orcidid: 0000-0003-0244-5583
  surname: Baydoun
  fullname: Baydoun, Atallah
  email: atallah.baydoun@case.edu
  organization: Department of Internal Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
– sequence: 5
  givenname: Asha
  surname: Leisser
  fullname: Leisser, Asha
  email: asha.leisser@meduniwien.ac.at
  organization: Department of Radiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
– sequence: 6
  givenname: Steven
  surname: Van Hedent
  fullname: Van Hedent, Steven
  email: steven.vanhedent@case.edu
  organization: Department of Radiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
– sequence: 7
  givenname: Jung-Wen
  surname: Kuo
  fullname: Kuo, Jung-Wen
  email: jung-wen.kuo@case.edu
  organization: Department of Radiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
– sequence: 8
  givenname: Kaifa
  surname: Zhao
  fullname: Zhao, Kaifa
  email: zhaokaifa@qq.com
  organization: School of Digital Media, Jiangnan University, Wuxi, Jiangsu, China
– sequence: 9
  givenname: Parag
  surname: Parikh
  fullname: Parikh, Parag
  email: pparikh@radonc.wustl.edu
  organization: Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
– sequence: 10
  givenname: Yonggang
  surname: Lu
  fullname: Lu, Yonggang
  email: yonggang.lu@wustl.edu
  organization: Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
– sequence: 11
  givenname: Bryan J.
  surname: Traughber
  fullname: Traughber, Bryan J.
  email: bryan.traughber@case.edu
  organization: Case Center for Imaging Research, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA
– sequence: 12
  givenname: Raymond F.
  surname: Muzic
  fullname: Muzic, Raymond F.
  email: raymond.muzic@case.edu
  organization: Department of Radiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30054121$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFN0DISxZNsPOfCiGNKv6kSmxgbd3YNxkPjh1sZ6R5EZ4XV9Oy6GZW3pzvXOt8V-TCOouEvOUs54w3H_Y5-DijygvGu5y1OWP8Bdnwri2zomvYBdmwviyzsqnbS3IVwp4x1la8eUUuS8bqihd8Q_5uB-VmbcHc0Hk1UWfOT2BvKKzRZdLZ6Fav7URnjDun6Og8ddZoixQULFEfkM4wWYxaUo_BWbAS6bRqhYp6UNrFHXpYjrd0a6m2EY3RE9r4dM_gAQ0d16CdpbAs3oHcvSYvRzAB3zy-1-TXl88_775l9z--fr_b3mey4nXMiqarhqrBvh6HUkqAoahlxTgfWMeGQsqubLAZKxzbpoe26ytVDxKKgY_D2JdYXpP3p9509s-KIYpZB5m-CBbdGkTB2jQl63mRou8eo-uQZheL1zP4o3jaMgWqU0B6F4LH8X-EM_GgTOzFSZl4UCZYK5KyhN0-w6SOENMa0YM25-BPJxjTSAeNXgSpMRlQ2qOMQjl9ruDjswKZ5GoJ5jcez-P_AFwCzGQ
CitedBy_id crossref_primary_10_1016_j_cdtm_2018_11_004
crossref_primary_10_1016_j_radonc_2020_09_060
crossref_primary_10_1088_1361_6560_ad33b5
crossref_primary_10_1016_j_prro_2020_07_003
crossref_primary_10_1007_s11547_023_01708_4
crossref_primary_10_3389_fonc_2023_1209558
crossref_primary_10_35712_wjg_v1_i1_19
crossref_primary_10_1002_mp_13717
crossref_primary_10_1088_2057_1976_ac1c51
crossref_primary_10_3389_fonc_2022_910792
crossref_primary_10_1016_j_jacr_2019_06_001
crossref_primary_10_1007_s11042_024_18336_3
crossref_primary_10_1038_s41391_023_00684_0
crossref_primary_10_5114_pjr_2023_124434
crossref_primary_10_1016_j_bspc_2023_104583
crossref_primary_10_1002_mp_15534
crossref_primary_10_1016_j_phro_2023_100498
crossref_primary_10_24835_1607_0763_1500
crossref_primary_10_1007_s00066_024_02277_9
crossref_primary_10_1155_2021_7520862
crossref_primary_10_1007_s11042_022_12271_x
crossref_primary_10_1109_TMI_2019_2935916
crossref_primary_10_35712_aig_v1_i1_19
crossref_primary_10_1186_s13014_023_02330_4
crossref_primary_10_1016_j_ejmp_2021_05_010
crossref_primary_10_1111_1754_9485_12968
crossref_primary_10_1002_mp_17580
crossref_primary_10_1016_j_engappai_2022_105532
crossref_primary_10_1016_j_semradonc_2023_10_015
crossref_primary_10_3389_fonc_2022_892171
crossref_primary_10_1088_1742_6596_1944_1_012016
crossref_primary_10_1155_2021_1885512
crossref_primary_10_1002_mp_16056
crossref_primary_10_1109_ACCESS_2021_3078430
crossref_primary_10_1016_j_dib_2024_111159
crossref_primary_10_1093_toxsci_kfaa021
crossref_primary_10_1002_acm2_14371
crossref_primary_10_37549_ARO1259
crossref_primary_10_1002_jmrs_712
crossref_primary_10_1177_15330338231206335
crossref_primary_10_1007_s00066_024_02358_9
crossref_primary_10_1016_j_ibmed_2021_100026
crossref_primary_10_1007_s11042_019_07974_7
crossref_primary_10_1109_TCBB_2020_2979841
crossref_primary_10_12688_f1000research_152312_1
crossref_primary_10_24060_2076_3093_2018_8_3_208_215
crossref_primary_10_1177_15330338211036325
crossref_primary_10_3390_app12073223
crossref_primary_10_2196_26601
Cites_doi 10.1016/j.semradonc.2014.02.008
10.1613/jair.295
10.1016/j.ijrobp.2015.10.015
10.1016/0031-3203(95)00067-4
10.1186/1748-717X-7-160
10.1016/j.ijrobp.2004.06.004
10.1016/S1076-6332(03)00671-8
10.4236/jcc.2013.16009
10.1016/0020-0190(91)90233-8
10.1118/1.4955562
10.1088/0031-9155/54/12/N01
10.1118/1.4758068
10.1016/j.media.2013.10.005
10.1088/1361-6560/62/1/272
10.1016/j.ijrobp.2016.06.553
10.1109/TMI.2013.2265805
10.1118/1.3654160
10.1002/jmri.22478
10.1016/0146-664X(78)90116-8
10.1118/1.4871620
10.1118/1.3213099
10.1109/2945.817348
10.1016/S0165-0114(97)00077-8
10.1118/1.4921067
ContentType Journal Article
Copyright 2018
Copyright © 2018. Published by Elsevier B.V.
Copyright_xml – notice: 2018
– notice: Copyright © 2018. Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.artmed.2018.07.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1873-2860
EndPage 41
ExternalDocumentID 30054121
10_1016_j_artmed_2018_07_001
S0933365717302853
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77K
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEA
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WH7
WUQ
Z5R
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
77I
7X8
ID FETCH-LOGICAL-c415t-2684b46e95fb3ccaab25c4011b080b2cc836e6f4ef769a7894d5bca2b1fbf93e3
IEDL.DBID AIKHN
ISSN 0933-3657
1873-2860
IngestDate Fri Sep 05 14:58:17 EDT 2025
Mon Jul 21 06:07:15 EDT 2025
Tue Jul 01 00:24:35 EDT 2025
Thu Apr 24 23:01:04 EDT 2025
Fri Feb 23 02:46:47 EST 2024
Tue Aug 26 17:11:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Auto-Contouring
Image-guided
Radiotherapy
Machine learning
Adaptive radiotherapy
Language English
License Copyright © 2018. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-2684b46e95fb3ccaab25c4011b080b2cc836e6f4ef769a7894d5bca2b1fbf93e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0244-5583
PMID 30054121
PQID 2078600912
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2078600912
pubmed_primary_30054121
crossref_primary_10_1016_j_artmed_2018_07_001
crossref_citationtrail_10_1016_j_artmed_2018_07_001
elsevier_sciencedirect_doi_10_1016_j_artmed_2018_07_001
elsevier_clinicalkey_doi_10_1016_j_artmed_2018_07_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Artificial intelligence in medicine
PublicationTitleAlternate Artif Intell Med
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dung, Huang, Wu (bib0110) 2013; 1
Qazi, Pekar, Kim, Xie, Breen, Jaffray (bib0080) 2011; 38
Chang, Lin (bib0120) 2011; 2
Boykov, Jolly (bib0040) 2001
Mutic, Dempsey (bib0015) 2014; 24
Lu, Chen, Kashani (bib0035) 2016; 43
La Macchia, Fellin, Amichetti (bib0075) 2012; 7
Henke, Olsen, Green (bib0150) 2016; 96
Cohn, Ghahramani, Jordan (bib0125) 1996; 4
Day, Betler, Parda (bib0055) 2009; 36
Erdt, Knapp, Drechsler, Wesarg (bib0165) 2013
Weszka (bib0050) 1978; 7
Zadeh (bib0095) 1997; 90
Khan, Gerbi (bib0030) 2012
Timmerman, Xing (bib0010) 2012
Pekar, McNutt, Kaus (bib0085) 2004; 60
Leutenegger, Chli, Siegwart (bib0105) 2011
Hoyte, Ye, Brubaker (bib0145) 2011; 33
Zou, Warfield, Bharatha (bib0115) 2004; 11
Daily Online Adaptation Versus Localization for MRI-Guided SBRT for Unresectable Primary or Oligometastatic Abdominal Malignancies
Sharp, Fritscher, Pekar (bib0065) 2014; 41
Depeursinge, Foncubierta-Rodriguez, Van De Ville, Müller (bib0160) 2014; 18
Devic (bib0025) 2012; 39
.
Ojala, Pietikäinen, Harwood (bib0170) 1996; 29
Bay, Tuytelaars, Van Gool (bib0100) 2006
Acharya, Fischer-Valuck, Kashani (bib0005) 2016; 94
Mangan, Whitaker (bib0045) 1999; 5
Rote (bib0140) 1991; 38
Wolz, Chu, Misawa, Fujiwara, Mori, Rueckert (bib0155) 2013; 32
Li, Liu, Chen (bib0060) 2016; 62
Steinkraus, Buck, Simard (bib0090) 2005
Kim, Monroe, Lo (bib0135) 2015; 42
Han, Hoogeman, Levendag (bib0070) 2008
Raaymakers, Lagendijk, Overweg (bib0020) 2009; 54
Henke (10.1016/j.artmed.2018.07.001_bib0150) 2016; 96
Li (10.1016/j.artmed.2018.07.001_bib0060) 2016; 62
Depeursinge (10.1016/j.artmed.2018.07.001_bib0160) 2014; 18
Devic (10.1016/j.artmed.2018.07.001_bib0025) 2012; 39
10.1016/j.artmed.2018.07.001_bib0130
Weszka (10.1016/j.artmed.2018.07.001_bib0050) 1978; 7
Mutic (10.1016/j.artmed.2018.07.001_bib0015) 2014; 24
Cohn (10.1016/j.artmed.2018.07.001_bib0125) 1996; 4
Acharya (10.1016/j.artmed.2018.07.001_bib0005) 2016; 94
Steinkraus (10.1016/j.artmed.2018.07.001_bib0090) 2005
Wolz (10.1016/j.artmed.2018.07.001_bib0155) 2013; 32
Ojala (10.1016/j.artmed.2018.07.001_bib0170) 1996; 29
Boykov (10.1016/j.artmed.2018.07.001_bib0040) 2001
Pekar (10.1016/j.artmed.2018.07.001_bib0085) 2004; 60
La Macchia (10.1016/j.artmed.2018.07.001_bib0075) 2012; 7
Chang (10.1016/j.artmed.2018.07.001_bib0120) 2011; 2
Dung (10.1016/j.artmed.2018.07.001_bib0110) 2013; 1
Timmerman (10.1016/j.artmed.2018.07.001_bib0010) 2012
Bay (10.1016/j.artmed.2018.07.001_bib0100) 2006
Day (10.1016/j.artmed.2018.07.001_bib0055) 2009; 36
Erdt (10.1016/j.artmed.2018.07.001_bib0165) 2013
Khan (10.1016/j.artmed.2018.07.001_bib0030) 2012
Zou (10.1016/j.artmed.2018.07.001_bib0115) 2004; 11
Zadeh (10.1016/j.artmed.2018.07.001_bib0095) 1997; 90
Hoyte (10.1016/j.artmed.2018.07.001_bib0145) 2011; 33
Mangan (10.1016/j.artmed.2018.07.001_bib0045) 1999; 5
Lu (10.1016/j.artmed.2018.07.001_bib0035) 2016; 43
Qazi (10.1016/j.artmed.2018.07.001_bib0080) 2011; 38
Han (10.1016/j.artmed.2018.07.001_bib0070) 2008
Leutenegger (10.1016/j.artmed.2018.07.001_bib0105) 2011
Kim (10.1016/j.artmed.2018.07.001_bib0135) 2015; 42
Rote (10.1016/j.artmed.2018.07.001_bib0140) 1991; 38
Raaymakers (10.1016/j.artmed.2018.07.001_bib0020) 2009; 54
Sharp (10.1016/j.artmed.2018.07.001_bib0065) 2014; 41
References_xml – volume: 24
  start-page: 196
  year: 2014
  end-page: 199
  ident: bib0015
  article-title: The ViewRay system: magnetic resonance–guided and controlled radiotherapy
  publication-title: Semin Radiat Oncol
– start-page: 404
  year: 2006
  end-page: 417
  ident: bib0100
  article-title: Surf: speeded up robust features
  publication-title: European conference on computer vision
– volume: 94
  start-page: 394
  year: 2016
  end-page: 403
  ident: bib0005
  article-title: Online magnetic resonance image guided adaptive radiation therapy: first clinical applications
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 39
  start-page: 6701
  year: 2012
  end-page: 6711
  ident: bib0025
  article-title: MRI simulation for radiotherapy treatment planning
  publication-title: Med Phys
– volume: 54
  start-page: N229
  year: 2009
  ident: bib0020
  article-title: Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept
  publication-title: Phys Med Biol
– year: 2013
  ident: bib0165
  article-title: Region detection in medical images using HOG classifiers and a body landmark network
  publication-title: Medical imaging 2013: computer-aided diagnosis. Vol 8670: International society for optics and photonics
– volume: 38
  start-page: 6160
  year: 2011
  end-page: 6170
  ident: bib0080
  article-title: Auto‐segmentation of normal and target structures in head and neck CT images: a feature‐driven model‐based approach
  publication-title: Med Phys
– volume: 29
  start-page: 51
  year: 1996
  end-page: 59
  ident: bib0170
  article-title: A comparative study of texture measures with classification based on featured distributions
  publication-title: Pattern Recognit
– start-page: 2548
  year: 2011
  end-page: 2555
  ident: bib0105
  article-title: BRISK: binary robust invariant scalable keypoints
  publication-title: Computer Vision (ICCV), 2011 IEEE International Conference on: IEEE
– volume: 4
  start-page: 129
  year: 1996
  end-page: 145
  ident: bib0125
  article-title: Active learning with statistical models
  publication-title: J Artif Intell Res
– year: 2012
  ident: bib0010
  article-title: Image-guided and adaptive radiation therapy
– volume: 11
  start-page: 178
  year: 2004
  end-page: 189
  ident: bib0115
  article-title: Statistical validation of image segmentation quality based on a spatial overlap index 1: scientific reports
  publication-title: Acad Radiol
– volume: 90
  start-page: 111
  year: 1997
  end-page: 127
  ident: bib0095
  article-title: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic
  publication-title: Fuzzy Sets Syst
– volume: 18
  start-page: 176
  year: 2014
  end-page: 196
  ident: bib0160
  article-title: Three-dimensional solid texture analysis in biomedical imaging: review and opportunities
  publication-title: Med Image Anal
– volume: 7
  start-page: 160
  year: 2012
  ident: bib0075
  article-title: Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer
  publication-title: Radiat Oncol
– volume: 33
  start-page: 684
  year: 2011
  end-page: 691
  ident: bib0145
  article-title: Segmentations of MRI images of the female pelvic floor: a study of inter‐and intra‐reader reliability
  publication-title: J Magn Reson Imaging
– volume: 96
  start-page: S222
  year: 2016
  ident: bib0150
  article-title: Online adaptive magnetic resonance-guided (OAMR)-stereotactic body radiation therapy for abdominal malignancies: prospective dosimetric results from a phase 1 trial
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 43
  start-page: 3320
  year: 2016
  end-page: 3321
  ident: bib0035
  article-title: SU‐C‐BRA‐01: interactive auto‐segmentation for bowel in online adaptive mri‐guided radiation therapy by using a multi‐region labeling algorithm
  publication-title: Med Phys
– start-page: 105
  year: 2001
  end-page: 112
  ident: bib0040
  article-title: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images
  publication-title: Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on. Vol 1: IEEE
– reference: Daily Online Adaptation Versus Localization for MRI-Guided SBRT for Unresectable Primary or Oligometastatic Abdominal Malignancies:
– volume: 41
  year: 2014
  ident: bib0065
  article-title: Vision 20/20: perspectives on automated image segmentation for radiotherapy
  publication-title: Med Phys
– volume: 5
  start-page: 308
  year: 1999
  end-page: 321
  ident: bib0045
  article-title: Partitioning 3D surface meshes using watershed segmentation
  publication-title: IEEE Trans Vis Comput Graph
– year: 2012
  ident: bib0030
  article-title: Treatment planning in radiation oncology
– start-page: 434
  year: 2008
  end-page: 441
  ident: bib0070
  article-title: Atlas-based auto-segmentation of head and neck CT images
  publication-title: International Conference on medical image computing and computer-assisted intervention
– reference: .
– volume: 32
  start-page: 1723
  year: 2013
  end-page: 1730
  ident: bib0155
  article-title: Automated abdominal multi-organ segmentation with subject-specific atlas generation
  publication-title: IEEE Trans Med Imaging
– volume: 2
  start-page: 27
  year: 2011
  ident: bib0120
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans Intell Syst Technol (TIST).
– volume: 36
  start-page: 4349
  year: 2009
  end-page: 4358
  ident: bib0055
  article-title: A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients
  publication-title: Med Phys
– volume: 60
  start-page: 973
  year: 2004
  end-page: 980
  ident: bib0085
  article-title: Automated model-based organ delineation for radiotherapy planning in prostatic region
  publication-title: Int J Radiat Oncol Biol Phys
– start-page: 1115
  year: 2005
  end-page: 1120
  ident: bib0090
  article-title: Using GPUs for machine learning algorithms
  publication-title: Document Analysis and Recognition, 2005. Proceedings. Eighth International Conference on: IEEE
– volume: 1
  start-page: 46
  year: 2013
  ident: bib0110
  article-title: Implementation of RANSAC algorithm for feature-based image registration
  publication-title: J Comput Commun
– volume: 42
  start-page: 3013
  year: 2015
  end-page: 3023
  ident: bib0135
  article-title: Quantitative evaluation of image segmentation incorporating medical consideration functions
  publication-title: Med Phys
– volume: 62
  start-page: 272
  year: 2016
  ident: bib0060
  article-title: Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours
  publication-title: Phys Med Biol
– volume: 38
  start-page: 123
  year: 1991
  end-page: 127
  ident: bib0140
  article-title: Computing the minimum Hausdorff distance between two point sets on a line under translation
  publication-title: Inf Process Lett
– volume: 7
  start-page: 259
  year: 1978
  end-page: 265
  ident: bib0050
  article-title: A survey of threshold selection techniques
  publication-title: Comput Graph Image Process
– volume: 24
  start-page: 196
  year: 2014
  ident: 10.1016/j.artmed.2018.07.001_bib0015
  article-title: The ViewRay system: magnetic resonance–guided and controlled radiotherapy
  publication-title: Semin Radiat Oncol
  doi: 10.1016/j.semradonc.2014.02.008
– volume: 4
  start-page: 129
  year: 1996
  ident: 10.1016/j.artmed.2018.07.001_bib0125
  article-title: Active learning with statistical models
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.295
– volume: 94
  start-page: 394
  year: 2016
  ident: 10.1016/j.artmed.2018.07.001_bib0005
  article-title: Online magnetic resonance image guided adaptive radiation therapy: first clinical applications
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2015.10.015
– volume: 29
  start-page: 51
  year: 1996
  ident: 10.1016/j.artmed.2018.07.001_bib0170
  article-title: A comparative study of texture measures with classification based on featured distributions
  publication-title: Pattern Recognit
  doi: 10.1016/0031-3203(95)00067-4
– start-page: 105
  year: 2001
  ident: 10.1016/j.artmed.2018.07.001_bib0040
  article-title: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images
– volume: 7
  start-page: 160
  year: 2012
  ident: 10.1016/j.artmed.2018.07.001_bib0075
  article-title: Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer
  publication-title: Radiat Oncol
  doi: 10.1186/1748-717X-7-160
– volume: 60
  start-page: 973
  year: 2004
  ident: 10.1016/j.artmed.2018.07.001_bib0085
  article-title: Automated model-based organ delineation for radiotherapy planning in prostatic region
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2004.06.004
– volume: 11
  start-page: 178
  year: 2004
  ident: 10.1016/j.artmed.2018.07.001_bib0115
  article-title: Statistical validation of image segmentation quality based on a spatial overlap index 1: scientific reports
  publication-title: Acad Radiol
  doi: 10.1016/S1076-6332(03)00671-8
– volume: 1
  start-page: 46
  year: 2013
  ident: 10.1016/j.artmed.2018.07.001_bib0110
  article-title: Implementation of RANSAC algorithm for feature-based image registration
  publication-title: J Comput Commun
  doi: 10.4236/jcc.2013.16009
– volume: 38
  start-page: 123
  year: 1991
  ident: 10.1016/j.artmed.2018.07.001_bib0140
  article-title: Computing the minimum Hausdorff distance between two point sets on a line under translation
  publication-title: Inf Process Lett
  doi: 10.1016/0020-0190(91)90233-8
– volume: 43
  start-page: 3320
  year: 2016
  ident: 10.1016/j.artmed.2018.07.001_bib0035
  article-title: SU‐C‐BRA‐01: interactive auto‐segmentation for bowel in online adaptive mri‐guided radiation therapy by using a multi‐region labeling algorithm
  publication-title: Med Phys
  doi: 10.1118/1.4955562
– start-page: 1115
  year: 2005
  ident: 10.1016/j.artmed.2018.07.001_bib0090
  article-title: Using GPUs for machine learning algorithms
– ident: 10.1016/j.artmed.2018.07.001_bib0130
– volume: 54
  start-page: N229
  year: 2009
  ident: 10.1016/j.artmed.2018.07.001_bib0020
  article-title: Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/54/12/N01
– volume: 39
  start-page: 6701
  year: 2012
  ident: 10.1016/j.artmed.2018.07.001_bib0025
  article-title: MRI simulation for radiotherapy treatment planning
  publication-title: Med Phys
  doi: 10.1118/1.4758068
– start-page: 2548
  year: 2011
  ident: 10.1016/j.artmed.2018.07.001_bib0105
  article-title: BRISK: binary robust invariant scalable keypoints
– year: 2012
  ident: 10.1016/j.artmed.2018.07.001_bib0030
– volume: 18
  start-page: 176
  year: 2014
  ident: 10.1016/j.artmed.2018.07.001_bib0160
  article-title: Three-dimensional solid texture analysis in biomedical imaging: review and opportunities
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2013.10.005
– start-page: 434
  year: 2008
  ident: 10.1016/j.artmed.2018.07.001_bib0070
  article-title: Atlas-based auto-segmentation of head and neck CT images
– volume: 62
  start-page: 272
  year: 2016
  ident: 10.1016/j.artmed.2018.07.001_bib0060
  article-title: Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/62/1/272
– volume: 96
  start-page: S222
  year: 2016
  ident: 10.1016/j.artmed.2018.07.001_bib0150
  article-title: Online adaptive magnetic resonance-guided (OAMR)-stereotactic body radiation therapy for abdominal malignancies: prospective dosimetric results from a phase 1 trial
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2016.06.553
– volume: 32
  start-page: 1723
  year: 2013
  ident: 10.1016/j.artmed.2018.07.001_bib0155
  article-title: Automated abdominal multi-organ segmentation with subject-specific atlas generation
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2013.2265805
– start-page: 404
  year: 2006
  ident: 10.1016/j.artmed.2018.07.001_bib0100
  article-title: Surf: speeded up robust features
– volume: 38
  start-page: 6160
  year: 2011
  ident: 10.1016/j.artmed.2018.07.001_bib0080
  article-title: Auto‐segmentation of normal and target structures in head and neck CT images: a feature‐driven model‐based approach
  publication-title: Med Phys
  doi: 10.1118/1.3654160
– volume: 33
  start-page: 684
  year: 2011
  ident: 10.1016/j.artmed.2018.07.001_bib0145
  article-title: Segmentations of MRI images of the female pelvic floor: a study of inter‐and intra‐reader reliability
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.22478
– volume: 2
  start-page: 27
  year: 2011
  ident: 10.1016/j.artmed.2018.07.001_bib0120
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans Intell Syst Technol (TIST).
– year: 2013
  ident: 10.1016/j.artmed.2018.07.001_bib0165
  article-title: Region detection in medical images using HOG classifiers and a body landmark network
– volume: 7
  start-page: 259
  year: 1978
  ident: 10.1016/j.artmed.2018.07.001_bib0050
  article-title: A survey of threshold selection techniques
  publication-title: Comput Graph Image Process
  doi: 10.1016/0146-664X(78)90116-8
– volume: 41
  year: 2014
  ident: 10.1016/j.artmed.2018.07.001_bib0065
  article-title: Vision 20/20: perspectives on automated image segmentation for radiotherapy
  publication-title: Med Phys
  doi: 10.1118/1.4871620
– volume: 36
  start-page: 4349
  year: 2009
  ident: 10.1016/j.artmed.2018.07.001_bib0055
  article-title: A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients
  publication-title: Med Phys
  doi: 10.1118/1.3213099
– year: 2012
  ident: 10.1016/j.artmed.2018.07.001_bib0010
– volume: 5
  start-page: 308
  year: 1999
  ident: 10.1016/j.artmed.2018.07.001_bib0045
  article-title: Partitioning 3D surface meshes using watershed segmentation
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/2945.817348
– volume: 90
  start-page: 111
  year: 1997
  ident: 10.1016/j.artmed.2018.07.001_bib0095
  article-title: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/S0165-0114(97)00077-8
– volume: 42
  start-page: 3013
  year: 2015
  ident: 10.1016/j.artmed.2018.07.001_bib0135
  article-title: Quantitative evaluation of image segmentation incorporating medical consideration functions
  publication-title: Med Phys
  doi: 10.1118/1.4921067
SSID ssj0007416
Score 2.4271572
Snippet •MR-ART consists of daily modification of the radiation therapy plan.•Manual contouring is laborious, subject to variability and inconvenient for MR-ART.•An...
Manual contouring remains the most laborious task in radiation therapy planning and is a major barrier to implementing routine Magnetic Resonance Imaging (MRI)...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 34
SubjectTerms Adaptive radiotherapy
Auto-Contouring
Humans
Image Interpretation, Computer-Assisted - methods
Image-guided
Machine learning
Magnetic Resonance Imaging - methods
Multimodal Imaging
Pancreatic Neoplasms - diagnostic imaging
Pancreatic Neoplasms - pathology
Pancreatic Neoplasms - radiotherapy
Radiotherapy
Radiotherapy Planning, Computer-Assisted - methods
Radiotherapy, Image-Guided - methods
Support Vector Machine
Tomography, X-Ray Computed
Workflow
Title Abdominal, multi-organ, auto-contouring method for online adaptive magnetic resonance guided radiotherapy: An intelligent, multi-level fusion approach
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0933365717302853
https://dx.doi.org/10.1016/j.artmed.2018.07.001
https://www.ncbi.nlm.nih.gov/pubmed/30054121
https://www.proquest.com/docview/2078600912
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61Wwlx4VFey6MyEsea3cSOs-G2qqgWUHuBSr1FtuNUqUqyapNDL_wMfi8zjh0JCVTEMZEnTjL2PDwz3wC8Uzka2XRyX1kpuay04CZZCi5TIxKDotI5qkY-OVWbM_n5PDvfgaNYC0NplUH2jzLdS-twZxH-5mLbNIuv5IsLlVEYGZVkJnZhLxWFymawt_70ZXM6CWQyOjzknhCcCGIFnU_zwkei2qEcr5VH8QzdYf6gof5mgXpNdPwIHgQTkq3Ht3wMO67dh4exPQMLu3Uf7p2EuPkT-Lk2Vefbdx0yn0LIfTenQ6aHvuOUrt75ckU2NpRmaMmyEUOD6UpvSSSy7_qipYpHhg56RzAdjl0MTeUqdq2rJhRy3X5g65Y1E85nH-e7ouQkVg90OMcikPlTODv--O1ow0NHBm5R0fecoGGMVK7IaiOQ99qkmUUPLTFoeJrU2pVQTtXS1bkqdL4qZJUZq1OT1KYuhBPPYNZ2rXsBTDlj0TEX0i5xlaRWF1qTQnUiR6mg9RxE5EJpA1w5dc24KmNe2mU58q4k3pVLiqMnc-AT1XaE67hjfBYZXMZSVBSeJeqTO-jyie635foPlG_jOipxJ1N4RreuG25wUL5C87NI0jk8HxfY9A3UVEAmafLyv-d9BffpasxdfA2z_npwb9Ce6s0B7L7_kRyEXfMLISwh6w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrQRceBQoy9NIHGvtJnaSTW-rimpLu3uhlXqzbMepgtpkVZIDf4Tfy0xiR6oEKuKaeOIkY8_DM_MNwOc0QyObTu4LKyWXhRbcRHPBZWxEZFBUOkfVyOtNurqQXy-Tyx04CrUwlFbpZf8g03tp7a_M_N-cbatq9o18cZEmFEZGJZmIB7ArE_T2JrC7PDldbUaBTEZHD7knBCeCUEHXp3nhI1HtUI7Xokfx9N1h_qCh_maB9pro-Bk88SYkWw5v-Rx2XL0HT0N7BuZ36x48XPu4-Qv4tTRF07fvOmB9CiHvuzkdMN21Dad09aYvV2RDQ2mGliwbMDSYLvSWRCK70Vc1VTwydNAbgulw7KqrClewW11UvpDr5yFb1qwacT7bMN81JSexsqPDORaAzF_CxfGX86MV9x0ZuEVF33KChjEydXlSGoG81yZOLHpokUHD08TWLkTq0lK6MktznS1yWSTG6thEpSlz4cQrmNRN7V4DS52x6JgLaee4SmKrc61JoTqRoVTQegoicEFZD1dOXTOuVchL-64G3ininZpTHD2aAh-ptgNcxz3jk8BgFUpRUXgq1Cf30GUj3Z3l-g-Un8I6UriTKTyja9d0P3BQtkDzM4_iKewPC2z8BmoqIKM4evPf836ER6vz9Zk6O9mcvoXHdGfIY3wHk_a2c-_RtmrNB793fgMPMyPa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abdominal%2C+multi-organ%2C+auto-contouring+method+for+online+adaptive+magnetic+resonance+guided+radiotherapy%3A+An+intelligent%2C+multi-level+fusion+approach&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Liang%2C+Fan&rft.au=Qian%2C+Pengjiang&rft.au=Su%2C+Kuan-Hao&rft.au=Baydoun%2C+Atallah&rft.date=2018-08-01&rft.issn=0933-3657&rft.volume=90&rft.spage=34&rft.epage=41&rft_id=info:doi/10.1016%2Fj.artmed.2018.07.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_artmed_2018_07_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon