Ochratoxin A-Induced Nephrotoxicity: Up-to-Date Evidence
Ochratoxin A (OTA) is a mycotoxin widely found in various foods and feeds that have a deleterious effect on humans and animals. It has been shown that OTA causes multiorgan toxicity, and the kidney is the main target of OTA among them. This present article aims to review recent and latest intracellu...
Saved in:
Published in | International journal of molecular sciences Vol. 22; no. 20; p. 11237 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
18.10.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ochratoxin A (OTA) is a mycotoxin widely found in various foods and feeds that have a deleterious effect on humans and animals. It has been shown that OTA causes multiorgan toxicity, and the kidney is the main target of OTA among them. This present article aims to review recent and latest intracellular molecular interactions and signaling pathways of OTA-induced nephrotoxicity. Pyroptosis, lipotoxicity, organic anionic membrane transporter, autophagy, the ubiquitin-proteasome system, and histone acetyltransferase have been involved in the renal toxicity caused by OTA. Meanwhile, the literature reviewed the alternative or method against OTA toxicity by reducing ROS production, oxidative stress, activating the Nrf2 pathway, through using nanoparticles, a natural flavonoid, and metal supplement. The present review discloses the molecular mechanism of OTA-induced nephrotoxicity, providing opinions and strategies against OTA toxicity. |
---|---|
AbstractList | Ochratoxin A (OTA) is a mycotoxin widely found in various foods and feeds that have a deleterious effect on humans and animals. It has been shown that OTA causes multiorgan toxicity, and the kidney is the main target of OTA among them. This present article aims to review recent and latest intracellular molecular interactions and signaling pathways of OTA-induced nephrotoxicity. Pyroptosis, lipotoxicity, organic anionic membrane transporter, autophagy, the ubiquitin-proteasome system, and histone acetyltransferase have been involved in the renal toxicity caused by OTA. Meanwhile, the literature reviewed the alternative or method against OTA toxicity by reducing ROS production, oxidative stress, activating the Nrf2 pathway, through using nanoparticles, a natural flavonoid, and metal supplement. The present review discloses the molecular mechanism of OTA-induced nephrotoxicity, providing opinions and strategies against OTA toxicity. Ochratoxin A (OTA) is a mycotoxin widely found in various foods and feeds that have a deleterious effect on humans and animals. It has been shown that OTA causes multiorgan toxicity, and the kidney is the main target of OTA among them. This present article aims to review recent and latest intracellular molecular interactions and signaling pathways of OTA-induced nephrotoxicity. Pyroptosis, lipotoxicity, organic anionic membrane transporter, autophagy, the ubiquitin-proteasome system, and histone acetyltransferase have been involved in the renal toxicity caused by OTA. Meanwhile, the literature reviewed the alternative or method against OTA toxicity by reducing ROS production, oxidative stress, activating the Nrf2 pathway, through using nanoparticles, a natural flavonoid, and metal supplement. The present review discloses the molecular mechanism of OTA-induced nephrotoxicity, providing opinions and strategies against OTA toxicity.Ochratoxin A (OTA) is a mycotoxin widely found in various foods and feeds that have a deleterious effect on humans and animals. It has been shown that OTA causes multiorgan toxicity, and the kidney is the main target of OTA among them. This present article aims to review recent and latest intracellular molecular interactions and signaling pathways of OTA-induced nephrotoxicity. Pyroptosis, lipotoxicity, organic anionic membrane transporter, autophagy, the ubiquitin-proteasome system, and histone acetyltransferase have been involved in the renal toxicity caused by OTA. Meanwhile, the literature reviewed the alternative or method against OTA toxicity by reducing ROS production, oxidative stress, activating the Nrf2 pathway, through using nanoparticles, a natural flavonoid, and metal supplement. The present review discloses the molecular mechanism of OTA-induced nephrotoxicity, providing opinions and strategies against OTA toxicity. |
Author | Hung, Kuan-Yu Chen, Jia-Huang Lin, Tzu-Yu Chiang, Chih-Kang Khoi, Chong-Sun |
AuthorAffiliation | 2 Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan 3 Department of Internal Medicine, College of Medicine and Hospital, National Taiwan University, Taipei 106, Taiwan; kyhung@ntu.edu.tw 1 Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 106, Taiwan; d05447005@ntu.edu.tw (C.-S.K.); f04447010@ntu.edu.tw (J.-H.C.) 4 Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei 10002, Taiwan |
AuthorAffiliation_xml | – name: 4 Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei 10002, Taiwan – name: 1 Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 106, Taiwan; d05447005@ntu.edu.tw (C.-S.K.); f04447010@ntu.edu.tw (J.-H.C.) – name: 2 Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan – name: 3 Department of Internal Medicine, College of Medicine and Hospital, National Taiwan University, Taipei 106, Taiwan; kyhung@ntu.edu.tw |
Author_xml | – sequence: 1 givenname: Chong-Sun orcidid: 0000-0003-1040-9857 surname: Khoi fullname: Khoi, Chong-Sun – sequence: 2 givenname: Jia-Huang orcidid: 0000-0003-2879-7624 surname: Chen fullname: Chen, Jia-Huang – sequence: 3 givenname: Tzu-Yu surname: Lin fullname: Lin, Tzu-Yu – sequence: 4 givenname: Chih-Kang orcidid: 0000-0001-9021-4616 surname: Chiang fullname: Chiang, Chih-Kang – sequence: 5 givenname: Kuan-Yu surname: Hung fullname: Hung, Kuan-Yu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34681895$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1LAzEQhoMotlaPXqXgxctqPncTD0Kpn1D0Ys8hnU1tyjapyW7Rf-9Wq2jBuWRInrzzzswB2vXBW4SOCT5nTOELN18kSikmhLJiB3UJpzTDOC92f-UddJDSHGPKqFD7qMN4LolUoovkE8yiqcOb8_1B9uDLBmzZf7TLWQzrW3D1-2V_vMzqkF2b2vZvVq60Huwh2puaKtmjzdlD49ub5-F9Nnq6exgORhlwIuqMcsIICCVEWfCCgjIYyonh04JJjLktyVRRRSdSlqAYESA5AcB5rhRA65L10NWX7rKZLGwJ1tfRVHoZ3cLEdx2M039fvJvpl7DSUjDF2uihs41ADK-NTbVeuAS2qoy3oUmaCskLhXO2rnW6hc5DE33b3ifFqSowbqmT345-rHwPtQWyLwBiSCna6Q9CsF4vTf9ZWsuzLb6duqldWDfkqn9-fQBZ1pkD |
CitedBy_id | crossref_primary_10_1016_j_fct_2024_115006 crossref_primary_10_1016_j_fct_2022_113386 crossref_primary_10_1016_j_snb_2024_136418 crossref_primary_10_1002_mnfr_202300777 crossref_primary_10_3390_biomed4040035 crossref_primary_10_1016_j_jksus_2024_103453 crossref_primary_10_1016_j_ecoenv_2023_115868 crossref_primary_10_3390_agriculture12111970 crossref_primary_10_3390_foods12040707 crossref_primary_10_1080_19440049_2024_2376157 crossref_primary_10_1016_j_microc_2023_109234 crossref_primary_10_1021_acs_analchem_4c05637 crossref_primary_10_1007_s00210_024_03410_2 crossref_primary_10_1021_jacs_2c00478 crossref_primary_10_3390_toxins14110729 crossref_primary_10_3390_toxins14110807 crossref_primary_10_3390_foods13071112 crossref_primary_10_1016_j_bioelechem_2023_108451 crossref_primary_10_1021_acs_jafc_3c04495 crossref_primary_10_1111_1541_4337_13338 crossref_primary_10_3390_vetsci11070291 crossref_primary_10_1016_j_foodchem_2024_138378 crossref_primary_10_1016_j_psj_2024_104027 crossref_primary_10_1002_ptr_7966 crossref_primary_10_1016_j_fct_2021_112674 crossref_primary_10_1016_j_biomaterials_2024_123009 crossref_primary_10_1016_j_heliyon_2024_e39313 crossref_primary_10_1080_19440049_2024_2401976 crossref_primary_10_3390_ani14172599 crossref_primary_10_3390_microbiolres15040165 crossref_primary_10_1021_acs_jafc_3c04560 crossref_primary_10_1007_s00204_025_03994_5 crossref_primary_10_3390_toxins14060398 crossref_primary_10_1007_s12550_023_00500_7 crossref_primary_10_1016_j_etap_2022_103973 crossref_primary_10_3389_fmicb_2024_1497860 crossref_primary_10_1016_j_foodchem_2023_135580 crossref_primary_10_1016_j_jhazmat_2024_136469 crossref_primary_10_3390_antiox13030289 crossref_primary_10_3390_w16243620 crossref_primary_10_1016_j_foodchem_2024_142061 crossref_primary_10_1007_s12403_024_00672_2 crossref_primary_10_1021_acs_jafc_4c04382 crossref_primary_10_1002_jbt_23249 crossref_primary_10_1016_j_fochx_2024_101336 crossref_primary_10_1016_j_cofs_2023_101100 crossref_primary_10_3390_toxins15080480 crossref_primary_10_1007_s11033_023_08579_y crossref_primary_10_3390_metabo12090874 crossref_primary_10_3390_cancers16203473 crossref_primary_10_1016_j_toxicon_2023_107227 crossref_primary_10_1002_fsn3_4456 crossref_primary_10_1016_j_tox_2022_153309 crossref_primary_10_3390_toxins16110487 crossref_primary_10_1002_fsn3_3324 crossref_primary_10_1080_87559129_2022_2098318 crossref_primary_10_1016_j_ijfoodmicro_2025_111155 crossref_primary_10_1016_j_jhazmat_2023_130975 crossref_primary_10_1039_D4AY02231A |
Cites_doi | 10.1016/j.cbi.2005.10.106 10.2147/DMSO.S287287 10.1080/10408398.2012.724480 10.1021/acs.jafc.7b02115 10.1007/s00204-017-2107-6 10.1016/j.tox.2020.152582 10.1007/BF02954817 10.1515/hsz-2020-0167 10.1016/j.ab.2017.07.009 10.1007/s12550-016-0261-y 10.1016/j.fct.2018.11.015 10.1016/j.taap.2013.01.021 10.1016/j.toxlet.2017.04.013 10.1007/s00204-021-02993-6 10.1016/j.tox.2017.03.009 10.1007/s12011-018-1532-6 10.1016/j.fct.2020.111436 10.1023/A:1007662101880 10.1016/j.tox.2004.08.004 10.1016/j.fct.2020.111516 10.1007/s004240000321 10.3109/1354750X.2012.692392 10.1016/j.toxicon.2017.07.013 10.1002/tox.22443 10.3389/fvets.2020.00136 10.1002/mnfr.200600137 10.1021/jf011015z 10.1006/taap.2000.8987 10.1016/j.tox.2006.06.004 10.1038/srep08078 10.1081/JDI-200026744 10.1021/tx200430f 10.1016/j.jphotobiol.2014.01.016 10.1002/jcb.25425 10.1016/j.fct.2019.110720 10.1093/toxsci/kfp090 10.1021/tx049650x 10.1016/j.taap.2015.09.023 10.18632/oncotarget.14270 10.1016/j.redox.2013.09.003 10.1016/j.tox.2021.152681 10.1292/jvms.16-0226 10.1080/15376516.2017.1411412 10.1016/j.rvsc.2021.07.007 10.1016/j.tox.2017.07.004 10.1016/j.toxicon.2020.05.014 10.3390/toxins11110638 10.3390/antiox9040332 10.1016/j.biocel.2017.01.003 10.3390/cells9010143 10.1080/15592294.2019.1644878 10.1515/aiht-2017-68-2905 10.1515/jvetres-2017-0071 10.1007/s12550-015-0223-9 10.1016/j.fct.2018.08.026 10.1080/02652030210151895 10.1016/j.fct.2014.04.039 10.1016/j.toxicon.2020.04.097 10.1111/jpn.12682 10.1016/j.biopha.2019.109629 10.1016/j.fct.2016.12.002 10.1111/j.1439-0396.2008.00838.x 10.1016/j.toxicon.2020.03.012 10.1016/j.tox.2014.07.012 10.1016/j.etap.2015.12.005 10.1016/j.fct.2019.110883 10.1016/j.toxrep.2019.11.015 10.1080/02652039609374384 10.1016/j.tiv.2019.03.016 10.1016/j.tox.2012.12.005 10.1016/j.fct.2018.09.070 10.1002/jcp.29425 10.1016/j.lfs.2019.116735 10.1002/mnfr.201200456 10.1007/s00204-019-02434-5 10.1002/jcb.26197 10.3920/WMJ2014.1795 10.1016/j.reprotox.2006.04.022 10.1016/j.toxicon.2021.08.002 10.3390/antiox10081239 10.1016/S0168-1605(02)00310-0 10.1016/S1532-0456(01)00248-4 10.1021/tx900295a 10.1016/j.bbrc.2011.06.190 10.3390/toxins13030190 10.5414/CNP83S064 10.1021/tx049877s 10.1016/j.chemosphere.2017.05.030 10.1007/s12192-017-0790-0 10.1016/j.fct.2018.10.004 10.1002/mnfr.200500124 10.1016/j.toxicon.2019.07.014 10.1007/s11906-009-0011-z 10.1016/j.toxicon.2021.06.005 10.1096/fj.201800742R 10.1002/tox.23308 10.1007/s00204-014-1311-x 10.1016/j.tox.2019.152324 10.1016/S0925-4439(02)00159-X 10.3390/molecules25061386 10.3390/toxins11110615 10.1016/j.ijbiomac.2019.11.221 10.1016/j.ecoenv.2019.109637 10.1016/j.cbi.2017.10.020 10.1016/j.fct.2016.12.037 10.1080/02652030500309368 10.1016/0278-6915(84)90170-4 10.1007/s00204-020-02829-9 10.1007/s00204-003-0501-8 10.1002/jcp.26753 10.1016/j.mrfmmm.2014.05.001 10.1177/096032719801700207 10.1016/0041-008X(91)90332-9 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.3390/ijms222011237 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC8539333 34681895 10_3390_ijms222011237 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: MOST- 110-2314-B-002 -130 – fundername: National Taiwan University Hospital grantid: NTUH-107-S3826, NTUH.108-P02, NTUH-110-S5063 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST-107-2314-B-002-027-MY3 – fundername: National Taiwan University Hospital grantid: NTUH-106-S3574 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST-104-2314-B-002-126-MY3 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c415t-24131c5955d7472c9a0cdba4f738004ed1f9292b88dc9315c841cc06699cc4683 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 18:22:29 EDT 2025 Tue Aug 05 11:04:45 EDT 2025 Fri Jul 25 20:13:36 EDT 2025 Wed Feb 19 02:27:33 EST 2025 Tue Jul 01 02:47:30 EDT 2025 Thu Apr 24 22:55:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | ochratoxin A molecular interaction nephrotoxicity prevention |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-24131c5955d7472c9a0cdba4f738004ed1f9292b88dc9315c841cc06699cc4683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Contributed equally to this work. |
ORCID | 0000-0003-1040-9857 0000-0003-2879-7624 0000-0001-9021-4616 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms222011237 |
PMID | 34681895 |
PQID | 2584429700 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8539333 proquest_miscellaneous_2584790638 proquest_journals_2584429700 pubmed_primary_34681895 crossref_primary_10_3390_ijms222011237 crossref_citationtrail_10_3390_ijms222011237 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211018 |
PublicationDateYYYYMMDD | 2021-10-18 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211018 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Fadl (ref_111) 2020; 184 Munoz (ref_19) 2017; 33 Darbuka (ref_43) 2021; 199 Damiano (ref_97) 2020; 235 Taniwaki (ref_4) 2003; 82 Yang (ref_63) 2014; 765 Raghubeer (ref_82) 2017; 137 ref_95 Aleo (ref_71) 1991; 107 Ostry (ref_16) 2005; 21 Meucci (ref_14) 2017; 79 Li (ref_102) 2020; 2020 Malir (ref_17) 2012; 17 Gekle (ref_37) 2000; 293 Zhang (ref_115) 2020; 13 Gerding (ref_20) 2015; 31 Mitchell (ref_23) 2017; 100 Zhou (ref_56) 2017; 278 Gan (ref_106) 2021; 139 Yaman (ref_27) 2015; 89 Gong (ref_26) 2019; 123 ref_24 Gagliano (ref_6) 2006; 225 Meki (ref_28) 2001; 130 Zheng (ref_109) 2013; 268 Creppy (ref_59) 1984; 22 Silva (ref_22) 2020; 135 Liu (ref_92) 2020; 181 Li (ref_55) 2015; 8 Bodiga (ref_110) 2020; 401 Damiano (ref_93) 2018; 233 Sheu (ref_8) 2017; 8 Qi (ref_45) 2018; 121 Agarwal (ref_61) 2020; 429 Kamp (ref_47) 2005; 49 ref_77 Gan (ref_103) 2020; 146 Kosicki (ref_15) 2021; 200 Wagner (ref_104) 2009; 93 Petrik (ref_38) 2003; 77 Palabiyik (ref_107) 2017; 68 Faucet (ref_51) 2004; 17 Gurbuz (ref_65) 2020; 180 Li (ref_90) 2019; 168 Sage (ref_2) 2002; 50 Nogaim (ref_96) 2020; 7 Liu (ref_114) 2020; 141 Limbeck (ref_57) 2018; 92 Gan (ref_83) 2017; 32 Fusi (ref_81) 2018; 102 Schwerdt (ref_36) 1999; 15 Raghubeer (ref_87) 2019; 57 Gan (ref_44) 2017; 182 Li (ref_46) 2021; 95 Zhang (ref_58) 2020; 15 Chebotareva (ref_72) 2017; 22 Qian (ref_78) 2018; 122 Crupi (ref_33) 2020; 7 Wu (ref_11) 2015; 55 Mally (ref_48) 2005; 18 Yang (ref_67) 2019; 33 Manderville (ref_50) 2012; 25 Hsieh (ref_13) 2004; 26 Fernandes (ref_91) 2018; 28 Wafa (ref_12) 1998; 17 Fuchs (ref_5) 2005; 22 Zrinski (ref_60) 2000; 167 Jarmi (ref_85) 2009; 11 Cavin (ref_32) 2009; 110 Ren (ref_101) 2019; 190 Eder (ref_69) 2000; 440 Jorgensen (ref_3) 1996; 13 Yang (ref_84) 2017; 382 Veres (ref_70) 2014; 132 Aljawish (ref_113) 2017; 99 Le (ref_80) 2020; 143 Yang (ref_64) 2014; 70 Yang (ref_73) 2019; 133 Liang (ref_30) 2015; 5 Damiano (ref_35) 2018; 119 ref_66 Stefanovic (ref_10) 2015; 83 Schaaf (ref_29) 2002; 1588 Li (ref_108) 2019; 234 Zorova (ref_68) 2018; 552 Pyo (ref_79) 2020; 94 Imaoka (ref_89) 2020; 444 Ciarcia (ref_98) 2016; 117 Stachurska (ref_76) 2013; 57 Loboda (ref_88) 2017; 389 Loboda (ref_86) 2017; 84 Gan (ref_105) 2017; 65 Patil (ref_7) 2006; 22 Zhang (ref_42) 2021; 450 Lee (ref_31) 2018; 122 ref_34 Gan (ref_53) 2019; 93 Ozden (ref_54) 2015; 289 Hibi (ref_49) 2013; 304 Li (ref_39) 2011; 411 Hennemeier (ref_75) 2014; 324 Jiang (ref_99) 2020; 121 Kamp (ref_62) 2005; 206 Mantle (ref_52) 2010; 23 Ali (ref_21) 2017; 275 Marin (ref_74) 2019; 184 Dalcero (ref_1) 2002; 19 Manderville (ref_9) 2007; 51 ref_100 ref_41 ref_40 Aljawish (ref_112) 2016; 41 Trujillo (ref_94) 2013; 1 Ringot (ref_18) 2006; 159 Pietruszka (ref_25) 2017; 61 |
References_xml | – volume: 159 start-page: 18 year: 2006 ident: ref_18 article-title: Toxicokinetics and toxicodynamics of ochratoxin A, an update publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2005.10.106 – volume: 13 start-page: 4801 year: 2020 ident: ref_115 article-title: Sirt6-Mediated Endothelial-to-Mesenchymal Transition Contributes Toward Diabetic Cardiomyopathy via the Notch1 Signaling Pathway publication-title: Diabetes Metab. Syndr. Obes. doi: 10.2147/DMSO.S287287 – volume: 55 start-page: 1860 year: 2015 ident: ref_11 article-title: Ochratoxin A and human health risk: A review of the evidence publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2012.724480 – volume: 65 start-page: 6972 year: 2017 ident: ref_105 article-title: Overexpression and Low Expression of Selenoprotein S Impact Ochratoxin A-Induced Porcine Cytotoxicity and Apoptosis in Vitro publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.7b02115 – volume: 92 start-page: 995 year: 2018 ident: ref_57 article-title: Linking site-specific loss of histone acetylation to repression of gene expression by the mycotoxin ochratoxin A publication-title: Arch. Toxicol. doi: 10.1007/s00204-017-2107-6 – volume: 444 start-page: 152582 year: 2020 ident: ref_89 article-title: Microphysiological system modeling of ochratoxin A-associated nephrotoxicity publication-title: Toxicology doi: 10.1016/j.tox.2020.152582 – volume: 21 start-page: 49 year: 2005 ident: ref_16 article-title: Monitoring of mycotoxin biomarkers in the Czech Republic publication-title: Mycotoxin Res. doi: 10.1007/BF02954817 – volume: 401 start-page: 1257 year: 2020 ident: ref_110 article-title: Zinc-dependent changes in oxidative and endoplasmic reticulum stress during cardiomyocyte hypoxia/reoxygenation publication-title: Biol. Chem. doi: 10.1515/hsz-2020-0167 – volume: 552 start-page: 50 year: 2018 ident: ref_68 article-title: Mitochondrial membrane potential publication-title: Anal. Biochem. doi: 10.1016/j.ab.2017.07.009 – volume: 33 start-page: 39 year: 2017 ident: ref_19 article-title: Evidence of ochratoxin A conjugates in urine samples from infants and adults publication-title: Mycotoxin Res. doi: 10.1007/s12550-016-0261-y – volume: 123 start-page: 374 year: 2019 ident: ref_26 article-title: Molecular signatures of cytotoxic effects in human embryonic kidney 293cells treated with single and mixture of ochratoxin A and citrinin publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2018.11.015 – volume: 268 start-page: 123 year: 2013 ident: ref_109 article-title: Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2013.01.021 – volume: 275 start-page: 19 year: 2017 ident: ref_21 article-title: Ochratoxin A and its metabolites in urines of German adults—An assessment of variables in biomarker analysis publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2017.04.013 – volume: 95 start-page: 1489 year: 2021 ident: ref_46 article-title: Ochratoxin A induces nephrotoxicity in vitro and in vivo via pyroptosis publication-title: Arch. Toxicol. doi: 10.1007/s00204-021-02993-6 – volume: 382 start-page: 75 year: 2017 ident: ref_84 article-title: Ochratoxin A induced premature senescence in human renal proximal tubular cells publication-title: Toxicology doi: 10.1016/j.tox.2017.03.009 – volume: 190 start-page: 273 year: 2019 ident: ref_101 article-title: Research Progress on the Toxic Antagonism of Selenium Against Mycotoxins publication-title: Biol. Trace Elem. Res. doi: 10.1007/s12011-018-1532-6 – volume: 293 start-page: 837 year: 2000 ident: ref_37 article-title: Ochratoxin A induces JNK activation and apoptosis in MDCK-C7 cells at nanomolar concentrations publication-title: J. Pharmacol. Exp. Ther. – volume: 141 start-page: 111436 year: 2020 ident: ref_114 article-title: Luteolin alleviates ochratoxin A induced oxidative stress by regulating Nrf2 and HIF-1α pathways in NRK-52E rat kidney cells publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2020.111436 – volume: 15 start-page: 405 year: 1999 ident: ref_36 article-title: The nephrotoxin ochratoxin A induces apoptosis in cultured human proximal tubule cells publication-title: Cell Biol. Toxicol. doi: 10.1023/A:1007662101880 – volume: 206 start-page: 413 year: 2005 ident: ref_62 article-title: Ochratoxin A: Induction of (oxidative) DNA damage, cytotoxicity and apoptosis in mammalian cell lines and primary cells publication-title: Toxicology doi: 10.1016/j.tox.2004.08.004 – volume: 143 start-page: 111516 year: 2020 ident: ref_80 article-title: Ochratoxin A induces glomerular injury through activating the ERK/NF-κB signaling pathway publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2020.111516 – volume: 440 start-page: 521 year: 2000 ident: ref_69 article-title: Nephritogenic ochratoxin A interferes with mitochondrial function and pH homeostasis in immortalized human kidney epithelial cells publication-title: Pflugers Arch. doi: 10.1007/s004240000321 – volume: 17 start-page: 577 year: 2012 ident: ref_17 article-title: Ochratoxin A exposure biomarkers in the Czech Republic and comparison with foreign countries publication-title: Biomarkers doi: 10.3109/1354750X.2012.692392 – volume: 137 start-page: 48 year: 2017 ident: ref_82 article-title: Acute Ochratoxin A exposure induces inflammation and apoptosis in human embryonic kidney (HEK293) cells publication-title: Toxicon doi: 10.1016/j.toxicon.2017.07.013 – volume: 32 start-page: 2277 year: 2017 ident: ref_83 article-title: Effects of ochratoxin A on ER stress, MAPK signaling pathway and autophagy of kidney and spleen in pigs publication-title: Environ. Toxicol. doi: 10.1002/tox.22443 – volume: 7 start-page: 136 year: 2020 ident: ref_33 article-title: Protective Effect of Hydroxytyrosol Against Oxidative Stress Induced by the Ochratoxin in Kidney Cells: In vitro and in vivo Study publication-title: Front. Vet. Sci. doi: 10.3389/fvets.2020.00136 – volume: 51 start-page: 61 year: 2007 ident: ref_9 article-title: Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.200600137 – volume: 50 start-page: 1306 year: 2002 ident: ref_2 article-title: Fungal flora and ochratoxin a production in grapes and musts from france publication-title: J. Agric. Food Chem. doi: 10.1021/jf011015z – volume: 167 start-page: 132 year: 2000 ident: ref_60 article-title: Studies of ochratoxin A-induced inhibition of phenylalanine hydroxylase and its reversal by phenylalanine publication-title: Toxicol. Appl. Pharmacol. doi: 10.1006/taap.2000.8987 – volume: 225 start-page: 214 year: 2006 ident: ref_6 article-title: Early cytotoxic effects of ochratoxin A in rat liver: A morphological, biochemical and molecular study publication-title: Toxicology doi: 10.1016/j.tox.2006.06.004 – volume: 5 start-page: 8078 year: 2015 ident: ref_30 article-title: Apoptosis signal-regulating kinase 1 promotes Ochratoxin A-induced renal cytotoxicity publication-title: Sci. Rep. doi: 10.1038/srep08078 – volume: 26 start-page: 311 year: 2004 ident: ref_13 article-title: Does human ochratoxin A aggravate proteinuria in patients with chronic renal disease? publication-title: Ren Fail. doi: 10.1081/JDI-200026744 – volume: 25 start-page: 252 year: 2012 ident: ref_50 article-title: An update on direct genotoxicity as a molecular mechanism of ochratoxin a carcinogenicity publication-title: Chem. Res. Toxicol. doi: 10.1021/tx200430f – volume: 132 start-page: 1 year: 2014 ident: ref_70 article-title: Flavonoid diosmetin increases ATP levels in kidney cells and relieves ATP depleting effect of ochratoxin A publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2014.01.016 – volume: 117 start-page: 1352 year: 2016 ident: ref_98 article-title: Recombinant Mitochondrial Manganese Containing Superoxide Dismutase Protects Against Ochratoxin A-Induced Nephrotoxicity publication-title: J. Cell Biochem. doi: 10.1002/jcb.25425 – volume: 133 start-page: 110720 year: 2019 ident: ref_73 article-title: Glucose-regulated protein 75 in foodborne disease models induces renal tubular necrosis publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2019.110720 – volume: 110 start-page: 84 year: 2009 ident: ref_32 article-title: Ochratoxin A-mediated DNA and protein damage: Roles of nitrosative and oxidative stresses publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfp090 – volume: 18 start-page: 1253 year: 2005 ident: ref_48 article-title: Ochratoxin a causes DNA damage and cytogenetic effects but no DNA adducts in rats publication-title: Chem. Res. Toxicol. doi: 10.1021/tx049650x – volume: 289 start-page: 203 year: 2015 ident: ref_54 article-title: Assessment of global and gene-specific DNA methylation in rat liver and kidney in response to non-genotoxic carcinogen exposure publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2015.09.023 – volume: 8 start-page: 19376 year: 2017 ident: ref_8 article-title: Ochratoxin A induces ER stress and apoptosis in mesangial cells via a NADPH oxidase-derived reactive oxygen species-mediated calpain activation pathway publication-title: Oncotarget doi: 10.18632/oncotarget.14270 – volume: 1 start-page: 448 year: 2013 ident: ref_94 article-title: Renoprotective effect of the antioxidant curcumin: Recent findings publication-title: Redox. Biol. doi: 10.1016/j.redox.2013.09.003 – volume: 450 start-page: 152681 year: 2021 ident: ref_42 article-title: Central role of TRAP1 in the ameliorative effect of oleanolic acid on the mitochondrial-mediated and endoplasmic reticulum stress-excitated apoptosis induced by ochratoxin A publication-title: Toxicology doi: 10.1016/j.tox.2021.152681 – volume: 79 start-page: 440 year: 2017 ident: ref_14 article-title: Serum levels of ochratoxin A in dogs with chronic kidney disease (CKD): A retrospective study publication-title: J. Vet. Med. Sci. doi: 10.1292/jvms.16-0226 – volume: 28 start-page: 328 year: 2018 ident: ref_91 article-title: N-acetyl-L-tryptophan, a substance-P receptor antagonist attenuates aluminum-induced spatial memory deficit in rats publication-title: Toxicol. Mech. Methods doi: 10.1080/15376516.2017.1411412 – volume: 139 start-page: 94 year: 2021 ident: ref_106 article-title: Effects of Selenium-enriched probiotics on ochratoxin A-induced kidney injury and DNMTs expressions in piglets publication-title: Res. Vet. Sci. doi: 10.1016/j.rvsc.2021.07.007 – volume: 389 start-page: 42 year: 2017 ident: ref_88 article-title: Nrf2 deficiency exacerbates ochratoxin A-induced toxicity in vitro and in vivo publication-title: Toxicology doi: 10.1016/j.tox.2017.07.004 – volume: 184 start-page: 1 year: 2020 ident: ref_111 article-title: Trial for reduction of Ochratoxin A residues in fish feed by using nano particles of hydrated sodium aluminum silicates (NPsHSCAS) and copper oxide publication-title: Toxicon doi: 10.1016/j.toxicon.2020.05.014 – ident: ref_24 doi: 10.3390/toxins11110638 – ident: ref_95 doi: 10.3390/antiox9040332 – volume: 84 start-page: 46 year: 2017 ident: ref_86 article-title: Effect of heme oxygenase-1 on ochratoxin A-induced nephrotoxicity in mice publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2017.01.003 – ident: ref_66 doi: 10.3390/cells9010143 – volume: 15 start-page: 199 year: 2020 ident: ref_58 article-title: An in vitro attempt at precision toxicology reveals the involvement of DNA methylation alteration in ochratoxin A-induced G0/G1 phase arrest publication-title: Epigenetics doi: 10.1080/15592294.2019.1644878 – volume: 68 start-page: 135 year: 2017 ident: ref_107 article-title: Lycopene restores trace element levels in ochratoxin A-treated rats publication-title: Arh. Hig. Rada Toksikol. doi: 10.1515/aiht-2017-68-2905 – volume: 61 start-page: 483 year: 2017 ident: ref_25 article-title: Occurrence of Ochratoxin a in Animal Tissues and Feeds in Poland in 2014–2016 publication-title: J. Vet. Res. doi: 10.1515/jvetres-2017-0071 – volume: 31 start-page: 127 year: 2015 ident: ref_20 article-title: A comparative study of the human urinary mycotoxin excretion patterns in Bangladesh, Germany, and Haiti using a rapid and sensitive LC-MS/MS approach publication-title: Mycotoxin Res. doi: 10.1007/s12550-015-0223-9 – volume: 121 start-page: 15 year: 2018 ident: ref_45 article-title: Mitigation of cell apoptosis induced by ochratoxin A (OTA) is possibly through organic cation transport 2 (OCT2) knockout publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2018.08.026 – volume: 19 start-page: 1065 year: 2002 ident: ref_1 article-title: Detection of ochratoxin A in animal feeds and capacity to produce this mycotoxin by Aspergillus section Nigri in Argentina publication-title: Food Addit. Contam. doi: 10.1080/02652030210151895 – volume: 70 start-page: 40 year: 2014 ident: ref_64 article-title: Protective effect of N-acetylcysteine against DNA damage and S-phase arrest induced by ochratoxin A in human embryonic kidney cells (HEK-293) publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2014.04.039 – volume: 181 start-page: 82 year: 2020 ident: ref_92 article-title: Regulation of taurine in OTA-induced apoptosis and autophagy publication-title: Toxicon doi: 10.1016/j.toxicon.2020.04.097 – volume: 102 start-page: 350 year: 2018 ident: ref_81 article-title: Ochratoxin A cytotoxicity on Madin-Darby canine kidney cells in the presence of alpha-tocopherol: Effects on cell viability and tight junctions publication-title: J. Anim. Physiol. Anim. Nutr. doi: 10.1111/jpn.12682 – volume: 121 start-page: 109629 year: 2020 ident: ref_99 article-title: Maintenance of mitochondrial function by astaxanthin protects against bisphenol A-induced kidney toxicity in rats publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2019.109629 – volume: 99 start-page: 209 year: 2017 ident: ref_113 article-title: Chitosan nanoparticles plus quercetin suppress the oxidative stress, modulate DNA fragmentation and gene expression in the kidney of rats fed ochratoxin A-contaminated diet publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2016.12.002 – volume: 93 start-page: 547 year: 2009 ident: ref_104 article-title: Ochratoxin A impairs Nrf2-dependent gene expression in porcine kidney tubulus cells publication-title: J. Anim. Physiol. Anim. Nutr. doi: 10.1111/j.1439-0396.2008.00838.x – volume: 180 start-page: 11 year: 2020 ident: ref_65 article-title: Ochratoxin A causes cell cycle arrest in G1 and G1/S phases through p53 in HK-2 cells publication-title: Toxicon doi: 10.1016/j.toxicon.2020.03.012 – volume: 324 start-page: 116 year: 2014 ident: ref_75 article-title: Role of microRNA-29b in the ochratoxin A-induced enhanced collagen formation in human kidney cells publication-title: Toxicology doi: 10.1016/j.tox.2014.07.012 – volume: 2020 start-page: 4048706 year: 2020 ident: ref_102 article-title: Selenium Yeast Alleviates Ochratoxin A-Induced Apoptosis and Oxidative Stress via Modulation of the PI3K/AKT and Nrf2/Keap1 Signaling Pathways in the Kidneys of Chickens publication-title: Oxid. Med. Cell Longev. – volume: 41 start-page: 279 year: 2016 ident: ref_112 article-title: Grafting of gallic acid onto chitosan nano particles enhances antioxidant activities in vitro and protects against ochratoxin A toxicity in catfish (Clarias gariepinus) publication-title: Environ. Toxicol. Pharmacol. doi: 10.1016/j.etap.2015.12.005 – volume: 135 start-page: 110883 year: 2020 ident: ref_22 article-title: Ochratoxin A and Portuguese children: Urine biomonitoring, intake estimation and risk assessment publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2019.110883 – volume: 7 start-page: 142 year: 2020 ident: ref_96 article-title: Protective effect of Yemeni green coffee powder against the oxidative stress induced by Ochratoxin A publication-title: Toxicol. Rep. doi: 10.1016/j.toxrep.2019.11.015 – volume: 13 start-page: 95 year: 1996 ident: ref_3 article-title: Ochratoxin A in Danish cereals 1986–1992 and daily intake by the Danish population publication-title: Food Addit. Contam. doi: 10.1080/02652039609374384 – volume: 57 start-page: 211 year: 2019 ident: ref_87 article-title: Ochratoxin A upregulates biomarkers associated with hypoxia and transformation in human kidney cells publication-title: Toxicol. In Vitro doi: 10.1016/j.tiv.2019.03.016 – volume: 304 start-page: 92 year: 2013 ident: ref_49 article-title: Effects of p53 knockout on ochratoxin A-induced genotoxicity in p53-deficient gpt delta mice publication-title: Toxicology doi: 10.1016/j.tox.2012.12.005 – volume: 122 start-page: 120 year: 2018 ident: ref_78 article-title: Ochratoxin A induces cytoprotective autophagy via blocking AKT/mTOR signaling pathway in PK-15 cells publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2018.09.070 – volume: 235 start-page: 5386 year: 2020 ident: ref_97 article-title: Red orange and lemon extract prevents the renal toxicity induced by ochratoxin A in rats publication-title: J. Cell Physiol. doi: 10.1002/jcp.29425 – volume: 234 start-page: 116735 year: 2019 ident: ref_108 article-title: Zinc supplementation alleviates OTA-induced oxidative stress and apoptosis in MDCK cells by up-regulating metallothioneins publication-title: Life Sci. doi: 10.1016/j.lfs.2019.116735 – volume: 57 start-page: 504 year: 2013 ident: ref_76 article-title: Cross-talk between microRNAs, nuclear factor E2-related factor 2, and heme oxygenase-1 in ochratoxin A-induced toxic effects in renal proximal tubular epithelial cells publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201200456 – volume: 93 start-page: 1067 year: 2019 ident: ref_53 article-title: Nephrotoxicity instead of immunotoxicity of OTA is induced through DNMT1-dependent activation of JAK2/STAT3 signaling pathway by targeting SOCS3 publication-title: Arch. Toxicol. doi: 10.1007/s00204-019-02434-5 – volume: 119 start-page: 424 year: 2018 ident: ref_35 article-title: Effect of rMnSOD on Sodium Reabsorption in Renal Proximal Tubule in Ochratoxin A-Treated Rats publication-title: J. Cell Biochem. doi: 10.1002/jcb.26197 – volume: 8 start-page: 465 year: 2015 ident: ref_55 article-title: Dynamic changes of global DNA methylation and hypermethylation of cell adhesion-related genes in rat kidneys in response to Ochratoxin A publication-title: World Mycotoxin J. doi: 10.3920/WMJ2014.1795 – volume: 22 start-page: 679 year: 2006 ident: ref_7 article-title: Critical period and minimum single oral dose of ochratoxin A for inducing developmental toxicity in pregnant Wistar rats publication-title: Reprod. Toxicol. doi: 10.1016/j.reprotox.2006.04.022 – volume: 200 start-page: 183 year: 2021 ident: ref_15 article-title: Ochratoxin A levels in serum of Polish dialysis patients with chronic renal failure publication-title: Toxicon doi: 10.1016/j.toxicon.2021.08.002 – ident: ref_34 doi: 10.3390/antiox10081239 – volume: 82 start-page: 173 year: 2003 ident: ref_4 article-title: The source of ochratoxin A in Brazilian coffee and its formation in relation to processing methods publication-title: Int. J. Food Microbiol. doi: 10.1016/S0168-1605(02)00310-0 – volume: 130 start-page: 305 year: 2001 ident: ref_28 article-title: Melatonin reduces oxidative stress induced by ochratoxin A in rat liver and kidney publication-title: Comp. Biochem. Physiol. C Toxicol. Pharmacol. doi: 10.1016/S1532-0456(01)00248-4 – volume: 23 start-page: 89 year: 2010 ident: ref_52 article-title: Structures of covalent adducts between DNA and ochratoxin a: A new factor in debate about genotoxicity and human risk assessment publication-title: Chem. Res. Toxicol. doi: 10.1021/tx900295a – volume: 411 start-page: 458 year: 2011 ident: ref_39 article-title: p53 activation inhibits ochratoxin A-induced apoptosis in monkey and human kidney epithelial cells via suppression of JNK activation publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2011.06.190 – ident: ref_41 doi: 10.3390/toxins13030190 – volume: 83 start-page: 64 year: 2015 ident: ref_10 article-title: Balkan nephropathy publication-title: Clin. Nephrol. doi: 10.5414/CNP83S064 – volume: 17 start-page: 1289 year: 2004 ident: ref_51 article-title: Evidence for covalent DNA adduction by ochratoxin A following chronic exposure to rat and subacute exposure to pig publication-title: Chem. Res. Toxicol. doi: 10.1021/tx049877s – volume: 182 start-page: 630 year: 2017 ident: ref_44 article-title: Ochratoxin A induces nephrotoxicity and immunotoxicity through different MAPK signaling pathways in PK15 cells and porcine primary splenocytes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.05.030 – volume: 22 start-page: 319 year: 2017 ident: ref_72 article-title: Heat shock proteins and kidney disease: Perspectives of HSP therapy publication-title: Cell Stress Chaperones doi: 10.1007/s12192-017-0790-0 – volume: 122 start-page: 59 year: 2018 ident: ref_31 article-title: Renal toxicity through AhR, PXR, and Nrf2 signaling pathway activation of ochratoxin A-induced oxidative stress in kidney cells publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2018.10.004 – volume: 49 start-page: 1160 year: 2005 ident: ref_47 article-title: Ochratoxin A induces oxidative DNA damage in liver and kidney after oral dosing to rats publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.200500124 – volume: 168 start-page: 141 year: 2019 ident: ref_90 article-title: Ameliorative effect of ursolic acid on ochratoxin A-induced renal cytotoxicity mediated by Lonp1/Aco2/Hsp75 publication-title: Toxicon doi: 10.1016/j.toxicon.2019.07.014 – volume: 11 start-page: 56 year: 2009 ident: ref_85 article-title: Heme oxygenase and renal disease publication-title: Curr. Hypertens. Rep. doi: 10.1007/s11906-009-0011-z – volume: 199 start-page: 79 year: 2021 ident: ref_43 article-title: Ochratoxin A induces ERK1/2 phosphorylation-dependent apoptosis through NF-κB/ERK axis in human proximal tubule HK-2 cell line publication-title: Toxicon doi: 10.1016/j.toxicon.2021.06.005 – volume: 33 start-page: 2212 year: 2019 ident: ref_67 article-title: Precision toxicology shows that troxerutin alleviates ochratoxin A-induced renal lipotoxicity publication-title: FASEB J. doi: 10.1096/fj.201800742R – ident: ref_40 doi: 10.1002/tox.23308 – volume: 89 start-page: 1313 year: 2015 ident: ref_27 article-title: Ochratoxin A activates opposing c-MET/PI3K/Akt and MAPK/ERK 1-2 pathways in human proximal tubule HK-2 cells publication-title: Arch. Toxicol. doi: 10.1007/s00204-014-1311-x – volume: 429 start-page: 152324 year: 2020 ident: ref_61 article-title: Amelioration of ochratoxin-A induced cytotoxicity by prophylactic treatment of N-Acetyl-L-Tryptophan in human embryonic kidney cells publication-title: Toxicology doi: 10.1016/j.tox.2019.152324 – volume: 1588 start-page: 149 year: 2002 ident: ref_29 article-title: The role of oxidative stress in the ochratoxin A-mediated toxicity in proximal tubular cells publication-title: Biochim. Biophys. Acta doi: 10.1016/S0925-4439(02)00159-X – ident: ref_100 doi: 10.3390/molecules25061386 – ident: ref_77 doi: 10.3390/toxins11110615 – volume: 146 start-page: 18 year: 2020 ident: ref_103 article-title: GPx1-mediated DNMT1 expression is involved in the blocking effects of selenium on OTA-induced cytotoxicity and DNA damage publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.11.221 – volume: 184 start-page: 109637 year: 2019 ident: ref_74 article-title: MicroRNA profiling in kidney in pigs fed ochratoxin A contaminated diet publication-title: Ecotoxicol. Environ. Saf doi: 10.1016/j.ecoenv.2019.109637 – volume: 278 start-page: 170 year: 2017 ident: ref_56 article-title: Modulations of DNMT1 and HDAC1 are involved in the OTA-induced cytotoxicity and apoptosis in vitro publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2017.10.020 – volume: 100 start-page: 265 year: 2017 ident: ref_23 article-title: A risk assessment of dietary Ochratoxin a in the United States publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2016.12.037 – volume: 22 start-page: 53 year: 2005 ident: ref_5 article-title: Ochratoxin A in human kidney diseases publication-title: Food Addit. Contam. doi: 10.1080/02652030500309368 – volume: 22 start-page: 883 year: 1984 ident: ref_59 article-title: Inhibition of protein synthesis in mice by ochratoxin A and its prevention by phenylalanine publication-title: Food Chem. Toxicol. doi: 10.1016/0278-6915(84)90170-4 – volume: 94 start-page: 3329 year: 2020 ident: ref_79 article-title: Ochratoxin A induces epithelial-to-mesenchymal transition and renal fibrosis through TGF-β/Smad2/3 and Wnt1/β-catenin signaling pathways in vitro and in vivo publication-title: Arch. Toxicol. doi: 10.1007/s00204-020-02829-9 – volume: 77 start-page: 685 year: 2003 ident: ref_38 article-title: Apoptosis and oxidative stress induced by ochratoxin A in rat kidney publication-title: Arch. Toxicol. doi: 10.1007/s00204-003-0501-8 – volume: 233 start-page: 8731 year: 2018 ident: ref_93 article-title: Effects of δ-tocotrienol on ochratoxin A-induced nephrotoxicity in rats publication-title: J. Cell Physiol. doi: 10.1002/jcp.26753 – volume: 765 start-page: 22 year: 2014 ident: ref_63 article-title: DNA damage and S phase arrest induced by Ochratoxin A in human embryonic kidney cells (HEK 293) publication-title: Mutat Res. doi: 10.1016/j.mrfmmm.2014.05.001 – volume: 17 start-page: 124 year: 1998 ident: ref_12 article-title: Human ochratoxicosis and nephropathy in Egypt: A preliminary study publication-title: Hum. Exp. Toxicol. doi: 10.1177/096032719801700207 – volume: 107 start-page: 73 year: 1991 ident: ref_71 article-title: Mitochondrial dysfunction is an early event in ochratoxin A but not oosporein toxicity to rat renal proximal tubules publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/0041-008X(91)90332-9 |
SSID | ssj0023259 |
Score | 2.5633676 |
SecondaryResourceType | review_article |
Snippet | Ochratoxin A (OTA) is a mycotoxin widely found in various foods and feeds that have a deleterious effect on humans and animals. It has been shown that OTA... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 11237 |
SubjectTerms | Animals Apoptosis Biomarkers Carcinogens - toxicity Cell cycle DNA damage Food contamination & poisoning Humans Kidney diseases Kidney Diseases - chemically induced Kidney Diseases - pathology Kinases Nitric oxide Ochratoxins - toxicity Oxidative stress Plasma Proteins Review Urine |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7xEFIvqOXVUECpVPVUizh2YruXClEQQiq9sNLeomTiiEWQbNlFgn_PTJJdWFC5xqM8ZmzPN57JfADfCm99nse5UKi00BUtxSJOrChlWRDCJ4CO_O_wn4v0bKDPh8mwP3Cb9GWVsz2x3ajLBvmM_JBuoGnvNFH0a_xPMGsUZ1d7Co1lWOXWZVzSZYbPAZeKW7I0ST5IpIlLux6bisL8w9H17YRcI83umCnQX_qkN0Dzdb3kCwd0-hHWe-QYHnWm_gRLvt6AtY5L8nET7F-84pT5w6gOjwQzcqAvwwtPxmr4KhLc_hkOxmLaiN8EMMMZn-gWDE5PLo_PRE-LIJC87VRwJkxi4pKkpFggRpdHWBa5rowi9Kd9KSvCPHFhbYlOyQStlogELZxD1KlV27BSN7X_DKFUWqOqorQqqrZxvDFR5Q2ZVRo03gbwY6aYDPue4UxdcZNR7MB6zBb0GMD3ufi4a5bxP8G9mZazfs1MsmcLB_B1PkyznVMYee2b-07GOIZZAex0Rpk_SdG3SeuSAMyCueYC3El7caQeXbUdtQmzOKXU7vuv9QU-xFzRwvUsdg9Wpnf3fp8gybQ4aOfdE1hu3uQ priority: 102 providerName: ProQuest |
Title | Ochratoxin A-Induced Nephrotoxicity: Up-to-Date Evidence |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34681895 https://www.proquest.com/docview/2584429700 https://www.proquest.com/docview/2584790638 https://pubmed.ncbi.nlm.nih.gov/PMC8539333 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC584OJF1HV342OIsOzJ1iTdme4IIr5GERxFHJhbSCodnMXN-BhB_71Vk0nW8XHxkkNSTUhVNd9XVOcrgN-pNTZJgkRIlEqonLZiGoRGZH6WEsMngo787_BZu3nSUafdsPtfUmjkwIcPSzueJ9W5v9l8unvepQ2_wxUnlexbvb__HgjmKFMDqSdhmkBJ8x49U3VDgXhDGJUSm--XzMI3qZqEXDxk4jU6vaOcb09OvoKi1jzMjTiku1cGfQEmbLEIM-VUyefvYM7xmpvnT73C3RM8mwNt5rYtha3Pd5GI97bbuRWDvjgkqulWk0WXoNM6ujo4EaMBCQIJdweCe2I-hlEYZlQVBBglHmZponItiQcqm_k5sZ8gNSbDSPohGuUjEsmIIkT6YvkDpop-YX-B60ulUOZeM0_zoYS81l5uNQXY16itcWCjckyMI_VwHmJxE1MVwS6Nx1zqwJ_a_LaUzfjMcLXyclwFP6ZkUYST2vMcWK8fU95zMyMpbP-xtNEREy4HfpZBqd9URdMBPRau2oA1tcefFL3robY2sZdISrn85ZUrMBvwsRc-9GJWYWpw_2jXiLcM0gZM6q6mq2kdN2B6_6h9cdlgJAkbw1x9AaVK8YA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9QwDLbGEIIXxM9RGFAk4IlobZI2CRJCE2O6se142Un3Vlo31Q6x9sbdBPun-Bux2-ttB4K3vbZW2jp2_KV2_AG8LLz1eS5zoVBpoStyxUImVpRxWRDCJ4COfHb4cJgORvrTOBmvwa_-LAyXVfZrYrtQlw3yP_ItGkDT2mmi6P30VDBrFGdXewqNziz2_fkP2rLN3u3t0Py-knL349GHgViwCgikYDUXnEiKMXFJUhKUlujyCMsi15VRBJ60L-OKIIMsrC3RqThBq2NEiszOIerUKhr3GlynwBuxR5nxxQZPyZacLaaYJ9LEpV1PT6VctDX5ejKjUEzeJJly_XIM_AvY_lmfeSng7d6B2wukGm53pnUX1nx9D2503JXn98F-xmNO0f-c1OG2YAYQ9GU49GQcDV9Fgvdvw9FUzBuxQ4A27PlLH8DoShT2ENbrpvaPIIyV1qiqKK2Kqm1Ub0xUeUNmFBs03gbwpldMhose5UyV8S2jvQrrMVvRYwCvl-LTrjnHvwQ3ey1nCx-dZRcWFcCL5W3yLk6Z5LVvzjoZ4xjWBbDRTcrySYq-LbYuCcCsTNdSgDt3r96pJ8dtB2_CSE4p9fj_r_Ucbg6ODg-yg73h_hO4Jbmahmtp7Casz7-f-acEh-bFs9YGQ_hy1Ub_G0AJGig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXVN4pBYIEnLA2fiS2KyFUsaxaCgsHVtpbmkwcdREkW3Yr6F_j1zHOY9sFwa3XZOQk4xnP58x4PoBnuTMuy0TGJErFVEmumIvYsIIXOSF8Aujozw5_GCf7E_VuGk834Fd_FsaXVfZrYrNQFzX6f-QDGkDR2qmjaFB2ZRGfhqPX8xPmGaR8prWn02hN5NCd_aDt2-LVwZDm-rkQo7ef3-yzjmGAIQWuJfNJJY6xjeOCYLVAm0VY5JkqtSQgpVzBS4IPIjemQCt5jEZxRIrS1iKqxEga9wpc1TLm3sf09HyzJ0VD1MYp_rEktknb31NKGw1mX74tKCyTZwlPv34xHv4Fcv-s1bwQ_EZbcLNDreFea2a3YMNVt-Fay2N5dgfMRzz26fqfsyrcY54NBF0Rjh0ZSu2vIkH93XAyZ8uaDQnchj2X6V2YXIrC7sFmVVfuAYRcKoWyjJIyL5um9VpHpdNkUlyjdiaAl71iUuz6lXvajK8p7Vu8HtM1PQbwYiU-bxt1_Etwp9dy2vnrIj23rgCerm6Tp_n0SVa5-rSV0dZDvADut5OyepKkb-PGxgHotelaCfgu3ut3qtlx082b8JKVUm7__7WewHUy9_T9wfjwIdwQvrDGl9WYHdhcfj91jwgZLfPHjQmGcHTZNv8bW-0eXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ochratoxin+A-Induced+Nephrotoxicity%3A+Up-to-Date+Evidence&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Khoi%2C+Chong-Sun&rft.au=Chen%2C+Jia-Huang&rft.au=Lin%2C+Tzu-Yu&rft.au=Chiang%2C+Chih-Kang&rft.date=2021-10-18&rft.pub=MDPI&rft.eissn=1422-0067&rft.volume=22&rft.issue=20&rft_id=info:doi/10.3390%2Fijms222011237&rft_id=info%3Apmid%2F34681895&rft.externalDocID=PMC8539333 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |