Electrophoretic co-deposition of Fe2O3 and Mn1,5Co1,5O4: Processing and oxidation performance of Fe-doped Mn-Co coatings for solid oxide cell interconnects

Fe-doped Mn1,5Co1,5O4 coatings on Crofer22APU were processed by an electrophoretic co-deposition method and the corrosion resistance was tested at 750 °C up to 2000 h. The “in-situ” Fe-doping of the manganese cobalt spinel was achieved by electrophoretic co-deposition of Mn1,5Co1,5O4 and Fe2O3 powde...

Full description

Saved in:
Bibliographic Details
Published inJournal of the European Ceramic Society Vol. 39; no. 13; pp. 3768 - 3777
Main Authors Zanchi, E., Talic, B., Sabato, A.G., Molin, S., Boccaccini, A.R., Smeacetto, F.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fe-doped Mn1,5Co1,5O4 coatings on Crofer22APU were processed by an electrophoretic co-deposition method and the corrosion resistance was tested at 750 °C up to 2000 h. The “in-situ” Fe-doping of the manganese cobalt spinel was achieved by electrophoretic co-deposition of Mn1,5Co1,5O4 and Fe2O3 powders followed by a two-step reactive sintering treatment. The effects on the coating properties of two different Fe-doping levels (5 and 10 wt.% respectively) and two different temperatures of the reducing treatment (900 and 1000 °C) are discussed. Samples with Fe-doped coatings demonstrated a lower parabolic oxidation rate and thinner oxide scale in comparison with both the undoped Mn1,5Co1,5O4 spinel coating and bare Crofer 22 APU. The best corrosion protection was achieved with the combined effect of Fe-doping and a higher temperature of the reducing step at 1000 °C.
ISSN:0955-2219
1873-619X
DOI:10.1016/j.jeurceramsoc.2019.05.024