Reduced-Reference Image Quality Assessment by Structural Similarity Estimation
Reduced-reference image quality assessment (RR-IQA) provides a practical solution for automatic image quality evaluations in various applications where only partial information about the original reference image is accessible. In this paper, we propose an RR-IQA method by estimating the structural s...
Saved in:
Published in | IEEE transactions on image processing Vol. 21; no. 8; pp. 3378 - 3389 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.08.2012
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reduced-reference image quality assessment (RR-IQA) provides a practical solution for automatic image quality evaluations in various applications where only partial information about the original reference image is accessible. In this paper, we propose an RR-IQA method by estimating the structural similarity index (SSIM), which is a widely used full-reference (FR) image quality measure shown to be a good indicator of perceptual image quality. Specifically, we extract statistical features from a multiscale multiorientation divisive normalization transform and develop a distortion measure by following the philosophy in the construction of SSIM. We find an interesting linear relationship between the FR SSIM measure and our RR estimate when the image distortion type is fixed. A regression-by-discretization method is then applied to normalize our measure across image distortion types. We use six publicly available subject-rated databases to test the proposed RR-SSIM method, which shows strong correlations with both SSIM and subjective quality evaluations. Finally, we introduce the novel idea of partially repairing an image using RR features and use deblurring as an example to demonstrate its application. |
---|---|
AbstractList | Reduced-reference image quality assessment (RR-IQA) provides a practical solution for automatic image quality evaluations in various applications where only partial information about the original reference image is accessible. Here we propose an RR-IQA method by estimating the structural similarity (SSIM) index, which is a widely used full-reference (FR) image quality measure shown to be a good indicator of perceptual image quality. Specifically, we extract statistical features from a multi-scale, multi-orientation divisive normalization transform and develop a distortion measure by following the philosophy in the construction of SSIM. We found an interesting linear relationship between the FR SSIM measure and our RR estimate when the image distortion type is fixed. A regression-bydiscretization method is then applied to normalize our measure across image distortion types. We use six publiclyavailable subject-rated databases to test the proposed RR-SSIM method, which shows strong correlations with both SSIM and subjective quality evaluations. Finally, we introduce the novel idea of partially repairing an image using RR features and use deblurring as an example to demonstrate its application.Reduced-reference image quality assessment (RR-IQA) provides a practical solution for automatic image quality evaluations in various applications where only partial information about the original reference image is accessible. Here we propose an RR-IQA method by estimating the structural similarity (SSIM) index, which is a widely used full-reference (FR) image quality measure shown to be a good indicator of perceptual image quality. Specifically, we extract statistical features from a multi-scale, multi-orientation divisive normalization transform and develop a distortion measure by following the philosophy in the construction of SSIM. We found an interesting linear relationship between the FR SSIM measure and our RR estimate when the image distortion type is fixed. A regression-bydiscretization method is then applied to normalize our measure across image distortion types. We use six publiclyavailable subject-rated databases to test the proposed RR-SSIM method, which shows strong correlations with both SSIM and subjective quality evaluations. Finally, we introduce the novel idea of partially repairing an image using RR features and use deblurring as an example to demonstrate its application. Reduced-reference image quality assessment (RR-IQA) provides a practical solution for automatic image quality evaluations in various applications where only partial information about the original reference image is accessible. Here we propose an RR-IQA method by estimating the structural similarity (SSIM) index, which is a widely used full-reference (FR) image quality measure shown to be a good indicator of perceptual image quality. Specifically, we extract statistical features from a multi-scale, multi-orientation divisive normalization transform and develop a distortion measure by following the philosophy in the construction of SSIM. We found an interesting linear relationship between the FR SSIM measure and our RR estimate when the image distortion type is fixed. A regression-bydiscretization method is then applied to normalize our measure across image distortion types. We use six publiclyavailable subject-rated databases to test the proposed RR-SSIM method, which shows strong correlations with both SSIM and subjective quality evaluations. Finally, we introduce the novel idea of partially repairing an image using RR features and use deblurring as an example to demonstrate its application. Reduced-reference image quality assessment (RR-IQA) provides a practical solution for automatic image quality evaluations in various applications where only partial information about the original reference image is accessible. In this paper, we propose an RR-IQA method by estimating the structural similarity index (SSIM), which is a widely used full-reference (FR) image quality measure shown to be a good indicator of perceptual image quality. Specifically, we extract statistical features from a multiscale multiorientation divisive normalization transform and develop a distortion measure by following the philosophy in the construction of SSIM. We find an interesting linear relationship between the FR SSIM measure and our RR estimate when the image distortion type is fixed. A regression-by-discretization method is then applied to normalize our measure across image distortion types. We use six publicly available subject-rated databases to test the proposed RR-SSIM method, which shows strong correlations with both SSIM and subjective quality evaluations. Finally, we introduce the novel idea of partially repairing an image using RR features and use deblurring as an example to demonstrate its application. |
Author | Zhou Wang Rehman, A. |
Author_xml | – sequence: 1 givenname: A. surname: Rehman fullname: Rehman, A. email: abdul.rehman@uwaterloo.ca organization: Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada – sequence: 2 surname: Zhou Wang fullname: Zhou Wang email: zhouwang@ieee.org organization: Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26181044$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22562759$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUlrHDEQRoVxiJfkbjCYvgRy6bFKraV1NMZxBky85ixq1NVBphdbUh_m36fHM04gh5xUh_c-SvUdsf1hHIixE-ALAG7Pn5Z3C8FBLARYwwH22CFYCSXnUuzPM1emNCDtATtK6ZlzkAr0R3YghNLCKHvIfjxQM3lqygdqKdLgqVj2-IuK-wm7kNfFRUqUUk9DLlbr4jHHyecpYlc8hj50GDfMVcqhxxzG4RP70GKX6PPuPWY_v109XX4vb26vl5cXN6WXoHIJbU1GiwoN1AQ1rzTyWjaqXlkjRSNIa7RYY2uNl1Ktmtoo35JAbEi0qKtj9nWb-xLH14lSdn1InroOBxqn5EBWc6DShs_o2Q6dVj017iXOu8a1e7_BDHzZAZg8dm3EwYf0l9NQA5dy5vSW83FMKVLrfMhvv84RQ-eAu00pbi7FbUpxu1Jmkf8jvmf_RzndKoGI_uAabCW4rn4DIMCWJw |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1109_TBC_2014_2344471 crossref_primary_10_1007_s00799_014_0124_0 crossref_primary_10_1109_TIP_2020_2969777 crossref_primary_10_1155_2013_905685 crossref_primary_10_18034_gdeb_v6i1_115 crossref_primary_10_1016_j_jvcir_2015_08_009 crossref_primary_10_2139_ssrn_4191365 crossref_primary_10_1007_s00521_021_06435_3 crossref_primary_10_1007_s11042_018_6759_x crossref_primary_10_1016_j_image_2019_02_006 crossref_primary_10_1109_TIP_2021_3053369 crossref_primary_10_1016_j_sigpro_2014_08_048 crossref_primary_10_1109_COMST_2014_2363139 crossref_primary_10_1109_TIP_2017_2708503 crossref_primary_10_1186_s13640_018_0246_1 crossref_primary_10_1109_TBME_2024_3443635 crossref_primary_10_1016_j_jvcir_2018_11_038 crossref_primary_10_3390_app13116585 crossref_primary_10_1016_j_neucom_2022_05_043 crossref_primary_10_3390_app11209776 crossref_primary_10_1109_TIP_2012_2231090 crossref_primary_10_1016_j_compbiomed_2024_108670 crossref_primary_10_1109_ACCESS_2016_2598289 crossref_primary_10_1007_s13042_014_0235_3 crossref_primary_10_1109_TMM_2017_2729020 crossref_primary_10_1016_j_jvcir_2016_04_006 crossref_primary_10_1117_1_JEI_25_6_061623 crossref_primary_10_1016_j_jvcir_2019_102704 crossref_primary_10_1007_s11042_022_12060_6 crossref_primary_10_14316_pmp_2015_26_4_258 crossref_primary_10_1016_j_jvcir_2018_08_019 crossref_primary_10_1109_TMM_2018_2849602 crossref_primary_10_1109_JETCAS_2016_2598756 crossref_primary_10_1109_ACCESS_2018_2885818 crossref_primary_10_1007_s00521_021_05982_z crossref_primary_10_1109_JSEN_2014_2361286 crossref_primary_10_1109_TIM_2022_3191661 crossref_primary_10_3390_s21030994 crossref_primary_10_1109_ACCESS_2023_3312126 crossref_primary_10_3923_itj_2014_171_176 crossref_primary_10_1109_TCSVT_2019_2955011 crossref_primary_10_2139_ssrn_4089412 crossref_primary_10_1016_j_sigpro_2017_12_004 crossref_primary_10_1109_TMM_2020_2986583 crossref_primary_10_1007_s00521_018_3497_y crossref_primary_10_1016_j_infrared_2017_07_011 crossref_primary_10_1117_1_JBO_23_6_065006 crossref_primary_10_1109_TMM_2023_3273855 crossref_primary_10_1117_1_JEI_32_6_062508 crossref_primary_10_1007_s00371_021_02340_x crossref_primary_10_3389_fnins_2021_767977 crossref_primary_10_1109_TCSVT_2016_2602764 crossref_primary_10_1016_j_image_2020_115839 crossref_primary_10_1016_j_optcom_2024_130435 crossref_primary_10_1016_j_image_2019_04_009 crossref_primary_10_2139_ssrn_4154043 crossref_primary_10_1016_j_image_2018_11_003 crossref_primary_10_1007_s11760_015_0818_9 crossref_primary_10_1016_j_image_2020_116096 crossref_primary_10_1016_j_sigpro_2018_07_006 crossref_primary_10_1109_TMI_2020_3002708 crossref_primary_10_1049_iet_ipr_2016_0560 crossref_primary_10_1016_j_ins_2014_12_055 crossref_primary_10_1016_j_image_2012_08_001 crossref_primary_10_1109_ACCESS_2019_2904732 crossref_primary_10_1109_TIP_2015_2456638 crossref_primary_10_1109_TCSVT_2018_2868262 crossref_primary_10_1186_s13634_024_01170_y crossref_primary_10_1007_s11042_017_4636_7 crossref_primary_10_1016_j_jvcir_2018_10_027 crossref_primary_10_1016_j_array_2022_100265 crossref_primary_10_1109_TIP_2021_3060255 crossref_primary_10_1146_annurev_vision_100419_120301 crossref_primary_10_1088_0957_0233_24_7_074019 crossref_primary_10_1109_LSP_2014_2372333 crossref_primary_10_1109_TIP_2020_2992079 crossref_primary_10_1007_s11760_018_1287_8 crossref_primary_10_1109_TIM_2021_3096865 crossref_primary_10_1109_ACCESS_2019_2932015 crossref_primary_10_1109_ACCESS_2024_3378092 crossref_primary_10_1109_TCYB_2019_2899005 crossref_primary_10_1016_j_ins_2017_08_080 crossref_primary_10_1007_s11432_019_2757_1 crossref_primary_10_1109_ACCESS_2022_3221956 crossref_primary_10_1016_j_jvcir_2018_05_005 crossref_primary_10_1109_TGRS_2018_2849225 crossref_primary_10_3923_itj_2014_1548_1554 crossref_primary_10_1007_s13369_020_04414_9 crossref_primary_10_1007_s11220_016_0149_0 crossref_primary_10_1016_j_comcom_2014_12_001 crossref_primary_10_1109_TCSVT_2024_3405789 crossref_primary_10_1007_s11042_020_09861_y crossref_primary_10_1016_j_sigpro_2024_109746 crossref_primary_10_1016_j_culher_2017_10_001 crossref_primary_10_1109_TMM_2017_2761993 crossref_primary_10_1049_iet_ipr_2016_0411 crossref_primary_10_1109_TIP_2016_2577891 crossref_primary_10_1016_j_jvcir_2023_103979 crossref_primary_10_1007_s11042_018_5757_3 crossref_primary_10_1016_j_image_2023_117025 crossref_primary_10_1155_2016_6586032 crossref_primary_10_1007_s11042_015_2663_9 crossref_primary_10_1016_j_image_2017_03_020 crossref_primary_10_1109_TIP_2017_2781307 crossref_primary_10_1109_LSP_2024_3392671 crossref_primary_10_1109_LSP_2016_2594166 crossref_primary_10_1109_TCSVT_2016_2634590 crossref_primary_10_1109_TIP_2021_3098245 crossref_primary_10_1109_TSMC_2017_2676180 crossref_primary_10_1007_s11207_015_0676_1 crossref_primary_10_1016_j_image_2020_115804 crossref_primary_10_1007_s10470_022_02093_0 crossref_primary_10_1007_s11042_020_10035_z crossref_primary_10_1186_s13640_021_00578_y crossref_primary_10_3390_jimaging8060166 crossref_primary_10_1007_s40012_015_0066_8 crossref_primary_10_1109_TIP_2016_2601821 crossref_primary_10_1631_FITEE_1500439 crossref_primary_10_1016_j_jvcir_2015_01_006 crossref_primary_10_1109_TMM_2014_2373812 crossref_primary_10_1016_j_image_2014_06_007 crossref_primary_10_20965_jaciii_2018_p0323 crossref_primary_10_2352_J_ImagingSci_Technol_2021_65_6_060409 crossref_primary_10_1049_iet_ipr_2016_0593 crossref_primary_10_1109_TMM_2020_2991546 crossref_primary_10_1145_3716634 crossref_primary_10_1109_TIP_2015_2413298 crossref_primary_10_1007_s13319_018_0180_0 crossref_primary_10_1007_s11042_020_08985_5 crossref_primary_10_1007_s11042_022_12478_y crossref_primary_10_1109_ACCESS_2017_2764126 crossref_primary_10_1109_TMM_2017_2685240 crossref_primary_10_1109_TCYB_2020_3024627 crossref_primary_10_1007_s11042_021_11385_y crossref_primary_10_1109_TIP_2017_2669840 crossref_primary_10_1109_TMM_2023_3310268 crossref_primary_10_1016_j_jvcir_2014_06_007 crossref_primary_10_1109_TIM_2025_3529045 crossref_primary_10_1016_j_patcog_2019_02_021 crossref_primary_10_1007_s11042_017_4958_5 crossref_primary_10_1007_s12559_018_9562_0 crossref_primary_10_1080_00207217_2016_1138517 |
Cites_doi | 10.1364/JOSAA.14.002379 10.1109/TIP.2011.2173206 10.1109/TIP.2010.2092435 10.1109/ACSSC.2003.1292216 10.1117/12.371210 10.1109/TIP.2005.854492 10.1109/ICIP.2011.6116065 10.1109/JSTSP.2009.2014497 10.1613/jair.199 10.1109/TMM.2011.2109701 10.1109/TIP.2007.901820 10.1109/TIP.2005.860325 10.1023/A:1010933404324 10.1109/ICIP.2011.6115659 10.1109/TIP.2003.819861 10.1109/18.119725 10.1109/TIP.2005.864165 10.1109/TIP.2005.859389 10.1007/s11042-010-0473-7 10.1117/12.597306 10.1109/ICIP.2003.1247212 10.1109/ICIP.2011.6115771 10.1364/JOSAA.11.001710 10.1109/MSP.2008.930649 10.1117/12.873075 10.1109/5.982412 10.1017/S0952523800009640 10.1109/97.641398 10.1109/ICIP.2002.1038064 10.1109/ICASSP.2011.5946605 10.1109/TIC.2003.1249092 10.1016/S0042-6989(99)00101-7 10.1016/j.image.2003.08.003 10.1109/TCSVT.2011.2168269 10.1002/0471200611 10.1109/ICIP.2000.899622 10.1016/S0042-6989(97)00183-1 10.1023/A:1026553619983 10.1109/TIP.2006.881959 10.2200/S00010ED1V01Y200508IVM003 10.1109/CVPR.2012.6247795 10.1146/annurev.neuro.24.1.1193 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1109/TIP.2012.2197011 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 3389 |
ExternalDocumentID | 22562759 26181044 10_1109_TIP_2012_2197011 6193206 |
Genre | orig-research Journal Article |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG IQODW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c415t-1f8e7623a718e18036a084d58b9742d2e66a9a8af97c445bd875cfe2aade2fa63 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Fri Jul 11 07:22:35 EDT 2025 Mon Jul 21 05:54:21 EDT 2025 Mon Jul 21 09:14:44 EDT 2025 Tue Jul 01 02:02:51 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 Tue Aug 26 16:57:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Image processing Similarity image deblurring structural similarity Regression analysis Image restoration Divisive normalization transform Blurred image Subjective evaluation Discretization method Image quality image repairing reduced-reference image quality assessment (RR-IQA) Multiscale method natural image statistics Quality control Database Signal distortion Image evaluation |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c415t-1f8e7623a718e18036a084d58b9742d2e66a9a8af97c445bd875cfe2aade2fa63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22562759 |
PQID | 1430845670 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmed_primary_22562759 pascalfrancis_primary_26181044 proquest_miscellaneous_1430845670 crossref_primary_10_1109_TIP_2012_2197011 crossref_citationtrail_10_1109_TIP_2012_2197011 ieee_primary_6193206 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-08-01 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2012 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | ref13 chono (ref29) 2008 ref12 ref59 ref15 ref14 ref55 ref11 larson (ref54) 2010 ref10 ref17 ref19 horita (ref51) 2010 ref18 ref46 wang (ref16) 2000; 3 ref48 ref47 ref42 barlow (ref32) 1961 ref41 ref43 ninassi (ref50) 2006; 6057 ref8 ref7 wainwright (ref40) 2000 ref9 ref4 ref3 ref5 wang (ref22) 2003 wang (ref23) 2005; 5666 ref35 ref34 gunawan (ref28) 2003 ref37 ref36 kusuma (ref27) 2003 ref30 ref33 ponomarenko (ref53) 2008 weiss (ref45) 1995; 3 ref2 ref1 ref39 ref38 larson (ref6) 2010; 19 sheikh (ref44) 2006 ponomarenko (ref52) 2009; 10 ponomarenko (ref57) 2009 ref24 ref26 ref25 le callet (ref49) 2005 ref20 ref21 carnec (ref31) 2005; 1 xue (ref58) 2010 (ref56) 2000 ref60 ref62 ref61 |
References_xml | – ident: ref39 doi: 10.1364/JOSAA.14.002379 – start-page: 609 year: 2008 ident: ref29 article-title: Reduced-reference image quality assessment using distributed source coding publication-title: Proc IEEE Int Conf Multimedia Expo – ident: ref8 doi: 10.1109/TIP.2011.2173206 – ident: ref3 doi: 10.1109/TIP.2010.2092435 – year: 2010 ident: ref51 publication-title: MICT Image Quality Evaluation Database – year: 2008 ident: ref53 publication-title: Tampere Image Database TID2008 – ident: ref2 doi: 10.1109/ACSSC.2003.1292216 – ident: ref26 doi: 10.1117/12.371210 – ident: ref19 doi: 10.1109/TIP.2005.854492 – year: 2000 ident: ref56 publication-title: Final report from the video quality experts group on the validation of objective models of video quality assessment – ident: ref12 doi: 10.1109/ICIP.2011.6116065 – ident: ref25 doi: 10.1109/JSTSP.2009.2014497 – volume: 3 start-page: 383 year: 1995 ident: ref45 article-title: Rule-based machine learning methods for functional prediction publication-title: J Artif Intell Res doi: 10.1613/jair.199 – volume: 10 start-page: 30 year: 2009 ident: ref52 article-title: TID2008-A database for evaluation of full-Reference visual quality assessment metrics publication-title: Adv Modern Radioelectron – year: 2010 ident: ref54 publication-title: Categorical Image Quality (CSIQ) Database – ident: ref60 doi: 10.1109/TMM.2011.2109701 – year: 2005 ident: ref49 publication-title: Subjective quality assessment IRCCyN/IVC database – ident: ref48 doi: 10.1109/TIP.2007.901820 – ident: ref61 doi: 10.1109/TIP.2005.860325 – start-page: 137 year: 2003 ident: ref28 article-title: Reduced reference picture quality estimation by using local harmonic amplitude information publication-title: Proc London Commun Symp – start-page: 1 year: 2010 ident: ref58 publication-title: IEEE Int Workshop on Quality of Multimedia Experience – year: 2006 ident: ref44 publication-title: Image and Video Quality Assessment Research at LIVE – ident: ref46 doi: 10.1023/A:1010933404324 – ident: ref11 doi: 10.1109/ICIP.2011.6115659 – volume: 19 start-page: 11006-1 year: 2010 ident: ref6 article-title: Most apparent distortion: Fullreference image quality assessment and the role of strategy publication-title: J Electron Imag – ident: ref43 doi: 10.1109/TIP.2003.819861 – ident: ref47 doi: 10.1109/18.119725 – ident: ref24 doi: 10.1109/TIP.2005.864165 – ident: ref4 doi: 10.1109/TIP.2005.859389 – volume: 1 start-page: -421i year: 2005 ident: ref31 publication-title: Proc IEEE Int Conf Image Process – ident: ref34 doi: 10.1007/s11042-010-0473-7 – ident: ref1 doi: 10.1109/TIP.2003.819861 – ident: ref41 doi: 10.1109/JSTSP.2009.2014497 – volume: 5666 start-page: 149 year: 2005 ident: ref23 article-title: Reduced-reference image quality assessment using a wavelet-domain natural image statistic model publication-title: Proc SPIE doi: 10.1117/12.597306 – ident: ref30 doi: 10.1109/ICIP.2003.1247212 – start-page: 1 year: 2009 ident: ref57 article-title: Metrics performance comparison for color image database publication-title: Proc 4th Int Workshop Video Process Qual Metrics Consumer Electron – ident: ref10 doi: 10.1109/ICIP.2011.6115771 – ident: ref38 doi: 10.1364/JOSAA.11.001710 – volume: 6057 start-page: 60570g-1 year: 2006 ident: ref50 article-title: Pseudo no reference image quality metric using perceptual data hiding publication-title: Proc SPIE – ident: ref7 doi: 10.1109/MSP.2008.930649 – ident: ref59 doi: 10.1117/12.873075 – ident: ref17 doi: 10.1109/5.982412 – start-page: 217 year: 1961 ident: ref32 publication-title: Sensory Communication – ident: ref35 doi: 10.1017/S0952523800009640 – ident: ref15 doi: 10.1109/97.641398 – ident: ref18 doi: 10.1109/ICIP.2002.1038064 – ident: ref13 doi: 10.1109/ICASSP.2011.5946605 – start-page: 71 year: 2003 ident: ref27 article-title: A reduced-reference perceptual quality metric for in-service image quality assessment publication-title: Proc Joint 1st Workshop Mobile Future Symp Trends Commun doi: 10.1109/TIC.2003.1249092 – ident: ref37 doi: 10.1016/S0042-6989(99)00101-7 – ident: ref20 doi: 10.1016/j.image.2003.08.003 – ident: ref9 doi: 10.1109/TCSVT.2011.2168269 – ident: ref42 doi: 10.1002/0471200611 – volume: 3 start-page: 981 year: 2000 ident: ref16 article-title: Blind measurement of blocking artifacts in images publication-title: Proc IEEE Int Conf Image Process doi: 10.1109/ICIP.2000.899622 – ident: ref5 doi: 10.1109/TIP.2007.901820 – start-page: 1041 year: 2003 ident: ref22 publication-title: The Handbook of Video Databases Design and Applications – ident: ref36 doi: 10.1016/S0042-6989(97)00183-1 – ident: ref62 doi: 10.1023/A:1026553619983 – ident: ref55 doi: 10.1109/TIP.2006.881959 – ident: ref14 doi: 10.2200/S00010ED1V01Y200508IVM003 – ident: ref21 doi: 10.1109/CVPR.2012.6247795 – ident: ref33 doi: 10.1146/annurev.neuro.24.1.1193 – start-page: 855 year: 2000 ident: ref40 publication-title: Advanced Neural Information Processing Systems |
SSID | ssj0014516 |
Score | 2.5124521 |
Snippet | Reduced-reference image quality assessment (RR-IQA) provides a practical solution for automatic image quality evaluations in various applications where only... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3378 |
SubjectTerms | Algorithms Applied sciences Data Interpretation, Statistical Detection, estimation, filtering, equalization, prediction Distortion measurement Divisive normalization transform Estimation Exact sciences and technology Feature extraction image deblurring Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Image quality image repairing Information, signal and communications theory natural image statistics Nonlinear distortion Pattern Recognition, Automated - methods Receivers reduced-reference image quality assessment (RR-IQA) Reference Values Reproducibility of Results Sensitivity and Specificity Signal and communications theory Signal processing Signal, noise structural similarity Subtraction Technique Telecommunications and information theory Transforms |
Title | Reduced-Reference Image Quality Assessment by Structural Similarity Estimation |
URI | https://ieeexplore.ieee.org/document/6193206 https://www.ncbi.nlm.nih.gov/pubmed/22562759 https://www.proquest.com/docview/1430845670 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7Ukx58P-KLFbwIbhuTbB5HkYoKitgWvIVJdhdEbYW2B_31zmTT-EDFWyEbku7MznyTmfkG4FAlqGyBsSz9CGVkg1ASjPClCRO_4J4Rq7nf-fomvuhHV_fqfgaOm14YY0xVfGZa_LPK5ethOeFPZe2Y0Qbza89S4OZ6tZqMAQ-crTKbKpEJwf5pStLP2r3LW67hClp0OhPSZyYAJk8fJExQ-skbVeNVuDgSR7Q_1g22-B15Vh7ofAmup-_uCk8eW5Nx0SrfvtE6_vfPLcNiDUXFqdOdFZgxg1VYqmGpqA_9aBUWPnEWrsHNHZO9Gi0bilpx-UxGSTg2jldx2nB9iuJVdCt-Wub2EN2H5weKo3lNhwyL65lch_55p3d2IeuhDLIkXz-WJzY1ZEBDJKdmTlJygOinkVZpQZFJoAMTx5hhijZLyihShaaAqLQmQNQmsBiHGzA3GA7MFgi2KJkik4xooxCDLFbI-DTUCguF2oP2VDh5WTOW8-CMp7yKXPwsJ8nmLNm8lqwHR80dL46t44-1ayyEZl29_x7sf5F_c51CzZRi18iDg6lC5HQUOb-CAzOcjCiKCmkrVJz4Hmw6Tfm4u1a47Z-fugPz_G6usnAX5kg2Zo_QzrjYr9T8HQB7-Dk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4heqAcyqtQ9xEWiUulbuLYXj-OEQIlQCIEQeJmjb27EgKSSkkO9Nd3xuu4gAriFslr2dmZnfnGM_MNwKFKUNkCY1n6EcrIBqEkGOFLEyZ-wT0jVnO_83AU96-j0xt1swK_ml4YY0xVfGba_LPK5etpueBPZZ2Y0Qbza38gv6-6rluryRnwyNkqt6kSmRDwXyYl_awzHlxwFVfQpvOZkEYzBTD5-iBhitIn_qgasMLlkTijHbJutMXr2LPyQScbMFy-vSs9uWsv5kW7_POC2PG9f28TPtVgVPSc9mzBiplsw0YNTEV97GfbsP6EtXAHRpdM92q0bEhqxeCBzJJwfByPotewfYriUVxVDLXM7iGubh9uKZLmNcdkWlzX5Ge4PjkeH_VlPZZBluTt57JrU0MmNERya6abkgtEP420SguKTQIdmDjGDFO0WVJGkSo0hUSlNQGiNoHFONyF1cl0Yr6AYJuSKTLKiDYKMchihYxQQ62wUKg96CyFk5c1ZzmPzrjPq9jFz3KSbM6SzWvJevCzueO34-t4Y-0OC6FZV--_B61n8m-uU7CZUvQaeXCwVIicDiNnWHBiposZxVEhbYWKE9-DPacp_-6uFe7r_5-6D2v98fA8Px-Mzr7BR35PV2f4HVZJTuYHYZ950apU_i8Yx_uC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced-Reference+Image+Quality+Assessment+by+Structural+Similarity+Estimation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Rehman%2C+A.&rft.au=Zhou+Wang&rft.date=2012-08-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=21&rft.issue=8&rft.spage=3378&rft.epage=3389&rft_id=info:doi/10.1109%2FTIP.2012.2197011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2012_2197011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |