Reduced-Reference Image Quality Assessment by Structural Similarity Estimation

Reduced-reference image quality assessment (RR-IQA) provides a practical solution for automatic image quality evaluations in various applications where only partial information about the original reference image is accessible. In this paper, we propose an RR-IQA method by estimating the structural s...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 21; no. 8; pp. 3378 - 3389
Main Authors Rehman, A., Zhou Wang
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.08.2012
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reduced-reference image quality assessment (RR-IQA) provides a practical solution for automatic image quality evaluations in various applications where only partial information about the original reference image is accessible. In this paper, we propose an RR-IQA method by estimating the structural similarity index (SSIM), which is a widely used full-reference (FR) image quality measure shown to be a good indicator of perceptual image quality. Specifically, we extract statistical features from a multiscale multiorientation divisive normalization transform and develop a distortion measure by following the philosophy in the construction of SSIM. We find an interesting linear relationship between the FR SSIM measure and our RR estimate when the image distortion type is fixed. A regression-by-discretization method is then applied to normalize our measure across image distortion types. We use six publicly available subject-rated databases to test the proposed RR-SSIM method, which shows strong correlations with both SSIM and subjective quality evaluations. Finally, we introduce the novel idea of partially repairing an image using RR features and use deblurring as an example to demonstrate its application.
AbstractList Reduced-reference image quality assessment (RR-IQA) provides a practical solution for automatic image quality evaluations in various applications where only partial information about the original reference image is accessible. Here we propose an RR-IQA method by estimating the structural similarity (SSIM) index, which is a widely used full-reference (FR) image quality measure shown to be a good indicator of perceptual image quality. Specifically, we extract statistical features from a multi-scale, multi-orientation divisive normalization transform and develop a distortion measure by following the philosophy in the construction of SSIM. We found an interesting linear relationship between the FR SSIM measure and our RR estimate when the image distortion type is fixed. A regression-bydiscretization method is then applied to normalize our measure across image distortion types. We use six publiclyavailable subject-rated databases to test the proposed RR-SSIM method, which shows strong correlations with both SSIM and subjective quality evaluations. Finally, we introduce the novel idea of partially repairing an image using RR features and use deblurring as an example to demonstrate its application.Reduced-reference image quality assessment (RR-IQA) provides a practical solution for automatic image quality evaluations in various applications where only partial information about the original reference image is accessible. Here we propose an RR-IQA method by estimating the structural similarity (SSIM) index, which is a widely used full-reference (FR) image quality measure shown to be a good indicator of perceptual image quality. Specifically, we extract statistical features from a multi-scale, multi-orientation divisive normalization transform and develop a distortion measure by following the philosophy in the construction of SSIM. We found an interesting linear relationship between the FR SSIM measure and our RR estimate when the image distortion type is fixed. A regression-bydiscretization method is then applied to normalize our measure across image distortion types. We use six publiclyavailable subject-rated databases to test the proposed RR-SSIM method, which shows strong correlations with both SSIM and subjective quality evaluations. Finally, we introduce the novel idea of partially repairing an image using RR features and use deblurring as an example to demonstrate its application.
Reduced-reference image quality assessment (RR-IQA) provides a practical solution for automatic image quality evaluations in various applications where only partial information about the original reference image is accessible. Here we propose an RR-IQA method by estimating the structural similarity (SSIM) index, which is a widely used full-reference (FR) image quality measure shown to be a good indicator of perceptual image quality. Specifically, we extract statistical features from a multi-scale, multi-orientation divisive normalization transform and develop a distortion measure by following the philosophy in the construction of SSIM. We found an interesting linear relationship between the FR SSIM measure and our RR estimate when the image distortion type is fixed. A regression-bydiscretization method is then applied to normalize our measure across image distortion types. We use six publiclyavailable subject-rated databases to test the proposed RR-SSIM method, which shows strong correlations with both SSIM and subjective quality evaluations. Finally, we introduce the novel idea of partially repairing an image using RR features and use deblurring as an example to demonstrate its application.
Reduced-reference image quality assessment (RR-IQA) provides a practical solution for automatic image quality evaluations in various applications where only partial information about the original reference image is accessible. In this paper, we propose an RR-IQA method by estimating the structural similarity index (SSIM), which is a widely used full-reference (FR) image quality measure shown to be a good indicator of perceptual image quality. Specifically, we extract statistical features from a multiscale multiorientation divisive normalization transform and develop a distortion measure by following the philosophy in the construction of SSIM. We find an interesting linear relationship between the FR SSIM measure and our RR estimate when the image distortion type is fixed. A regression-by-discretization method is then applied to normalize our measure across image distortion types. We use six publicly available subject-rated databases to test the proposed RR-SSIM method, which shows strong correlations with both SSIM and subjective quality evaluations. Finally, we introduce the novel idea of partially repairing an image using RR features and use deblurring as an example to demonstrate its application.
Author Zhou Wang
Rehman, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Rehman
  fullname: Rehman, A.
  email: abdul.rehman@uwaterloo.ca
  organization: Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada
– sequence: 2
  surname: Zhou Wang
  fullname: Zhou Wang
  email: zhouwang@ieee.org
  organization: Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26181044$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22562759$$D View this record in MEDLINE/PubMed
BookMark eNp9kUlrHDEQRoVxiJfkbjCYvgRy6bFKraV1NMZxBky85ixq1NVBphdbUh_m36fHM04gh5xUh_c-SvUdsf1hHIixE-ALAG7Pn5Z3C8FBLARYwwH22CFYCSXnUuzPM1emNCDtATtK6ZlzkAr0R3YghNLCKHvIfjxQM3lqygdqKdLgqVj2-IuK-wm7kNfFRUqUUk9DLlbr4jHHyecpYlc8hj50GDfMVcqhxxzG4RP70GKX6PPuPWY_v109XX4vb26vl5cXN6WXoHIJbU1GiwoN1AQ1rzTyWjaqXlkjRSNIa7RYY2uNl1Ktmtoo35JAbEi0qKtj9nWb-xLH14lSdn1InroOBxqn5EBWc6DShs_o2Q6dVj017iXOu8a1e7_BDHzZAZg8dm3EwYf0l9NQA5dy5vSW83FMKVLrfMhvv84RQ-eAu00pbi7FbUpxu1Jmkf8jvmf_RzndKoGI_uAabCW4rn4DIMCWJw
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_TBC_2014_2344471
crossref_primary_10_1007_s00799_014_0124_0
crossref_primary_10_1109_TIP_2020_2969777
crossref_primary_10_1155_2013_905685
crossref_primary_10_18034_gdeb_v6i1_115
crossref_primary_10_1016_j_jvcir_2015_08_009
crossref_primary_10_2139_ssrn_4191365
crossref_primary_10_1007_s00521_021_06435_3
crossref_primary_10_1007_s11042_018_6759_x
crossref_primary_10_1016_j_image_2019_02_006
crossref_primary_10_1109_TIP_2021_3053369
crossref_primary_10_1016_j_sigpro_2014_08_048
crossref_primary_10_1109_COMST_2014_2363139
crossref_primary_10_1109_TIP_2017_2708503
crossref_primary_10_1186_s13640_018_0246_1
crossref_primary_10_1109_TBME_2024_3443635
crossref_primary_10_1016_j_jvcir_2018_11_038
crossref_primary_10_3390_app13116585
crossref_primary_10_1016_j_neucom_2022_05_043
crossref_primary_10_3390_app11209776
crossref_primary_10_1109_TIP_2012_2231090
crossref_primary_10_1016_j_compbiomed_2024_108670
crossref_primary_10_1109_ACCESS_2016_2598289
crossref_primary_10_1007_s13042_014_0235_3
crossref_primary_10_1109_TMM_2017_2729020
crossref_primary_10_1016_j_jvcir_2016_04_006
crossref_primary_10_1117_1_JEI_25_6_061623
crossref_primary_10_1016_j_jvcir_2019_102704
crossref_primary_10_1007_s11042_022_12060_6
crossref_primary_10_14316_pmp_2015_26_4_258
crossref_primary_10_1016_j_jvcir_2018_08_019
crossref_primary_10_1109_TMM_2018_2849602
crossref_primary_10_1109_JETCAS_2016_2598756
crossref_primary_10_1109_ACCESS_2018_2885818
crossref_primary_10_1007_s00521_021_05982_z
crossref_primary_10_1109_JSEN_2014_2361286
crossref_primary_10_1109_TIM_2022_3191661
crossref_primary_10_3390_s21030994
crossref_primary_10_1109_ACCESS_2023_3312126
crossref_primary_10_3923_itj_2014_171_176
crossref_primary_10_1109_TCSVT_2019_2955011
crossref_primary_10_2139_ssrn_4089412
crossref_primary_10_1016_j_sigpro_2017_12_004
crossref_primary_10_1109_TMM_2020_2986583
crossref_primary_10_1007_s00521_018_3497_y
crossref_primary_10_1016_j_infrared_2017_07_011
crossref_primary_10_1117_1_JBO_23_6_065006
crossref_primary_10_1109_TMM_2023_3273855
crossref_primary_10_1117_1_JEI_32_6_062508
crossref_primary_10_1007_s00371_021_02340_x
crossref_primary_10_3389_fnins_2021_767977
crossref_primary_10_1109_TCSVT_2016_2602764
crossref_primary_10_1016_j_image_2020_115839
crossref_primary_10_1016_j_optcom_2024_130435
crossref_primary_10_1016_j_image_2019_04_009
crossref_primary_10_2139_ssrn_4154043
crossref_primary_10_1016_j_image_2018_11_003
crossref_primary_10_1007_s11760_015_0818_9
crossref_primary_10_1016_j_image_2020_116096
crossref_primary_10_1016_j_sigpro_2018_07_006
crossref_primary_10_1109_TMI_2020_3002708
crossref_primary_10_1049_iet_ipr_2016_0560
crossref_primary_10_1016_j_ins_2014_12_055
crossref_primary_10_1016_j_image_2012_08_001
crossref_primary_10_1109_ACCESS_2019_2904732
crossref_primary_10_1109_TIP_2015_2456638
crossref_primary_10_1109_TCSVT_2018_2868262
crossref_primary_10_1186_s13634_024_01170_y
crossref_primary_10_1007_s11042_017_4636_7
crossref_primary_10_1016_j_jvcir_2018_10_027
crossref_primary_10_1016_j_array_2022_100265
crossref_primary_10_1109_TIP_2021_3060255
crossref_primary_10_1146_annurev_vision_100419_120301
crossref_primary_10_1088_0957_0233_24_7_074019
crossref_primary_10_1109_LSP_2014_2372333
crossref_primary_10_1109_TIP_2020_2992079
crossref_primary_10_1007_s11760_018_1287_8
crossref_primary_10_1109_TIM_2021_3096865
crossref_primary_10_1109_ACCESS_2019_2932015
crossref_primary_10_1109_ACCESS_2024_3378092
crossref_primary_10_1109_TCYB_2019_2899005
crossref_primary_10_1016_j_ins_2017_08_080
crossref_primary_10_1007_s11432_019_2757_1
crossref_primary_10_1109_ACCESS_2022_3221956
crossref_primary_10_1016_j_jvcir_2018_05_005
crossref_primary_10_1109_TGRS_2018_2849225
crossref_primary_10_3923_itj_2014_1548_1554
crossref_primary_10_1007_s13369_020_04414_9
crossref_primary_10_1007_s11220_016_0149_0
crossref_primary_10_1016_j_comcom_2014_12_001
crossref_primary_10_1109_TCSVT_2024_3405789
crossref_primary_10_1007_s11042_020_09861_y
crossref_primary_10_1016_j_sigpro_2024_109746
crossref_primary_10_1016_j_culher_2017_10_001
crossref_primary_10_1109_TMM_2017_2761993
crossref_primary_10_1049_iet_ipr_2016_0411
crossref_primary_10_1109_TIP_2016_2577891
crossref_primary_10_1016_j_jvcir_2023_103979
crossref_primary_10_1007_s11042_018_5757_3
crossref_primary_10_1016_j_image_2023_117025
crossref_primary_10_1155_2016_6586032
crossref_primary_10_1007_s11042_015_2663_9
crossref_primary_10_1016_j_image_2017_03_020
crossref_primary_10_1109_TIP_2017_2781307
crossref_primary_10_1109_LSP_2024_3392671
crossref_primary_10_1109_LSP_2016_2594166
crossref_primary_10_1109_TCSVT_2016_2634590
crossref_primary_10_1109_TIP_2021_3098245
crossref_primary_10_1109_TSMC_2017_2676180
crossref_primary_10_1007_s11207_015_0676_1
crossref_primary_10_1016_j_image_2020_115804
crossref_primary_10_1007_s10470_022_02093_0
crossref_primary_10_1007_s11042_020_10035_z
crossref_primary_10_1186_s13640_021_00578_y
crossref_primary_10_3390_jimaging8060166
crossref_primary_10_1007_s40012_015_0066_8
crossref_primary_10_1109_TIP_2016_2601821
crossref_primary_10_1631_FITEE_1500439
crossref_primary_10_1016_j_jvcir_2015_01_006
crossref_primary_10_1109_TMM_2014_2373812
crossref_primary_10_1016_j_image_2014_06_007
crossref_primary_10_20965_jaciii_2018_p0323
crossref_primary_10_2352_J_ImagingSci_Technol_2021_65_6_060409
crossref_primary_10_1049_iet_ipr_2016_0593
crossref_primary_10_1109_TMM_2020_2991546
crossref_primary_10_1145_3716634
crossref_primary_10_1109_TIP_2015_2413298
crossref_primary_10_1007_s13319_018_0180_0
crossref_primary_10_1007_s11042_020_08985_5
crossref_primary_10_1007_s11042_022_12478_y
crossref_primary_10_1109_ACCESS_2017_2764126
crossref_primary_10_1109_TMM_2017_2685240
crossref_primary_10_1109_TCYB_2020_3024627
crossref_primary_10_1007_s11042_021_11385_y
crossref_primary_10_1109_TIP_2017_2669840
crossref_primary_10_1109_TMM_2023_3310268
crossref_primary_10_1016_j_jvcir_2014_06_007
crossref_primary_10_1109_TIM_2025_3529045
crossref_primary_10_1016_j_patcog_2019_02_021
crossref_primary_10_1007_s11042_017_4958_5
crossref_primary_10_1007_s12559_018_9562_0
crossref_primary_10_1080_00207217_2016_1138517
Cites_doi 10.1364/JOSAA.14.002379
10.1109/TIP.2011.2173206
10.1109/TIP.2010.2092435
10.1109/ACSSC.2003.1292216
10.1117/12.371210
10.1109/TIP.2005.854492
10.1109/ICIP.2011.6116065
10.1109/JSTSP.2009.2014497
10.1613/jair.199
10.1109/TMM.2011.2109701
10.1109/TIP.2007.901820
10.1109/TIP.2005.860325
10.1023/A:1010933404324
10.1109/ICIP.2011.6115659
10.1109/TIP.2003.819861
10.1109/18.119725
10.1109/TIP.2005.864165
10.1109/TIP.2005.859389
10.1007/s11042-010-0473-7
10.1117/12.597306
10.1109/ICIP.2003.1247212
10.1109/ICIP.2011.6115771
10.1364/JOSAA.11.001710
10.1109/MSP.2008.930649
10.1117/12.873075
10.1109/5.982412
10.1017/S0952523800009640
10.1109/97.641398
10.1109/ICIP.2002.1038064
10.1109/ICASSP.2011.5946605
10.1109/TIC.2003.1249092
10.1016/S0042-6989(99)00101-7
10.1016/j.image.2003.08.003
10.1109/TCSVT.2011.2168269
10.1002/0471200611
10.1109/ICIP.2000.899622
10.1016/S0042-6989(97)00183-1
10.1023/A:1026553619983
10.1109/TIP.2006.881959
10.2200/S00010ED1V01Y200508IVM003
10.1109/CVPR.2012.6247795
10.1146/annurev.neuro.24.1.1193
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TIP.2012.2197011
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 3389
ExternalDocumentID 22562759
26181044
10_1109_TIP_2012_2197011
6193206
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c415t-1f8e7623a718e18036a084d58b9742d2e66a9a8af97c445bd875cfe2aade2fa63
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 07:22:35 EDT 2025
Mon Jul 21 05:54:21 EDT 2025
Mon Jul 21 09:14:44 EDT 2025
Tue Jul 01 02:02:51 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
Tue Aug 26 16:57:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Image processing
Similarity
image deblurring
structural similarity
Regression analysis
Image restoration
Divisive normalization transform
Blurred image
Subjective evaluation
Discretization method
Image quality
image repairing
reduced-reference image quality assessment (RR-IQA)
Multiscale method
natural image statistics
Quality control
Database
Signal distortion
Image evaluation
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-1f8e7623a718e18036a084d58b9742d2e66a9a8af97c445bd875cfe2aade2fa63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22562759
PQID 1430845670
PQPubID 23479
PageCount 12
ParticipantIDs pubmed_primary_22562759
pascalfrancis_primary_26181044
proquest_miscellaneous_1430845670
crossref_primary_10_1109_TIP_2012_2197011
crossref_citationtrail_10_1109_TIP_2012_2197011
ieee_primary_6193206
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-08-01
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
chono (ref29) 2008
ref12
ref59
ref15
ref14
ref55
ref11
larson (ref54) 2010
ref10
ref17
ref19
horita (ref51) 2010
ref18
ref46
wang (ref16) 2000; 3
ref48
ref47
ref42
barlow (ref32) 1961
ref41
ref43
ninassi (ref50) 2006; 6057
ref8
ref7
wainwright (ref40) 2000
ref9
ref4
ref3
ref5
wang (ref22) 2003
wang (ref23) 2005; 5666
ref35
ref34
gunawan (ref28) 2003
ref37
ref36
kusuma (ref27) 2003
ref30
ref33
ponomarenko (ref53) 2008
weiss (ref45) 1995; 3
ref2
ref1
ref39
ref38
larson (ref6) 2010; 19
sheikh (ref44) 2006
ponomarenko (ref52) 2009; 10
ponomarenko (ref57) 2009
ref24
ref26
ref25
le callet (ref49) 2005
ref20
ref21
carnec (ref31) 2005; 1
xue (ref58) 2010
(ref56) 2000
ref60
ref62
ref61
References_xml – ident: ref39
  doi: 10.1364/JOSAA.14.002379
– start-page: 609
  year: 2008
  ident: ref29
  article-title: Reduced-reference image quality assessment using distributed source coding
  publication-title: Proc IEEE Int Conf Multimedia Expo
– ident: ref8
  doi: 10.1109/TIP.2011.2173206
– ident: ref3
  doi: 10.1109/TIP.2010.2092435
– year: 2010
  ident: ref51
  publication-title: MICT Image Quality Evaluation Database
– year: 2008
  ident: ref53
  publication-title: Tampere Image Database TID2008
– ident: ref2
  doi: 10.1109/ACSSC.2003.1292216
– ident: ref26
  doi: 10.1117/12.371210
– ident: ref19
  doi: 10.1109/TIP.2005.854492
– year: 2000
  ident: ref56
  publication-title: Final report from the video quality experts group on the validation of objective models of video quality assessment
– ident: ref12
  doi: 10.1109/ICIP.2011.6116065
– ident: ref25
  doi: 10.1109/JSTSP.2009.2014497
– volume: 3
  start-page: 383
  year: 1995
  ident: ref45
  article-title: Rule-based machine learning methods for functional prediction
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.199
– volume: 10
  start-page: 30
  year: 2009
  ident: ref52
  article-title: TID2008-A database for evaluation of full-Reference visual quality assessment metrics
  publication-title: Adv Modern Radioelectron
– year: 2010
  ident: ref54
  publication-title: Categorical Image Quality (CSIQ) Database
– ident: ref60
  doi: 10.1109/TMM.2011.2109701
– year: 2005
  ident: ref49
  publication-title: Subjective quality assessment IRCCyN/IVC database
– ident: ref48
  doi: 10.1109/TIP.2007.901820
– ident: ref61
  doi: 10.1109/TIP.2005.860325
– start-page: 137
  year: 2003
  ident: ref28
  article-title: Reduced reference picture quality estimation by using local harmonic amplitude information
  publication-title: Proc London Commun Symp
– start-page: 1
  year: 2010
  ident: ref58
  publication-title: IEEE Int Workshop on Quality of Multimedia Experience
– year: 2006
  ident: ref44
  publication-title: Image and Video Quality Assessment Research at LIVE
– ident: ref46
  doi: 10.1023/A:1010933404324
– ident: ref11
  doi: 10.1109/ICIP.2011.6115659
– volume: 19
  start-page: 11006-1
  year: 2010
  ident: ref6
  article-title: Most apparent distortion: Fullreference image quality assessment and the role of strategy
  publication-title: J Electron Imag
– ident: ref43
  doi: 10.1109/TIP.2003.819861
– ident: ref47
  doi: 10.1109/18.119725
– ident: ref24
  doi: 10.1109/TIP.2005.864165
– ident: ref4
  doi: 10.1109/TIP.2005.859389
– volume: 1
  start-page: -421i
  year: 2005
  ident: ref31
  publication-title: Proc IEEE Int Conf Image Process
– ident: ref34
  doi: 10.1007/s11042-010-0473-7
– ident: ref1
  doi: 10.1109/TIP.2003.819861
– ident: ref41
  doi: 10.1109/JSTSP.2009.2014497
– volume: 5666
  start-page: 149
  year: 2005
  ident: ref23
  article-title: Reduced-reference image quality assessment using a wavelet-domain natural image statistic model
  publication-title: Proc SPIE
  doi: 10.1117/12.597306
– ident: ref30
  doi: 10.1109/ICIP.2003.1247212
– start-page: 1
  year: 2009
  ident: ref57
  article-title: Metrics performance comparison for color image database
  publication-title: Proc 4th Int Workshop Video Process Qual Metrics Consumer Electron
– ident: ref10
  doi: 10.1109/ICIP.2011.6115771
– ident: ref38
  doi: 10.1364/JOSAA.11.001710
– volume: 6057
  start-page: 60570g-1
  year: 2006
  ident: ref50
  article-title: Pseudo no reference image quality metric using perceptual data hiding
  publication-title: Proc SPIE
– ident: ref7
  doi: 10.1109/MSP.2008.930649
– ident: ref59
  doi: 10.1117/12.873075
– ident: ref17
  doi: 10.1109/5.982412
– start-page: 217
  year: 1961
  ident: ref32
  publication-title: Sensory Communication
– ident: ref35
  doi: 10.1017/S0952523800009640
– ident: ref15
  doi: 10.1109/97.641398
– ident: ref18
  doi: 10.1109/ICIP.2002.1038064
– ident: ref13
  doi: 10.1109/ICASSP.2011.5946605
– start-page: 71
  year: 2003
  ident: ref27
  article-title: A reduced-reference perceptual quality metric for in-service image quality assessment
  publication-title: Proc Joint 1st Workshop Mobile Future Symp Trends Commun
  doi: 10.1109/TIC.2003.1249092
– ident: ref37
  doi: 10.1016/S0042-6989(99)00101-7
– ident: ref20
  doi: 10.1016/j.image.2003.08.003
– ident: ref9
  doi: 10.1109/TCSVT.2011.2168269
– ident: ref42
  doi: 10.1002/0471200611
– volume: 3
  start-page: 981
  year: 2000
  ident: ref16
  article-title: Blind measurement of blocking artifacts in images
  publication-title: Proc IEEE Int Conf Image Process
  doi: 10.1109/ICIP.2000.899622
– ident: ref5
  doi: 10.1109/TIP.2007.901820
– start-page: 1041
  year: 2003
  ident: ref22
  publication-title: The Handbook of Video Databases Design and Applications
– ident: ref36
  doi: 10.1016/S0042-6989(97)00183-1
– ident: ref62
  doi: 10.1023/A:1026553619983
– ident: ref55
  doi: 10.1109/TIP.2006.881959
– ident: ref14
  doi: 10.2200/S00010ED1V01Y200508IVM003
– ident: ref21
  doi: 10.1109/CVPR.2012.6247795
– ident: ref33
  doi: 10.1146/annurev.neuro.24.1.1193
– start-page: 855
  year: 2000
  ident: ref40
  publication-title: Advanced Neural Information Processing Systems
SSID ssj0014516
Score 2.5124521
Snippet Reduced-reference image quality assessment (RR-IQA) provides a practical solution for automatic image quality evaluations in various applications where only...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3378
SubjectTerms Algorithms
Applied sciences
Data Interpretation, Statistical
Detection, estimation, filtering, equalization, prediction
Distortion measurement
Divisive normalization transform
Estimation
Exact sciences and technology
Feature extraction
image deblurring
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image quality
image repairing
Information, signal and communications theory
natural image statistics
Nonlinear distortion
Pattern Recognition, Automated - methods
Receivers
reduced-reference image quality assessment (RR-IQA)
Reference Values
Reproducibility of Results
Sensitivity and Specificity
Signal and communications theory
Signal processing
Signal, noise
structural similarity
Subtraction Technique
Telecommunications and information theory
Transforms
Title Reduced-Reference Image Quality Assessment by Structural Similarity Estimation
URI https://ieeexplore.ieee.org/document/6193206
https://www.ncbi.nlm.nih.gov/pubmed/22562759
https://www.proquest.com/docview/1430845670
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7Ukx58P-KLFbwIbhuTbB5HkYoKitgWvIVJdhdEbYW2B_31zmTT-EDFWyEbku7MznyTmfkG4FAlqGyBsSz9CGVkg1ASjPClCRO_4J4Rq7nf-fomvuhHV_fqfgaOm14YY0xVfGZa_LPK5ethOeFPZe2Y0Qbza89S4OZ6tZqMAQ-crTKbKpEJwf5pStLP2r3LW67hClp0OhPSZyYAJk8fJExQ-skbVeNVuDgSR7Q_1g22-B15Vh7ofAmup-_uCk8eW5Nx0SrfvtE6_vfPLcNiDUXFqdOdFZgxg1VYqmGpqA_9aBUWPnEWrsHNHZO9Gi0bilpx-UxGSTg2jldx2nB9iuJVdCt-Wub2EN2H5weKo3lNhwyL65lch_55p3d2IeuhDLIkXz-WJzY1ZEBDJKdmTlJygOinkVZpQZFJoAMTx5hhijZLyihShaaAqLQmQNQmsBiHGzA3GA7MFgi2KJkik4xooxCDLFbI-DTUCguF2oP2VDh5WTOW8-CMp7yKXPwsJ8nmLNm8lqwHR80dL46t44-1ayyEZl29_x7sf5F_c51CzZRi18iDg6lC5HQUOb-CAzOcjCiKCmkrVJz4Hmw6Tfm4u1a47Z-fugPz_G6usnAX5kg2Zo_QzrjYr9T8HQB7-Dk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4heqAcyqtQ9xEWiUulbuLYXj-OEQIlQCIEQeJmjb27EgKSSkkO9Nd3xuu4gAriFslr2dmZnfnGM_MNwKFKUNkCY1n6EcrIBqEkGOFLEyZ-wT0jVnO_83AU96-j0xt1swK_ml4YY0xVfGba_LPK5etpueBPZZ2Y0Qbza38gv6-6rluryRnwyNkqt6kSmRDwXyYl_awzHlxwFVfQpvOZkEYzBTD5-iBhitIn_qgasMLlkTijHbJutMXr2LPyQScbMFy-vSs9uWsv5kW7_POC2PG9f28TPtVgVPSc9mzBiplsw0YNTEV97GfbsP6EtXAHRpdM92q0bEhqxeCBzJJwfByPotewfYriUVxVDLXM7iGubh9uKZLmNcdkWlzX5Ge4PjkeH_VlPZZBluTt57JrU0MmNERya6abkgtEP420SguKTQIdmDjGDFO0WVJGkSo0hUSlNQGiNoHFONyF1cl0Yr6AYJuSKTLKiDYKMchihYxQQ62wUKg96CyFk5c1ZzmPzrjPq9jFz3KSbM6SzWvJevCzueO34-t4Y-0OC6FZV--_B61n8m-uU7CZUvQaeXCwVIicDiNnWHBiposZxVEhbYWKE9-DPacp_-6uFe7r_5-6D2v98fA8Px-Mzr7BR35PV2f4HVZJTuYHYZ950apU_i8Yx_uC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced-Reference+Image+Quality+Assessment+by+Structural+Similarity+Estimation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Rehman%2C+A.&rft.au=Zhou+Wang&rft.date=2012-08-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=21&rft.issue=8&rft.spage=3378&rft.epage=3389&rft_id=info:doi/10.1109%2FTIP.2012.2197011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2012_2197011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon