On the asymptotic connection between two exponential sums

The relation between the exponential sums S N(x;p)=∑ n=0 N−1 exp(π ixn p) and T 0≡T 0(x;N,p)=∑ n=1 ∞ e −n/N exp(π ixN p e −pn/N) , where x⩾0 and p>0, is investigated. It is demonstrated that there is an asymptotic connection as N→∞ which is found numerically to be valid provided the variable x sa...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 157; no. 2; pp. 297 - 308
Main Author Paris, R.B.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.08.2003
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The relation between the exponential sums S N(x;p)=∑ n=0 N−1 exp(π ixn p) and T 0≡T 0(x;N,p)=∑ n=1 ∞ e −n/N exp(π ixN p e −pn/N) , where x⩾0 and p>0, is investigated. It is demonstrated that there is an asymptotic connection as N→∞ which is found numerically to be valid provided the variable x satisfies the restriction xN p =o( N) when p>1. The sum T 0 is shown to be associated with a zeta function defined by Z(s)=∑ n=1 ∞ exp( iθ e −an)n −s for real θ and a>0.
AbstractList The relation between the exponential sums S N(x;p)=∑ n=0 N−1 exp(π ixn p) and T 0≡T 0(x;N,p)=∑ n=1 ∞ e −n/N exp(π ixN p e −pn/N) , where x⩾0 and p>0, is investigated. It is demonstrated that there is an asymptotic connection as N→∞ which is found numerically to be valid provided the variable x satisfies the restriction xN p =o( N) when p>1. The sum T 0 is shown to be associated with a zeta function defined by Z(s)=∑ n=1 ∞ exp( iθ e −an)n −s for real θ and a>0.
The relation between the exponential sums SN(x;p)=*Sn=0N-1exp(*pixnp) and T0=T0(x;N,p)=*Sn=1infinitye-n/Nexp(*pixNpe-pn /N), where x# > 0 and p > 0, is investigated. It is demonstrated that there is an asymptotic connection as NRTinfinity which is found numerically to be valid provided the variable x satisfies the restriction xNp=o(N) when p > 1. The sum T0 is shown to be associated with a zeta function defined by Z(s)=*Sn=1infinityexp(i*ce-an)n-s for real *c and a > 0.
Author Paris, R.B.
Author_xml – sequence: 1
  givenname: R.B.
  surname: Paris
  fullname: Paris, R.B.
  email: r.paris@abertay.ac.uk
  organization: Division of Mathematical Sciences, University of Abertay Dundee, Dundee DD1 1HG, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15001013$$DView record in Pascal Francis
BookMark eNqFkEtLAzEUhYNUsK3-BGE2ii5GbzKPTFYixRcUulDXIZO5g5GZpCZTa_-9aSu6dHU33zmH-03IyDqLhJxSuKJAy-tnyDhPIWf8ArJLgJyytDwgY1pxkVLOqxEZ_yJHZBLCOwCUguZjIhY2Gd4wUWHTLwc3GJ1oZy3qwTib1DisESOxdgl-LeOsHYzqkrDqwzE5bFUX8OTnTsnr_d3L7DGdLx6eZrfzVOe0GFKqVMXqoikwz6HmWNWClZQVhWCtyKFoGK10q3lWllRx5EzoluYZZ4q32GCTTcn5vnfp3ccKwyB7EzR2nbLoVkEyXgnOQESw2IPauxA8tnLpTa_8RlKQW1FyJ0puLUjI5E6ULGPu7GdABa261iurTfgLFwAxnUXuZs9h_PbToJdBG7QaG-OjL9k488_SNw28fgQ
CODEN JCAMDI
CitedBy_id crossref_primary_10_1016_j_cam_2008_01_014
crossref_primary_10_1016_j_cam_2004_11_013
crossref_primary_10_1080_10652469_2016_1231674
crossref_primary_10_1142_S0218127410027052
crossref_primary_10_1016_j_cam_2006_11_017
Cites_doi 10.1090/S0273-0979-1981-14930-2
10.1088/0951-7715/1/1/001
10.1112/S0025579300008718
10.1007/BF02401833
ContentType Journal Article
Copyright 2003 Elsevier B.V.
2003 INIST-CNRS
Copyright_xml – notice: 2003 Elsevier B.V.
– notice: 2003 INIST-CNRS
DBID 6I.
AAFTH
IQODW
AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/S0377-0427(03)00412-6
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Pascal-Francis
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
EndPage 308
ExternalDocumentID 10_1016_S0377_0427_03_00412_6
15001013
S0377042703004126
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
NHB
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZY4
~02
~G-
08R
ABPIF
IQODW
0SF
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c415t-1aa82b5d5e440b7e8b926125592f9405d218cfc73661a7e729cf14372a7feded3
IEDL.DBID AIKHN
ISSN 0377-0427
IngestDate Fri Oct 25 00:16:17 EDT 2024
Thu Sep 26 17:39:14 EDT 2024
Sun Oct 22 16:11:02 EDT 2023
Fri Feb 23 02:30:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Exponential sums
Asymptotics
Curlicues
Asymptotic behavior
Zeta function
Exponential sum
Laplace integral
Laplace transformation
Asymptotic approximation
Exponential function
Summation
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-1aa82b5d5e440b7e8b926125592f9405d218cfc73661a7e729cf14372a7feded3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0377042703004126
PQID 27897209
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_27897209
crossref_primary_10_1016_S0377_0427_03_00412_6
pascalfrancis_primary_15001013
elsevier_sciencedirect_doi_10_1016_S0377_0427_03_00412_6
PublicationCentury 2000
PublicationDate 2003-08-15
PublicationDateYYYYMMDD 2003-08-15
PublicationDate_xml – month: 08
  year: 2003
  text: 2003-08-15
  day: 15
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2003
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Temme (BIB12) 1994
Whittaker, Watson (BIB14) 1952
Titchmarsh (BIB13) 1988
Dekking, Mendès-France (BIB5) 1981; 329
Andrews, Askey, Roy (BIB1) 1999
Berry, Goldberg (BIB3) 1988; 1
Hardy, Littlewood (BIB6) 1914; 37
Coutsias, Kazarinoff (BIB4) 1987; 26D
Lehmer (BIB7) 1976; 23
R.B. Paris, On the growth of an exponential sum: a survey, Technical Report MS 02:01, University of Abertay Dundee, 2002.
Lindelöf (BIB8) 1905
Berndt, Evans (BIB2) 1981; 5
Olver (BIB9) 1974
Paris, Kaminski (BIB10) 2001
Berndt (10.1016/S0377-0427(03)00412-6_BIB2) 1981; 5
Berry (10.1016/S0377-0427(03)00412-6_BIB3) 1988; 1
Coutsias (10.1016/S0377-0427(03)00412-6_BIB4) 1987; 26D
Whittaker (10.1016/S0377-0427(03)00412-6_BIB14) 1952
Paris (10.1016/S0377-0427(03)00412-6_BIB10) 2001
Dekking (10.1016/S0377-0427(03)00412-6_BIB5) 1981; 329
Lindelöf (10.1016/S0377-0427(03)00412-6_BIB8) 1905
Temme (10.1016/S0377-0427(03)00412-6_BIB12) 1994
Titchmarsh (10.1016/S0377-0427(03)00412-6_BIB13) 1988
Andrews (10.1016/S0377-0427(03)00412-6_BIB1) 1999
Hardy (10.1016/S0377-0427(03)00412-6_BIB6) 1914; 37
Olver (10.1016/S0377-0427(03)00412-6_BIB9) 1974
10.1016/S0377-0427(03)00412-6_BIB11
Lehmer (10.1016/S0377-0427(03)00412-6_BIB7) 1976; 23
References_xml – volume: 26D
  start-page: 295
  year: 1987
  end-page: 310
  ident: BIB4
  article-title: Disorder, renormalizability, theta functions and Cornu spirals
  publication-title: Physica
  contributor:
    fullname: Kazarinoff
– year: 1988
  ident: BIB13
  publication-title: The theory of the Riemann Zeta-Function
  contributor:
    fullname: Titchmarsh
– year: 1999
  ident: BIB1
  publication-title: Special Functions
  contributor:
    fullname: Roy
– year: 2001
  ident: BIB10
  publication-title: Asymptotics and Mellin–Barnes Integrals
  contributor:
    fullname: Kaminski
– year: 1994
  ident: BIB12
  article-title: Bernoulli polynomials old and new: problems in analysis and asymptotics
  publication-title: From Universal Morphisms to Megabytes: A Baayen Space Odyssey
  contributor:
    fullname: Temme
– volume: 5
  start-page: 107
  year: 1981
  end-page: 129
  ident: BIB2
  article-title: The determination of Gauss sums
  publication-title: Bull. Amer. Math. Soc.
  contributor:
    fullname: Evans
– volume: 37
  start-page: 183
  year: 1914
  end-page: 236
  ident: BIB6
  article-title: Some problems of Diophantine approximation. II
  publication-title: Acta Math.
  contributor:
    fullname: Littlewood
– year: 1952
  ident: BIB14
  publication-title: A Course of Modern Analysis
  contributor:
    fullname: Watson
– year: 1905
  ident: BIB8
  publication-title: Le Calcul des Résidus
  contributor:
    fullname: Lindelöf
– year: 1974
  ident: BIB9
  publication-title: Asymptotics and Special Functions
  contributor:
    fullname: Olver
– volume: 1
  start-page: 1
  year: 1988
  end-page: 26
  ident: BIB3
  article-title: Renormalisation of curlicues
  publication-title: Nonlinearity
  contributor:
    fullname: Goldberg
– volume: 329
  start-page: 143
  year: 1981
  end-page: 153
  ident: BIB5
  article-title: Uniform distribution modulo one
  publication-title: J. Reine Angew. Math.
  contributor:
    fullname: Mendès-France
– volume: 23
  start-page: 125
  year: 1976
  end-page: 135
  ident: BIB7
  article-title: Incomplete Gauss sums
  publication-title: Mathematika
  contributor:
    fullname: Lehmer
– year: 1974
  ident: 10.1016/S0377-0427(03)00412-6_BIB9
  contributor:
    fullname: Olver
– year: 1999
  ident: 10.1016/S0377-0427(03)00412-6_BIB1
  contributor:
    fullname: Andrews
– year: 1988
  ident: 10.1016/S0377-0427(03)00412-6_BIB13
  contributor:
    fullname: Titchmarsh
– volume: 5
  start-page: 107
  year: 1981
  ident: 10.1016/S0377-0427(03)00412-6_BIB2
  article-title: The determination of Gauss sums
  publication-title: Bull. Amer. Math. Soc.
  doi: 10.1090/S0273-0979-1981-14930-2
  contributor:
    fullname: Berndt
– volume: 329
  start-page: 143
  year: 1981
  ident: 10.1016/S0377-0427(03)00412-6_BIB5
  article-title: Uniform distribution modulo one
  publication-title: J. Reine Angew. Math.
  contributor:
    fullname: Dekking
– year: 1952
  ident: 10.1016/S0377-0427(03)00412-6_BIB14
  contributor:
    fullname: Whittaker
– volume: 1
  start-page: 1
  year: 1988
  ident: 10.1016/S0377-0427(03)00412-6_BIB3
  article-title: Renormalisation of curlicues
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/1/1/001
  contributor:
    fullname: Berry
– ident: 10.1016/S0377-0427(03)00412-6_BIB11
– volume: 26D
  start-page: 295
  year: 1987
  ident: 10.1016/S0377-0427(03)00412-6_BIB4
  article-title: Disorder, renormalizability, theta functions and Cornu spirals
  publication-title: Physica
  contributor:
    fullname: Coutsias
– volume: 23
  start-page: 125
  year: 1976
  ident: 10.1016/S0377-0427(03)00412-6_BIB7
  article-title: Incomplete Gauss sums
  publication-title: Mathematika
  doi: 10.1112/S0025579300008718
  contributor:
    fullname: Lehmer
– volume: 37
  start-page: 183
  year: 1914
  ident: 10.1016/S0377-0427(03)00412-6_BIB6
  article-title: Some problems of Diophantine approximation. II
  publication-title: Acta Math.
  doi: 10.1007/BF02401833
  contributor:
    fullname: Hardy
– year: 1994
  ident: 10.1016/S0377-0427(03)00412-6_BIB12
  article-title: Bernoulli polynomials old and new: problems in analysis and asymptotics
  contributor:
    fullname: Temme
– year: 2001
  ident: 10.1016/S0377-0427(03)00412-6_BIB10
  contributor:
    fullname: Paris
– year: 1905
  ident: 10.1016/S0377-0427(03)00412-6_BIB8
  contributor:
    fullname: Lindelöf
SSID ssj0006914
Score 1.7360296
Snippet The relation between the exponential sums S N(x;p)=∑ n=0 N−1 exp(π ixn p) and T 0≡T 0(x;N,p)=∑ n=1 ∞ e −n/N exp(π ixN p e −pn/N) , where x⩾0 and p>0, is...
The relation between the exponential sums SN(x;p)=*Sn=0N-1exp(*pixnp) and T0=T0(x;N,p)=*Sn=1infinitye-n/Nexp(*pixNpe-pn /N), where x# > 0 and p > 0, is...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 297
SubjectTerms Approximations and expansions
Asymptotics
Curlicues
Exact sciences and technology
Exponential sums
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation
Sciences and techniques of general use
Sequences, series, summability
Title On the asymptotic connection between two exponential sums
URI https://dx.doi.org/10.1016/S0377-0427(03)00412-6
https://search.proquest.com/docview/27897209
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4AXjTG-Iz4wB486KFQ-tr2CEQCInBQDPGy2Xa3CQdLY0vUi7_d2W2BEGNMPO5kH83sdGY2M_MNwDVaVRFGxNc52h_dxgezHgQoy57j8QjtscEDGdEdjtzexL6fOtMSdJa1MDKtstD9uU5X2rqgNApuNpLZrPFoWITIThFGDhrllmFLBYkqsNXqD3qjlUJ2_RziG-frcsG6kCffRBFvDOtW7aO7v5mo3YSlyLgo73jxQ3kri9Tdh73CldRa-dceQEnEh7AzXOGwpkfgj2MNhxpLP1-TbI5ELZSZLaqYQStytLTsfa6Jj2Qey8wh3BGFMz2GSffuqdPTi2YJeog2ONObjHlm4HBH2LYREOEFvkQHwweDGfnolXG05WEUEgsNMiMCfeowasqgHSOR4IJbJ1CJ8aBT0AwuLE_gNF9i4fNQ9iM3GbM99F4iRswq1Jf8oUmOiUHXyWKWBA9HhlLDooqh1K2Ct-Qi3bhcinr7r6W1Da6vD3QUPJ5VhavlNVD8M2S4g8VivkiprPElpuGf_f_0c9hWyXsSAte5gEr2thCX6IRkQQ3K9a9mDUWt_Tx4qBUih9T-tI2jUWc6fvkGk7TZeg
link.rule.ids 315,783,787,3515,4511,24130,27583,27938,27939,45599,45677,45693,45888
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdgCEEE9RHm0GBhhC3bycjKWiKvTBQIu6WU7sSB1IIpIK-Peck7RVhRASY6zYjj47953lu-8ArpFVZRBSTxfIP7qFB2bd93Evu7YrQuRjInx1ozsaO_2p9TSzZxXoLnNhVFhlafsLm55b67KlVaLZSubz1gsxKVWVIkghGuVsQQ29AYonsFrn_nUwXBlkxyskvvF9XXVYJ_IUg-SNN8S8zcfRnd8oai_hKQIXFhUvfhjvnJF6B7BfupJap_jaQ6jI6Ah2Rysd1vQYvOdIw0eNp19vSRZjoxaoyJY8mUErY7S07CPW5GcSRypyCEfEzZmewLT3MOn29bJYgh4gB2d6m3PX8G1hS8siPpWu7yl1MDwwGKGHXplALg_CgJpIyJxK9KmDsK0u7TgNpZDCPIVqhBOdgUaENF2Jr3lKC18Eqh65wbnlovcScmrU4W6JD0sKTQy2DhYzlXg4AsqIyXJAmVMHd4ki21hchnb7r66NDdTXE9q5PJ5Zh-ZyGRj-Geq6g0cyXqRM5fhSg3jn_5-9Cdv9yWjIho_jwQXs5IF8Sg7XvoRq9r6QV-iQZH6j3HDfaHDXNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+asymptotic+connection+between+two+exponential+sums&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Paris%2C+R+B&rft.date=2003-08-15&rft.issn=0377-0427&rft.volume=157&rft.issue=2&rft.spage=297&rft.epage=308&rft_id=info:doi/10.1016%2FS0377-0427%2803%2900412-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon